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ABSTRACT

Interactions between random gravity waves and the turbulent atmosphere
boundary layer can be treated by an extension of wave-wave interaction
theory. The energy transfer resulting from various interaction combi-
nations can be characterized by transfer diagrams corresponding to the
Feynman diagrams of wave-wave interactions. The complete set of
lowest order transfer diagrams is shown to include Miles' and Phillips'
theories of wave generation and a further set of wave-turbulence inter-
actions which have not been considered previously. The predicted wave
growth for the various interactions is compared with existing measure-
ments. But a conclusive answer to the question of wave generation
must await more detailed experiments correlating wave measurements
with turbulence measurements in the atmosphere boundary layer.

INTRODUCTION

The fundamental papers of Miles (1) and Phillips (2) marked an important
advance in our understanding of the basic processes by which waves can be gen-
erated by wind. It has been widely hoped that the growth of waves could be largely
accounted for by a superposition of these two processes. However, it is known
that although the theories describe independent aspects of the wave-atmosphere
interaction, they are not entirely complementary; there remain interactions which
are included in neither theory. Miles considers the coupling of the wave field
with the mean atmospheric boundary-layer flow, but ignores the wave-turbulence
interactions. These are similarly neglected in Phillips' treatment, which is
concerned only with the external excitation of the waves by the undisturbed turbu-
lent field.

Apart from the general theoretical interest, a complete theory of wave-
atmosphere interactions has now become particularly desirable through the field
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study of Snyder and Cox (3), which indicates that the combined Miles- Phillips
mechanisms fail to account for the observed wave growth by almost an order of
magnitude.

We shall attempt here to outline a complete theory based on a systematic
expansion of the coupled fields. Besides the Miles and Phillips processes, the
theory yields three further processes at lowest order: a nonlinear interaction
with the mean boundary-layer flow and two forms of wave-turbulence interaction.

The problem may be divided into two parts: the analysis of the coupling
between the wave field and the turbulent boundary-layer flow, and the determi-
nation of the energy transfer due to the coupling. The first part concerns the
details of the interaction expansion. The second part may be regarded as a
particular application of a general transfer theory for random wave fields in
weakly coupled systems.

WAVE-ATMOSPHERE INTERACTIONS

We present here only the general structure of the interaction analysis; a
detailed derivation is given in Ref. 4. Let ¢ be the surface displacement,
u = U+ u’ be the turbulent velocity field in the atmosphere, consisting of a mean
flow U and a superimposed fluctuating component u' of zero mean, and éu be
the wave-induced perturbation of the turbulent velocity field. We assume that
all fields are statistically homogeneous, so that they may be represented as a
superposition of mutually statistically orthogonal Fourier components of ampli-
tude Z,, u,, du,, where k is the two-dimensional, horizontal wavenumber
vector.

The equations of motion of the coupled wave-atmosphere system may then
be expressed in the form

L (5w ) = Q(uy, Suy) (z>0), (1)
Suy = Rlug, {,) (2=0), (2)
T+ 02, =Sy, u, Su) (z=0), (3)

where o = (gk tanh kH)'/?, ¢ is the gravitational acceleration, H is the water
depth, :z is the vertical coordinate, measured positive upward, L represents a
linear (essentially the Orr-Sommerfeld) operator, and Q, R, and S are nonlinear
functionals of the coupled fields.

The wave-atmosphere interactions are proportional to the air-to-water
density ratio and are therefore weak. This suggests a solution by iteration. To
first order, the forcing function S in the harmonic-oscillator equation (Eg. (3))
can be neglected, yielding a stationary wave field of free, sinusoidal waves. The
free-wave field can then be substituted in the boundary condition (Eq. (2)), which
together with Eq. (1) determines the wave-induced velocity field éu. Substitution
of the solution fu in the forcing function S then determines a second-order solu-
tion for the wave field, and so forth.
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Miles and Phillips introduce additional simplifications. Phillips ignores the
dependence of S on the fields 7, and %u,, S0 that Eq. (3) reduces to a purely ex-
ternal excitation by the turbulence field u’ (physically, S corresponds in this
case to the unmodified turbulent surface pressure). Miles ignores the nonlinear
term Q in Eq. (1) (i.e., the wave-induced perturbation of the turbulent Reynolds
stress) and the w'-dependence of R in Eq. (2). This reduces Egs. (1) and (2) to
linear, constant-coefficient equations, and the boundary-value problem of deter-
mining ‘u becomes tractable.

If the Miles approximation is regarded as an acceptable first-order solu-
tion, the general case can be approached by introducing a second iteration loop
in which Q and the u’ dependence of R are treated as further perturbations.
The nth iteration is obtained by solving Eqs. (1) and (2) with the (n~ 1)th itera-
tion substituted in the right-hand sides. In this manner, the wave-induced
velocity field is obtained as a power series in the components £, and u}, and
the forced-harmonic-oscillator equation (Eq. (3)) takes the form

b+ o?ly =Py + By + t%fu,-x Cuokp Sk, Uy * 00 (4)

The first two terms on the right correspond to the Phillips and Miles approxi-
mations, respectively; P, denotes the external forcing term due to random
turbulent pressure fluctuations; and By. Cy,x,. -.. are coupling coefficients,
which are determined by solving the Orr-Sommerfeld equation, Eq. (1), under
boundary condition (2). In general, this is possible only by numerical methods
or by restriction to simple boundary-layer models. (It is known that a simple
constant-velocity or constant-slope profile is inadequate in the Miles approxi-
mation, in which the energy transfer is determined by the local profile curvature
at the critical layer. However, the detailed properties of the velocity profile are
probably less important for the higher order processes.)

Correlation measurements of wave height and surface pressure by Longuet-
Higgins et al, (5) indicate that the Miles approximation does indeed yield a rea-
sonable first-order description of the wave-induced fluctuations in the atmos-
phere. It should be noted, however, that this does not necessarily apply to the
Miles transfer expression. In Miles' approximation, the wave-induced pressure
fluctuations are almost 90 degrees out of phase with the wave height over most
of the wave spectrum, so that only a small fraction of the pressure field is effec-
tive in generating waves. It is therefore conceivable that the higher order pres-
sure fluctuations, although smaller in absolute magnitude, lead to a larger
energy transfer.

THE ENERGY TRANSFER

After determining the coefficients of the interaction expansion, the problem
remains of evaluating the energy transfer resulting {from the coupled equations
(Eqs. (4)). The analysis is basically straightforward but involved algebraically.
We summarize here only the results, referring to Refs. 4 and 6 for details. The
problem may be regarded as a generalization of the theory of wave-wave inter-
actions, first considered by Peierls (7) in his classic study on the heat conduction
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in solids and now developed to a standard scattering formalism in various fields
of physics. The theory has recently also found a number of geophysical applica-
tions (8).

The energy transfer arises {rom interactions between combinations of
Fourier components whose wave numbers k,, ..., k, and frequencies «,, ..., o,
satisfy the transfer conditions

N VN (5)

n=1

2, %% = ap. (6)

j= 1

where s j =21, Equation (5) follows from the homogeneity of the physical sys-
tem and applies to all interactions. An energy transfer between the interacting
components occurs only if the additional resonance condition of Eq. (6) is also
satisfied.

The net energy transfer is found by summing the contributions from all
combinations of resonant interactions. The final expression consists of a num=-
ber of integrals containing various spectral products, which can conveniently be
divided into two classes. Integrals in which the transfer conditions of Egs. (5)
and (6) occur as ¢ factors are associated with scallering processes, the remain-
ing integrals are associated with parametric processes.

To distinguish between the various transfer terms, it is further convenient
to introduce a notation based on transfer diagrams. The transfer diagram for a
scattering process consists of a number of wavenumber vectors k,, ..., k__
entering a vertex and a single wave component k_ leaving the vertex The com-
ponents satisfy the transfer conditions of Egs. (5) and (6). Components associ-
ated with a negative sign s; = -1 are indicated by a cross stroke.

The transfer diagram for a parametric process consists only of ingoing
components. There are no side conditions on the wavenumbers or frequencies.
Parametric processes occur only in interacting systems in which the total
energy and momentum of the wave fields are not conserved. They have no
counterpart in the theory of wave-wave interactions, but there is a close analogy
with the interactions occurring in nonlinear parametric amplifiers.

The structure of the various transfer expressions can be deduced {from the
transfer diagrams with the aid of a single transfer rule: the rate of change of
the energy spectrum of any wave component in a transfer diagram is proportional
to the product of the spectral densities of the ingoing components. Thus for any
interacting system, the set of all transfer expressions for a particular wave field
w is obtained by applying the transfer rule to all wave components « in all possi-
ble transfer diagrams (Fig. 1).
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Fig. 1 - Examples of transfer dia-
grams and transfer expression for
{i)athird-order scatiering process
and (ii) a third-order parametric
process. a and b represent arbi-
trary field components; w,, w,, and
w represent wave components; T,
T, are transfer functions; and the
indices n, i refertothe wave com-
ponents w,, w,.

It is important to note that the transfer diagrams reflect only the structure
of the transfer expressions. They are normally not directly related to the basic
component-interactions responsible for the energy transfer. Thus although all
transfer expressions are due entirely to resonant interactions, the resonant in-
teraction conditions of Egs. (5) and (6) occur only in the scattering, not the
parametric transfer diagrams. The structure of the interaction analysis can be
summarized independently in terms of interaction diagrams (6). (However, for
conservative wave-wave interactions, the interaction and transfer diagrams are
very simply interrelated (8).)

APPLICATION TO WAVE-ATMOSPHERE INTERACTIONS

The complete set of lowest-order transier diagrams in the case of wave-
atmosphere interactions are shown in Fig. 2. The linear interaction with the
mean boundary-layer flow according to Miles appears as the degenerate pa-
rametric diagram (i). Phillips' external excitation by the atmospheric turbu-
lence field is represented by the diagrams (iii). (If the external field is ex-
pressed in terms of the turbulent pressure p* instead of the turbulent velocity
components t, these reduce to a single linear diagram.) The remaining proc-
esses represent a nonlinear interaction with the mean boundary-layer flow,
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Fig. 2 - Lowest order transfer dia-
grams and transfer expressions for
wave-atmosphere interactions: (i)
Miles, (ii) nonlinear interaction with
meéan wind, (iii) Phillips, (iv) wave-
turbulence scattering processes, and
(v) wave-turbulence parametric proc-
ess. The components g, t, and p'
represent gravity-wave, turbulent-
velocity and turbulent-pressure com-
ponents, respectively,

diagram (ii), and wave-turbulence interactions, diagrams (iv) and (v). The trans-
fer expressions derived from the transfer rule are also shown. Only the depend-
ence on the wave spectrum is given explicitly. The transfer functions T,, ...,
depend on the coupling coefficients, and in the case of diagrams (iii), (1v5 v&,
on the atmospheric turbulence spectra. The expressions are given in full in

Ref. 4.

THE PRESSURE SPECTRA

Figure 3 shows schematically a two-dimensional k, -« section of the three-
dimensional surface pressure spectra F (k.«) assoclated with the various
transfer processes. The scattering processes (ii1) and (iv) of Fig. 2 correspond
to three-dimensional pressure distributions, whereas the parametric processes
(i), (ii), and (v) yield two-dimensional distributions concentrated on the gravity-
wave dispersion surfaces « = so(k) = + (gk tanh kH)"Y? Only the pressure fluc-
tuations in resonance with free gravity waves, i.e., on the dispersion surface,
transfer energy to the wave field.

The three-dimensional turbulent pressure distribution is concentrated
about the "convection surface'" «+ k,U_ = 0, where U_ is the mean
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Fig. 3 - Two-dimensional ky -« sec-
tion of the three-dimensional surface
pressure spectra F (k,«). (The mean
wind U_ is parallel to the x, axis.)

("anemometer") wind speed and %k, is the wavenumber component parallel to the
wind. The distribution follows from Taylor's hypothesis, according to which the
wavenumber and frequency spectra of a turbulence field are approximately
related as though the turbulence were a frozen special pattern convected bodily
downstream with the mean flow velocity. It follows that the energy transfer due
to Phillips' mechanism is appreciable only where the convection surface and
dispersion surface intersect, i.e., for gravity waves whose phase velocities in
wind direction are approximately equal to the wind speed (2) (see also Ref. 9 for
the present interpretation of Phillips' result).

Linear wave interactions with the mean wind lead to pressure fluctuations
of the same wavenumber and frequency as the wave components. Miles' pres-
sure spectrum is therefore represented by a two-dimensional distribution on
the dispersion surface.

The parametric processes (ii) and (v) also corresponds to two-dimensional
pressure distributions. The process (ii) is due to a cubic wave-wind interaction
involving a wave component (k, <) and a complex conjugate pair of wave compo-
nents (k’, '), (-k', =¢’). This leads to a pressure fluctuation with the wave-
number and frequency of the first wave component. Process (iv) is due to a
similar cubic interaction between a wave component (k. ¢) and a complex con-
jugate pair of turbulence components (k' «'), (-k’, -»*), again producing a pres-
sure fluctuation of wavenumber k and frequency o.

The scattering processes (iv) are associated with quadratic interactions
between wave components (k, ¢) and turbulence components (k. «‘). In this
case the induced pressure fluctuations can have arbitrary wavenumbers k+ k'
and frequencies o+ «’, and the spectrum is a three-dimensional continuum.
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Since atmospheric turbulence spectra are normally peaked at much lower wave-
numbers and frequencies than wave spectra, it may be expected that for most
interactions k' << k, «' << o, so that the resultant pressure distribution lies
rather close to the dispersion curve. Furthermore, the maximum of the dis-
tribution will lie close to the wave spectral maximum. The strongest wave
generation may therefore be expected for frequencies close to the wave spectral
peak, in accordance with the observed sequential development of the wave spec-
trum form high to low frequencies, the waves growing only in a narrow fre-
quency band about the momentary wave peak, (However, other explanations of
the sequential wave growth have also been suggested.)

CONCLUSIONS

The recent field study of Snyder and Cox (3) indicate that both Miles' and
Phillips' theories are incapable of explaining the wave growth observed in the
ocean, strongly suggesting that one or more of the remaining lowest-order
processes, in particular the wave-turbulence interactions, are the principal
source of wave energy. However, the question of wave generation must be re-
garded as open until further measurements and transfer computations have
been made. Although a complete theory of expansible interactions has been
developed, the expansions are valid only for weak spacially uniform interac-
tions. Strong, local effects, such as flow separation at the wave crests, are
therefore not included in the theory.
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