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Abstract—In a nonrotating system, the shear Reynolds stresses exerted by
surface or internal gravity waves vanish on account of the exact quadrature
between the horizontal and vertical orbital velocities. It is shown that a
rotation of the system induces small in-phase perturbations, resulting in a
mean Reynolds stress which can generate low frequency currents. If both the
wave field and the ocean are homogeneous with respect to the horizontal
coordinates, the low-frequency response is an undamped inertial oscillation.
If either the wave field or the ocean are weakly inhomogeneous, the oscillation
disperses in the vertical and horizontal directions due to phase-mixing of
modes with closely neighboring frequencies. Other effects which produce
small frequency shifts also contribute to phase-mixing, for example the hori-
zontal component of the Coriolis vector and nonlinear interactions with geo-
strophic currents. The analysis is based on operator representations which
avoid normal mode decomposition and yield simple integro-differential
operators for each phase-mixing process. Numerical results are presented for a
continuously stratified model typical for a shallow sea (Baltic). The orders of
magnitude and qualitative features are in reasonable agreement with
observations.

Notation (numbers in parentheses refer to defining equations)

(1,2) = interchange of components 1 and 2 (subscript)

ag = mode amplitude

b = - g bp\p = buoyancy field

JBJ = buoyancy amplitude factor (2.8)

dh dt = dfa, d/dt

f = vertical Coriolis component

/ = horizontal Coriolis component

f = ( 0 , 0 , / )

r = (ο,;,/)
Fn(k) = spectrum of mode η (3.2)

g = gravitational acceleration

h = water depth
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Hc, HT — field operators in cartesian and rotary coordinates (2.9),
(2.16)

Η — Hr without horizontal Coriolis terms (2.16)
β = Hr-H (2.16)
Ho = zero'th order field operator (4.13)
H' = perturbation of zero'th order field operator (4.13)
H'p = perturbation H' due to process ρ (see χ*ρ)
I, Ia, Ih = integral operators (2.12)/(2.27), (2.10), (2.11)
J = integral operator (2.13)
k = (ku k2, 0) = wavenumber
k± = kx ± ik2

k = (k{ + kl)112

L = horizontal scale length
Μ = mass transport
η = vertical mode number
Ν = (-gd3p/p)112 = Brunt-Vaisala frequency
ρ = (deviation of pressure from equilibrium pressure)//)
Pg = pressure amplitude factor (2.8)
9 = (?+> 2-) ?o) = source vector
q' = β$ · q = component of q acting on modes s
q* = qseisft = source component s in corotating coordinate system
s = ( ±, 0) = mode-branch (polarization) index
t = time

Τ = phase-mixing time scale
u = (uu u2, ίί3) current velocity
u± = u-i ± iu2

u1, ue = Lagrangian and Eulerian velocities
ust = Stokes velocity (3.8)
u = (u1; u2, 0)
U = geostrophic current (4(vi))
xlt x2, x3: Cartesian coordinates, x1 eastwards, a;2 northwards,

xz upwards

β' — eigenvector operator, s = ±, 0 (2.28)
β' — orthogonal operators to β3 (2.33)
fit» βο = eigenvector and orthogonal operators for Ho (4(iii))
ε = operator (2.29)
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ζ = surface displacement
κη = vertical wavenumber of mode η (4.10)
λη = eigenvalue of 7 (2.19)
ξ = particle displacement

Ρ = Ρ{χζ) = equilibrium density
δ ρ — deviation of density from equilibrium value
φ = {u+, u_, p) = field vector

Φο = («ι» «2» Ρ) = field vector
φ' = β' · φ = component of φ belonging to mode-branch s
φ* = 0 s e i s / i = field φ3 in corotating coordinate system
Xp = phase-mixing operator for modes s due to process ρ

ρ = w: wave-field inhomogeneity (4(i))
ρ = h: horizontal component of Coriolis vector (4(iv))
ρ = / : planetary effects (4(v))
ρ — I: wave-guide inhomogeneities (4(v))
ρ = g: geostrophic currents (4(vi))

Xw : defined by χ% = sXw

ω = ω(β, η, k) =eigenfrequency (2.24), (2.25)
ω' = ω —sf = frequency perturbation
Ω8 = βΩ = eigenfrequency operators of Η (2.31)
Ωο = eigenfrequency operator of Ho (4(iii))
Ω'18 = perturbations of frequency operator about Ω£ (4(iii))

1. Introduction

The spectra of ocean currents frequently show a pronounced, sharp
peak at the inertial frequency. Within the peak the two components
of horizontal velocity are found to be highly coherent, in quadrature,
and of equal amplitude, as one would expect for the rotating current
vector of a linear inertial oscillation of large wave length.

Inertial oscillations have been observed in the open ocean and in
enclosed basins, such as the Baltic and Mediterranean, and at all
latitudes and depths. The amplitudes are typically of the order
10 cm/sec, but can sometimes be considerably larger. The vertical
coherence scale is usually of the order 10 m; estimates of the hori-
zontal scale vary from 5 to 100 km. A characteristic feature of all
records is the intermittency of the oscillations: the filtered time
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series show a succession of distinct bursts, usually about five to
twenty oscillations long, separated by periods of quiet. There is
evidence that the bursts near the surface are correlated with high
local winds.*5·10-20·23* At greater depths, no clear dependence on
surface conditions has been found.

A recent survey of inertial current observations and various
hypotheses of their origin has been given by Webster (1968).

The theory of tidal generation (cf. Refs. (8), (13) and (22)) has
lost support with the gradual emergence of a clearer experimental
picture. Most of the features summarized above are difficult to
reconcile with tidal origin: the occurence of inertial oscillations in
small non-tidal basins, the occurence at all latitudes, the lack of
pronounced resonances at the critical latitude, and the intermittency,
which suggests generation by discrete events.

An alternative theory in which the inertial oscillations are assumed
to be driven by the tangential wind stress at the surface has more
points in its favour, in particular the intermittency and the near-
surface correlation with the wind. However, to obtain motions
below the surface, the surface stress has to be transmitted into the
interior via turbulent shear stresses. Unfortunately, this means that
quantitative predictions depend critically on the parametrization of
the turbulence in terms of " eddy viscosities ", " mixed layers ",
etc_ (u,2o)

In this paper, another mechanism is investigated in which the
driving forces are attributed, to nonlinear interactions between high-
frequency gravity modes. The apparent " damping " of the inertial
oscillations is interpreted as the diffusion due to phase-mixing of a
large ensemble of modes with closely neighbouring frequencies. Thus
the generation process is regarded as weakly nonlinear and the decay
process as linear, as opposed to the usual turbulence picture in which
both processes are regarded as strongly nonlinear.

The approach is in accordance with the " weak-interaction"
interpretation of oceanic turbulence. There is evidence that a broad
range of the ocean-current spectrum can be regarded as a super-
position of linear wave motions, rather than strongly nonlinear
turbulent fluctuations.(e) This implies that the nonlinear coupling
between the modes is weak and that all " turbulent" transfer
processes depending on this range of the spectrum can be analyzed
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rigorously by standard perturbation techniques. Instead of the
traditional picture of an insoluble, strongly nonlinear system,
oceanic turbulence appears from this viewpoint as a basically
reducible (but complex) transfer system similar to " turbulence "
in plasmas,'11^ an interacting phonon ensemble in the heat conduction
problem,(19) or Bretherton's(2) interpretation of clear-air turbulence
in the upper atmosphere.

Adopting the weak-interaction viewpoint, the nonlinear Reynolds
stresses driving low-frequency currents in the ocean may be inter-
preted as interactions between higher-frequency wave fields, rather
than turbulent stresses. The total stress can be divided into a mean
term, arising from quadratic self interactions of the waves, and a
fluctuating term, arising from difference interactions between pairs of
waves. Only the mean term is considered here.

The response of the ocean to the mean stress exerted by the waves
is closely related to the mass transport of a wave field. To avoid
complications induced by free-surface displacements and density
variations, the mass transport is normally analyzed in Lagrangian
coordinates; the difference between the local Lagrangian and
Eulerian currents, the Stokes current u s t, is then a simple quadratic
function of the wave field.

In a nonrotating system, the shear components of the Reynolds
stress tensor vanish, since the horizontal and vertical components of
the orbital velocity are exactly in quadrature. Hence the Eulerian
current is also zero, and the mass transport reduces simply to the
Stokes current. Arguing from vorticity conservation, it has been
shown by Ursell(25) that in a rotating system the Lagrangian current
cannot remain constant, but must rotate with the local inertial
frequency. The result is rederived here in terms of the wave-induced
shear stresses, which in a rotating system are shown to be nonzero.
The body force exerted by the waves is - f χ u s t, where f is the
(vertical) Coriolis vector. In the steady state, the body force is
exactly balanced by the Coriolis force f χ u e acting on a Eulerian
current u e which is equal and opposite to the Stokes current. The
mean Lagrangian current u1 = u e + u s t is zero. Superimposed on
the steady state solution is an arbitrary inertial oscillation depending
on the initial conditions. In practice, the Stokes current is a
slowly varying function of time and space, and the wave-induecd
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current is determined by the integration of the body force over all
time and space. Hence in a rotating system the mass transport
currents are not simply a property of the local wave field, but
represent the cumulative low-frequency response of the ocean to a
variable, wave-induced force field.

The solution can be represented formally as a superposition of
normal modes. The prominence of the inertial peak in the low-
frequency spectrum is due to the degeneracy of the modes at zero
wavenumber, the frequencies of all modes converging to / (in the
/-plane approximation) as the wavenumber approaches zero. Hence
if the horizontal scale of the driving field is large, the response will
be concentrated primarily at the inertial frequency.(18)

The situation is particularly simple if the driving wave field is
homogeneous in the horizontal, corresponding to excitation at zero
wavenumber. In this case, the current vectors of all modes rotate
with the same frequency / and their superposition yields an inertial
oscillation which, once generated, continues to rotate indefinitely
with its initial vertical distribution. If the scale of the driving field
is large but finite, the initial horizontal and vertical distribution is
gradually modified by the phase mixing of modes rotating with
slightly different frequencies. The net effect is a dispersion of the
oscillation in the horizontal and vertical directions. In this way, a
finite scale inertial oscillation, generated, for example, by the passage
of a storm, can decay locally without loss of total energy.

Phase-mixing can be caused also by other effects. Any perturba-
tion which removes the degeneracy at zero wavenumber and intro-
duces mode-dependent frequency shifts yields the same dispersion-
type behavior. Horizontal inhomogeneities of the wave guide,
planetary variations of the Coriolis parameter, the horizontal com-
ponent of the Coriolis vector and nonlinear interactions of the low-
frequency motion (in particular with geostrophic flows) all contribute
to phase-mixing. Planetary effects, although frequently discussed in
the literature (e.g. Ref. (18)) are found to be negligible compared
with the other smaller-scale processes.

For a general analysis of phase-mixing, the normal mode approach
is not very useful, since the modes can be represented analytically
only for special stratifications. Asymptotir· methods such as the
WKBJ approximation or stationary phase expansions are also not
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immediately applicable, since they apply to single-mode solutions.
The complete field can be reconstructed from the individual modes
only if the phase relations between the modes are known. In many
applications, the field can be treated statistically and the phases
assumed to be randomly distributed (Gaussian fields). However, the
pronounced intermittency of observed inertial oscillations indicate
that in the present case the fields are essentially non-Gaussian: the
evolution and decay of the oscillations is dependent on the detailed
phase relations between an ensemble of modes. Accordingly, a
representation and expansion of the full solution, including all
modes, is needed. For this purpose, an operator (Green function)
representation of the solution appears a more natural starting point
of the analysis. By expanding the solution about the degenerate
state, a characteristic operator is derived for each phase-mixing
process. The operators can be obtained directly from the equations
of motion using eigenvalue formulae from the perturbation theory
of linear operators.

Computations are presented for the particular case of phase-
mixing due to wave-field inhomogeneities, using a continuously
stratified model representative of the Baltic. The orders of magnitude
of the amplitude response and decay time are in reasonable agreement
with observations, but the details indicate that other processes, in
particular the scattering due to wave-guide inhomogeneities (non-
uniform depth), may also be important in the real situation.

2. Equations of Motion; Normal Modes

(i) EQUATIONS OF MOTION

I t is assumed that the motions to be considered are of a horizontal
scale small compared with the radius of the earth or the lateral
dimensions of the ocean. The ocean can thus be described to first
order as an incompressible, stratified fluid of infinite horizontal extent
in a rotating Cartesian coordinate system. The corresponding
equations of motion are given in the Boussinesque approximation by

dfUi -fu2 +fu3 + dxf = - 9,(ωι%) (2.1)

j) (2.2)



470 GEOPHYSICAL FLUID DYNAMICS

fux - b + d3p = - d}(u3us) (2.3)

dtb + N2u3 = - djibu,) (2.4)

d,U] = 0 (2.5)

At the free surface x3 = 0, the solution must satisfy the dynamical
and kinematical boundary conditions

Ρ - 9ζ = - C(33i> +
and

correct to quadratic terms. Eliminating the surface elevation from
the left hand side, this may be written

dtp -guz= - [3.{ζ(9,ρ + (Νψ)ζ)} + ρ3.(««ζ)], x3 = 0 (2.6)

The boundary condition at the bottom is

% = 0, x3 = - A. (2.7)

We have included the terms arising from the horizontal Coriolis
parameter /. If comparable with the remaining terms in the equa-
tions of motion, these give rise to considerable formal complications,
and it is usually assumed that they can be ignored. In the present
applications, the justification for this is not immediately obvious.
Fortunately, however, the terms can be readily incorporated in the
perturbation scheme considered later in Sec. 4; it is found that they
are usually negligible, but not always.

The system is assumed to be horizontally homogeneous. However,
gradual variations of /, h and N2 will also be considered in Sec. 4
as perturbations of the homogeneous state. Variations in h and JV2

are found to modify the solutions appreciably, whereas planetary
effects are negligible.

Of primary interest later will be the low-frequency response of the
linear system on the left hand side of Eqs. (2.1)-(2.7) to the non-
linear forcing terms on the right. In contrast to the traditional view-
point, in which the nonlinear terms are associated with strongly
nonlinear turbulent eddy fluxes, it is assumed that the components
in the nonlinear terms can be represented to first order as wave
solutions which satisfy the linearized equations of motion.

The waves occuring in the nonlinear source terms are assumed to be
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" high " frequency, ω > / , whereas the response is determined for
" low " frequencies, ω < N. The. inequalities here refer to asymp-
totic regions in which the equations of motion can be simplified.
Since/ < N, the " high " and " low " frequency ranges overlap. In
practice, however, the low-frequency response is found to lie close
to /, so that the frequencies of the driving wave fields lie well above
the response frequencies.

The linearized equations of motion and boundary conditions have
normal-mode solutions φ with exponential dependence in time and
the horizontal coordinates, φ ~ exp[i(k • χ - ωί)], k = (kly k2,. 0).
In the following, we summarize the relevant properties of these
modes in the asymptotic regions of interest.

(ii) HIGH-FREQUENCY MODES (ω > / )

In this case, the Coriolis terms in Eqs. (2.1)-(2.3) can be neglected.
The normal modes are of the general form

exp[i(k · χ -

Ι(χ3) exp[i(k · χ - ωί)]

where φί{χ3) is a (real) vertical eigenfunction. The form of the
eigenfunction is irrelevant for the later discussion, but the phase
relationships will be found to be important.

(iii) LOW-FREQUENCY MODES (ω <Ν)

In this case, the term dtu3 in Eq. (2.3) can be dropped (hydro-
static approximation). At any time instant, the fields u3 and b are
then determined by the fields ux, u2 and p. Eliminating u3 and b
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with the aid of (2.3), (2.5) and the boundary conditions, the linearized
equations of motion for the remaining components take the form

dt φ0 - iHe φ,. — 0

iUl\where φ,. = I u% J and the linear operator

\P I

( 0 -if ΐΒΛ f-Uadi -Had2 0 \
He = [ if 0 id2) +f 0 0 0 ] (2.9)

V/a! iid2 ο / \ ο ifib -ubdj

with

f ° [*' {° dx'3
f ° f as

J *3 3 J -ft J -ft

dx3 (2.10)

= I dx'3.
J *3

(2.11)

The operator / can be reduced to a single integral by integrating in
parts and noting that N2 = - g 33lnp,

where

= J +g | dx3 (2.12)

= f ° G(x3, x'3) dx3 (2.13)

J -»-a
with

Γ gr In p(x3)lp(0), -h < x'z < x3

\g]np(xa)jp(0), xa < x't < 0

For small wavenumbers, the dominant part of Hc is the 2 x 2
rotation matrix containing the vertical Coriolis parameter in the top
left of the first matrix on the right hand side of (2.9). I t is con-
venient to diagonalize this submatrix by transforming to rotary
velocity components

u+ = («j + iu2)

u_ = («! - iu2)
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Defining similarly

d± = d1 ± id2, k± = Jcx ± ikt, (2.14)

the equations of motion transform to

3, φ - iHr φ = 0 (2.15)

ΛΛ
where φ = I M_ j and

\P J
I ~f 0 id+\ /-(ilad_j2) -(iladj2) 0 \

HT= 0 / t3_ ] + / (-(ii.a_/2) -(i/.3+/2) 0
•\»/3-/2 i/3+/2 0/ \ j

= H+fi. (2.16)

The general solution of Eq. (2.15) has not been given. We follow
the traditional practice at this point and ignore the horizontal
component / of the Coriolis vector by setting fl = 0. The effect of
β will be considered in the Sec. 4 as one of various perturbations of
the model.

The operator Η of the reduced equation

3ttf> -ΙΗφ = 0 (2.17)

now has separable eigenfunctions φή^

ΕΦ&. + ωφ& = 0
where

ΨΛ = β·ψη(χ,) exp[i(k · χ - ω<)] (2.18)

and the eigenfunction \]/n and polarization vector β* satisfy the
separate eigenvalue equations

Ιφη = ληψη (λη = const) (2.19)
and

/ " / 0 -k+\
I 0 / -^)βί=-ωβ3 (ω = co(k,», s)) (2.20)
\-(Xnk_l2) -(XnkJ2) 0 J

On account of the reality of the original equations, normal modes
of opposite index are related by
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•where the subscript (1, 2) denotes interchange of the first and second
vector components of φ.

Equation (2.19) is equivalent to the usual differential form
(cf.Refs. (1), (17) and (26))

33(Ν~*83ψη) + A;V· = 0 (2.22)

with the boundary conditions

ςΒ3ψη +Ν2ψη = 0 at x3 = 0

dzi>n = 0 at x3 = - h.

The vertical eigenfunctions satisfy the orthogonality relation

ψηψηάχ3= δηηϊ° φΙάχ3 (2.23)

J
After solution of the vertical eigenvalue problem, the eigen-

frequency follows by solving the eigenvalue equation (2.20) for the
polarization. The eigenfrequencies are found to be

ω ± = ± (/2 + Α,*2)1 '2 (gravity waves) (2.24)

co° = 0 (geostrophic flow) (2.25)

with associated eigenvectors

/(ω9 +f)K\
β' = (ω· -f)k_ ) , s = ± ; p> = Icjf ) (2.26)

V / \ /
The sequence of eigenvalues λη decreases monotonically, the

eigenvalue of the zero'th, barotropic mode standing out several
orders of magnitude above the eigenvalues of the internal modes
η = 1,2,·· · . The ratio λο/λη is given approximately by η2π2ρβΝ2,
which for the ocean is typically of the order 10*rc2. For large values
of this parameter, the boundary condition (2.6) can be replaced for
internal waves by the flat-top boundary condition u3 = 0. This is
equivalent to replacing the operator /, Eq. (2.12), by

/ = J - I |° dx3J (2.27)
"'J - A
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In the /-plane approximation, all geostrophic modes have zero
frequency. The degeneracy can be removed by allowing for the
latitudinal variation of the Coriolis parameter, which transforms the
geostrophic modes into finite-frequency planetary (Rossby) modes
(cf. Sect. 4(v)).

Of more interest for the present problem is the degeneracy of the
gravity modes at zero wavenumber. In this limit, the horizontal
divergence of the current vanishes. By continuity, the vertical
displacements and the associated gravitational restoring forces are
then also zero, and the " gravity " modes degenerate into inertial
oscillations, in which the horizontal current vector rotates with the
local (mode-independent) inertial frequency (cf. Eqs. (2.24),
(2.26)).

The observed current spectra agree well within the inertial peak
with the zero-wavenumber limit of the linear theory. The two
components of horizontal velocity (measured at a fixed depth) are
found to be highly coherent, indicating a highly linear interrelation-
ship, and the phase and amplitudes correspond to a nearly circular
rotation, as predicted by (2.26). Thus it appears consistent to
describe the low-frequency reponse to first order by the linearized
equations of motion (2.17) of a homogeneous system at zero wave-
number, treating all other effects, such as nonlinear advection,
horizontal variations of the fields or the physical system, etc., as
small perturbations. The magnitudes of these perturbations can be
determined from the analysis. Experimentally, we may conclude
a priori that these effects must be small at frequencies close to the
inertial frequency, otherwise inertial oscillations (in the limiting
sense in which the term has been defined here) would not be observed.

The normal modes can be used to construct the general solution of
(2.17) by superposition. We shall adopt an alternative approach
more appropriate for an expansion about the degenerate state which
involves only a partial decomposition of the solution into the three
normal mode branches s — ±, 0, leaving the horizontal and vertical
mode structure unresolved. For this purpose, it is convenient to
interpret β3 in Eq. (2.18) as an operator, independent of the wave-
number and vertical mode index. This is achieved simply by
replacing ik( by dt and λη by /. Introducing suitable normalization
factors, the expressions (2.26) can then be written
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where

ε =
-JV 2 ) 1 ' 2 - / _ - 1 Ιψ

(2.28)

= -οΤ - "57Ϊ - · * · (? 2 = 9Ϊ + 31) (2.29)

Equation (2.20) can now also be interpreted as an operator
equation

Ηβ° = - (2.30)

where

(s = ± , 0 ) (2.31)

is a scalar " eigenoperator " of the matrix operator H.
The operator /γ 2// 2 occurring in the expansions (2.29) and (2.31)

is of order gh(2n/Xf)2 for the barotropic mode and (Nh/nXf)2 for the
mth internal mode, where λ is the wavelength of the mode, cf.
Sec. 4(ii). It is shown in 4(ii) that the operator can usually be
regarded as a perturbation for the internal modes, but not for the
barotropic mode. Hence inertial oscillations observed in the ocean
can contain only internal-mode constituents.

In order to decompose the general solution into its three polariza-
tions s, we introduce further the orthogonal projection operators
β', defined by

5as, (s, s' = ± , 0), (2.32)
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-iifd+ = 0 + L ( - i d + \ + ...

^2Ω2 + 27S7 \ l / ^ \2Y2///

(2.33)

The general solution of (2.17) may now be written φ = £*=±,o β'φ',
where φ3 = Jl· · ψ. The equation for the scalar field φ8 follows by
multiplying (2.17) from the left with β3:

3(φ» +ΐβΩφ' = 0 (s = ±, 0) (2.34)

The equations of motion

= q (2.35)

7 i+\
in the presence of a forcing field q = I ?_ I reduce similarly to

Vio/
3,4* + ίβΩφ· = g3 (β = ±, 0) (2.36)

where
g' = 0' · q. (2.37)

In the following sections, we investigate the low-frequency .
response for the forcing field q arising from quadratic interactions
between high-frequency waves. The problem is considered in three
successive stages of approximation:

(a) The high-frequency wave field is regarded as statistically
stationary and homogeneous. The high-frequency modes are
described by the zero'th order equations (2.8), in which all
Coriolis terms are neglected. (Stokes solution, Sec. 3(i)). It
is found that in a rotating system the Stokes solution is valid
only for times small compared with the inertial period.

(b) The correct solution for a rotating system is obtained by
allowing for first-order Coriolis effects in the high-frequency
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wave field. The high-frequency wave field is still treated as
strictly homogeneous, but is allowed to vary slowly with time.
The wave field is found to generate undamped inertial
oscillations (Sec. 3(ii)).

(c) The source is generalized to include slow variations with
respect to both space and time. The spatial variations are
found to induce vertical and horizontal dispersion of the
inertial oscillations through phase-mixing (Sees. 4(i), (ii)).
The operator notation has been introduced in this section
primarily for the analysis of this process. Further phase-
mixing processes obtained by relaxation of some of the
idealizations of the model (homogeneity of the physical
system, linearity of the low-frequency response) are con-
sidered in later sections.

3. The Homogeneous Problem

(i) THE MASS TRANSPORT IN A NONROTATING SYSTEM

Consider first a forcing field consisting of a statistical ensemble of
high-frequency modes of the form (2.8),

exp[i(k · χ - ωί)] + complex conjugate
(3.1)

Assuming the field to be statistically stationary and homogeneous,
the mode amplitudes satisfy the relations

= o, « c O = ο
K2T> = ^.^«.«^..(kiMk (3.2)

where /Jk is the infinitesimal wavenumber increment of the Fourier
sum and Fn(k) is the power spectrum of the mode n. The cornered
brackets denote ensemble means.

If the frequencies of the wave field are high compared with the
inertial period, we can presumably take the mean values of the
quadratic terms on the right hand side of Eqs. (2.1)-(2.6) in con-
sidering the low-frequency response. The mean term arises from
quadratic self interactions of waves with their complex conjugates,
whereas the fluctuating component represents difference (and sum)
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interactions between pairs of components. For a given realization
of the low-frequency response, there will generally be a contribution
from both fluctuating and mean terms. However, the response to
the fluctuating term vanishes in the statistical mean. An analysis of
the fluctuating term would require a statistical treatment of both
high-frequency and low-frequency fluctuations. In the present
paper, the statistical description is restricted to the high-frequency
wave field, whereas the low-frequency currents are treated deter-
ministically. A rough estimate of the fluctuating term indicates that
its contribution to the low-frequency response is negligible com-
pared with the mean stress derived in the following subsection.

Since the wave-field is statistically homogeneous, the mean forcing
terms are independent of xlt x2. As we are considering an infinite
system without lateral boundary effects, the response is then also
independent of xit x2. Hence the vertical velocity vanishes on account
of the continuity equation and the boundary condition u3 = 0 at
x3 = - h. Since the horizontal gradients of the pressure and the
Reynolds stresses also vanish by hypothesis, the equations for the
horizontal velocity components reduce to the simple form

fu2= - da^Ws) (3.3)

dtu2+fu1= - 33{u2u3) (3.4)

Substituting the solution (2.8) in the right hand sides of Eqs. (3.3)
and (3.4) the source terms are seen to vanish on account of the
quadrature between the horizontal and vertical velocities. Thus
the mean (Eulerian) flow induced by the wave field is zero.

This does not imply, of course, that the total mass transport Μ
also vanishes. To quadratic order,

Μ = / (ρ + δρ)ηάχΛ = ° p{n)dx3 + (5pu)dxs

where underlining denotes the horizontal component of a vector.
Since <u) = 0, the first term vanishes. The second term,

(5pu)dx3 = ̂ dx3^zjdk~Kd3MFn(k), (3.5)
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representing the mass flux due to correlated density and velocity
fluctuations, and the third term, representing the surface contribu-
tion

η J

are generally nonzero.
In many respects, it is more convenient to consider the mass flux

in the Lagrangian reference frame. Since the density of a fluid
element remains constant, the mass flux per unit (Lagrangian) cross
section is given simply by the mean Lagrangian velocity of a particle
multiph'ed by its density. To quadratic order, the mean Lagrangian
velocity is

(u\(r)y = (i*i(r)> + (ξί(τ)3}ΐιΊ(τ)} (3.7)

where ξ{ is the displacement of a particle from its position of rest r,
and «®(x) = u\(r) is the fluid velocity at the particle position
x(r) = r +ξ(Γ). We denote the difference between the mean
Lagrangian and Eulerian currents as the Stokes current,

In the present case, <«?> = 0, so that, according to (2.8),

<u\> = «j* s Σ | Λ ^ i UK dMWJP) (3.8)

The total mass transport Μ = $-lp(ra)(u\(ra)y dr3 is again equal to
the sum of the terms (3.5) and (3.6).

For example, for a surface gravity wave the mass flux in the
Eulerian representation is concentrated entirely in the surface (the
term (3.5) is negligible), whereas the Lagrangian current is a con-
tinuous function decaying exponentially downwards from the
surface.

The above resume follows the classical derivation of the mass
transport, as first given by Stokes for the case of surface gravity
waves in a non-rotating system. However, it is incorrect if applied in
this manner to a rotating system. The neglect of terms of order//ω
in the high-frequency wave solutions turns out to be inconsistent
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when considering the low-frequency response of the system to
nonlinear wave interactions.

(ii) WAVE-DRIVEN CURRENTS IN A ROTATING SYSTEM

That something is amiss in the solution (3.8) can be seen from the
Lagrangian forces acting on a particle. Since there are no Reynolds
stresses in the Lagrangian reference frame, the Coriolis force f x u 1

can be balanced only by a horizontal pressure gradient. But
horizontal gradients cannot be induced by a homogeneous wave-field
in an unbounded ocean. Thus there is nothing to counteract the
Coriolis force, and a Lagrangian current, once generated, should
rotate with the local inertial frequency. This has been pointed out
by Ursell/25' using arguments based on Taylor's vorticity theorem.
The difficulty is not removed by introducing lateral boundaries at
infinity to support a horizontal pressure gradient. The Coriolis
force is rotational, and cannot be balanced by any force derived from
a potential.

The contradiction arises from the neglect of the Coriolis forces in
the high-frequency wave field. The Coriolis terms destroy the sym-
metry responsible for the exact quadrature between the horizontal
and vertical velocities. The shear stress resulting from the small in-
phase components generates a mean Eulerian current which turns out
to be exactly opposite to the Stokes current, u e = - u s t. Thus the
mean Lagrangian current u1 = u e + u s t = 0, as required by con-
sideration of the force balance. To this may be added an arbitrary
inertial current as homogeneous solution.

To determine the Coriolis-induced Reynolds stresses, we rewrite
the right hand sides of Eqs. (3.3), (3.4) in the form

- a3<uw3> = d/u3 Γ (Yp + ( F x u ) )dt\ (3.9)

where F = (0,/,/) and the horizontal velocity u has been expressed
as a time integral using the equations of motion. We retain only
terms to first order in/,/. Inspection of Eqs. (2.3) and (2.4) shows
that ρ and u3 are in quadrature to this order. Hence the term in
(3.9) containing the pressure vanishes. The horizontal component
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of the Coriolis vector also occurs in an expression containing two
factors in quadrature. Thus there remains finally the term

d3(u3 (ΐ χ f ndtj\ = 33<«3(f χ ξ)>

= 9j<«j(f χ ξ)) (invoking homogeneity)

= - (5j(f x 33u)) (invoking stationarity)

= - f x u "

where f = (0,0,/).
Hence Eqs. (3.3), (3.4) reduce to

dtu + f χ u = - f χ u s t (3.10)

(the bar denoting a horizontal velocity has now been dropped).
For constant u s t, the general solution of (3.10) is

u = u e = - u s t + U cos/i - (z0 χ U) sin/i (3.11)

where z0 is the unit vector upwards and U is a constant amplitude
dependent on the initial value of u e.

The Lagrangian current

u 1 = u e + u s t = U cos/i - (z0 χ U) sin/i (3.12)

is then a purely rotary current, as anticipated.
For the particular initial condition u e = 0 for i = 0, Eq. (3.11)

becomes

u e = - us* + u s t cos/i - (z0 χ us») sin/i (3.13)

The solution corresponds to a step function onset of the high-
frequency wave field in a previously calm ocean (Fig. 1 for/ί < 5π/2).
Initially (ft •< 1), the currents are the same as in the irrotational
case. However, as the Eulerian current develops, the Lagrangian
current rotates to the right and after a J pendulum day attains a
maximum negative value equal and opposite to the initial Stokes
current. The mean Lagrangian current (and thus the mean mass
flux) vanishes. Since the time scale for the development or passage
of storms is generally of the order 1//, the earth's rotation must
usually be taken into account in considering the wave-induced mass
transport in the ocean.
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9TI/2

Eulerian current Lagrangian current

Figure 1. Polar diagram of Eulerian and Lagrangian inertial currents generated
by a Stokes current u s t = (u3t, 0). For/ί <̂  1, the currents are identical with the
Stokes solution. Note that the oscillation is enhanced during the cut-off
phase.

The assumption of a strictly stationary wave field invoked in the
derivation of the mean forcing term can be relaxed in integrating
Eq. (3.10). If u s t varies slowly with time (with respect to the
driving-wave period) the general solution of (3.10) is given by

u+ = ή1

J ο

exp (τ if(t - t')) usl(t')dt' (3.14)

After the excitation has died away, Eq. (3.14) represents a free
undamped inertial oscillation that remains in the fluid indefinitely.
The amplitude of the residual oscillation depends strongly on the
detailed time history of the excitation. For example, Fig. 1 shows
a case in which the cut-off of the excitation enhances the oscillation
by a factor 1,64. A sharp cut-off at t = 2π// would have yielded
zero amplitude, a sharp cut-off at t — 3 π// an amplification of 2,
and a clockwise rotation of u 8 t with frequency / a maximum ampli-
fication of 2π per revolution. This may have bearing on the observed
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variability of inertial oscillations generated by different storms of
comparable strength. The same efFect was noticed by Pollard and
Millard (1970) in numerical calculations of a wind-driven model.

The order of magnitude of the response, apart from the highly
variable amplification factor, is given by u s t . This is comparable
with observed inertial currents for generation by both surface and
internal wave fields.

The Stokes current for wind-generated surface gravity waves has
been evaluated by Bye/3 ) Chang(4) and Kenyon.(12) The authors
find u s t = cW near the surface, where W is the wind velocity and the
proportionality factor c «s 10~2 - 3 · 10~2 depends on the form
assumed for the wave spectrum. The current decays downwards
from the surface more or less exponentially, with a scale length of
the order (gravity wavelength)/10. For wind velocities in the range
10 m/sec, the inertial amplitude is in the observed range of 10 cm/sec.

Estimates of ust for internal waves are less reliable because of
difficulties in directional and mode resolution. Assuming, for
simplicity, a unidirectional spectrum and locally sinusoidal eigen-
functions, Eq. (3.8) can be written

«••t = Ο h Γ ί*0Γ(ω) - dco) (3.15)

where i * o r is the frequency spectrum of the horizontal mean square
velocity. Observations by lOfonoff *e> and Webster*28 > indicate that
below the surface layers the total horizontal m.s. velocity in the
relevant frequency range between / and Ν is of the order 1-20
(cm/sec)2. The weighting factor fc/ω depends on the vertical mode
structure and is more difficult to estimate. A reasonable guess,
2π/& <%f 200 m, 2π/ω Β» 2 hrs yields k/ω « (3 cm/sec)"1. The
resulting Stokes velocities again lie in the range of 10 cm/sec typical
for inertial currents.

4. Phase-mixing

The model considered so far fails to explain the observed damping
of inertial oscillations with Q values of the order 10. In the following,
we shall successively relax various idealizations of the model,
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obtaining a series of phase-mixing processes which produce damping
by vertical and horizontal dispersion.

An obvious limitation of the present model is the statistical
homogeneity of the driving wave fields. This assumption greatly
simplified the analysis in the previous section. The system was
excited at zero wavenumber, a point of degeneracy at which all
gravity modes have the same frequency ±/. Consequently, the
vertical coordinate entered only as a parameter, and the equations
for the horizontal velocity components could be integrated directly
without decomposition into modes.

This simplicity is lost if the fields are allowed to vary horizontally.
In this case, the source function excites an ensemble of low-
frequency modes of finite wavenumber, each of which rotates with a
slightly different frequency. Velocity components of neighboring
modes which were originally excited in phase therefore gradually
loose their phase relation, the field becomes " randomized ". In
many geophysical applications, one is concerned with the asymptotic
state of the randomization process in which all modes can be regarded
as statistically independent (this was assumed in the present model,
for example, for the high-frequency wave field). In contrast hereto,
the essential properties of the oscillations in the present problem
are governed by the transition from an initially coherent mode
ensemble to the asymptotic random state.

The time scale of the phase-mixing process depends on the fre-
quency separation between neighboring modes. If the spatial scale
of the driving wave field is large (small wavenumbers), the fre-
quencies of the excited modes are close to the inertial frequency, and
the time scale Τ of phase-mixing is large compared with the inertial
period. We shall use an expansion of the solution with respect to
the parameter tjT which avoids mode decomposition and is applicable
for arbitrary stratification. For/?1 > 1, the series converges rapidly
for times which are large compared with 1// but still small compared
with T. The expansion is particularly useful for following the initial
development of inertial oscillations over a few periods, but can be
readily computed also for larger values of tjT.
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(i) PHASE-MIXING DUE TO INHOMOGENEOUS FIELDS

For a weakly inhomogeneous wave field, the source vector in the
field equation (2.35) takes the form

s= ±)
(4.1)

The first vector on the right hand side represents the rotation-
induced stresses considered in the previous section, rewritten in
rotary coordinates. The third component of this vector vanishes.

The second and third terms arise from horizontal divergences of
the quadratic advection terms. These vanished before on account
of the homogeneity. The interaction stress tensor

occurring in the second vector is given by the sum of the Reynolds
stresses - (UiUj) and the wave-induced mean pressure p"> = - <«§>
(cf. Ref (7). The vertical divergence of this tensor also contributes
to (4.1) if the waves loose energy by dissipative processes, for example
by breaking. The interaction stress is related to, but differs from,
the radiation stress considered by Longuet-Higgins and Stewart.(1β))

The third vector arises from the nonlinear terms in the surface
boundary condition for the pressure, and is independent of depth x3.
I t is essentially orthogonal to all internal modes, and thus excites
only barotropic inertial oscillations. I t will be shown in the following
paragraph that the barotropic mode has to be excluded from the
general phase-mixing analysis, so that q° may be ignored.

The third (pressure) component of q is irrelevant for the generation
of inertial oscillations, since the projection of q on to the polarizations
s = ± is obtained by multiplication with ji', which to first order is
orthogonal to the p-axis (2.33),

q> = - isfuf + djTff. (4.2)

The ratio of the Coriolis-induced stress force to the horizontal
divergence of the interaction stress is given by
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where L is the horizontal scale and c the mean phase velocity of the
high-frequency wave field. (If dissipation is taken into account, L
is the smaller of the horizontal scale and the characteristic decay
distance of the dissipative process.) For surface gravity waves,
c = lOm/s, / = 10~4 S - 1 yields L — 100 km as the critical scale at
which both terms become equal; for internal waves, the corres-
ponding scale is 1-10 km. Thus for internal waves the interaction
stress is generally negligible compared with the vertical shear stress
induced by rotation, whereas for surface gravity waves the interaction
stress is dominant for scales smaller than about 100 km.

With qs given by (4.2), Eq. (2.36) can be integrated to yield the
inertial current response

φ3(χ, t) = exp( -isnf)0'= o + exp[-isil(t - t')] q'(x, t')dt'
Jo

t O2/2 "1

i-isnt -!L_ + ...J#_0

f t r jw< - t')2 ~l

.+ I o L 1 - " ^ - ' ' ) - 2 + · · -J q'(x> *')Μ
(4.4)

A more rapidly convergent series is obtained by expanding with
respect to the perturbed frequency operator χκ, rather than Ω,

where

72V4

w W ( 4 · β )

Equation (4.4) may then be written

p{x, t)

Γ Γ* Ί
= exp( - iaft) < exp( - Ϊ8χα t)φ\.ο + exp( - isxw (t - t')) q,(t') dt' )•

L Jo J
= exp( -iafi) | [ l - isXwt - ̂  + · · ·]φ?-0

+ Ρ [ι - «χ«(ί - η -xl{t ~ty + · · ·] un <ιή (4.7)
where q,(x, t) = exp(isfi) j,(x, t).
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For xw = 0, Eq. (4.7) reduces to the solution (3.14) for a homo-
geneous wave field. The deviation from this solution is governed by
the phase-mixing operator χκ (the subscript refers to wave-Held
inhomogeneity). For a weakly inhomogeneous source function,
%w -< Ω «* /, so that the operator χκ1 occurring in the exponential
expansions in (4.7) is still small when the operator Ωί in the corres-
ponding series in (4.4) is already of order 1.

The operator %w may be interpreted as the frequency operator in a
corotating coordinate system. Writing $ s = φ * exp(isft), Eq. (2.36)
is transformed to

Hence Eq. (4.7) follows from (4.4) by replacing φ3 by φ3, qs by q$, and
Ωbyχ1 (,.

In the case q* = 0, Eq. (4.7) represents an inertial oscillation with
slowly varying amplitude and phase. The rate of change of phase
can be interpreted as a frequency shift. I t is of interest to note that
although the frequency shift of all individual modes is always
positive, the frequency shift of the composite inertial oscillation (4.7)
can be of either sign.

The representation (4.7), involving iterative application of a
rather simple operator, is particularly suited to numerical computa-
tion.

(ii) NORMAL-MODE REPRESENTATION

It is useful to study the factors governing the convergence of the
expansion (4.7) from a normal-mode viewpoint. Since the essential
features can be illustrated already by the initial-value problem, we
set qs — 0 (i.e., we consider the evolution of the inertial oscillations
after the generating wave field has passed by). A similar analysis is
presented in a recent paper by Pollard.(21)

In terms of the normal-mode representation

Φ* = Σ <k«M*3) exp[i(k · χ - erf)], (4.8)
k,«

the homogeneous part of the expression (4.7) corresponds to an
expansion of the form

φ' = exp(-isft)Σα*η1ιψη(χ3)exp(ik·χ)Γΐ - ico't - ^ L i - + · · · Ί
k,n L -̂  J

(4.9)
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where ω'(η, k, s) = ω(η, k, s) - sf. The series (4.9) converges more
rapidly than the straightforward expansion of the exponential in
(4.8) if ω' < / for most terms of the sum. According to Eq. (2.24),
this requires a spectrum rich in small wavenumbers (slow horizontal
variations) and high mode numbers (fast vertical variations). These
conditions appear to correspond reasonably well to observed scales
for both the inertial oscillations and the mean wave fields.

To obtain quantitative estimates, we consider the simplest case of
an exponential stratification, N2 = const. The normal modes in
this case are given by

φη{χ3) = cos [κη(χ3 + &)]

where κη is a root of the equation

-r^rtan Knh = 1 (4.10)

and the eigenvalues are given by λη = (ΝΙκη)
2.

For large g/hN2 (of the order 104 in the ocean) the roots of (4.10)
are given to good approximation by

κ0 = NIJg~h (barotropic mode)

and

κη = ηπ/h, η = 1, 2, 3, · · · (baroclinic or internal modes),

which corresponds to frequency shifts

, k*gh

The condition ωή < / yields the following restrictions on the
horizontal scale L = 2njk:

2 ^ ( 4 . u )

Jη = 1,2,3,···: L2>2(~J (4.12)
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For / = 10~4 sec"1 (46° latitude) and typical deep-ocean values

Ν = 10~3 sec"1, h = 4 km one obtains

η = 0: L 2 > (10*km)2

η = 1,2,3,···: £2 > f— kmV

The values Ν = 10~2, ft = 100 m, corresponding to shallow seas or

thermoclime conditions, yield

η = 0: £ 2 > (1.4 10skm)2

/14 \ 2

η = 1,2, 3,· · · : i 2 > ( — km)
\n ]

The condition ω' < / is clearly never satisfied for the barotropic

modes, which must therefore be separated from the remaining low-

frequency motion. This is meaningful physically, since the baro-

tropic modes propagate away from the generating area in a period

small compared with an inertial period, leaving only the internal

oscillations behind. Hence the barotropic response cannot be treated

as an approximately local phenomenon, as implied by the expansion
( 4 · 7 ) ·

However, the slow phase-mixing condition is usually well satisfied

for the remaining modes.

For internal motions, the operator χη (with / given by (2.27)) is

of the order (Nh/L)2//, where L is the horizontal scale of the field and

it is assumed that the vertical distribution extends over the entire

depth. The time scale governing the rate of convergence of (4.7) is

therefore /(Z/iVA)2. This corresponds to the phase-shift time scale

(ωί)"1 of the lowest internal mode, η = 1, as is to be expected,

since the lowest mode has the largest frequency shift and therefore

contributes most to phase-mixing. In practice, the convergence of

(4.7) can be improved by separating out the first mode and applying

the operator expansion to the rest field. This is particularly effective

for " two-layer " type distributions (pronounced thermoclines) such

as the example considered in Sec. 5, for which the frequency shift of

the first mode is relatively high.
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(iii) PERTURBATION EXPANSION OF PHASE-MIXING OPERATORS

Since %w < Ω, it is normally sufficient to retain the first term in the
expansion (4.6), χω = -(/V2/2/). This could also have been
derived using the standard formulae for eigenvalue perturbations.
If the operator Η in the eigenvalue Eq. (2.17) is of the form

Η ~H0+H' (4.13)

where H' << Ho, the (negative) eigenvalue Ω* can be expanded in a
series

Ω8 = Ω»ο + Ω.Ι + Ω| + · · · (4.14)

where Ω£ is an eigenvalue of Ho and

Ω 5 - -β,Η'βΙ (4.15)

as = Σ ΛΒΚΛΛΒκ (4.16)

Here β%, β*α refer to the eigenvectors and the orthogonal vectors of the
unperturbed operator HOSU)

In our case,

/ - / 0 0\
Ho = ( 0 / 0 1 , (4.17)

\ 0 0 0/

( 0 0 id Λ

0 0 id A (4.18)
Ud_j2 Ud+/2 0/

and Ωο = sf. The vectors β3

0 = β% are the three unit vectors parallel
to the coordinate axes.

Equations (4.15), (4.16) give
Ωί = 0, ΩΙ = - ψ,

in agreement with the previous result (4.6).
The eigenvector operators β8 can be similarly expanded,

β3 = η + Σ e i r«

where
ψϋΗ'β%

" Ω Γ Ω 8
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Equations (4.19), (4.20) are again identical with the leading terms in
Eq. (2.28), with slightly different normalization. In the lowest-
order phase-mixing approximation, however, one can set β* — β'ο
and need consider only the perturbation of the eigenoperator.

Using the same approach, we consider now further perturbations
which destroy the zero wavenumber degeneracy and produce phase-
mixing.

(iv) PHASE-MIXING DUE TO THE HORIZONTAL CORIOLIS COMPONENT

We retain the definition (4.17) for Ho. Including the horizontal
component of the Coriolis vector, the operator Hr of the complete
Eq. (2.15) is then of the form Hr - Ho +H', where H' = H'w + H'h,
with H'w given by (4.18) and

iIad_/2 -iladj2
ilad_l2 -iladj2 0 (4.21)

j

Applying Eqs. (4.15), (4.16), the perturbations of the eigen-
operators are found to be

Q. _ ϋφ. (i 22)

( 4 . 2 3 )

Since / = 0{N2h2), l\ = 0(h2), the second term on the right hand
side of (4.23) is of order/2/iVa smaller than the third term, and can be
neglected. Thus the perturbation χ" = Ω3 - sf of the eigen-
operator Ω*, including both horizontal and vertical Coriolis terms, is
given by

= Δ + A (4.24)

The ratio χ'Λ: χΌ, is of the order

fh

L / fL·
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Numerical values / = 10~4 sec"1, Ν = 10~3 sec"1, L = 400 km,
h = 4 km typical of the deep ocean yield

The shallow-sea values / = 10~4 sec"1, Ν = 10~2 sec"1, L = 100 km,
h = 100 m lead to'

We conclude that the horizontal Coriolis parameter cannot always
be neglected, particularly for weak stratifications and large lateral
scales typical of deep-ocean conditions. The inclusion of the hori-
zontal Coriolis terms in the complete phase-mixing operator presents
no computational difficulty.

(v) PHASE-MIXING DUE TO WAVE-GUIDE INHOMOGENEITIES (LATERAL

VARIATIONS OF h, N2 AND /)

Lateral variations of the wave-guide parameters /, N2 and k can
be treated as perturbations if the lateral length scales are large com-
pared with the ocean depth. The usual ray methods for a slowly
varying wave-guide are not applicable in this case, since we are con-
cerned with an ensemble of modes, rather than a single mode. Thus
the evolution of the field is again governed by a dispersion-type
operator, rather than energy propagation along rays as in single-
mode theory.

Equations (2.30), (2.34) remain valid in the case that the coefH-
cients occurring in the operators Η, β are functions of xlt x2. How-
ever, the eigenoperators and eigenvectors are modified, since the
differentials in the operators on the left hand sides of the products in
Eq. (2.30) act not only on the field, but also on the coefficients in the
following operators.

We denote by an upper dot operators which by definition do not
act on following operators. The unperturbed eigenvectors β'ο and
eigenvalues QJ are then denned with respect to the operator β,

Άβ% = - ft ΩΌ (4.25)

Algebraically, β'ο, Ωο are identical with the operators β", Sls defined
in Sec. 2 for a horizontally homogeneous wave guide (note that the
unperturbed state now does not refer to Ho as given by (4.17)).
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Expanding β3 and Q s again in a perturbation series, Eq. (2.30)
can be written

H(ft + ft + " · ) = " (ft + Κ + · · ·)(ΩΌ + «! + ···) (4·26)

Subtracting (4.25) from (4.26) and multiplying from the left with
%, one obtains the lowest order perturbation

(4-27)

On substitution of expression (2.28) for β%, this yields

χ' = Ωί = ̂  (dj)ld_3 - s ( - ^ p s # + tf (4.28)

The first term χ} on the right hand side of (4.28) represents the
phase-mixing induced by the variation of / with latitude, the
second term the effect of lateral variations of the stratification ρ and
water depth h. (The assumption d2f = β = const, corresponds to
the /?-plane approximation. In this case, $ is proportional to /, so
that the modes for the operator Ω* = Ω£ + Ω,} remain separable).

Comparison of (4.28) with (4.6) shows that the ratio of the three
phase-mixing operators %w, %j, χι due to lateral inhomogeneities is
proportional to the ratio of their inverse scale lengths i " 1 : Lj1: Lj1;
the proportionality factors are of the order 1. For/-variations, the
scale length is the earth radius, so that planetary effects can be
neglected compared with the smaller-scale lateral variations of the
wave-guide or the field.

(vi) PHASE-MIXING D U E TO NONLINEAR INTERACTIONS WITH

GEOSTROPHIC CURRENTS

The origin of geostrophic currents has not been considered in this
paper. However, in contrast to the inertial motions, there is no
difficulty in coupling geostrophic currents directly to the atmosphere
via the surface pressure or thermal variations. If geostrophic cur-
rents are present, they will affect also the inertial motion through the
nonlinear terms in the equations of motion. Since the geostrophic
currents are time-independent hi the linear, /-plane approximation,
the quadratic interaction with an inertial oscillation yields a pertur-
bation which is linear in the inertial oscillation, with a time-indepen-
dent coefficient. The term corresponds to a frequency perturbation
of the inertial oscillation, thus removing the zero wavenumber
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degeneracy and contributing to phase-mixing. (The other low-
frequency interaction involving two inertial oscillations yields
perturbations at zero frequency or 2/, producing no secular changes
in the inertial oscillation.)

The phase-mixing operator for the geostrophic interactions
follows as before from (4.15). The perturbation operator H' is
determined in this case by including the nonlinear advection terms
in the equations of motion and expressing the relevant quadratic
interaction between the geostrophic and inertial components in the
form Η'φ, where H' is linear in the geostrophic field. The analysis is
straightforward and yields

_ J_
where U is the geostrophic current; the summation convention
applies to the cartesian indices j , but not s.

Assuming, for simplicity, that the geostrophic and inertial currents
can be characterized by the same vertical and horizontal scales, all
terms in (4.29) are of the same order, and %*gjf = O(f7/L/), where L
is the horizontal scale. For U = 10 cm/sec, L = 100 km, / = 10~4

sec"1 we obtain for the Rossby number U/Lf = 10~2. The ratio
(phase-mixing operator): / corresponds to the damping ratio, which
is observed to be of the order 10"1. If L is taken as 10 km
instead of 100 km, which for inertial oscillations is not excluded by
the observations, χ,: / becomes of order 10"1 (first term in (4.29)).
The contribution to phase-mixing from interactions with geostrophic
currents appears of only marginal significance.

5. A Numerical Example

The decay of an inertial oscillation due to lateral inhomogeneities
of the initial distribution was computed using the phase-mixing
expansion (4.7), with separate treatment of the first mode (Fig. 2).
The initial distribution was taken as axisymmetric Gaussian in the
horizontal coordinates, with an exponential vertical profile corres-
ponding to generation by surface waves,

) Β - •
(5.1)
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Figure 2. Evolution of amplitudes and phases of an inertial oscillation with
the initial distribution (5.1). The computations were carried out using the
phase-mixing expansion (4.7) after separation of the first mode.
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The constant Β arises through subtraction of the barotropic mode.
The stratification chosen is typical for the Baltic during the summer;
the vertical scale is adjusted to agree with the site near the island of
Bornholm (W. Baltic) at which the measurements shown in Fig. 3
were taken. (24) The wavenumber k was chosen to correspond to a
6 sec gravity wave, and the horizontal scale L was taken as 20 km
to give reasonable agreement with the observed decay times. The
Bornholm site is about 50 km to the west of the island, and the same
distance from Sweden in the north and Germany in the south. A
scale of L = 20 km is not unreasonable, considering the smooth
lateral distribution assumedf (for analytical reasons) and the fact
that the phase-mixing due to lateral wave-guide inhomogeneities,
which is comparable to the process considered, was not allowed for.

Similar computations using normal-mode representations for some-
what simpler models have been made by Hollan(9) (first mode only)
and Pollard(21) (constant stratification).

The computations and measurements shown should be regarded
as examples only. Individual events of a given record vary appreci-
ably, and a similar scatter is found in the computations if changes are
made in the stratification, depth or initial distribution. However,
certain qualitative features appear to be common to both experiment
and theory.

The amplitudes of the inertial oscillation tend to be larger near the
bottom than at the thermocline. This is a consequence, paradoxically,
of generation by surface waves. Although the original profile for
both the Stokes current and the horizontal stressj fall off exponen-
tially from the surface to a minimum at the bottom, the reduced
profile after subtraction of the (constant) barotropic mode goes
through zero near the thermocline and then increases negatively
with depth.

Although the oscillations at all depths can be clearly identified as
belonging to the same event, the detailed time history can be quite
different for stations differing only 10 m in depth. Thus the vertical
coherence scale is generally small compared with the " event scale " .

† Sharp cut-offs due to lateral boundaries yield high wavenumbers. Since
the phase-mixing is proportional to the wavenumber squared, the decay rate of
a square distribution of width 2L, for example, is appreciably faster than for
the Gaussian distribution (5.1).

‡ For a narrow-peak spectrum, both profiles are identical.
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Figure 3. Inertial oscillations observed in the Baltic.<24) The numbers
following the horizontal velocity components C7, F refer to the depth in
metres. The total depth is 46 m.



WAVE-DRIVEN INERTIAL OSCILLATIONS 499

This is characteristic for phase-mixing of a spectrum rich in high
modes. The " event " spreads out over the entire column of water,
whereas the coherence scale is determined by the vertical scale of the
initial generating field, in this case about one quarter of the depth,
or 10 m.

In some shallow-sea observations, the coherence is not found to
decrease with instrument separation, but is larger for two instru-
ments near to the surface and at the bottom than a pair of instru-
ments close together on either side of the thermocline. The
oscillations near the surface and at the bottom are 180° out of phase
(Krauss, Schott, personal communication). This can be explained
if the spectrum of the initial vertical profile contains a strong line
at the first mode. Near the two first-mode maxima at the top and
the bottom, the contribution from the first mode dominates over the
other modes, and the coherence is high. In the middle, where the
first mode vanishes, the spectrum contains comparable contributions
from many modes, and the coherence is correspondingly small. For
stratifications and depths typical of the Baltic and a profile of the
type (5.1), the first spectral line is normally quite strong. In the
present example, the first mode contributes 75% of the amplitude at
the bottom and 50% at xz = - 10 m.

In other respects, the theoretical model is less convincing. The
asymptotic decay at intermediate depths is very slow, and at
x3 — — 15 m the amplitude increases for a long period before
finally decaying for /ί/2π > 20 (not shown in the figure). This is a
consequence of the fast dispersion rate of the first mode relative to the
higher modes, a property of two-layer type stratifications. The first
mode decays in 5-10 oscillations, exposing the slowly varying rest
field, which is particularly large around x3 = - 15 m. The decay of
the higher modes is probably determined by processes other than the
inhomogeneity of the initial distribution. Lateral inhomogeneities
of the stratification and, in this case particularly, the depth, produce
phase-mixing of the same order as that due to field inhomogeneities.
Inspection of Eq. (4.28) indicates, that, in contrast to the effect of
field inhomogeneities, the phase-mixing due to depth variations
increases with mode number.

A quantitative comparison of theoretical and observed current
amplitudes could not be carried through since surface waves were
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not measured. However, the magnitudes appear reasonable. Since
L < 100 km, the principal generating force is the divergence of the
interaction stress, rather than the rotation-induced vertical shear
stress, Eqs. (4.2), (4.3). For a sharply peaked, unidirectional wave
spectrum, <u 2 ) X J = 0 = ω2<ζ2>. Hence the divergence of the inter-
action stress at the surface is of the order ω2 (ζ2 )/L, which corresponds
to an equivalent Stokes current of ω2(ζ2)/£/. For the profile (5.1),
the current at the bottom is \ of the current at the surface for a
6 sec wave. Taking L = 20 km, <ζ2) = (1 m)2, ω = 2π/6 sec"1,
/ = 10~4 sec"1, the equivalent Stokes current at the bottom is
10 cm/sec. The same number is obtained for the values (C2) = (2 m)2,
L = 80 km corresponding to a larger fetch. Since the inertial-
current amplitude is given by the Stokes current multiplied by a
response factor which can vary from 0 to 2, or still larger, the
theoretical estimate is in good agreement with the observed peak
amplitudes of 20 cm/sec.

6. Conclusions

Estimates of the nonlinear generation of inertial oscillations by
high-frequency gravity waves agree in order of magnitude with
inertial currents observed both near the surface and in the interior
of the ocean. Surface gravity waves can drive inertial oscillations
either through horizontal stresses (interaction stresses) or the vertical
shear stress induced by the rotation of the earth. For horizontal
scales smaller than 100 km, the horizontal stress is more important,
whereas the shear stress dominates for larger scales. In the case of
internal gravity waves, the horizontal stress is generally negligible;
estimates of the shear stress based on observed internal wave spectra
yield values comparable with shear stresses for surface waves.

The decay of inertial oscillations due to phase-mixing was investi-
gated for five processes. Lateral inhomogeneities of the inertial
oscillation and lateral wave-guide variations yield comparable decay
rates in reasonable agreement with observations; the influence
of the horizontal component of the Coriolis vector and interactions
with geostrophic currents appear to be of marginal significance;
planetary effects are negligible.

A computed example reproduced many of the gross features of
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inertia! oscillations observed in the Baltic. These follow largely
from a surface-wave source function and are independent of the form
of the decay process. The time scale of the computed decay for
phase-mixing due to field inhomogeneities was not inconsistent with
measurements, but the details were not everywhere convincing.
Inclusion of lateral wave-guide inhomogeneities would probably
remedy the shortcomings of the model.
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