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We derive the third-order poor man’s scaling equation for a generic Hamiltonian describing a
quantum impurity embedded into an itinerant electron gas. We show that the XY Z Coqblin–
Schrieffer model introduced by one of us earlier is algebraically renormalizable in the sense that the
form of the Hamiltonian is preserved along the scaling trajectory, write down the scaling equations
for the model, and analyze the renormalization group flows in the cases of both constant and
pseudogap densities of states.

PACS numbers:

I. INTRODUCTION

In the celebrated Kondo problem, a seemingly innocu-
ous magnetic impurity coupled to a band of itinerant
electrons gives rise to an infrared logarithmic divergence
in not only resistivity but also almost all thermodynamic
and kinetic properties1,2. To interpret this logarithmic
divergence, Anderson3 proposed the idea of the so-called
poor man’s scaling: the effects of high-energy excitations
can be absorbed into renormalized coupling constants at
low energies. It was later realized that similar physics is
found in many more complicated impurity models with
internal degrees of freedom. Among these is the Coqblin–
Schrieffer (CS) model motivated by the orbital degener-
acy of transition metal ions with unfilled d or f shells2,4,5.
The CS model has recently attracted renewed interest in
various contexts6–9.

The study of spin anisotropy4,10–12 has yielded rich
results as an offshoot of the original isotropic Kondo
problem. Following works on the spin-anisotropic Kondo
model3,13–15, one of the authors introduced anisotropic
CS models and derived the poor man’s scaling equations
for these models16,17. In this work we return to the con-
sideration of what we previously called the XY Z CS
model; the scaling equations are now evaluated to the
third order, an error in the previously obtained second-
order scaling equations16 is corrected, and we explore
the scaling flow diagrams in detail. We also take into
account a possible power-law energy dependence of the
density of states of itinerant electrons at the Fermi en-
ergy (i.e. a pseudogap density of states)14,18–24, which
can arise in semimetals, nodal superconductors as well
as one-dimensional interacting systems.

The rest of the paper is constructed as follows. In
Section II we present the third-order scaling equation for
the coupling constants and review the notion of algebraic
renormalizability for a rather generic quantum impurity
model embedded into an itinerant electron gas. In Sec-
tion III we consider the solutions to the poor man’s scal-
ing equations for the XY Z Kondo model, which is the
N = 2 special case of the XY Z CS model, and plot the
corresponding three-dimensional weak-coupling flow di-

agrams. We first review the case of a constant density
of states for the itinerant electrons, expanding on the
well-known limit of the XXZ Kondo model. We then
turn to a pseudogap density of states, and generalize the
analysis of the XXZ Kondo model in Refs. 14,16 to the
fully anisotropic XY Z case. In Section IV we present
the poor man’s scaling equations for the XY Z CS model
in the more general case N > 2, again for both con-
stant and pseudogap densities of states, and analyze the
three-dimensional flow diagrams. Section V concludes
the paper. Appendix A describes the derivation of the
third-order scaling equation for the generic quantum im-
purity model. In Appendix B we show explicitly the al-
gebraic renormalizability of the XY Z CS model at the
second order. Some additional mathematical details are
relegated to Appendix C.

II. SCALING EQUATION AND ALGEBRAIC
RENORMALIZABILITY

The quantum impurity that we consider is cou-
pled to conduction electrons and described by the
Hamiltonian4,16,17

H =
∑
kα

εkc
†
kαckα +

∑
k,k′

αβ,ab

Vβα,baXbac
†
k′βckα, (1)

where c†kα creates a conduction electron with wave vector
k, channel α, and energy εk. The Hubbard X-operator
is defined as Xba = |b〉〈a|, where |a〉, |b〉 are the impurity
states.

While studying the physics in the vicinity of the
Fermi energy, we must account for the virtual tran-
sitions from and to electron states at higher energies.
In the poor man’s scaling formalism3, one reduces the
semi-bandwidth of the conduction electrons from D to
D − |dD| (dD < 0 is infinitesimal), discarding the elec-
tronic states in the energy intervals (D − |dD|, D) and
(−D,−D + |dD|); however, virtual transitions through
these states are retained in the form of a modified cou-
pling constant V , such that the impurity scattering ma-
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FIG. 1: Diagrams contributing to the scaling equation Eq. (2)
at (a) the second order and (b) the third order. Solid lines and
double dashed lines represent electrons and impurity propa-
gators respectively.

trix elements are the same at low energies. The coupling
V is therefore renormalized as the energy scale D is re-
duced. To the order O(V 3), the diagrams in Fig. 1 pro-
duce the following scaling equation for the generic Hamil-
tonian Eq. (1):

dVβα,ba
d ln Λ = ρ

∑
γc

(Vβγ,bcVγα,ca − Vγα,bcVβγ,ca)

−ρ2
∑
δγ

∑
cd

Vδγ,bcVβα,cdVγδ,da

+1
2ρ

2
∑
γδcd

(Vδγ,bcVγδ,cdVβα,da + Vβα,bcVδγ,cdVγδ,da) .(2)

where Λ = D/D0 and D0 is the initial semi-bandwidth.
The second-order terms in Eq. (2) are already given in
Refs. 16,17; Appendix A explains in detail how the third-
order terms are obtained.

A particular interesting case is when Vβα,ba can be
written as a sum of direct products of Hermitian ma-
trices {Gp} and {Γp}, which act respectively in impurity
and channel Hilbert spaces:

V = 2
∑
i

Ji
∑

p∈{Pi}

Gp ⊗ Γp̃. (3)

Here {Gp} (p ∈ {Pi}) is a given set of generators corre-
sponding to the coupling constants Ji; Γp̃ in most cases
considered in Ref. 17 is just the generator isomorphic to
the Gp, but in general, it can be another i-specific gen-
erator Γ corresponding to Gp. Under the assumption of
Eq. (3), there will be fewer coupling constants than the
maximum number of entries in the matrix Vβα,ba, and it
is clear that not all interactions in the form of Eq. (3)
have this form preserved by scaling (or “algebraically
renormalizable”) even at the second order. The prob-
lem of finding algebraically renormalizable interactions
usually requires symmetry considerations of the group
corresponding to {Gp} and {Γp}, and has been discussed
in Refs. 16,17 at the second order. In particular, the
search for algebraically renormalizable models has led to
the proposal of the XY Z CS model, which we will focus
on in the remainder of this paper:

V = JS
∑
m 6=m′

Xmm′c†m′cm + JA
∑
m6=m′

Xmm′c†mcm′

+ Jz
∑
m

Xmmc
†
mcm −

Jz
N

∑
mm′

Xmmc
†
m′cm′ . (4)

Here we have suppressed all momentum labels for clar-
ity. Below we discuss the scaling flows of Eq. (4) at the
third order as predicted by Eq. (2). Appendix B shows
the detailed calculation of the second-order terms, thus
demonstrating the algebraic renormalizability of Eq. (4)
explicitly at the second order; at the third order we only
present the final results.

III. XY Z KONDO MODEL

A. From spins to Hubbard operators

To motivate and explain our treatment of the XY Z
CS model in Sec. IV, let us start from the analysis of the
spin-anisotropic Kondo model

H =
∑
kα

εkc
†
kαckα +

∑
kk′αβ

JijS
iσjαβc

†
k′αckβ , (5)

where Sx, Sy, Sz are the impurity spin operators,
σx, σy, σz are the Pauli matrices, Jij is the anisotropic
exchange coupling matrix, and summation with respect
to any repeated Cartesian index is implied. After the
Hamiltonian Eq. (5) is reduced to principal axes Jij =
Jiδij , the corresponding scaling equations are

dJx
d ln Λ = −2JyJz + Jx(J2

y + J2
z ),

dJy
d ln Λ = −2JxJz + Jy(J2

x + J2
z ), (6)

dJz
d ln Λ = −2JxJy + Jz(J2

x + J2
y ).

(Here and further on we take the constant density of
states of the itinerant electrons to be equal to 1).

When we neglect the third-order terms (which is jus-
tified by the assumption of weak coupling)13,14, the gen-
eral solution of Eq. (6) can be written in terms of elliptic
functions

Jα = A ns(At+ ψ, k)
Jβ = A cs(At+ ψ, k) (7)
Jγ = A ds(At+ ψ, k),

where {α, β, γ} is an arbitrary permutation of {x, y, z},
and t = 2 ln Λ. In the general case (k 6= 0, 1) the flow lines
go to infinity both with decreasing and with increasing t.
(A flow line starting and ending at finite energies corre-
sponds to a finite interval of At.) A flow line is attracted
to the asymptotic ray Jα = Jβ = Jγ > 0 with decreasing
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t and Jα = Jβ = −Jγ > 0 with increasing t, or to the
asymptotic ray Jα = Jβ = −Jγ > 0 with decreasing t
and to Jα = Jβ = Jγ < 0 with increasing t. We see that
there are four strong-coupling phases in total, each one
corresponding to the three-dimensional attraction region
of the appropriate ray. The third-order terms do not
change these conclusions, because they would only be-
come important at strong coupling where we expect the
perturbation theory to fail.

From the scaling equation Eq. (6) itself follows the ex-
istence of 6 planes,

Jx = Jy, Jy = Jz, Jz = Jx

Jx = −Jy, Jy = −Jz, Jz = −Jx, (8)

each one being invariant under the scaling flow. These
planes form in some sense the skeleton of flow diagram.
From Eq. (7) it additionally follows that parts of these
planes play the role of separatrices. Thus the phase char-
acterized by the attractor Jα = Jβ = Jγ > 0 is the space
angle with 3 faces defined by the inequalities Jx+Jy > 0,
Jx + Jz > 0, Jy + Jz > 0. Other three phases can be ob-
tained from that one by making rotations from the group
of tetrahedron.

The flow lines on the invariant planes should be consid-
ered separately. Taking, for example, the plane Jx = Jy,
we return to the previously well-studied XXZ Kondo
model,

dJx
d ln Λ = −2JxJz + Jx(J2

x + J2
z ),

dJz
d ln Λ = −2J2

x + 2JzJ2
x . (9)

These scaling equations exhibit Kosterlitz-Thouless (KT)
physics in their range of validity: initial parameters sat-
isfying 0 < |Jx| < −Jz lead to a flow towards the
fixed line Jx = 0, Jz < 0; otherwise, either Jz > 0
or 0 < −Jz < |Jx| results in a flow to strong coupling
|Jx| → ∞ and Jz →∞. The separatrix line between the
two regimes is |Jx| = −Jz. Thus, considering, for exam-
ple, the line Jx = Jy = Jz, we understand that the ray
from the origin to +∞ serves as an attractor, and the
ray from the origin to −∞ serves as the separatrix line
on the invariant plane. The invariant planes also contain
the lines of fixed points, each one corresponding to two of
the three Ji being equal to zero. Each fixed point has a
one-dimensional attraction region and hence is a critical
point.

Notice that the flow diagram has a simple geometric
meaning at the second order: each flow line can be con-
sidered as the intersection of two parabolic cylinders, one
belonging to the family J2

x − J2
y = C1, and the other be-

longing to the family J2
x − J2

z = C2.
To motivate the consideration of the XY Z Coqblin-

Schrieffer model in Section IV, we now write down the

interaction in Eq. (5) using Hubbard X-operators

V = JS

(
X+−c

†
−c+ +X−+c

†
+c−

)
+ JA

(
X+−c

†
+c− +X−+c

†
−c+

)
+ Jz

(
X++c

†
+c+ +X−−c

†
−c−

)
− 1

2Jz (X++ +X−−)
(
c†+c+ + c†−c−

)
, (10)

where JS = (Jx+Jy)/2 and JA = (Jx−Jy)/2. (We again
omit the wave vector indices.) It turns out that such an
interaction is also algebraically renormalizable, and the
scaling equation can be written down as

dJS
d ln Λ = −2JSJz + JS(J2

S − J2
A + J2

z ),

dJA
d ln Λ = 2JAJz + JA(−J2

S + J2
A + J2

z ), (11)

dJz
d ln Λ = −2(J2

S − J2
A) + 2Jz(J2

S + J2
A).

Of course, Eq. (11) can also be obtained from Eq. (6).
The statements of the present Section are illustrated by

the numerical flow diagram Fig. 2, which we plot by nu-
merically integrating the weak-coupling scaling equation.
Because of the symmetries JS → −JS and JA → −JA, it
suffices to focus on the case JS ≥ 0 and JA ≥ 0. Scaling
flows in the various limiting cases we have considered are
highlighted.

B. Pseudogap density of states

The flow diagram of the XY Z Kondo model is much
more interesting when the itinerant electrons have a
(local) density of states with a power-law dependence
upon the energy because of, for instance, the electron
dispersion18:

ρ(ε) = C|ε|r, if |ε| < D. (12)

This model was considered by us previously14,16 but
only the flow diagram of the XXZ case (Jx = Jy)
was discussed. In this section, we clarify the full three-
dimensional flow diagram as a special case of the XY Z
CS model. We limit ourselves to the particle-hole sym-
metric case, because particle-hole symmetry breaking
perturbations are known to change the phase diagram
drastically in a way that is difficult to analyze using our
weak-coupling method20.

The scaling equation in the appropriate units (for de-
tails see Refs. 14,16) is

dJx
d ln Λ = rJx − 2JyJz + Jx(J2

y + J2
z )

dJy
d ln Λ = rJy − 2JxJz + Jy(J2

x + J2
z ) (13)

dJz
d ln Λ = rJz − 2JxJy + Jz(J2

x + J2
y ).



4

FIG. 2: Numerical three-dimensional flow diagram of the
XY Z Kondo model, obtained from the third-order weak-
coupling scaling equation Eq. (11). Only the JS ≥ 0 and
JA ≥ 0 part is shown; the rest of the diagram follows from
the symmetries JS → −JS and JA → −JA. The red tra-
jectories lie on the JA = 0 plane and the green ones lie on
the JS = 0 plane; both exhibit Kosterlitz-Thouless physics.
The brown trajectories are on the light brown phase bound-
ary Jz + JS − JA = 0, and the gray line is the fixed line
JS = JA and Jz = 0. The remaining blue trajectories are
between phase boundaries. Two strong-coupling phases are
shown: JS →∞ and Jz →∞; JA →∞ and Jz → −∞.

In the weak-coupling regime Eq. (13) has a trivial fixed
point Jx = Jy = Jz = 0 corresponding to a decoupled
impurity spin, and four nontrivial fixed points

|Jx| = |Jy| = |Jz| =
r

2 +O(r2); JxJyJz > 0, (14)

describing a finite isotropic Heisenberg exchange. Linear
analysis in the vicinity of the fixed points shows that
the trivial fixed point is stable, and hence describes the
decoupled phase. Nontrivial fixed points are semistable,
and hence are critical points of the model.

When we ignore the third-order terms, the general so-
lution of Eq. (13) can be written in terms of elliptic func-

FIG. 3: Elliptic cones Eq. (16) containing second-order flow
trajectories of the pseudogap Kondo model. Red, green, blue,
yellow and magenta surfaces have k = 0, k = 1/2, k = 1/

√
2,

k =
√

3/2 and k = 1, respectively.

tions and contains three parameters A,ψ, k,14,16

Jα = Aλ · ns(Aλ+ ψ, k)
Jβ = Aλ · cs(Aλ+ ψ, k) (15)
Jγ = Aλ · ds(Aλ+ ψ, k),

where λ = 2Λr, and {α, β, γ} is an arbitrary permutation
of {x, y, z}.

Notice that Eq. (15) describes a two-parameter family
of the flow lines (the parameters being ψ and k). Eq. (7)
also describes a two-parameter family of the flow lines,
but the parameters are A and k, the former being just a
trivial scale parameter.

Eq. (15) clearly shows the existence of the decoupled
phase, and the strong-coupling phases, identical to those
obtained in the previous Section. Eq. (15) also shows that
each nontrivial fixed point belongs to a critical surface
ψ = 0, which separates one of the strong-coupling phases
from the decoupled phase.

From Eq. (15) we see that each flow line lies completely
on the elliptic cone14,16

(1− k2)J2
α + k2J2

β − J2
γ = 0. (16)

It should be noted that this property holds only when the
third-order terms in the scaling equation are negligible.
This family of elliptic cones foliates the phase space, and
all touch each other along the isotropic lines |Jx| = |Jy| =
|Jz|, as shown in Fig. 3.

For the degenerate cases k = 0 or k = 1 the el-
liptic cone becomes a pair of planes. The flow trajec-
tories on such planes were presented in our previous
publication14. Here, in Fig. 4, we show the trajectories
on one of the nondegenerate cones, which nevertheless
constitute a general representation of the flow diagram
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FIG. 4: Typical flow trajectories of the pseudogap XY Z
Kondo model with r = 0.1 on the surface of a cone Eq. (16);
we have chosen k = 1/

√
2 and ignored the third-order terms

in Eq. (13). The trivial fixed point at the origin is painted
in black, and the nontrivial fixed points in red. The isotropic
orange flow trajectories are shared by all elliptic cones; the
green trajectories flow towards weak coupling, the blue ones
towards strong coupling, and the red trajectories lie on phase
boundaries.

because the behaviors of different cones are rather sim-
ilar. When the third-order terms are included, the flow
diagram remains qualitatively the same, although we can
no longer classify the trajectories by elliptic cones.

IV. XY Z COQBLIN-SCHRIEFFER MODEL

In this section, we turn our attention to the XY Z CS
model with an arbitrary number of channels N , thereby
generalizing our N = 2 results in Section III.

A. Constant density of states

The CS model with full SU(N) symmetry5 is repre-
sented by the interaction

V = J
∑
mm′

Xmm′c†m′cm − (J/N)
∑
mm′

Xmmc
†
m′cm′ , (17)

where the quantum number m,m′ = 1, . . . , N . The scal-
ing equation for the Hamiltonian Eq. (17) has the form2

dJ

d ln Λ = −NJ2 +NJ3. (18)

For N = 2 the model coincides with the spin-isotropic
Kondo model. While Eq. (18) suggests the existence of
a nontrivial fixed point J = 1, we emphasize again that
the equation becomes unreliable in the strong-coupling
regime.

The anisotropic Kondo model represented in terms
of Hubbard X-operators Eq. (10) has motivated one of
us16,17 to consider the algebraic renormalizability of the
anisotropic generalization of the CS model (or the “XY Z
CS model”) for arbitrary N , Eq. (4). This model proves
to be algebraically renormalizable, and the scaling equa-
tions are1

dJS
d ln Λ = −(N − 2)J2

S − 2JSJz

+JS [(N − 1)J2
S + (N − 3)J2

A + J2
z ],

dJA
d ln Λ = (N − 2)J2

A + 2JAJz (19)

+JA[(N − 3)J2
S + (N − 1)J2

A + J2
z ],

dJz
d ln Λ = −N(J2

S − J2
A) +NJz(J2

S + J2
A).

The second-order terms are derived explicitly in Ap-
pendix B. Notice the symmetry of the Eq. (19) with
respect to simultaneous transformations JS ↔ JA and
ln Λ → − ln Λ. The XXZ CS model introduced in
Ref. 16 is obtained by setting JA = 0 (i.e. Jx = Jy) in
Eqs. (4) and (19). In the fully isotropic case Jx = Jy = Jz
from Eq. (19) we recover the scaling equation for the orig-
inal CS model Eq. (18).

Lacking analytical integration of Eq. (19) for N > 2
(even when the third-order terms are neglected), we con-
centrate on quantitative analysis of the flow diagram and
of the phase diagram. There are three special particular
solutions of the equation, corresponding to straight lines

JA = 0, JS = Jz,
dJz
d ln Λ = −NJ2

z +NJ3
z ; (20)

JS = 0, JA = Jz,
dJz
d ln Λ = NJ2

z +NJ3
z ; (21)

Jz = 0, JA = −JS ,
dJS
d ln Λ = −(N − 2)J2

S + 2(N − 2)J3
S . (22)

In addition, if we neglect the third-order terms, two more
particular solutions emerge:

JA = 0, JS = − 2
N
Jz,

dJz
d ln Λ = − 4

N
J2
z ; (23)

JS = 0, JA = − 2
N
Jz,

dJz
d ln Λ = 4

N
J2
z . (24)

Consider, for example, Eq. (20). The solution which
starts at any Jz > 0 blows up at a finite value of

1 The second-order terms were obtained in the previous publica-
tion of one of the authors [Eq. (46) of Ref. 16], but due to an
elementary algebra mistake, the analog of Eq. (19) (and its spe-
cial case for N = 3 in Ref. 17) contained an error.
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ln Λ. In addition, as shown in Appendix C, the ray
Jx = Jy = Jz > 0 is the attractor for the flow lines
for arbitrary N . We identify the appropriate strong-
coupling phase with the attraction region of the solution
Eq. (20). The same is relevant for other three rays de-
fined by Eqs. (21), (23) and (24).

Additional support for this assumption comes from the
analysis of the separatrices. From Eq. (19) it follows that,
similar to the case of Kondo model, the flow diagram has
three invariant planes:

1) JS = 0, 2) JA = 0, 3) JS + JA = Jz. (25)

In addition, when we neglect the third-order terms, there
is another set of three invariant planes,

4) N2 (JS + JA) = −Jz

5) JS −
N

2 JA = Jz, (26)

6) N2 JS − JA = −Jz.

One can easily see that for N = 2 these are the invariant
planes given by Eq. (8).

Like it was in the case of Kondo model, parts of these
invariant planes are separatrices. Thus, for example
Eq. (19) leads to

d

d ln Λ

(
N

2 JS − JA + Jz

)
= − (NJS + 2JA)

(
N

2 JS − JA + Jz

)
+O(J3).(27)

Hence when NJS+2JA > 0, the last plane from Eq. (26)
is an approximate phase boundary since any infinitesimal
deviation from it is a relevant perturbation. A similar
analysis can be performed for other invariant planes.

Let us analyze the flow lines on the invariant planes.
Though taking JA = 0 or JS = 0 no longer brings us
back to the familiar equations for the anisotropic Kondo
model, the KT physics remains in action; it is only the
separatrix lines that are different from before16. Notice
that half of each line given by Eqs. (20) - (24) serves as
an attractor, and the other half as a separatrix line. For
instance, provided JA = 0, systems whose initial param-
eters are located between the two separatrix lines [i.e.
Jz < 0, Jz < JS < −(2/N)Jz] will flow to one of the
JS = 0, Jz < 0 fixed points, and other systems flow to
strong coupling JS → ±∞, Jz → ∞ depending on the
initial sign of JS .

Consider now the fixed points of the scaling equation.
Similar to the spin-anisotropic Kondo model for N = 2,
Eq. (19) indicates that the XY Z CS model has a line
of fixed points JS = JA = 0 for any N . Since all N -
dependent terms are quadratic in JS or JA, linearization
again tells us that these fixed points are semistable, with
|JS | relevant and JA irrelevant for Jz > 0, and |JA| rele-
vant and JS irrelevant for Jz < 0. However, the Kondo

FIG. 5: Numerical three-dimensional flow diagram of the
XY Z CS model with N = 3, calculated from the third-order
weak-coupling scaling equation Eq. (19). The symmetries
JS → −JS and JA → −JA are now lost in contrast to the
N = 2 Kondo case. The red trajectories lie on the JA = 0
plane and the green ones lie on the JS = 0 plane; the KT sep-
aratrix lines are no longer reflection-symmetric with respect
to the JS = 0 or JA = 0 planes. The gray line is the approx-
imate fixed line Jz = −(N/2 − 1)JS = −(N/2 − 1)JA near
which the flow is third-order, and the blue trajectories satisfy
JS = −JA, Jz = 0. The remaining colored curves are typical
trajectories which reside on one of the phase boundaries given
in the text (magenta) or flow away from that phase boundary
(cyan). All four strong-coupling phases are shown: JS → ±∞
and Jz →∞; JA → ±∞ and Jz → −∞.

model line of fixed points JS = JA, Jz = 0 for N = 2 is
replaced by the line Jz = −(N/2−1)JS = −(N/2−1)JA,
which does not lie on the JS-JA plane. On the other
hand, the line (22) for N > 2 is not a fixed line like it
was for Kondo model, but describes two flow trajectories
instead: JS < 0 flows to the origin, and JS > 0 flows to
strong coupling.

We illustrate our findings of this Section in the flow
diagram Fig. 5 for the N = 3 case. As shown in the fig-
ure, the four strong-coupling phases mentioned above ex-
haust the phase diagram (apart from the critical points)
in the weak-coupling regime, where our perturbative scal-
ing method is applicable.

B. Pseudogap density of states

When the density of states takes a power-law form
Eq. (12), the scaling equation for the XY Z CS model
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FIG. 6: Numerical three-dimensional flow diagram of the
pseudogap XY Z CS model with N = 3 and r = 0.12, cal-
culated from the third-order weak-coupling scaling equation
Eq. (28). There are no longer any fixed lines in contrast to
the constant-density-of-states model, but all trajectories con-
necting the trivial fixed point (black) with the nontrivial fixed
points (red, green and magenta) are straight lines when r is
small. The red and orange trajectories lie on the JA = 0
plane, the green and brown ones lie on the JS = 0 plane,
and the blue trajectories represent perturbations away from
these planes. The purple trajectories represent perturbations
away from the magenta fixed point with Jz = 0. The strong-
coupling phases are identical to those in the case of a constant
density of states.

becomes

dJS
d ln Λ = rJS − (N − 2)J2

S − 2JSJz

+JS [(N − 1)J2
S + (N − 3)J2

A + J2
z ],

dJA
d ln Λ = rJA + (N − 2)J2

A + 2JAJz (28)

+JA[(N − 3)J2
S + (N − 1)J2

A + J2
z ],

dJz
d ln Λ = rJz −N(J2

S − J2
A) +NJz(J2

S + J2
A).

We plot the corresponding flow diagram in Fig. 6.

There is first and foremost a trivial decoupled fixed
point JS = JA = Jz = 0 (black). In addition, several
nontrivial fixed points (JS , JA, Jz) exist where one of the

coupling constants vanishes:

1
2(1−

√
1− 4r

N
)(1, 0, 1) (red),

1
2(1−

√
1− 4r

N
)(0,−1,−1) (green),

1
2(1−

√
1− 4r

N − 2)(1,−1, 0) (magenta), (29)

(−r/2, 0, Nr/4) +O(r2) (red),
(0, r/2,−Nr/4) +O(r2) (green).

As before, in order for the perturbative treatment to be
valid, these fixed points are only meaningful for small
r. For the last two fixed points we have only kept the
lowest-order terms in r; the full expressions are lengthy
as they require solving quartic equations.

The four JA = 0 and JS = 0 fixed points are critical
points with two stable directions, one in-plane and the
other out-of-plane. Therefore, these four fixed points be-
long to the phase boundaries which separate the strong-
coupling phases from the decoupled phase; these phase
boundaries intersect the JA = 0 (JS = 0) plane at the
red (green) trajectories, which are themselves separatrix
lines on the coordinate planes. It is plausible that the
Jz = 0 nontrivial fixed point, which has only one sta-
ble direction, sits exactly at the intersection of two such
phase boundaries.

As shown in Fig. 6, all of the following straight lines
between the trivial fixed point and the nontrivial ones
are valid scaling trajectories: JS = Jz, JA = 0 and
Jz = −NJS/2, JA = 0 (orange), JA = Jz, JS = 0 and
Jz = −NJA/2, JS = 0 (brown) and JS = −JA, Jz = 0
(magenta). Each of these lines is divided into three seg-
ments by the trivial, stable fixed point and the nontrivial,
unstable fixed point.

Based on our observations, as with the N = 2 case,
we expect the phase space for the N > 2 pseudogap
XY Z CS model to be divided into five phases, namely a
weak-coupling phase controlled by the trivial fixed point
JS = JA = Jz = 0 and four strong-coupling phases
JS → ±∞, Jz → ∞ and JA → ±∞, Jz → −∞. Unfor-
tunately, the important linear terms in Eq. (28) make it
a difficult task in general to determine the phase bound-
aries or scaling invariants analytically.

V. CONCLUSIONS

In this work, we have derived the third-order poor
man’s scaling equation for a quantum impurity model
in an itinerant electron gas in the weak-coupling regime.
Our theory is applied to the XY Z Coqblin–Schrieffer
model which was introduced by one of us earlier and
is shown to be algebraically renormalizable. We write
down the poor man’s scaling equations under constant
and pseudogap densities of states, and discuss their so-
lutions for both the N = 2 case (the anisotropic XY Z
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Kondo model) and the N > 2 case in detail. The corre-
sponding three-dimensional weak-coupling flow diagrams
are presented.
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Appendix A: Third-order scaling equation Eq. 2

To obtain the third-order terms in the scaling equation
Eq. 2, following Ref. 2, Appendix D, we should take into
account the energy dependence of the effective Hamil-
tonian which is neglected at the second order. For the
generic impurity Hamiltonian Eq. 1, when reducing the
semi-bandwidth from D to D − |δD|, the O

(
V 2) cor-

rection to the low-energy Hamiltonian as represented by
Fig. 1 (a) is written as

ρ |δD|
∑
k′q

∑
αβab

∑
α′a′

Vβα,baVαα′,aa′Xba′c†k′βcqα′

E −D + εq

+ ρ |δD|
∑
kq′

∑
αβab

∑
β′a′

Vβα,baVβ′β,aa′Xba′ckαc
†
q′β′

E −D − εq′
. (A1)

Tracing out the conduction electrons, we find the O
(
V 2)

correction to the impurity part of the effective Hamilto-
nian:

ρ2 |δD|
∑
αβab

∑
a′

Vβα,baVαβ,aa′Xba′

×

[∫ 0

−D+|δD|

dεq
E −D + εq

+
∫ D−|δD|

0

dεk
E −D − εk

]

= ρ2 |δD|
∑
ab

∑
αβc

Vβα,bcVαβ,caXba

(
−2 ln 2− E

D

)
.

(A2)

The term linear in energy E will play an especially im-
portant role in the following:

− E |δD|
D

ρ2
∑
ab

∑
αβc

Vβα,bcVαβ,caXba. (A3)

We emphasize that this is an operator in the impurity
Hilbert space.

We now turn to the third-order diagram in Fig. 1 (b).
Contracting the fermion lines, this O

(
V 3) diagram reads

∑
kq

∑
αβab

∑
k1k′

1

∑
α1β1

∑
a′b′

c†qβckαc
†
k′

1β1
ck1α1c

†
kαcqβ

× Vβα,baVβ1α1,ab′Vαβ,b′a′Xba′(
E − εk + εq − εk′

1
+ εk1

)
(E − εk + εq)

; (A4)

here we should contract ckα with c†kα and c†qβ with cqβ .
If the virtual particle c†kα resides in the energy range to
be integrated out (i.e. εk ≈ D), this gives a contribution

ρ2 |δD|
∑
αβab

∑
k1k′

1

∑
α1β1

∑
a′b′

Vβα,baVβ1α1,ab′Vαβ,b′a′

×
∫ 0

−D+|δD|

dεqXba′c†k′
1β1
ck1α1(

E −D + εq − εk′
1

+ εk1

)
(E −D + εq)

≈ ρ2 |δD|
2D

∑
αβab

∑
k1k′

1

∑
α1β1

∑
a′b′

Vβα,baVβ1α1,ab′Vαβ,b′a′

×Xba′c†k′
1β1
ck1α1 ; (A5)

on the other hand, if εq ≈ −D, we have the virtual hole
contribution

ρ2 |δD|
∑
αβab

∑
k1k′

1

∑
α1β1

∑
a′b′

Vβα,baVβ1α1,ab′Vαβ,b′a′

×
∫ D−|δD|

0

dεkXba′c†k′
1β1
ck1α1(

E −D − εk − εk′
1

+ εk1

)
(E −D − εk)

≈ ρ2 |δD|
2D

∑
αβab

∑
k1k′

1

∑
α1β1

∑
a′b′

Vβα,baVβ1α1,ab′Vαβ,b′a′

×Xba′c†k′
1β1
ck1α1 . (A6)

The virtual particle and hole contributions are thus iden-
tical.

To find the total third-order scaling contribution to the
coupling constant, we write the effective Hamiltonian as

Heff (E) = (1 + S)−
1
2 Heff (0) (1 + S)−

1
2

≈
(

1− 1
2S
)
Heff (0)

(
1− 1

2S
)

, (A7)

where the effective impurity Hamiltonian at E = 0 is, to
O
(
V 3),

Heff (0) =
∑
kk′

∑
αβab

[Vβα,ba − ρ
|δD|
D

∑
γc

× (Vβγ,bcVγα,ca − Vγα,bcVβγ,ca) + ρ2 |δD|
D

×
∑
δγ

∑
cd

Vδγ,bcVβα,cdVγδ,da]Xbac
†
k′βckα, (A8)
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and the wave function renormalization S ≡
−∂Heff (E) /∂E is to O

(
V 2)

S = ρ2 |δD|
D

∑
αβ

∑
abc

Vβα,bcVαβ,caXba. (A9)

Putting everything together, we obtain Eq. 2.

Appendix B: Algebraic renormalizability of the XY Z
CS model

The commutation relations necessary for writing down
scaling equation for the interaction Eq. (4) are

[c†m′cm, c
†
m′′′cm′′ ] = δmm′′′c†m′cm′′ − δm′m′′c†m′′′cm.(B1)

(and the same for the Hubbard operators). Substituting
the terms in the R.H.S. of Eq. (4) into the second-order
term in Eq. (2) we get:

for the J2
S terms

∑
m6=m′

∑
m′′ 6=m′′′

[Xmm′ , Xm′′m′′′ ][c†m′cm, c
†
m′′′cm′′ ]

=
∑
m6=m′

∑
m′′ 6=m′′′

(Xmm′′′δm′m′′ −Xm′′m′δmm′′′)

·
(
c†m′cm′′δmm′′′ − c†m′′′cmδm′m′′

)
= 2

−(N − 2)
∑

m6=m′′′

Xmm′′′c†m′′′cm

− (N − 1)
∑
m

Xmmc
†
mcm +

∑
m 6=m′

Xmmc
†
m′cm′


= 2

−(N − 2)
∑

m6=m′′′

Xmm′′′c†m′′′cm

− N
∑
m

Xmmc
†
mcm +

∑
mm′

Xmmc
†
m′cm′

}
; (B2)

for the J2
A terms∑

m 6=m′

∑
m′′ 6=m′′′

[Xmm′ , Xm′′m′′′ ][c†mcm′ , c†m′′cm′′′ ]

=
∑
m 6=m′

∑
m′′ 6=m′′′

(Xmm′′′δm′m′′ −Xm′′m′δmm′′′)

·
(
c†mcm′′′δm′m′′ − c†m′′cm′δmm′′′

)
= 2

(N − 2)
∑

m 6=m′′′

Xmm′′′c†mcm′′′

+ (N − 1)
∑
m

Xmmc
†
mcm −

∑
m 6=m′

Xmmc
†
m′cm′


= 2

(N − 2)
∑

m 6=m′′′

Xmm′′′c†mcm′′′

+ N
∑
m

Xmmc
†
mcm −

∑
mm′

Xmmc
†
m′cm′

}
; (B3)

for the JSJz terms∑
m6=m′,m′′

[Xmm′ , Xm′′m′′ ][c†m′cm, c
†
m′′cm′′ ]

=
∑

m6=m′,m′′

(Xmm′′δm′m′′ −Xm′′mδmm′′)

·
(
c†m′cm′′δmm′′ − c†m′′cmδm′m′′

)
= −2

∑
m 6=m′

Xmm′c†m′cm; (B4)

for the JAJz terms∑
m6=m′,m′′

[Xmm′ , Xm′′m′′ ][c†mcm′ , c†m′′cm′′ ]

=
∑

m6=m′,m′′

(Xmm′′δm′m′′ −Xm′′mδmm′′)

·
(
c†mcm′′δm′m′′ − c†m′′cm′δmm′′

)
= 2

∑
m 6=m′

Xmm′c†mcm′ . (B5)

Equations (B2) - (B5) combined together give us scaling
equation (19).

Appendix C: Attractors and separatrix lines

Scaling flows of Eq. (19) in the vicinity of the ray de-
scribed by Eq. (20) can be presented as

JS = (1 + c1t
ρ) 1
Nt

JA = c2t
ρ 1
Nt

Jz = (1 + c3t
ρ) 1
Nt

, (C1)
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where t = ln Λ; the solution blows up when t → +0.
Linearizing with respect to small deviations we obtain
the matrix equation

KC = ρC, (C2)

where C = (c1, c2, c3)T , and the Kovalevskaya
matrix25,26 (KM) K is

K =

 2
N − 1 0 − 2

N
0 2

N + 1 0
−2 0 1

 . (C3)

After elementary algebra we obtain the eigenvalues of
the KM, which are called Kovalevskaya exponents (KEs):
ρ1 = −1, and doubly degenerate ρ2 = 2/N + 1. Thus we
have two independent solutions to Eq. (C2).

The solution corresponding to ρ1 is irrelevant; it has
the form C = (1, 0, 1)T and represents just the shift of
the ray JS = Jz = 1/Nt, JA = 0 along itself. The KE ρ2
gives us two independent solutions, corresponding to C =
(1, 0,−1)T and C = (0, 1, 0)T . Thus we see that the ray
described by Eq. (20) is an attractor. From the symmetry
of Eq. (19) it follows that the behavior of solutions in the
vicinity of the ray Eq. (21) is identical to that in the
vicinity of the ray Eq. (20).

Calculation of the KEs can be formalized25,26. Con-
sider a system of ordinary differential equations

dxi
dt

= fi(x1, . . . , xn). (C4)

Consider a solution C = (c1, . . . , cn)T 6= (0, . . . , 0)T of
algebraic equations

fi(c1, . . . , cn) + ci = 0. (C5)

We define the KM

Kij = ∂fi
∂xj

(C) + δij . (C6)

The eigenvalues ρ1, . . . , ρn of the KM are the KEs.
For Eq. (19)

Kij = (C7) 1− 2(N − 2)c1 − 2c3 0 −2c1
0 1 + 2(N − 2)c2 + 2c3 2c2

−2Nc1 2Nc2 1

 ,

where c1, c2, c3 are the solutions of the equation

−(N − 2)c21 − 2c1c3 + c1 = 0
(N − 2)c22 + 2c2c3 + c2 = 0 (C8)

−N(c21 − c22) + c3 = 0.

The ray Eq. (20) corresponds to the solution of Eq. (C8):
C = (1/N, 0, 1/N). Substituting the solution into
Eq. (C7) we recover Eq. (C3).

The ray Eq. (23) corresponds to the solution of
Eq. (C8): C = (−1/2, 0, N/4). Substituting the solution
into Eq. (C3) we obtain

Kij =

 N
2 − 1 0 1

0 N
2 + 1 0

N 0 1

 . (C9)

After elementary algebra we obtain the KEs: ρ1 = −1,
and doubly degenerate ρ2 = N/2 + 1. As is always the
case, the solution corresponding to ρ1 is irrelevant; it has
the form C = (1, 0, N/2)T and represents just the shift
of the ray JS = −(2/N)Jz, JA = 0 along itself. The
positive value of ρ2 means that the ray in question is
an attractor. From the symmetry of Eq. (19) it follows
that the behavior of solutions in the vicinity of the ray
Eq. (24) is identical to that in the vicinity of the ray
Eq. (23).

The ray Eq. (22) corresponds to the solution of
Eq. (C8): C = (1/(N − 2),−1/(N − 2), 0). Substitut-
ing the solution into Eq. (C7) we obtain

K =

 −1 0 − 2
N−2

0 −1 − 2
N−2

− 2N
N−2 −

2N
N−2 1

 . (C10)

After elementary algebra we obtain the KEs: ρ1 = −1,
ρ2 = −(N + 2)/(N − 2) and ρ3 = (N + 2)/(N − 2). The
solution corresponding to ρ1 represents just the shift of
the ray JS = −JA, Jz = 0 along itself. The second neg-
ative KE makes behavior of the flow line in the vicinity
of the ray Eq. (22) qualitatively different from that in
the vicinity of the rays Eqs. (20) - (24). It means that
in general the flow lines diverge from the ray. However,
the positive value of ρ3 is the manifestation of the fact
that in the plane (N/2)(JS + JA) = −Jz the ray is an
attractor.

Calculated KEs allow us to address the question of the
existence of the first integrals for Eq. (19). Notice that
the existence of two such independent integrals makes
the analytical integration of Eq. (6) possible. All the
KEs turn out to be rational, a necessary condition for
the existence of polynomial first integrals of Eq. (19)25,26.
Though the condition is not sufficient, one may hope that
such integrals can be found.
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