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1 Introduction

Understanding nonequilibrium phenomena with hydrodynamic tails has been a very active
research direction of the past two decades. One motivation for this quest has been ultra-
relativistic heavy-ion collisions at RHIC and LHC and the success of hydrodynamic mod-
elling there [1–4]. Another set of motivations came from condensed matter and quantum-
many body physics [5]. There have also been more foundational questions driving this
field, such as existence of bounds on transport [6], or the character of the hydrodynamic
gradient expansion [7].

One of the driving forces in this endeavour was holography [8–10], in which the
nonequilibrium dynamics of a certain class of quantum field theories is represented by
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time-dependent geometries involving black holes [11]. Results in this context are often
based on numerical solutions of the equations of motion, with analytic or semi-analytic
insights limited to basically two cases: linear response theory around equilibrium or highly
symmetric dynamics. The former cases are based on Fourier transform techniques while
the latter concern situations which can be effectively captured as comoving flows known
from cosmology, or from heavy-ion collisions.

Our paper is directly motivated by such a description of ultrarelativistic heavy-ion
collisions in terms of a Bjorken flow — one-dimensional expansion of matter, which looks
the same in any coordinate frame boosted in the direction of expansion [12]. In the case
of conformal models, such dynamics can be expressed as a single function A(w) which
measures deviations away from local equilibrium. w is a dimensionless clock variable and
the key motivating point for our paper is that A has an asymptotic late-time form of a
transseries, i.e. a double expansion in powers of 1/w and an exponential suppression factor:

A =
∞∑
n=1

µnw
−n + e−Ωwwγ

∞∑
n=0

νnw
−n + . . . . (1.1)

The ellipsis in the above equation stands for other exponentially suppressed contributions
to the sum.

The first sum in (1.1) is the onshell hydrodynamic gradient expansion of the energy-
momentum tensor,

T ab = E Ua U b + E
d− 1(ηab + Ua U b) + Πab, (1.2a)

Πab = −η σab + η τ Dσab + λ1σ
〈a
cσ
b〉c + . . . , (1.2b)

where we focus on conformal theories and the ellipsis denotes three additional nonlinear
terms with two derivatives of velocity Ua which are irrelevant for our discussion, as well
as higher order contributions, see, for example, [1] for details. In (1.1), the µ1/w term
represents the shear viscosity η contribution and the µ2/w

2 term represents the combined
effect of τ and λ1 [13]. More generally, each term µn/w

n comes from the nth order of the
hydrodynamic gradient expansion. The key aspect of [7, 14–17, 17–22] was the ability to
explicitly calculate higher order contributions to the sum (1.1) with the conclusion that
the gradient expansion evaluated on shell for the Bjorken flow diverges, i.e. µn ∼ n! at
sufficiently large n (see, however, [23]).

The second contribution in (1.1) is associated with transient, exponentially decaying
phenomena known from linear response theory and dressed in the hydrodynamic vari-
ables [24, 25], hence the other, also divergent gradient expansion with νn/w

n terms. As
is the case in the mainstream application area of resurgence in theoretical high-energy
physics [26, 27], i.e. coupling constant expansions in interacting quantum mechanical sys-
tems, the hydrodynamic sector carries information about transient phenomena through the
phenomenon of resurgence.

It is an important open problem to what extent the picture uncovered for Bjorken
flow, i.e. divergent hydrodynamic expansion and spatiotemporal dependence as transseries,
survives when symmetry assumptions are lifted. New light on this question was shed by our
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recent article [28], in which we combined linear response theory with the Fourier transform
to investigate convergence of hydrodynamic gradient expansion in linearized conformal
hydrodynamics in complete generality.

In linear response theory, a component of conserved currents ρ(t,x) acquires spatiotem-
poral dependence given by

ρ(t,x) =
∫
Rd

ddk ρ̂(t,k)eik·x, ρ̂(t,k) =
N∑
q=0

fq(k)e−i ωq(|k|) t, (1.3)

where ωq(k) are dispersion relations for different modes in the system.1 Hydrodynamic
modes are those for which

ωq(k) = κ kz + . . . , κ ∈ C, (1.4)

with Lifshitz exponent z > 0, which guarantees that dissipation accounted for by the
imaginary part of κ can be made arbitrary small by giving initial data support at arbitrarily
small k. The ellipsis in (1.4) denote terms with higher powers of k, which are a counterpart
of the hydrodynamic gradient expansion (1.2). The aforementioned transients are simply
contributions to the sum in (1.3) which do not share the property (1.4).

The aim of the present article is to build on [28] to construct a transseries solution
describing nonequilibrium processes going beyond the class of comoving flows represented
by Bjorken dynamics. Our guiding principle will be to have hydrodynamic phenomena
captured by the perturbative part of the transseries with nonperturbative transient phe-
nomena captured by higher transseries sectors — in analogy with Bjorken flow, where the
perturbative part is given by the 1/w expansion while the transient effects are expressed
by terms exponentially suppressed in w. In any given model, there may be many different
ways to construct such an expansion, e.g. by treating some microscopic parameter as small.
The expansion we use here can be applied to any model.

At the technical level, the key idea is to introduce a formal expansion parameter
for the transseries by rescaling space and time coordinates in Minkowski space where a
nonequilibrium phenomenon of interest takes place. Since we expect hydrodynamics to be
a late time phenomenon, we introduce a formal parameter ε through the rescaling

t→ t

εα
, x→ x

ε
, (1.5)

with α > 0, and treat ε as small. The resultant effect on (1.4), through the corresponding
scaling ω → εα ω, k → ε k, is given by,

ωq = κ εz−α kz + . . . . (1.6)

For a given hydrodynamic sector parameterized by some Lifshitz exponent z, the natural
choice is therefore the marginal one, α = z, preserving the hydrodynamic scaling (1.4).
This choice focuses attention on the sector of interest, whilst not scaling as far as to render
it trivial. It also has the desired effect of ensuring that all nonhydrodynamic modes appear

1This form of ρ(t,x) is appropriate, for example, for holographic systems or in hydrodynamic models.
In kinetic theory, the situation is more intricate, see, for example, [29].
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nonperturbatively in a small ε expansion, since they scale as ω = O(ε)−z. The outcome
is that the spectral decomposition (1.3) becomes a transseries in the parameter ε with
perturbative sectors corresponding to hydrodynamic mode contributions, and nonpertur-
bative sectors corresponding to nonhydrodynamic ones. We emphasise that ε is only a
formal parameter, and it takes the value ε = 1 at the end of the calculation.

For definiteness, in the present work we focus on nonequilibrium phenomena described
by the telegrapher’s equation

τ∂2
t ρ+ ∂tρ−D∂2

xρ = 0, (1.7)

which at large distances and long times describes diffusion, or z = 2 hydrodynamic scal-
ing (1.4). Later, unless we keep explicitly τ and D, we use their following numerical values

τ = D = 1
2 . (1.8)

The linear partial differential equation (1.7) is well-known in the literature and, as we review
in appendix A, it arises as the description of shear channel perturbations in the Müller-
Israel-Stewart (MIS) formulation of relativistic hydrodynamics [30].2 From a broader per-
spective, the telegrapher’s equation features prominently in the context of quasihydro-
dynamics [33], where it provides the simplest example of a diffusion-to-sound crossover.
Quasihydrodynamics is the natural generalization of standard hydrodynamics in the pres-
ence of weakly broken symmetries. Apart from MIS itself, examples of theories featuring
a diffusion-to-sound crossover described3 by the telegrapher’s equation include quantum
fluctuating superconductors [34], systems breaking spatial translations spontaneously in
the presence of phase relaxation [35] and, in the AdS/CFT context, probe branes at finite
temperature and large baryon density [36–38], models of momentum relaxation [39], higher-
derivative gravity [40, 41], and constructions based on generalized global symmetries that
describe dynamical electromagnetism in the boundary QFT [42, 43] or viscoelastic me-
dia [44].4 Furthermore, with a straightforward modification, our methods also apply to the
chiral magnetic waves in the presence of axial charge relaxation discussed in [46, 47]. These
observations suggest that the results we will derive in this work are potentially relevant for
a wide range of distinct physical systems.

After these considerations, let us comment briefly on the mode structure of the teleg-
rapher’s equation. We have two modes in the sense of (1.3):

ωH(k) = −i+ i∆(k)
2τ , ωNH(k) = −i− i∆(k)

2τ , ∆(k) =
√

1− 4Dτk2. (1.9)

Among these two modes, ωH is a hydrodynamic diffusion mode

ωH(k)→ −iDk2, k → 0, (1.10)
2In the AdS/CFT context, the natural counterpart of this problem would be a shear channel fluctuation

in all-order hydrodynamics as discussed in [31, 32].
3It is worth remarking that the telegrapher’s equation might only emerge in a suitable parametric limit.
4See also [45] for an embedding of the telegrapher’s equation into a field-theoretic context.
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Figure 1. Real (left) and imaginary (right) parts of the hydrodynamic (solid black) and nonhy-
drodynamic (dashed orange) modes in the shear channel of the Müller-Israel-Stewart theory, as
functions of momentum. The modes are given by (1.9).

while ωNH remains gapped in the same limit. As figure 1 illustrates, both modes are
nonpropagating and purely decaying below a critical momentum

k2
c = 1

4Dτ , (1.11)

which corresponds to a branch point where the hydrodynamic and the nonhydrodynamic
modes collide in the sense introduced in [48] and developed in [49–54]. For τ and D

given by (1.8), k2
c = 1. Past the critical momentum, the modes acquire a propagating

component. For asymptotically large |k|, both modes become purely propagating, with a
linear dispersion relation ω → ±

√
D/τ k. This should not come as a surprise, since in the

end the telegrapher’s equation is nothing but a dissipative wave equation. If one wants to
impose relativistic causality with the speed of light set to unity, this requires D ≤ τ .5

Another illustrative perspective is to view the mode collision represented by the teleg-
rapher’s equation as the simplest incarnation of the so-called k-gap phenomenon, which
features widely across physics (see [55] for a review). Apart from the examples mentioned
before, the existence of a k-gap in the dispersion relation of the transverse collective ex-
citations is a crucial feature distinguishing liquids and solids [56–58]. Other instances of
the k-gap phenomenon in the AdS/CFT context include p-wave superfluids [59] or plas-
mons [60–62].

In the special case of the telegrapher’s equation, the expansion in powers of ε can
equally well be regarded as an expansion in powers of the relaxation time τ . In conse-
quence of our choice to seek a perturbative scheme in which hydrodynamic modes appear
at leading order while nonhydrodynamic degrees of freedom enter as nonperturbative cor-
rections, we observe that we are expanding around the acausal Navier-Stokes limit, and
nonperturbative contributions are necessary to ensure causality. Likewise, physical effects
of the propagating modes mentioned above enter only at the nonperturbative level. These
observations are illustrated further in appendix D, where we apply our perturbative scheme
to a particular example.

5In appendix B we discuss the causality properties of the telegrapher’s equation in more detail.
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From a more mathematical perspective, we will be studying solutions of a partial
differential equation (1.7) in the form of a transseries

ρ̂(t, k) =
∞∑
n=0

ân(t, k)ε2n + e−
t
τε2

∞∑
n=0

b̂n(t, k)ε2n, (1.12)

where the hats indicate momentum space quantities. One of the crucial points of our work
will be to make sense of this transseries expression in position space. Similar analyses of
other partial differential equations have been carried out before in various contexts, for
example in [63–65]. In holography, the large-w expansion of Bjorken flow [7, 20, 21] is
also governed by partial differential equations, the fully nonlinear Einstein equations with
negative cosmological constant.6 One of the interesting conclusions in [63–65] is that the
structure of the transseries may be different in different parts of space and time. As we
will see, this is also the case in our studies. Furthermore, in our study we want to stress
the dependence of the transseries on initial conditions.

Transseries have also been studied in the context of attractors in Bjorken flow [14]. The
non-perturbative contributions quickly decay, leaving a universal perturbative piece iden-
tified as the attractor. Similarly, in the present context there are many different solutions
that differ only by the behaviour of the transients. For that class of solutions, the perturba-
tive part acts as an attractor in the same sense.7 However, the Bjorken flow attractor arises
from far from equilibrium behaviour involving the fast expansion at early times [66] while
in this paper, because of linearity, all dynamics can be understood as small perturbations
away from equilibrium. On the other hand, we are able to study more general flows, but
leave open the question of what happens when non-linearities are introduced. Note on this
front that less symmetric, non-linear flows have been studied numerically in [66–69].

Finally, let us come back to our initial motivation, i.e. the (conformal) Bjorken flow,
and discuss the ε expansion and (1.12) in relation to w-transseries in (1.1). While the
Bjorken flow is a genuinely nonlinear one-dimensional expansion, nothing stops us from
applying an ε-rescaling (1.5) also to this case. Choosing x to be the expansion direction,
the boost-invariance forces the dynamics to depend on proper time τ =

√
t2 − x2 only (not

to be confused with the relaxation time τ). As a result, the natural rescaling preserving
the character of the proper time is the homogeneous one, i.e. α = 1, which simply takes
τ→ τ/ε. The clock variable is defined as

w ≡ τT (τ), (1.13)

where T (τ) is the local effective temperature associated with the local energy density. The
homogeneous ε expansion forces large proper time expansion of w in powers of ε2/3/τ2/3

starting with the term (ε2/3/τ2/3)−1. This reorganizes the transseries (1.1) from a transseries
in w, whose each perturbative contribution corresponds to a given order of hydrodynamic
gradient expansion evaluated on-shell, to a transseries in ε2/3/τ2/3. In the present work we

6When the microscopics is given by kinetic theory models, see [18, 19], the situation is even richer, as
the collisional kernel in the Boltzmann equation generically involves integration over momenta.

7The series is generically divergent, so it must be properly resummed or optimally truncated.
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will be working with the analogue of the latter expansion, whereas the former was discussed
in full generality in linearized hydrodynamics in our recent paper [28]. In appendix C we
discuss the link between the hydrodynamic gradient expansion and the perturbative part
of the ε transseries.

2 The momentum-space transseries and its Fourier transform

2.1 Constructing the transseries

In this section we construct transseries solutions to the telegrapher’s equation (1.7) in the
small formal parameter ε as defined in (1.5). Our starting point is thus the following
ε-rescaled telegrapher’s equation,

ε2τ∂2
t ρ(t, x) + ∂tρ(t, x)−D∂2

xρ(t, x) = 0, (2.1)

with (1.7) and its actual solution recovered by setting ε = 1. The point of introducing ε is
that this is the approach that one can adopt generally, for example in holography or kinetic
theory, while the τ -expansion is specific to the telegrapher’s equation and related systems.

Due to the spatial translational invariance of (2.1), it is convenient to work in momen-
tum space, where (2.1) reduces to a linear ODE,8

ε2τ∂2
t ρ̂(t, k) + ∂tρ̂(t, k) +Dk2ρ̂(t, k) = 0. (2.2)

One then immediately recognises an appropriate transseries ansatz for ρ̂(t, k) as ε → 0 as
given by (1.12). Plugging it into (2.2) and considering terms order-by-order in ε, reveals
the following pair of nested ODE systems

∂tân+1(t, k) +Dk2ân+1(t, k) + τ∂2
t ân(t, k) = 0, (2.3a)

∂tb̂n+1(t, k)−Dk2b̂n+1(t, k)− τ∂2
t b̂n(t, k) = 0. (2.3b)

where we take â−1 = b̂−1 = 0. We see that ân+1(t, k) obeys a heat equation sourced by the
previous order, while b̂n+1(t, k) is governed by the time-reversed equation. At this stage,
the two equations are decoupled from one another. In order to solve (2.3), we supplement
the equations with initial data at t = 0,

ρ(0, x) = u(x), ∂tρ(0, x) = v(x) (2.4)

and denote the corresponding Fourier-transformed functions as û(k), v̂(k). For the sake of
simplicity of presentation in what follows, we are going to focus on the u(x) = 0 case. At the
level of the expansion coefficients, this initial condition reduces to â0(t, k) = b̂0(t, k) = 0,
b̂1(0, k) = −τ v̂(k) and

ân+1(0, k) + b̂n+1(0, k) = 0, (2.5a)

b̂n+1(0, k)− τ(∂tân(0, k) + ∂tb̂n(0, k)) = 0, (2.5b)
8Momentum space quantities are denoted by a hat.
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where the last equality applies only for n > 0. The initial conditions couple the coefficients
arising in the perturbative series to those in the nonperturbative series. Finally, it is possi-
ble to find closed-form expressions for ân(t, k) and b̂n(t, k) that solve (2.3) and obey (2.5).
They are given by

ân+1(t, k) =
22nΓ(n+ 1

2)
√
πΓ(n+ 1)D

nτn+1k2n
1F1

(
2n+ 1, n+ 1,−Dk2t

)
v̂(k), (2.6a)

b̂n+1(t, k) = −ân+1(−t, k). (2.6b)

Let us now turn our attention to position space. Our guiding principle here will be
to define the expansion coefficients of a given sector of the position space transseries as
the inverse Fourier transform of the corresponding momentum space coefficients, as long
as this inverse Fourier transform exists for positive real t. This is always the case for
the perturbative sector of (1.12) (i.e. the ân coefficients). In fact, the perturbative sector
proceeds straightforwardly, and we can immediately obtain closed-form results which we
present in the remainder of this section. Nonperturbative contributions in position space
are both subtle and interesting, and later sections of this paper are devoted to this topic.

The position space coefficient,

an+1(t, x) ≡
∫
R
dk ân+1(t, k)eikx (2.7)

can be computed in closed form, with the result

an+1(t, x) =
τn+1Γ(n+ 1

2)2

2π 3
2
√
DΓ(n+ 1)tn+ 1

2
(Kn+1 ∗ v)(x), (2.8)

where ∗ represents a convolution in the spatial coordinate, and the (n+1)-th kernelKn+1(x)
is given by

Kn+1(x) = 1F1

(1
2 + n,

1
2 − n,−

x2

4Dt

)
. (2.9)

An alternative representation of the same result is given by

an+1(t, x) = (−1)nDnτn+1
n∑
q=0

(
2n
n− q

)
Dqtq

q! ∂2(n+q)
x (G0 ∗ v), (2.10)

where G0(t, x) is the propagator for the heat equation,

G0(t, x) = e−
x2

4Dt

2
√
π
√
Dt

. (2.11)

With ân+1(t, k) and an+1(t, x) now computed, we can arrange them to produce a piece
of the full solution for ρ̂ and ρ respectively. These we label with a superscript ‘H’,

ρ̂(H)
ε (t, k) ≡

∞∑
n=0

ân+1(t, k)ε2n+2, ρ(H)
ε (t, x) ≡

∞∑
n=0

an+1(t, x)ε2n+2, (2.12)
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and since we obtained them by inverse Fourier transform of a series in ε we have added
a subscript ε to denote the fact that they are not exact in ε. In the light of (2.10), each
term in ρ(H)

ε (t, x) corresponds to a gradient series in ∂2
x acting upon a solution of the heat

equation that depends on the initial data. In this sense, as advocated in the Introduction
and expanded upon in appendix C, ρ(H)

ε (t, x) provides a particular reorganization of a
gradient expansion construction of the contribution of the hydrodynamic mode to ρ(t, x),
hence the label ‘H’. The convergence of ρ(H)

ε (t, x) will be the focus of the next section, and
we refer the reader to appendix D for an analysis of how well ρ(H)

ε (t, x) — when we set
ε = 1 — reproduces the exact microscopic ρ(t, x) in a particular example.

2.2 Large-order behavior

In this section we analyse the large-order behavior of ρ(H)
ε (t, x)

∣∣
ε=1. We first provide a fully

general, model-independent condition for the convergence of this object, which relies only
on the support of the initial data in momentum space. Then, we discuss the large-order
behavior of the series for initial data where this condition fails.

We begin by splitting the full microscopic ρ(t, x) into hydrodynamic and nonhydro-
dynamic mode contributions, ρ(t, x) = ρ(H)(t, x) + ρ(NH)(t, x), as defined by individual
contributions to the Fourier integral along a path γ,9 where

ρ(H)(t, x) ≡
∫
γ
dk ρ̂(H)(t, k) eikx, ρ̂(H)(t, k) = fH(k)e−i

ωH (εk)
ε2

t, (2.13)

with analogous expressions for the nonhydrodynamic mode, NH. As written, these ex-
pressions are exact in ε, and notationally this is indicated by the lack of an ε subscript.
For our choice of initial data ((2.4) with u = 0), we have

fH(k) = −fNH(k) = ε2τ√
1− 4Dτε2k2

v̂(k). (2.14)

By series expanding the exact ρ̂(H)(t, k) around ε = 0 we recover the perturbative sector
of the momentum space transseries, ρ̂(H)

ε (t, k), computed earlier (2.12). The existence of
two branch points in ωH(εk) and fH(k) at εk = ±|kc| implies that, for ε|k| > |kc|, ρ̂(H)

ε is a
divergent series. On the other hand, in defining ρ(H)

ε we assumed that the momentum space
integral commutes with the infinite sum in ρ̂

(H)
ε , in such a way that the individual series

expansion coefficients, ân and an, were directly related by the Fourier transform. Hence,

ρ(H)
ε (t, x) =

∫
R
dk ρ̂(H)

ε (t, k)eikx. (2.15)

From the expression above it is immediate to see that, unless the momentum space support
of the initial data v̂ is restricted to10

|k| ≤ |kc|
ε
, (2.16)

9Note that the splitting is only unequivocally defined once a particular integration path γ is specified.
While, for entire initial data û(k) and v̂(k), ρ(t, x) is the Fourier transform of an entire function, this is not
the case for the individual hydrodynamic and nonhydrodynamic contributions as defined in the text, due
to the branch points of the mode frequencies at k2 = k2

c . Each individual contribution is well-defined only
after a particular γ to go around the corresponding branch cuts has been provided.

10Recall that one should set the formal parameter ε = 1 at the end of the analysis.
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Figure 2. The ratio test for the perturbative sector in position space for initial data (2.17). Left:
the ratio q defined in (2.19) vs. maximum support of the initial data in momentum space, A, at
t = 1. Right: q vs. t for different values of A; from top to bottom, A2 = 1.5, 1.1, 0.9 and 0.5.

the integral contains contributions from the momentum space region where ρ̂(H)
ε diverges.

Modulo fine-tuned cancellations, the natural expectation to draw from this analysis is that
the series ρ(H)

ε does not converge if the initial data does not satisfy the condition (2.16).
It is important to note that, even if we have obtained (2.16) for a particular class of

initial data for the telegrapher’s equation, its applicability is not restricted to this example.
As long as the hydrodynamic mode frequency ωH(k) has a complex singularity at |k| = |kc|
and fH(k) is analytic for |k| ≤ |kc|, equation (2.16) will hold. It can be argued that the
existence of this complex singularity in ωH(k) is a necessary condition for a microscopic
theory to behave causally [28]. From this viewpoint, ρ(H)

ε would be a divergent series
in any theory that respects relativistic causality for generic initial data with unrestricted
momentum space support.

In order to illustrate how the convergence condition (2.16) applies to our case, we
consider compactly supported initial data in momentum space of the form

v̂(k) = 1
2πΘ(A2 − k2), (2.17)

where Θ denotes the Heaviside step function. These initial data correspond to a regularized
δ-function in position space. For x = 0, an(t, 0) can be explicitly computed

an+1(t, 0) =
24nDnτn+1A2n+1Γ(n+ 1

2)2

π2Γ(2n+ 2) 2F2

(
2n+ 1, r + 1

2;n+ 1, n+ 3
2 ,−A

2Dt

)
.

(2.18)
To check whether the series expansion defined by the coefficients above is convergent,

we use the ratio test and compute numerically

q = lim
n→∞

qn, qn = |an+1/an|. (2.19)

A sufficient condition for convergence is that q < 1. In figure 2 (left), we plot q as a
function of A at t = 1. We always find that q = A2 to exceedingly good accuracy. This
implies that ρ(H)

ε (t, x)
∣∣
ε=1 only converges for A < 1, i.e., for initial data with no support

for |k| > |kc| = 1 in k-space. If the support exceeds this bound, we obtain a divergent
asymptotic series. This statement is time-independent, as figure 2 (right) shows.
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It is worth mentioning that, as long as |kc| < A < ∞, the series divergence is just a
geometric one. A factorial growth of the an(t, 0) coefficients only appears in the A → ∞
limit. In this case, v(x) = δ(x),

an+1(t, 0) =
τn+1Γ(n+ 1

2)2

2π 3
2
√
DΓ(n+ 1)tn+ 1

2
, (2.20)

and it follows that the ratio between successive coefficients increases linearly with n,

qn ∼
τ

t
n, (2.21)

implying a factorial divergence.
We have found that the correlation between the infinite support of the initial data in

k-space and the factorially divergent character of ρ(H)
ε (t, x)

∣∣
ε=1 always extends beyond the

particular case of δ-function initial data discussed above. This is the behavior to expect
for generic initial data: initial data with a sharp cutoff in momentum space represent fine-
tuned states from a position space perspective, in the sense that any modification of the
initial data which is localized in position space — for instance, by any Gaussian — would
make the momentum space support unbounded.

Let us illustrate further the generic factorial divergence of the perturbative series by
focusing on the example provided by Gaussian initial data of the form11

v(x) = e−
x2
2s2

√
2πs2

, v̂(k) = 1
2πe

− 1
2 s

2k2
, (2.22)

As it happened with our compactly-supported initial data, this case is also analytically
solvable at x = 0. We obtain

an+1(t, 0) =
23nτn+1DnΓ(n+ 1

2)2
√

2π 3
2 s2n+1Γ(n+ 1)

2F1

(
n+ 1

2 , 2n+ 1, n+ 1,−2Dt
s2

)
. (2.23)

These coefficients, which diverge factorially as n → ∞, show a more intricate behavior
than their δ-function initial data counterparts. As n→∞,

qn ∼ r−1n, r = s2

8Dτ µ
(2Dt
s2

)
, (2.24)

where the function µ depends only the scaling variable

η = t

tc
, tc = s2

2D, (2.25)

and is given by

µ(η) =

 (1 + η)2, η < 1

4η, η > 1.
(2.26)

This implies that, for Gaussian initial data, qn only shows the behavior of δ-function initial
data for times greater than a critical time. In figure 3, we plot how r evolves with t for

11See appendix F for initial data of the Lorentzian form, i.e. v(x) = α
π(x2+α2) .
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Figure 3. Factorial growth prefactor r defined by (2.24) (left) for Gaussian initial data obtained
numerically from (2.23), as a function of time, for s = 1/4 (left) and s = 16 (middle). Both sets of
data collapse on a single universal curve as shown in the right plot, which confirms (2.24) (right).

s = 1/4 (left) and s = 16 (center). These two curves, when re-scaled by 8Dτ/s2 and
expressed as functions of 2Dt/s2, collapse to a universal function, which agrees with µ(η)
(right, in blue).

Let us close this section by mentioning that the r parameter can be equivalently ex-
tracted by means of Borel transforms. Given a factorially divergent asymptotic series

f(ε2) =
∞∑
n=0

cn(ε2)n, (2.27)

its Borel transform fB(z) given by

fB(z) =
∞∑
n=0

cn
n! z

n, (2.28)

and, by definition, has a finite convergence radius in z. This convergence radius is set
by the singularity which is closest to the origin in the complex z plane. In general, the
analytical continuation of fB(z) to complex z cannot be computed in closed form and
some approximation technique needs to be invoked. A common choice is to use Padé
approximants. The (m,n)-Padé approximant of fB(z) is the unique rational function

P(z) =
∑m
p=0 apz

p

1 +∑n
p=1 bpz

p
(2.29)

such that
fB(z)− P(z) = O(zm+n+1). (2.30)

A well-known property of Padé approximants is that branch cuts in fB(z) manifest them-
selves as lines of pole condensation in P(z). For the Gaussian initial data (2.22), including
their δ-function limit s→ 0, we always find a line of pole condensation along the positive
z-axis starting at

zc = r, (2.31)

where r is given by (2.24). Therefore, we conclude that the exact analytically-continued
Borel transform has a branch point at this location, as expected on the basis of the large
order behaviour of the series. Note, however, that for Gaussian initial data the location of
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the branch point depends on t/tc, and is given by t/τ only for t > tc. For t < tc the branch
point location also depends on the initial data through its dependence on s. Note that a
condensation of poles can hide more than a single branch cut,12 as happened, for example,
in [14]. We will come back to this point in the next section, where we discuss the physical
origin of these singularities and their dependence on t.

3 Saddle point analysis

In this section we take a different perspective and address the ε→ 0 limit of the hydrody-
namic mode contribution ρ(H)(t, x) by means of a saddle point analysis. As we will show,
and as expected on general grounds, this procedure allows us to understand the physical
origin of the branch points in the Borel plane.

To start, let us consider a schematic integral

I(λ) =
∫
γ
duG(u) eλS(u), (3.1)

and focus on its behavior for |λ| → ∞. For us, the parameter λ will be simply 1
ε2 and

we introduce it purely for notational convenience. This behavior can be obtained from a
saddle point analysis. The relevant analysis can decomposed intro three subsequent steps.
First, one finds the stationary points us of the ‘action’ S(u),

d

du
S(u)

∣∣∣
u=us

= 0. (3.2)

Second, the steepest descent contours emanating from these saddle points are determined.
The steepest descent contour γs associated to the us saddle point is the path emanating
from us along which ReS(u) decreases the fastest. It obeys

ImλS(u(ξ)) = ImλS(us). (3.3)

Finally, one decomposes the original integration path γ into steepest descent contours γs
and calculates the corresponding integrals in a |λ| → ∞ expansion.

The steepest descent path associated to a saddle u0 can collide with another saddle u1
when arg λ is such that ImλS(u0) = ImλS(u1). These saddles are known as adjacent
saddles [70] and play a prominent role in controlling the large-order behavior of the |λ| →
∞ expansion around the original u0 saddle. In particular, when considering the Borel
transform of this |λ| → ∞ expansion, adjacent saddles manifest themselves as branch
points in the Borel plane [71], located at

zc = −(S1 − S0). (3.4)
12For example, for fB(z) =

√
1− z+

√
2− z, the Padé approximation (2.29) is going to display a conden-

sation of poles emanating from 1 towards larger values of z on the real axis. The poles with 1 ≤ z < 2 will
correspond to the branch cut associated with

√
1− z and the poles with z ≥ 2 will include also contributions

from the branch cut associated with
√

2− z.
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Figure 4. Level plots of the saddle point actions Re SH(t, k) (left) and ReSNH(t, k) (right) for
ε = eiθ for Gaussian initial data (2.22) with s = 1, t = 0.5 and θ = 0.1. The saddle points
are denoted by the black stars and associated steepest descent paths are shown in red (k = 0,
hydrodynamic), green (k0, nonhydrodynamic) and blue (k±). The red path crosses the branch cuts
(visible as white discontinuities in the plots) and continues on the other sheet, while the green path
ends at the k± saddles.

Let us apply this line of reasoning to understand the large-order behavior of ρ(H)
ε (t, 0) we

reported in the previous section for the case of Gaussian initial data (2.22). In this case,
we have that

ρ(H)(t, x) =
∫
γ
dk GH(k) e

SH (t,x)
ε2 , GH(k) = ε2τ

2π
√

1− 4Dτε2k2
, (3.5)

with action
SH(t, x) = −1

2s
2ε2k2 + (−1 +

√
1− 4Dτε2k2)t

2τ + iε2kx. (3.6)

The analogous expressions for ρ(NH), GNH and SNH are obtained by flipping the sign of
the square root in (3.6). The most important point to draw from the expression above is
that the initial data contribute nontrivially to the relevant action and, as a result, also to
its saddle points. Up to this point, our expressions are exact in ε.

When x = 0, the saddle points of SH , SNH are as follows. For SH , we have a single
saddle point located at k = 0 with vanishing action. On the other hand, SNH has three
saddle points. The first one is located at k = k0 = 0 at all times and has action

S0 = − t
τ
. (3.7)

The positions of the two remaining ones are time dependent

k = k± = ±
√

1−
(
t

tc

)2
kc (3.8)
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Figure 5. For s = 1, level plot of ReSNH(t, k) for ε = 1, superimposed with the steepest descent
contours emanating from the k = 0 hydrodynamic saddle for different values of ε = eiθ. Solid red
lines, from lighter to darker, correspond to θ = 2.5 × 10−3, 2.5 × 10−4, 2.5 × 10−5. Dashed lines
represent the negative values of θ, with the same color code. Black stars correspond to saddle point
locations. Left: t = 0.9. Right: t = 1.1

with tc given by (2.25) and lead to actions

S± = −1
2s

2
(

1 + t

tc

)2
k2
c . (3.9)

At t = 0, the k± saddles start at the critical momenta ±kc. As t grows, they approach
each other along the real k-axis, until colliding with the k0 saddle at t = tc. Past this time,
they recede from the origin in opposite directions along the imaginary k-axis.

The perturbative sector of our transseries, ρ(H)
ε (t, x), corresponds to the saddle point

expansion around the hydrodynamic saddle.13 Crucially, for complex

ε = |ε|eiθ, (3.10)

the steepest descent path emanating from this saddle crosses the branch cuts in the hydro-
dynamic dispersion relation and continues on the nonhydrodynamic sheet. Once there, this
path can collide with adjacent nonhydrodynamic saddle points at specific values of θ. An
example of this behavior is provided in figure 4, where we also show the steepest descent
contours associated to the three nonhydrodynamical saddles.

Figure 5 (left) further illustrates the behavior of the steepest descent path for the
hydrodynamic saddle on the nonhydrodynamic sheet as θ → 0 for 0 < t ≤ tc. Solid red
lines, from lighter to darker, represent the values θ = 2.5×10−3, 2.5×10−4 and 2.5×10−5,
while dashed red lines represent their negatives. As θ approaches zero, the steepest descent
path gets progressively closer to the k± saddles before veering off to infinity. Furthermore,

13See appendix E for further technical details.
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θ = 0 marks a discontinuous change in the path behavior, which is the reason why we
considered θ as a parameter to vary; for instance, the quadrant in which the red curve
extends to infinity undergoes a sudden change. These observations are compatible with the
hypothesis that k± are the adjacent saddles controlling the divergence of the perturbative
series expansion. On the other hand, as illustrated in figure 5 (right), the collision of
nonperturbative saddle points at t = tc causes the nature of the adjacent saddles to change:
past tc, k0 becomes a new adjacent saddle for the hydrodynamic steepest descent contour.

We can now relate this saddle point analysis to the singularities we observed in the
Borel plane in section 2.2. Since for t > tc we have that |S0| < |S±|, the above observations
entail that the branch point of the Borel transform which is closest to the origin should go
from being located at zc = −S± for t < tc to being located at zc = −S0 for t > tc. This
prediction matches precisely the behavior of r reported at the end of section 2.2.

Let us emphasize that for t > tc the branch point associated to the S± adjacent saddles,
z± = −S±, does not disappear. What actually happens is that, since both z0 = −S0 and
z± are real positive quantities with z± > z0, the branch cut associated to z0 superimposes
with the branch cuts associated to z±, causing the latter to be superficially hidden in the
Borel plane (as we illustrated using a simple example in footnote 12).

To expose the hidden z± branch points, we proceed along the lines of [72]. We take
our original Padé approximant P(z) and introduce the variable change z = z(w), with
z(w) analytic at w = 0. Then, we series expand P(z = z(w)) around w = 0. Finally, we
compute the Padé approximant of the resulting series, P(ω). By a suitable choice of z(w),
the images of our original branch points lead to non-superimposing branch cuts in the w
Borel plane. A convenient choice of variable change is as follows. Define

z(w) = zc
2w

1 + w2 (3.11)

with zc being, as before, the branch point closest to the origin in the z Borel plane. The
variable change (3.11) maps a point z ∈ (zc,∞) to two complex conjugated images on the
right half of the |w| = 1 unit circle, with zc being mapped to w = 1.

For t < tc, the pole structure of P(w) is as shown in figure 6 (left). We see three
lines of pole condensation: two of them are complex conjugated and emanate from the
singular points of the map (3.11), located at w = ±i, and are therefore unphysical; the
third one starts at w = 1 and runs along the positive real axis. This latter line corresponds
to the original branch cut starting at zc = z±. For t < tc we see no trace of additional
branch points associated to z0 in the w plane, confirming that for t < tc k0 is not an
adjacent saddle.

On the other hand, for t > tc, this state of affairs changes. As figure 6 (right) shows,
besides the branch point at w = 1 corresponding now to zc = z0, we also find two ad-
ditional, complex conjugated lines of pole condensation emanating from the unit circle.
It is immediate to check that these points are nothing but the images of z± under the
map (3.11). These images are represented by the upper and lower blue stars in the figure.
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Figure 6. Poles of the Padé approximant P(w) for t = 1/2 (left) and t = 3 (right) for Gaussian
initial data with s = 1. The blue stars signal the images of z0 and z± under the map (3.11), while
the dashed black line corresponds to the |w| = 1 circle.

4 Superexponential decay of the nonhydrodynamic saddle points

From a physical standpoint, the existence of the k+, k− saddles bears crucial consequences
for the late-time behavior of the nonhydrodynamic mode contribution ρ(NH) for the Gaus-
sian initial data, (2.22). To expose these consequences, for the rest of this section we focus
on the original ε = 1 telegrapher’s equation. We take the integration path γ, used to
compute ρ(NH), to lie strictly below the real axis in the complex k-plane. With this choice
of path, ρ(NH) is real. Linearity of the telegrapher’s equation means that ρ(NH) is now a
fully-fledged solution to the telegrapher’s equation on its own, associated to the initial data,

û(k) = −τe
− 1

2 s
2k2

2π∆(k) , v̂(k) = e−
1
2 s

2k2(1 + ∆(k))
4π∆(k) , (4.1)

in such a way that fH(k) = 0.14 In the remaining part of this section, we will denote this
solution simply as ρ.

The chosen integration path γ can be deformed into the steepest descent contour
associated with the k− saddle-point (see figure 7). Therefore, the natural expectation is
that the late-time behavior of the initial data (4.1) at x = 0 is controlled by the S− action,
which predicts a late-time decay faster than e−

t
τ .

Two questions arise naturally at this point. The first one is whether the faster-than-
exponential decay we have uncovered extends to finite x. The second one is whether the
existence of these additional saddle points extends to generic initial data with Gaussian
asymptotic behavior as k →∞.

Both questions can be answered affirmatively by the following argument. For initial
data with Gaussian asymptotic behavior, the relevant action to consider in the nonhydro-

14Since we integrate along a path γ that goes strictly below the real axis, the singularities of ∆ do not
require attention.
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Figure 7. Level plot of ReSNH(t, k) for Gaussian initial data with s = 1 at t = 3/2. The dashed
red line shows the γ integration contour; the solid red line is the steepest descent path emanating
from the k− saddle.

dynamic sheet at finite x is (we take ε = 1 from now on)

SNH(t, k) = −1
2s

2k2 − 1
2τ
(
1 +

√
1− 4Dτk2

)
+ ikx. (4.2)

By solving the saddle point equation in a late-time expansion, we find a saddle k∗ located
in the lower half complex k-plane given by15

k∗ = −i
√
D

s2√τ
t+ i

x

s2 + i
s2

8D 3
2
√
τ

1
t

+ . . . , (4.3)

with action

S∗ = SNH(t, k∗) = − D

2τs2 t
2 − 1

τ

(
1
2 −
√
Dτ

s2 x

)
t− s4 + 4Dτx2

8Dτs2 + . . . . (4.4)

As the expression above shows, the finiteness of x does not change the leading order late-
time behavior of S∗ we encountered before for x = 0. Moreover, only the asymptotic
behavior of the initial data at large k matters in reaching this conclusion.

To test whether the late-time behavior predicted by (4.4) is actually realized, we select
the logarithmic derivative ∂t log ρ(t, x) as our probe. According to (4.4), we must have that

∂t log ρ(t, x) = − D

τs2 t−
(

1
2τ −

√
D√
τs2x

)
+ . . . (4.5)

In order to check whether equation (4.5) holds, we restrict ourselves to initial data in which
we multiply the Gaussian appearing in (4.1) by a polynomial P (k) (taken to be a function

15We assume that x > 0 in what follows.
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Figure 8. Left: ∂t log ρ for s = 1 and P (k) = 1. Solid blue lines correspond to the numerical
integration of the exact expression, dashed black lines to the late-time behavior prediction (4.5).
From bottom to top, x = 0, 1 and 2. Right: same as left, now with P (k) given by a even, fourth-
order polynomial in k with generated once and for all random coefficients.

of k2 with real coefficients), fix s, and compute numerically ∂t log ρ(t, x) for a range of
spatial positions. In figure 8, we show results for P (k) = 1 (left) and a fourth-order P (k)
with random coefficients drawn from the interval [−1, 1] (right), for s = 1 and at x = 0, 1
and 2. These results are in agreement with the hypothesis that the nonhydrodynamic
contribution displays a faster-than-exponential decay.

The physical origin of the faster-than-exponential decay is propagation of the data
with a Gaussian tail rather than an effect of dissipation governed by the imaginary part of
the mode frequency. To see this, note that (4.4) can be suggestively rewritten as

S∗ = − s2

8Dτ −
t

2τ −

(
x−

√
D
τ t
)2

2s2 + . . . . (4.6)

It is (the tail of) a Gaussian peak propagating in the direction of the positive x with
velocity

√
D
τ and decay rate 1

2τ . These values match the propagating modes at large k seen
in figure 1. Figure 9 shows the utility of this line of reasoning. In this figure we plot a dense
set of snapshots of ρ — determined by direct numerical integration — as a function of x.
We observe that the initial data (4.1) indeed evolve as a propagating wave that recedes
from x = 0 as time grows. Furthermore, as the argument above suggested this wave gets
progressively damped, but just exponentially so.

5 Stokes phenomena in spacetime

For Gaussian initial data, figures 5 and 6 show that both the saddle point structure and the
Borel plane structure take a different character depending on whether t is larger or smaller
than the critical time tc = s2/2D. The transseries also undergoes an abrupt change, known
as a Stokes phenomenon [27]. It occurs when crossing a point where the imaginary part of
the action is the same, i.e.

Im (S0 − S±) = 0. (5.1)
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Figure 9. Spacetime evolution of e t
2τ ρ(t, x) for the initial data (4.1) with s = 1. We have

multiplied by e t
2τ to factor out the leading late time decay of the wave (recall that D = τ = 1/2 in

our numerical computations).

If we consider the action as a function of complex t, with all other parameters real16 and
x = 0, this condition is realized when

Im t = 0 or (5.2a)

Re t = s2

2D. (5.2b)

As the Stokes line at s2

2D is crossed along the real axis, the contribution of the S0 saddle is
turned off and the contributions of S− and S+ are turned on.

In terms of the coefficients bn(t, x), this is seen as follows. Recall that for Gaussian
initial data of the form (2.22), b̂n(t, k) = −ân(−t, k), where ân(t, k) is given by (2.6a). For
k ∈ R and as |k| → ∞, we have that b̂n+1(t, k) behaves as

b̂n+1 = dnt
nk4ne−D(tc−t)k2 + . . . , dn ∈ R (5.3)

Therefore, the Fourier integral that computes bn(t, x) exists for positive real t as long as
t < tc. The result is bn(t, 0) = −an(−t, 0) with the latter given by (2.23). This changes
dramatically for t > tc, where the Fourier integral diverges along the standard Fourier
contour. The contour must be deformed to the k− saddle point.

For x = 0 this series expansion can be computed in closed form, with the end result that

ρ(NH)
ε (t, 0) = e

S−
ε2
∞∑
n=0

cn+1(t, 0)ε2n+2, (5.4a)

cn+1(t, 0) =
(−1)n+1

2F1
(

1
2 ,−2n, 1

2 − 2n, η+1
η−1

)
2n+ 3

2 t
n+ 1

2
c (η + 1)2n

√
η2 − 1Γ (n+ 1) Γ(1

2 − 2n)
, (5.4b)

16There is no obstruction against considering complex values of s, which give rise to oscillating solutions.
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Figure 10. Left: for s = 1, r as a function of t as determined directly from the closed-form
expression for cn(t, 0) (open red circles) vs. the function S0 − S− (solid blue line). Right: poles of
the Padé approximant of ρ(NH)

ε (t, 0) at t = 3/2 for s = 1.

where η = t/tc > 1. This series is factorially divergent. We find that the ratio test
behaves as ∣∣∣∣cn+1(t, 0)

cn(t, 0)

∣∣∣∣ ∼ n

r
, n→∞ (5.5)

where r is a function given by the difference between the k0 and k− saddle point actions,

r(t, s) = S0 − S− = − t
τ

+ (s2 + 2Dt)2

8Dτs2 . (5.6)

We provide an example of this behavior in figure 10 (left). In line with this result, the
Padé approximant to the Borel transform of the asymptotic expansion (5.4a) displays a
line of pole condensation along the negative real axis, starting at zc = S− − S0 (see the
right plot in figure 10). This location of the branch cut follows from the fact that k = 0 is
an adjacent saddle for the steepest descent contour emanating from k− when arg ε2 = π.

To summarize, for these initial data, we take our nonperturbative transseries sector to
be defined by

ρ(NH)
ε (t, 0) =


e
S0
ε2
∞∑
n=0

bn+1(t, 0)ε2n+2, t < tc

e
S−
ε2
∞∑
n=0

cn+1(t, 0)ε2n+2, t > tc.

(5.7)

We see that the form of the nonperturbative transseries sector depends on the spacetime
location. This is the reason why we started with the transseries in momentum space,
see (1.12), which is uniquely defined in terms of the modes in the system.

This kind of Stokes phenomena in spacetime is not unique to this model. It has
been investigated previously in, for example, references [63–65]. Those studies show that
nonlinearity can also be handled and that a more intricate higher-order Stokes phenomenon
can occur.

To close this section, let us emphasize the role that the initial data plays in the space-
time picture. Rather than the Stokes phenomenon occurring as t is varied, one can equiv-
alently regard it as occurring as the initial data is varied. It arises here because the
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transseries coefficients depend on the initial data, which we expect is generic and holds
also in nonlinear models. If a richer set of initial conditions were considered, a richer
set of transseries sectors could be the result. The takeaway lesson here is that both the
spacetime location as well as the initial data must be taken into account when formulating
the transseries.

Finally, we refer the reader to appendix G, where we employ Borel resummation to
illustrate how the exact ρ(H)(t, 0), ρ(NH)(t, 0) — as determined by a numerical integration
— can be recovered from the asymptotic expansions ρ(H)

ε (t, 0), ρ(NH)
ε (t, 0).

6 Discussion

The main motivation for our work is understanding nonequilibrium phenomena with a
hydrodynamic tail by expressing them as transseries with resurgent relations connecting
their various sectors. This point of view originates from the studies of expanding matter
in ultrarelativistic heavy-ion collisions described by the paradigmatic example of Bjorken
flow. Our work proposes and explores an approach that allows one to frame more general
examples of dynamics in the same kind of language. We focus on the linearized regime
but, reminiscent of [73], transseries techniques can in principle be applied when deviations
from equilibrium are large. It would very interesting to study this question in detail, and
to make contact with far from equilibrium attractors, which we leave for future research.

To describe a nonequilibrium process with a transseries one needs to define a small
parameter. Guided by results from Bjorken flow, we introduce a formal parameter ε based
on rescalings of spacetime coordinates (1.5), that organizes the hydrodynamic and nonhy-
drodynamic contributions into different transseries sectors. While the momentum space
picture is straightforward, when passing to coordinate space we see new features which are
as yet unseen in Bjorken flow and other expanding plasma systems.

In particular, we find that the initial conditions affect the form of nonperturbative
contributions in ε in the spacetime picture. In our work we focused on a particular simple
yet rich and widely encountered equation of motion — the telegrapher’s equation (1.7)
— and a few classes of initial conditions. The nonhydrodynamic sector of the transseries
took on two different forms. One is as a nonpropagating transient mode evaluated at zero
momentum, similar to what was found in the Bjorken flow. However, when the initial
conditions produce propagating wave packets, the receding tails of these wave packets gave
rise to new transseries sectors. We have seen then that the decay of the nonhydrodynamic
data is not only governed by the transient mode at zero momentum, but also by the form
of the initial data and the dispersion relations at finite momentum.

While we observed this phenomenon for the telegrapher’s equation, its ingredients
seem to originate from the underlying causality of the system. This is necessarily shared
by all the models of relativistic matter, in particular holography, which suggests that it
is ubiquitous.17 In studies of the transition to hydrodynamics in relativistic heavy-ion

17Perhaps similar phenomena can even occur in the holographic Bjorken flow. One can view the gravity
dual to the Bjorken flow as a set of nonlinear wave equations with constraints in two variables. This is not
too dissimilar from what we considered here if the transseries analysis is extended into the bulk.
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collisions using holography, the dominant theme has been the decay of transient modes as
the mechanism governing it. Here we see that contributions from the nonhydrodynamic
sectors can propagate away from a given spatial location, which effectively may render them
zero. It would be very interesting to understand possible phenomenological implications of
this observation.

Finally, let us comment on the utility of transseries solutions. The transseries allows
one to organize hydrodynamic and nonhydrodynamic phenomena using a unified mathe-
matical language. This is crucial when the hydrodynamic gradient expansion diverges and
requires resummation. The transseries provides a framework to resum it yielding a unique
answer for a nonequilibrium solution. Furthermore, transseries provides a way to encode
different asymptotic behavior in different spacetime regions, or for different initial data.
Transitions between these behaviors are described by the Stokes phenomena. In our case,
these considerations allowed us to uncover a new interesting physical effect in the context
of hydrodynamization.
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A Müller-Israel-Stewart in the shear channel

MIS theory is the simplest phenomenological model of stress-energy tensor equilibration
that agrees with relativistic Navier-Stokes hydrodynamics at leading order in the gradient
expansion and, at the same time, respects causality.

For a conformal fluid, the construction of MIS theory proceeds as follows. We start from
the Landau-frame constitutive relations of first-order viscous relativistic hydrodynamics
in d-dimensional Minkowski space (1.2) with the equations of motion of the theory being
nothing but the conservation of the full energy-momentum tensor, ∂aT ab = 0. The algebraic
relation between Πab and σab implied by (1.2) entails that first-order relativistic viscous
hydrodynamics violates causality. In MIS theory, this problem is overcome by promoting
Πab to a set of new independent degrees of freedom that obey a relaxation equation, in
such a way that the original constitutive relation (1.2) is recovered at times sufficiently
larger than a new time-scale set by a relaxation time τ ,

(τU cDc + 1)Πab = −ησab. (A.1)

The operator Da is a Weyl-covariant derivative originally introduced in [74].
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In this work, we consider infinitesimal fluctuations of this theory away from thermal
equilibrium. We thus write

E(t,x) = E0 + δE(t,x) Ua = (1,u(t,x)), (A.2)

where E0 is the equilibrium energy density, and treat δE/E0 and u2 as infinitesimally small.
Moreover, we also make the symmetry assumption that the hydrodynamic variables are
independent of x1, . . . , xd−2. Defining xd−1 ≡ x, this corresponds to δE = δE(t, x), ui =
ui(t, x). This ansatz can be viewed as the minimal generalization of a boost-invariant flow,
for which the hydrodynamic variables would also be functions of t and x, but only through
the combination

√
t2 − x2.

As mentioned in the main text, the telegrapher’s equation emerges when considering
a shear channel fluctuation, for which δE(t, x) = 0 and ui(t, x) = u1(t, x)δi,1 with no loss
of generality due to rotational invariance. Defining

ρ(t, x) ≡ (E0 + P (E0))u1(t, x), J(t, x) ≡ Π1,d−1(t, x), (A.3)

and linearizing in the velocity fluctuation amplitude, the equation for energy-momentum
conservation and the dynamical constitutive relation (A.1) can be expressed as

∂tρ(t, x) + ∂xJ(t, x) = 0, (A.4)

∂tJ(t, x) + D

τ
∂xρ(t, x) = −1

τ
J(t, x). (A.5)

where the diffusion constant is D = η/(sT ). As mentioned in the Introduction, the linear
PDE system (A.4)–(A.5) is well-known in the literature [30, 33]. Combining both equations,
we recover (1.7).

B The causality of the telegrapher’s equation

In this appendix we show that the telegrapher’s equation respects causality (see also [30]).
The basis of our proof is the following theorem [75].

Theorem (Paley-Wiener). Let f(x) ∈ L2(R) be supported in x ∈ [−A,A]. Then its Fourier
transform f̂(k) belongs to L2(R) and is an entire function of exponential type A.

We remind the reader than an entire function is a function which is analytic everywhere
in the finite complex plane; an entire function of exponential type A is an entire function
that obeys the bound

|f(z)| ≤ CeA|z|, ∀z ∈ C. (B.1)

with C ∈ R+.
Consider the most general solution to the telegrapher’s equation, and suppose that the

initial data are supported only between −R and R. Causality demands that, at time t,
ρ(t, x) is supported at most in the interval |x| ≤ R + t. Therefore, we have to show that
ρ̂(t, k) is an entire function of exponential type at most R+ t.
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The most general square-integrable solution of the telegrapher’s equation can be writ-
ten as

ρ(t, x) =
∫
R
dk ρ̂(t, k)eikx (B.2)

with

ρ̂(t, k) = û(k)e−
t

2τ

[
cosh

(∆t
2τ

)
+ 1

∆ sinh
(∆t

2τ

)]
+ v̂(k)e−

t
2τ

2τ
∆ sinh

(∆t
2τ

)
. (B.3)

We start by noting that an entire function of the square root of a complex number is itself
entire if the original function is even. Therefore, both cosh

(
∆t
2τ

)
and 1

∆ sinh
(

∆t
2τ

)
are entire

functions of k. It then follows than ρ̂(t, k) is entire in k, since û, v̂ are entire by assumption,
and the product of two entire functions, as well as their sum, are themselves entire.

To show that (B.3) is of exponential type at most R+ t, we proceed as follows. First,
we note that both cosh

(
∆t
2τ

)
and 1

∆ sinh
(

∆t
2τ

)
are of exponential type

√
D/τt. This also

applies to their sum. Next, we recall that the product of two functions of exponential types
σ1 and σ2 is at most exponential type σ1 + σ2. Therefore, the type of each term in the
sum (B.3) is at most R +

√
D/τt. Finally, since the type of the sum of two functions of

exponential types σ1 and σ2 is smaller or equal than max(σ1, σ2), it follows that the type
of ρ(t, k) is at most R +

√
D/τt. As long as D/τ ≤ 1, we see that the system respects

relativistic causality.
It is worth pointing out that this result conforms with the expectation that, in any

local quantum system, causality bounds the diffusion constant in terms of the effective
light-cone speed and the local equilibration time [76] (see also [77–79]). In the case at
hand, the effective light-cone speed is to be identified with the speed of light, and the local
equilibration time with τ .

C The large-scale expansion and hydrodynamics

In our previous work [28], we described the most general construction of linearized hy-
drodynamics for a neutral conformal fluid in arbitrary number of spacetime dimensions.
Specializing to a shear channel fluctuation, the hydrodynamic description of the micro-
scopic field ρ is provided by the conservation equation (A.4) in combination with the
purely-spatial gradient expansion of the constitutive relations. For the MIS case, and in
the notation of appendix A, the hydrodynamic gradient expansion reads

J(t, x) = −
∞∑
n=0

cn ∂
2n+1
x ρ(t, x). (C.1)

The transport coefficients cn are extracted from the microscopic shear hydrodynamic mode
by a matching computation. In MIS, they are given by

cn = (−1)n CnDn+1 τn, (C.2)

where Cn is the n-th Catalan number.
As we have illustrated extensively in the main text, the perturbative series ρ(H)

ε (t, x)
corresponds to the hydrodynamic shear mode contribution to the exact ρ(t, x). It is then
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natural to ask whether the effective description of MIS theory in terms of classical hy-
drodynamics contains exactly the same physical information as the perturbative sector of
our transseries.

Let us view (C.1) as a formal series, making no assumptions about the relative size of
subsequent terms, and perform the rescaling (1.5) both at the level of the gradient expan-
sion (C.1) and the conservation equation. Then, it turns out that the perturbative sector
of our transseries, ρ(H)

ε (t, x), solves the resulting system order-by-order in an expansion
around ε = 0. Equivalently, if we ignored the specific values of the transport coefficients cn
but somebody handed to us ρ(H)

ε (t, x), we could fix the former by demanding that the latter
is a solution order-by-order in an expansion around ε = 0. This procedure could then be
viewed as the position space counterpart of the matching computation performed in [28].

It should be noted that while ρ(H)
ε (t, x) is a solution, the initial conditions we imposed

on the an(t, x) coefficients in the main text are completely unnatural from the perspective
of the hydrodynamic description of the system. These boundary conditions relied on the
existence of the nonperturbative sector of the momentum space transseries, which allowed
us to enforce simultaneously that ρ̂(0, k) = û(k), ∂tρ̂(0, k) = v̂(k). This nonperturbative
sector is absent now, reflecting the fact that the algebraic relation between J(t, x) and
ρ(t, x) in the hydrodynamic description implies the loss of the nonhydrodynamic degree
of freedom.

We now proceed to explain the natural choice of initial conditions from the perspective
of the hydrodynamic description. After the spacetime rescaling, our equations of motion
are given by

ε2∂tρ(t, x) + ε∂xJ(t, x) = 0, J(t, x) = −
∞∑
n=0

cnε
2n+1∂2n+1

x ρ(t, x). (C.3)

The ansatz
ρ(t, x) =

∞∑
n=0

an(t, x)εn (C.4)

results in the following nested ODE system

(∂t −D∂2
x) a2n(t, x) =

n∑
q=1

cq ∂
2(q+1)
x a2(n−q)(t, x) (C.5)

with an equivalent expression for the odd coefficients. Again, the n-th term in the series
expansion (C.4) is a solution of the heat equation sourced by the n− 1 previous orders.

Let us assume that, at a time slice t = t0, ρ(t0, x) = ρ0(x) is known. In this situation,
the natural boundary conditions to impose on (C.4) are that, at t = t0, the leading-order
term a0(t0, x) agrees with ρ0(x), with the remaining higher-order terms vanishing. Due to
the structure of (C.5), these boundary conditions result in the vanishing of the odd order
terms in (C.4) for all times.

With this choice of boundary conditions, (C.5) can be explicitly solved in closed-form.
In Fourier space, we find that18

â2n(t, k) = δn,0 ρ̂0(k)− (−1)n cn t k2(n+1)
1F1(1− n, 2 + n,Dk2t) e−Dk2tρ̂0(k). (C.6)

18Since the nested ODE system (C.5) is time-translation invariant, we set t0 = 0 with no loss of generality.
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The expansion coefficients can be explicitly computed in position space. The zeroth-order
one is the solution of the heat equation given by a0(t, x) = (G0 ∗ ρ0)(t, x), where G0 is
given in equation (2.11). The remaining ones are

a2n(t, x) = cn

n−1∑
q=0

Γ(n)Γ(n+ 2)
Γ(n− q)Γ(n+ 2 + q)Γ(q + 1)D

qtq+1∂2(n+q+1)
x a0(t, x). (C.7)

As it happened with our previous choice of initial conditions, each term is a gradient series
in ∂2

x acting on a particular solution of the heat equation.

D Applicability of the truncated perturbative series

The practical usefulness of the perturbative piece of the asymptotic expansion developed
in the previous section is that, when truncated to low order, it provides a good description
of the exact velocity field ρ in some spacetime regions. Owing to our general discussion
in the Introduction, where we introduced our large-scale expansion, we expect that these
regions correspond to those in which the nonhydrodynamic mode contribution has signifi-
cantly decayed.

Let us illustrate this by considering the time evolution of δ-function initial data of
the form u(x) = 0, v(x) = δ(x). In this case, ρ(t, x) corresponds to the propagator of the
telegrapher’s equation [30],

G(t, x) = Θ(t)Θ
(
D

τ
t2 − x2

) 1√
4Dτ

e−
t

2τ I0

√ t2

4τ2 −
x2

4Dτ

 . (D.1)

The expression above clearly demonstrate that the telegrapher’s equation is causal: for any
t > 0, ρ(t, x) vanishes if |x| >

√
D
τ t.

We compare the exact ρ(t, x) above with the with the perturbative expansion ρ(H)
ε

∣∣
ε=1

obtained by means of equation (2.10) truncated to first and third nontrivial order. The
results can be found in figure 11.

We clearly see that, for any x, ρ(H)
ε

∣∣
ε=1 never provides an accurate description of ρ

at early times. This is due to the fact that, in this regime, the nonhydrodynamic mode
contribution, which is necessary to enforce the initial condition ρ(0, x) = 0 we chose, is
still sizable. This state of affairs changes at later times. In particular, focusing on a fixed
x as t grows, we eventually observe a very good agreement between ρ and the low-order
truncated ρ(H)

ε

∣∣
ε=1.

Another important point to be drawn from figure 11 is that ρ(H)
ε

∣∣
ε=1 is never a good

approximation of the exact microscopic ρ outside the causal cone of the system. While
the exact ρ vanishes there, ρ(H)

ε

∣∣
ε=1 does not. The reason behind this difference is that

ρ(H) is solely built out of the hydrodynamic shear mode, and is therefore blind to the
nonhydrodynamic contribution needed to enforce the causal response of the system. This
fact provides a nice illustration of the general lesson that the nonhydrodynamic sector is
essential to guarantee causality [1].
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Figure 11. Comparison between the exact ρ corresponding to δ-function initial data (solid orange)
and the ρ(H)

ε

∣∣
ε=1 expansion truncated to first (dotted black) and third order (dashed black).

E Large-order behavior for Gaussian initial data

In the main text, we showed that the large-order behavior of the perturbative series is
controlled by the adjacent nonperturbative saddle points. In this appendix, we elaborate
further on this connection for the case of Gaussian initial data.

Following Berry and Howls [70], we can express the an+1(t, 0) coefficient of the pertur-
bative series expansion as the following contour integral,

an+1(t, 0) = Γ
(
n+ 1

2

) 1
2πi

∮
Γ
dk

τ

2π
√

1− 4Dτk2

(
k2

−SH(k)

)n+ 1
2

k−(2n+1), (E.1)

SH(k) = −1
2s

2k2 + (−1 +
√

1− 4Dτk2) t2τ (E.2)

with Γ a positively-oriented path enclosing k = 0 in the hydrodynamic sheet.
It can be demonstrated that (E.1) can be alternatively expressed as a contour integral

in the nonhydrodynamic sheet,

an+1(t, 0) = Γ
(
n+ 1

2

) 1
πi

∫
Γ′
dk

τ

2π
√

1− 4Dτk2
1

(−SNH(k))n+ 1
2
, (E.3)

SNH(k) = −1
2s

2k2 −
(
1 +

√
1− 4Dτk2

) t

2τ , (E.4)
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Figure 12. Relevant steepest descent contours to perform the large-n saddle point analysis (solid
red), along with the adjacent saddles (black stars), for s = 1. Left: t = 0.9. Right: t = 1.1.

where Γ′ is a path starting at ∞− i0 below the right branch cut, going around the right
branch point, and ending at ∞+ i0 above the right branch cut.19

In order to analyze the behavior of (E.3) when n→∞, it is natural to decompose Γ′
into the steepest descent contours associated to the adjacent saddles discussed in the main
text, and employ a saddle point approximation afterward.20 The relevant steepest descent
contours involved in computing (E.3) in a large n asymptotic expansion are depicted in
figure 12.
For t < tc, only the k+ saddle contributes to an(t, 0). On the other hand, for t > tc, we
have contributions both from k+, k− and k0.

Let us focus on the former case first. At leading order, it is immediate to show that

an+1(t, 0) = Γ(n)
(−S+)n

[
G(k+)

√
− 2
πS′′NH(k+) +O

( 1
n

)]
, (E.5)

from which it follows that r = limn→∞ nan(t, 0)/an+1(t, 0) = −S+, as reported in the main
text. A plot of the deviation of the ratio

rn+1 = aexact
n+1 (t, 0)
as.p.
n+1(t, 0) , (E.6)

from one, where aexact
n+1 is given by (2.23) and as.p.

n+1 by (E.5), can be found in figure 13 (left).
We have considered several different times before tc. It is readily seen that, as n → ∞,
rn → 1 plus a O(1/n) correction, confirming the validity of equation (E.5).

19In writing (E.3), we have taken into account that left and right branch cuts contribute equally to the
total result.

20Since at k∗ = k+, k− or k0 we have that S′NH(k∗) = 0, but SNH(k∗) 6= 0, these saddles are also
stationary points of log(−SNH(k)).
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Figure 13. Deviation ratio (E.6) between the exact an(t, 0) coefficients and the large-order pre-
diction of the saddle point analysis, for Gaussian initial data with s = 1. Left: t = 0.25 (black),
t = 0.5 (red), t = 0.75 (orange). Right: t = 1.25 (black), t = 3 (red), t = 5 (orange). The dotted
black line is a plot of the function 1/n to guide the reader’s eye.

On the other hand, for t > tc, we have three separate contributions to consider. We
find that at leading order the k0 saddle contributes as

Γ(n)
(−S0)n

[
G(k0)

√
− 2
πS′′NH(k0) +O

( 1
n

)]
(E.7)

while the first nontrivial term of the combined contribution of the k+, k− saddles is given by

Γ
(
n+ 1

2

)
(−S+)n+ 1

2

2
iπ

(
G′(k+)− S′′′NH(k+)

3S′′NH(k+)G(k+)
)

(−S+)(
n+ 1

2

)
S′′NH(k+)

+ . . . (E.8)

Since |S0| < |S+|, the k± contribution is exponentially suppressed with respect to the k0
one,21 which now governs the divergence of the perturbative series expansion. The behavior
of rn for t > tc with as.p.

n (t, 0) given by (E.7) is illustrated by figure 13 (right).

F Large-order behavior for Lorentzian initial data

Another family of initial data that allows to compute in closed-form the coefficients of the
perturbative expansion at x = 0 is that of Lorentzian initial data,

v(x) = α

π(x2 + α2) , v̂(k) = 1
2πe

−α|k|, (F.1)

where we find

an+1(t, 0) = α2n+1τn+1

4π2Dn+1t2n+1 Γ
(
n+ 1

2

)2
U

(
2n+ 1, n+ 3

2 ,
α2

4Dt

)
. (F.2)

21Despite this, in the main text we show that Borel transform techniques were capable or unveiling it.
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Figure 14. Lorentzian initial data exhibits factorial growth for the series coefficients. Here we
show r as defined in (F.3) vs. t for α = 1.

As it happened for Gaussian initial data, we find that, for n→∞, qn = limn→∞ |an+1(t,0)
an(t,0) |

is linear in n, implying that the series is factorially divergent. The large n behavior deter-
mined numerically is compatible with

qn ∼
1
r
n, r ≡ t

τ
, (F.3)

irrespectively of the value of α. See figure 14 for an example of this asymptotic behavior
in the case α = 1.

G Reconstructing ρ from the transseries: Gaussian initial data case

In this appendix we illustrate how Borel resummation can be employed to reconstruct
the exact ρ(t, x) from the different transseries at our disposal. The agreement between
the Borel resummation and the exact solution determined by direct numerical integration
provides a nontrivial consistency check of the results presented in the main text. For the
sake of brevity, we focus on Gaussian initial data of the form (2.22).

Before starting, let us recall that the splitting of ρ(t, x) into hydrodynamic and nonhy-
drodynamic contributions is only unequivocally defined once a particular integration path
γ is provided, due to the branch points of ∆(k).22 To keep track of which integration
path we are employing, we will denote by γ(+,−) the equivalence class of integration paths
starting at −∞+ i0+ above the left branch cut and ending at ∞− i0+ below the right one,
with an analogous interpretation for γ(−,+), γ(−,−) and γ(+,+).

G.1 The perturbative sector

As mentioned before, the Padé approximant of the Borel-transformed asymptotic series
displays a line of pole condensation along the positive real z-axis starting at zc = −S−
and, as a consequence, we have to resort to lateral Borel resummations. In turns out

22We choose the principal branch for ∆(k).
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Figure 15. Average of the lateral Borel resummations of ρ(H)
ε (t, x)

∣∣
ε=1 (open red circles) for

Gaussian initial data with s = 1 compared with the ρ(H)(t, 0) determined directly by a numerical
integration along the γ(−,−) contour (solid blue curve).

Figure 16. Left: same as figure 15, but now for the nonperturbative series at t < tc. Right: result
of the Borel resummation of the nonperturbative series for t > tc (open circles) compared with the
ρ(NH)(t, 0) determined by a numerical integration along γ(−,−) (solid blue curve).

that the negative (positive) lateral Borel resummation corresponds to the choice of γ(+,−)
(γ(−,+)) integration contour in the original integral, with the average of both corresponding
to the γ(−,−), γ(+,+) integration paths. We plot an example of this agreement in figure 15.

G.2 The nonperturbative sector

For the nonperturbative sector, we have a discontinuous change in the nonperturbative
series when t = tc; correspondingly, we discuss the t < tc and t > tc cases separately:

• t < tc. In this regime, the Fourier integral defining bn(t, x) in terms of bn(t, k) con-
verges. Therefore, bn(t, 0) = −an(−t, 0), with an(t, 0) given by (2.23). The relation
between the lateral Borel resummations and the γ integration contours is the same
as for the perturbative series, with the real result being given by the average of both
lateral resummations. We plot this average in figure 16 (left), where we compare it
with the ρ(NH)(t, 0) determined by a direct numerical integration, finding very good
agreement between both quantities.
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• t > tc. In this regime, the nonperturbative sector of our transseries is given by (5.4a)–
(5.4b). The absence of singularities on the positive real axis in the Borel plane implies
that the Borel transform of ρ(NH)

ε (t, 0) is Borel resummable; hence the integration
along the real axis agrees trivially with the average of the lateral resummations.
In figure 16 (right), we compare the ρ(NH)(t, 0) determined by a direct numerical
integration with the resummation result, finding again excellent agreement.
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