Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Modeling mammalian trunk development in a dish

MPG-Autoren
/persons/resource/persons204389

Veenvliet,  Jesse V.
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50201

Herrmann,  Bernhard G.
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Veenvliet, J. V., & Herrmann, B. G. (2021). Modeling mammalian trunk development in a dish. Developmental Biology, 474, 5-15. doi:10.1016/j.ydbio.2020.12.015.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-7A08-7
Zusammenfassung
Mammalian post-implantation development comprises the coordination of complex lineage decisions and morphogenetic processes shaping the embryo. Despite technological advances, a comprehensive understanding of the dynamics of these processes and of the self-organization capabilities of stem cells and their descendants remains elusive. Building synthetic embryo-like structures from pluripotent embryonic stem cells in vitro promises to fill these knowledge gaps and thereby may prove transformative for developmental biology. Initial efforts to model the post-implantation embryo resulted in structures with compromised morphology (gastruloids). Recent approaches employing modified culture media, an extracellular matrix surrogate or extra-embryonic stem cells, however, succeeded in establishing embryo-like architecture. For example, embedding of gastruloids in Matrigel unlocked self-organization into trunk-like structures with bilateral somites and a neural tube-like structure, together with gut tissue and primordial germ cell-like cells. In this review, we describe the currently available models, discuss how these can be employed to acquire novel biological insights, and detail the imminent challenges for improving current models by in vitro engineering.