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Automated Controller and Sensor Configuration
Synthesis using Dimensional Analysis

Marcus Pirron, Damien Zufferey, and Phillip Stanley-Marbell

Abstract—Automated controller synthesis methods for cyber-
physical systems (CPS) often require precise knowledge of the
system’s state. Unfortunately, parts of the state may not be di-
rectly measurable, which limits the application of these methods.
We present a design methodology for the co-design of software
controllers and the required sensing capabilities. Our method
leverages the knowledge of physical units in the model of a
system to find ways of indirectly measuring parts of the system’s
state which cannot be measured directly. The method contains a
search procedure which uses dimensional analysis to explore the
space of physically well-typed expressions and it generates as an
intermediate result possible sensor combinations.The integration
between the physical and software design for CPS that we present
make automated controller synthesis techniques more widely
applicable. We have implemented our method and applied it
to the design of robotic manipulators.

Index Terms—Control systems, Embedded software, Sensor
systems, Measurement units, State estimation.

I. INTRODUCTION

We present a design methodology for the co-design of soft-
ware controllers along with the sensing infrastructure required
by the controller. Automated controller synthesis methods,
e.g., Model Predictive Control (MPC) [1] and Abstraction
Based Controller Design (ABCD) [2], assume that the state
of the system can be measured precisely. This is a strong
assumption and it is up to users of these methods to make
sure this is possible, or, if not, to devise a different system
model. At the same time, progress in rapid manufacturing, e.g.,
3D printing, has spurred creation of techniques and tools [3],
[4], [5], [6], [7], [8], [9] to help non-expert users create
and optimize robotic designs. Some of the tools can even
generate basic software controllers for the robots [10], [11],
[12], [13]. Unfortunately, the control strategies used by these
tools are very simple. For future advanced robotics systems
which integrate sensing, computation, and actuation directly
into materials [14], [15], [16], [17], [18], the challenge of au-
tomated materials-specific controller synthesis becomes even
greater. In this work, we show how to use dimensional analysis
to automatically search over the space of physically well-typed
expressions in order to derive a combination of sensors to
measure and estimate the system’s state. Our technique can
be applied to bridge these robotic design tools with more
advanced controller synthesis techniques.
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Our approach starts with (1) a high-level description of
the plant model where each part of the system is annotated
with its physical dimension, and (2) a specification of what
the controller needs to achieve in the form of a reach-
avoid specification. (Annotating the physical dimensions to
the system covers both the system’s state, i.e., what changes
over time like the positions of actuators, and static elements
used to build the system.)

In a first step, our method uses an off-the-shelf controller
synthesis tool to obtain a controller. During that step, the
method considers the plant model as a whitebox and allows
the controller to read from the whole system’s state. In a
second step, our method inspects the controller to extract
which elements within the overall system’s state are used by
the controller. Third, the method runs a search procedure to
find the required sensors to measure the signals which the
controller uses. This search procedure tries to match each
dimension of the state with a sensor, or otherwise expands
the search by generating candidate dimensionally-plausible
invariants which can be used for indirect measurement.

Consider a robotic manipulator, whose range of motion is
limited by its payload. With a small payload, the manipulator
can extend further than when it carries a heavier payload.
Our method would first propose a direct measurement, e.g.,
by adding a load cell in the effector. Expanding the search
will first propose using the Euler-Bernoulli beam equation to
estimate the payload by measuring deflection in the structure.
Continuing the search will reach the actuator and propose
to compute the load by looking at the force exerted by the
actuator. These different possibilities are presented to the user
who can select one. Once the configuration of sensors is
fixed, we generate descriptions of the model in the Newton
physical system specification language [19] and use Newton’s
estimation backend [20] to generate an extended Kalman filter
which takes as input the sensor readings and controller outputs
to estimate the overall system’s state. This state is then sent
back into the controller to close the feedback loop.

The candidate invariants used in our search are dimen-
sionless groups, i.e., equations where all physical dimensions
cancel out. We generate these dimensionless groups in an
automated process using Newton. The Buckingham Π theo-
rem [21] guarantees that any physically meaningful equation
can be written in that form. However, formulas generated by
this approach are only proportionality constraints. The first
time the system is used, we run a calibration procedure to
estimate the proportionality coefficients. The controller also
monitors deviations between the predicted system state and
sensor readings which can be used to detect failure.
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We have implemented our method in a tool called MPERL-
Π, which extends the Multipurpose Parallel End effector
Robotics Language (MPERL) [12] with dimensional analysis
and Π groups.

Motivating Example: Throughout the paper, we use the
running example of a SCARA robot system to illustrate how
MPERL-Π can be used to learn about the state of the robot and
how this information can be used by the controller. Figure 1
shows the example SCARA manipulator. The arm structure
consists of two revolute actuators connected by beams. The
upper beam extends from the upper motor to the end effector
and the lower motor is fixed to a base. The upper beam is
3D-printed in Nylon and includes a deflection sensor. The
two actuators (brushed DC motors) are connected to current
sensors.

We built the arm using MPERL and it uses a simple
controller which moves the arm between positions by solving
the inverse kinematic equations. The controller however only
knows about the geometry of the system. We would like the
robot to support dynamic effects and to take into account
forces exerted on the motors and on the structure. Motors
have a limited torque and we would like the controller to
dynamically adjust the arm’s working envelop depending on
the load attached to the effector. With a bigger load attached
to the effector, the controller should not extend the arm to its
full reach to avoid overloading the motors.

We extended MPERL to compute the forces at different
points of the structure and attach additional constraints to
specify the maximal torque on each revolute actuator. MPERL
originally supported only rotary sensors for position feedback;
for the extensions to work properly, the synthesized controller
needs to know about the weight of the load attached to the end
effector. Using the method presented in this paper, our tool,
MPERL-Π, explores possible instrumentations which allow the
system to keep track of the weight.

Figure 1 shows the inputs, components, and stages of
the method, showing how the components of the method
are connected, and, for each component, a list of associated
physical quantities. The first possibility would be to measure
the weight on the effector but we do not have such a sen-
sor. The next element is the beam attached to the effector.
MPERL was designed with 3D printed structures in mind.
These structures are not very stiff and MPERL supports flex
sensors to compensate for structural deformation. the method
also explores the properties of the beam which includes its
length, height, width, flexural rigidity, deflection, etc. Using
dimensional analysis, automated by Newton, the method can
derive multiple candidate relations from these properties. The
method filters these candidates in order to find a possible
equation which can be used to derive the deflection.

If we continue the search for other sensor configurations,
MPERL-Π will also explore other parts of the system. Next
to the upper beam is the first actuator. A simple suggestion is
to add a torque sensor to the actuators. As such sensors are
quite expensive, we ask MPERL-Π to find other combinations
of sensors. MPERL-Π considers properties of its actuators.
Within the motor specification, there is a table which specifies
the torque produced by the motor in relation to the rotational

speed and current consumption. To use this equation, MPERL-
Π looks at the available information by considering quantities
with dimension T−1 (rotational speed) and I (current). Be-
cause the actuator contains a rotary encoder, MPERL-Π can
determine its rotational speed. The current drawn, on the other
hand, is unknown; MPERL-Π then suggests the addition of a
current sensor to the motor. As current sensors are more cost-
effective than torque sensors, this offers a better alternative.
At that point we could build the arm with the current sensor.
Figure 1 shows the SCARA arm including both current and
deflection sensor. We include both sensor configurations to
evaluate the system in both configurations.

Contributions:
• We present a physics-based search strategy to find con-

figurations of sensors to directly or indirectly estimate the
overall state of the system.

• We have implemented a prototype tool called MPERL-Π
and explain the changes we had to make to off-the-shelf
tools to support our method.

• We evaluate our prototype with both simulated and real
experiments.

II. SYNTHESIS OF SENSOR CONFIGURATIONS

First, we describe the external tools needed for our method.
We make use of tools for (a) automated controller synthesis,
(b) dimensional analysis, and (c) state estimation.

a) Automated controller synthesis: A controller tries to
get a physical system to behave according to a specification
by influencing the system through actuators. A feedback
controller also monitors the evolution of the system to correct
for disturbances. With more computing power available, con-
trollers can be automatically generated from a description of
the physical system as a dynamical system and a specification.
This can be done online, e.g., MPC [1], [22], [23], or offline,
e.g., ABCD [2], [24], [25], [26]. Because controller synthesis
is computationally difficult, strong assumptions are made on
the knowledge of the system’s state. For instance, ABCD
tools [27], [28], [29] generate only state-feedback controllers
and assume perfect measurements of the state. With only
partial observation, controller synthesis becomes computation-
ally even more difficult as the synthesis procedure needs to
consider all the states compatible with the observations [30],
[31], [32].

Recently in the field of robotics, we have seen the develop-
ment of tools [10], [11], [12] which automatically generate
software controllers, along with a matching description of
manufacturable robotic parts, such as models for 3D printers.
These tools require little to no expertise by the user but
are limited to specific kinds of robots. Our goal is to take
advantage of the design capabilities of these robotic design
tools to make automated controller synthesis more applicable.
We use dimensional analysis to generate an instrumentation
which makes it possible to recover the state information
needed by the controller.

b) Dimensional analysis: Dimensions and units are the
type system of physics. Only quantities with the same dimen-
sions can be compared and added. Multiplication combines
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Input description

Effector position: x (L), y (L), z (L)
force: f (L M T-2)

Anchor position: x (L), y (L), z (L)

Revolute actuator angle: θ
angular speed: θ (T-1) 
motor current: i (I)

Rigid beam dimension: w (L), h (L), l (L)

Flex beam dimension: w (L), h (L), l (L)
deflection: d (L)
flexural rigidity: EI (L M2 T-2)
resistance: u (M L2 T-3 I-2)

Revolute actuator angle: θ
angular speed: θ (T-1) 
motor current: i (I)

Structure graph

Sensor configuration
synthesis

Controller synthesis
(inverse kinematics)

State estimation
(extended Kalman filter)

Manufacturable parts

MPERL-Π

SCARA manipulator

Fig. 1: System overview

quantities and their dimensions. The SI system [33] identifies 7
base dimensions from which all other dimensions are derived.
These dimensions and respective standard units are: time T
(second), length L (meter), mass M (kilogram), electric current
I (ampere), thermodynamic temperature Θ (kelvin), amount
of substance N (mole), and luminous intensity J (candela).
Dimensions should not be confused with units. The value of
a quantity is expressed as a number along with a unit of
the corresponding dimension. For instance, 0.1m and 10cm
represent the same quantity of length.

Because there is a small number of base dimensions,
Rayleigh’s method of dimensional analysis has proven to be
a powerful tool in a wide range of scientific and engineering
fields. Dimensional analysis collects all variables in a system
and tries to arrange them in dimensionally homogeneous
equations. The theoretical justification of this method comes
from the Buckingham Π theorem [21]. This theorem bounds
the number of variables that have to be grouped in order to find
dimensionless groups, i.e., expressions where all the dimen-
sions cancel out. Recently, Wang et al. [34] showed that this
theorem can be used to efficiently generate candidate invariants
of physical systems. While invariants of physical systems
are dimensionally correct, the converse is unfortunately not
true; therefore, further analysis is required to identify actual
invariants within the space of dimensionless groups.

c) State estimation: The goal of the state estimation, or
filtering problem, is to find the most likely state of a system
given a set of observables which varies as a function of the
state. The state estimation can handle noise in the observations
and make predictions about the system’s evolution. We can
also make use of the state estimation to compare observations
against predictions to detect potential adequacy problems
between the system and its model.

In this work we build on top of MPERL [12] and Newton

[19].
MPERL is a tool to help non-experts build custom robotic

manipulators. Using an abstract description of the robot’s
kinematic structure, MPERL generates both, a controller based
on an inverse kinematic solver and 3D models to manufacture
the corresponding manipulator. As MPERL contains detailed
information about the robot’s structure, e.g., joints, actuators,
and sensors, we could easily associate dimensions to all the
elements. Furthermore, as the mathematical model of the
robot’s motion and the physical object are generated from the
same description, we know they match each other.

Newton is a specification language to describe constraints
and invariants on values obtained from sensors embedded in
physical objects. All the values in Newton are annotated with
their dimensions. Moreover, Newton integrates the dimen-
sional analysis [34] and can also generate extended Kalman
filters [35] from the description of a system and the attached
sensors.

A. System Model and Problem Definition

Let us recall some standard definitions to establish the
setting and define the problem we are trying to solve.

Let {T, L,M, I,Θ,N, J} be the finite set of base dimensions.
The set D of all dimension contains expressions of the form
TαLβMγ IδΘεNζJη with the dimensional exponent α, β, γ,
δ, ε, ζ, η in Z. A quantity, or variable, is a pair in R × D.
We assume that the value is expressed in the standard SI unit
associated with the dimension. We write dim(q) to obtain the
dimension of q.

A dynamical system S is a tuple (X,X0, U, F ) where X ⊆
(R × D)n is the state space, X0 is the set of initial states,
U ⊆ (R × D)m is the control input space, and F defines
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the dynamics (ẋ ∈ F (x, u)).1 We use the lower case letter
corresponding to the name of the set to represent the elements,
e.g. x is an element of X .

An execution, or trace, of duration T is a continuous right-
differentiable function τ : [0, T ] → X such that τ(0) ∈ X0

and ∀t ∈ [0, T ]. ∃u. τ̇(t) ∈ F (τ(t), u).
A state-feedback controller C is a function (R×T→ X)→

U which maps a history of the system’s trajectory to a control
input.

An execution τ is compatible with a controller C if
it satisfies the additional condition ∀t ∈ [0, T ]. τ̇(t) ∈
F (τ(t), C(τ [0, t])).

A specification is a set of allowed traces T for a system S.
The controller synthesis problem returns a controller C such
that for all executions τ of S and C, we have τ ∈ T . Given
a set of outputs Y for S and an observation function H that
maps Y to X , the state estimation problem tries to recover
the state of the system at time t by observing H(τ [0, t]). The
sensor configuration synthesis problem tries to find Y and H
that have a possible physical realization and contain enough
information to make the state estimation possible.

An invariant is a property of a robotic system which remains
always true while the system is operational. For example,
an invariant Ri(θ) ∈ [−π/4, π/4] would ensure that the
rotation angle of revolute actuator Ri is always within the
interval of [−π/4, π/4]. Invariants are also used to describe
the interdependencies between different parts in the robotic
system.

At the core of physics, conservation laws states the closed
systems preserve some properties. These conservation laws are
a specific kind of invariant and our method finds instances of
these laws in concrete systems.

B. Sensor Configuration Synthesis

Let us explain how our method works and the details of the
synthesis algorithm. In Figure 2, we show the different parts of
the sensor synthesis workflow and how they interact. The user
provides the initial input at the top of the figure and is also
responsible for checking the sensor configuration proposed by
the synthesis algorithm.

1) Goal state-space: Given a dynamical system S and a
state-feedback controller C, the first step is to find which part
of the state the controller actually needs. This step depends on
the structure of C. For instance, if C is a linear function of
the form u(t) = −K(τ(t)), we select all columns of K with
a non-zero entry. If the internal structure of the controller is
not available, we can over-approximate necessary parts of the
state by taking the full state. In the rest of this section, we
denote by x the part of the state we need to reconstruct.

2) Dimensionless groups: When two physical quantities are
equal, they must have the same dimensions. For instance, if
a = b then dim(a) = dim(b). If a is non-zero, we can
rewrite this as 1 = b/a. The division cancels out the units

1 Common system model often include an output space Y or and observa-
tion function H . We do not include them as our goal is to use the dimensional
analysis to infer them.

Partial solution
(Section II-B6)

Goals
(Section II-B1)

System
description

(Section II-A)

Synthesis
algorithm

(Section II-B5)

User check
(Section II-B7) Done

User preferences User input

Candidate
measurement
configuration

YesNo

MPERL

Fig. 2: Sensor synthesis workflow

and the result is dimensionless. The product ba−1 is called a
dimensionless group or Π group, after Buckingham π theorem.

We can find Π groups by dimensional analysis. Consider
Newton’s second law as an example. We have force F , mass
m, and acceleration a with dim(F ) = T−2LM, dim(m) = M,
and dim(a) = T−2L. We are looking for exponents α, β, and
γ such that Fαmβaγ is dimensionless. From the dimensions
we extract the following constraints: −2α − 2γ = 0 for T,
α + γ = 0 for L, and α + β = 0 for M. Solving these linear
constraints gives the solution α = −1, β = 1, and γ = 1
which corresponds to ma/F . From this we get the equation
ma/F = C for some dimensionless constant C. Here, C is 1,
but this is not always the case. For instance, if we consider load
induced deflection of beams, which can be used to measure
the force applied to the beam (see Section IV-B), it follows
the law 3 = FL3(EI)−1d−1, where F is the force applied
to the beam, L is the length of the beam, EI is the flexural
modulus, and d is the deflection.

In the previous example, the constant C is 3, theoretically
[36]. In general, we cannot know a priori the values of the
dimensionless constants. We need to experimentally calibrate
both, the system and the controller, to find theses values. In
the case of the beam deflection, all quantities are constant
except for F and d. Overall, the Π group tells us that the
deflection is proportional to the force and the calibration finds
this proportionality constant.

3) Sensors: While there can be multiple sensors with
different ranges, precision, and accuracy, we assume at most
one sensor per dimension for the sake of simplicity. The
available sensors are represented by the function sensor which
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maps elements of D to sensors or ⊥ when no sensor exists.
Furthermore, the cost function maps the sensor to a cost. To
simplify the presentation of the algorithm, we assume that
cost(⊥) =∞.

Our synthesis procedure minimizes the overall cost of the
sensors, assuming that costs sum up. The cost function is a
general function; for example, it can be applied in terms of
monetary cost (to build a cost-efficient system), but also in
terms of power consumption (to maximize the autonomy of a
battery-powered system).

4) Extended system description and distance between vari-
ables: We envisage our method to be used when there is not
only an abstract model of the system but also a more detailed
description of the physical elements. Having a more detailed
model makes it possible to find more sensing possibilities

For instance, the controller of the SCARA arm from Fig-
ure 1 needs to limit the range of the arm depending on the
payload weight; otherwise, the maximal torque of the motors
could be exceeded. A minimal model would only include the
speed and acceleration of the payload and the torque exerted
by the motor. In that setting, our algorithm would suggest
to use a torque sensor which is an expensive sensor. With a
more general model of the system, our algorithm can explore
in more detail some elements. For instance, the motor is an
electric motor, turning electric energy into torque. Therefore,
the system can suggest measuring the current going into the
motor along with its speed to derive the applied torque.

The downside of having access to all this information is the
great increase in size of the search space and the number of Π
groups. Therefore, we assume that we have a function distS
which returns the distance, for some notion of distance in S,
between two quantities in the system. When generating the
Π groups to measure a quantity q we only look for elements
below some distance from q.

In our implementation, the structure of the system is repre-
sented by a graph where the nodes are physical elements and
edges are the interactions between them. The shortest path
between two nodes is the distance we use.

5) Search algorithm: Our search procedure, shown in Al-
gorithm 1, is a backtracking search which progressively adds
more sensors to the system while keeping the current best
found solution to prune the search.

We start the search with the available sensors, their cost,
the known constant quantities, and the variables x0 . . . xn we
need to measure. In our running example, known constant
quantities are elements like the length of the beam, or motor
characteristics like current consumption, which can be used
without incurring any cost. For each variable, we try to find
out if a sensor exists or expand the search by generating a
candidate invariant involving that variable. The cost function
drives the search into generating candidate invariants even if
we have a sensor or cut the search if a branch becomes too
expensive.

The expansion uses dimensional analysis to find candidate
invariants involving the variable to measure. When we find a
candidate invariant, we remove the variable to measure from
the goal and add all other expressions occurring in the invariant
to the goals. In the algorithm, this search is done by calling

FINDPIGROUPS(q, Q). Q is the set of all the quantities that
can be used to find the Π groups and q is a quantity which
must be part of the Π groups, i.e., the exponent for q must be
nonzero. FINDPIGROUPS is implemented using the algorithm
by Wang et al. [34, Section 3.2] and filtering the groups
where q is not present. As the number of candidate invariants
grows exponentially with the available number of variables,
and many can be spurious, we use the distance function to
search only for candidate invariants involving quantities close
to each other.

Algorithm 1 Sensor synthesis algorithm

Require: x0 . . . xn, the quantities to measure
Require: initStatus , all the known constant quantities of S
Require: ∆ (≥ 0), the scope of the search

1: function SEARCH(q,NA, status, ccurr, cmax)
2: if (q, ) ∈ status then
3: return (status, ccurr)
4: end if
5: (statusbest, cbest)← (⊥, cmax)
6: if cost(sensor(dim(q))) + ccurr ≤ cmax then
7: statusbest ← status ∪ {(q, sensor(dim(q)))}
8: cbest ← ccurr + cost(sensor(dim(q)))
9: end if

10: Q← {q′ | distS (q, q′) ≤ ∆} \NA
11: G ← FINDPIGROUPS(q,Q)
12: for G ∈ G do
13: (s, c)← (status, ccurr)
14: for q′ ∈ G ∧ c 6=∞ do
15: (s, c)← SEARCH(q′,NA ∪ {q}, s, c, cbest)
16: end for
17: if c ≤ cbest then
18: (statusbest, cbest)← (s ∪ {(q,G)}, c)
19: end if
20: end for
21: if statusbest 6= ⊥ then
22: return (statusbest, cbest)
23: else
24: return (Failure,∞)
25: end if
26: end function
27: . Apply the search to all the xi
28: s← initStatus
29: c← 0
30: for x ∈ x0 . . . xn ∧ s 6= Failure do
31: (s, c)← SEARCH(xi, ∅, s, c,∞)
32: end for
33: return s

The algorithm search procedure (line 1–26) keeps track of
(1) q the quantity that needs to be measured, (2) NA the
quantities not available, (3) status a partial solution, (4) ccurr
the current cost, and (5) cmax the maximal cost. In the set
NA, we keep track of the elements below the current branch
of the search tree. These elements cannot be used as it would
introduce circular dependencies in the result. status is a set
containing pairs of quantities and how they are measured:
either directly with a sensor or derived indirectly through an
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invariant. The maximal cost cmax cuts the search when a better
solution is already known.

In the search, we first try to check if a quantity is already
known (line 2), in which case there is nothing to do. Then, we
try to find a sensor which matches the quantity’s dimension
(line 6); if that fails, we consider indirect measurements. We
gather the elements in the system in the neighborhood of q
(line 10), find the dimensionless groups over these elements,
and search recursively on them (line 11–20). In Section III,
we discuss the scope of the search in more detail. The search
is applied to all the elements we need to measure (line 28–33).

Restricting the search according to a distance has two goals:
1) improving the accuracy of the solution and 2) limiting
the complexity of the search. Currently, we rely on the state
estimation to deal with measurement errors. Measuring a
quantity while being far means multiplying terms between
the measurements and the goals. This compound errors and
further measurements are less likely to yield good data. In
Section II-D, we discuss methods to improve error handling.
The second aspect is the scalability of the method. The number
of Π groups is exponential in the size of the overall system.
Therefore, a naive application of the search only works on
small systems. On the other hand, the size of neighborhoods
within a system should contain roughly the same number of
elements independently of the overall system. This makes it
possible to apply the search to larger systems.

6) User Constraints on the Search: Algorithm 1’s presenta-
tion is minimal. It runs and returns one solution. If this solution
is not satisfactory, we want the algorithm to explore other
solutions, which can be achieved with minor changes to the
algorithm’s initial state. It is possible to enforce the usage of a
specific sensor by adding it to initStatus . Conversely, we can
prevent using a specific sensor by adding the corresponding
quantity to NA at the beginning of the search. If the algorithm
fails to find a solution the search can be tried again with a
larger ∆.

Searching for different solutions can also be used to gen-
erate multiple ways of measuring the same quantity. Using
multiple sensors can improve the quality of the state estimation
if the elements used are independent across measurements.

7) Checking Candidate Solutions: The sensing configura-
tions comes from dimensionally-correct equations, but these
equations may not correspond to actual physical processes in
the system. Therefore, we require that the user checks the out-
put of the algorithm. We can distinguish between two sources
of spurious solutions: (1) the Π group does not correspond
to any physical law and (2) the Π group corresponds to a
physical law, but associates the (right) dimension to the wrong
element. The first case requires checking if there exists any
law of physics corresponding to what the algorithm suggested.
The sensing configuration can also be tested against a small
number of known configurations to check if they hold. The
second case happens because the search does not differentiate
quantities with the same dimension. Such errors are harmless
when they stem from constant terms, e.g. using the width
instead of the length of a beam, as the Π groups are an equality
up to a constant. When the error is not about a constant term,
then the process to discard such solutions is similar to the first

case.
This step still requires some knowledge from the user. As

checking a given solution is easier than finding a solution, our
method still lowers the expertise requirement to build CPS. A
non-expert may be overwhelmed and not know how to solve
the problem. With our method, the algorithm gives them a
“place to start.” If the user is already an expert, they may not
need our system but using it can still help them accomplish
the task faster.

C. Calibration and Runtime

After we have generated possible sensor configurations and
the user has checked if they are meaningful for the system, we
can generate the output space Y given by the sensors and the
observation function H . The observation function corresponds
to extracting the equations stored in status and rewriting them
such that their value is a function of the state. The dynamics
model and the observation model are both used to generate an
state estimator.

At this point, the observation function still contains pro-
portionality constants coming from the Π groups. We need
to calibrate the system and the sensors to find these values,
which is system specific. In Section IV we explain how we
did this in our evaluation.

Our approach requires this calibration phase. Currently, we
only use the Π groups vetted by the user but we can also take
advantage of this phase to reduce the burden on the user. As
a mitigation technique, once the user has selected a sensor
configuration, we gather all Π groups for that configuration
and later, during the calibration phase, use regression to
find the relevant ones. Furthermore, if the sensor and their
placement get cheap enough [14], [15], [16], [17], [18], we
could also embed more sensors for Π groups which have not
been checked by the user. Then, during the calibration, we
could use the data to learn which Π groups correspond to
actual invariants of the system. In the future, we plan to add
outlier detection [37] and consensus based method to detect
faulty sensors [38] to the state estimation backend.

D. Limitations and Extensions of the Method

Buckingham Π theorem tells us how to compute dimension-
less groups, but it does not tell us the physically meaningful
ones. In our method, we rely on the user’s judgment for
checking that at least one Π group is physically meaningful
as explained in Section II-B7 and II-C.

During the calibration, we need to get accurate measure-
ments, which implies the possibility of measuring the entirety
of the system’s state. For some systems, this might not be
possible.

Finally, while running the system we need to take mea-
surement errors and the model adequacy into account. As
we do not put any restriction on the model, we use an
extended Kalman filter for the state estimation with non-linear
dynamics. Unfortunately, this does not give any guarantees on
the quality of the estimation which is fed to the controller.
The filter also assumes Gaussian noise on the measurements,
and therefore, we need to ensure that the sensors have this
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noise profile and no drift. Another limitation of the method is
sensor selection and placement. Sensors can sense over differ-
ent ranges, accuracies, and sampling frequencies. The range
requirements for sensor could be established using interval
analysis [39]. We currently use a sample-and-hold controller,
and therefore, the controller-loop frequency determines the
required sampling speed of the sensors. The method could
be used with event-triggered control [40] for sensors which
support programmable interrupts. Sensor placement can also
affect the quality of their output. Some sensor are simple to
place, such as a current sensor which can be placed anywhere
on a wire, but sensors related to material properties are
much more sensitive to location. For instance, optimizing the
placement of deflection sensor requires finite element analysis
[41]. The model adequacy is obviously outside of our control.

III. IMPLEMENTATION

We describe our prototype implementation MPERL-Π, built
on top of MPERL and Newton, and discuss a concrete instan-
tiation of the parts left abstract in the previous section.

MPERL in a nutshell: MPERL is a tool to help non-
expert users build robotic manipulators and encompasses all
aspects of system building, from synthesizing software to
generating manufacturable hardware. The main data structure
inside the tool is a graph whose vertices are physical elements
and whose edges represent their interactions. Each vertex
comes with a set of parameters that can be set or read
by the controller and a rigid motion which constrains the
relative position of the elements to which it is connected. With
this information, MPERL generates a simple controller which
moves the manipulator between different configurations. First,
a kinematic model is extracted from the system’s description.
This model is used by an inverse kinematic solver and ana-
lyzed to compute the manipulator’s range of motion. Within
the workspace, MPERL determines which configurations are
safe for the structure. By default, unsafe configurations are
singularities, i.e., configuration where degrees of freedom are
lost and the manipulator can either become uncontrollable or
gets damaged.

Dimensions and element properties: The main modifi-
cation of MPERL-Π compared to MPERL is the addition of
dimensions. As with many tools, all quantities in MPERL
are floating-point numbers and dimensions are implicit. We
made dimensions explicit as a prerequisite of the dimensional
analysis. Each element type of MPERL was revised and
enhanced with additional properties, necessary for the dimen-
sional analysis. As an example, revolute actuators have been
refined with properties like power consumption, speed, torque,
voltage or resistance, subject to their respective datasheets.

From kinematic to dynamic: With MPERL-Π having
more detailed information about the nature of each physical
element, we extended the model to generate the controller;
while MPERL only knows about the geometry (kinematic)
of the elements, and the synthesized controller supports only
kinematics, for MPERL-Π, we extended this approach to take
into account (some) dynamic effects: the system computes how
forces propagate through the robots and the torque applied to

Fig. 3: Representation of the SCARA arm workspace while
torque is applied to the actuators. Grey regions are outside
of the reachable workspace. Regions with low torque are
represented by lighter colors, darker regions represent a higher
load. Red regions are unsafe regions of the workspace, where
the motors’ maximal torque is exceeded.

each element. For the safety properties of the controller we
combine singularities of the robot with physical constraints of
the model. We refine the workspace analysis to consider both
kinematic and dynamic properties. We reuse the approach of
[12] that pre-computes the safe region of the state space using
adaptive sampling. We sample the configuration space with a
varying density of samples depending on the distance to unsafe
regions. In that model, the safety property must be modeled
by a differentiable function from the system’s state-space to
R and the system is safe if the value returned by the function
is larger than 0. The differentiablility requirement is needed
by the adaptive sampling. When the function’s value get close
to 0, the sampling is refined toward the unsafe region to map
it more accurately. While this is done offline and can take
time, partitioning the state space into a grid is exponential in
the number of variables in the system; the adaptive strategy
reduces the computation. Figure 3 shows which part of the
SCARA arm’s workspace is safe or close to the limit of the
actuators capabilities. The grid is used by the controller to
find safe trajectories. For a start and end configuration, the
controller tries to find a path within the safe region. Currently,
MPERL-Π only supports state-based safety properties, but not
temporal properties based on sequences of events.

Π group generation: For the Π group generation,
MPERL-Π prepares the appropriate quantities and calls New-
ton to generate the Π groups. As the number of groups grows
exponentially with the number of quantities, MPERL-Π uses
a local search. The local search starts from a node in the
graph and gathers all nodes within a certain range. It can
also filter types. This allows a user to create local invariants,
e.g. invariants spanning only parts / subsets of the robotic
system, or type-specific invariants, e.g. invariants which are
valid only for revolute joints. In the single SCARA example,
instead of using a torque sensor attached to a revolute actuator,
a local search deployed at range 0, would only find the revolute
actuator (and thus, a torque sensor or a current sensor would
be proposed); at range 1, the attached beam is found, and
together with the beam’s parameters like weight or acting
force, the torque can be equationally derived. In Section IV-A,
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we evaluate the effectiveness of the local search and the
number of Π group generated during the search.

While generating the Π groups, we observed that we get
better results by having rather detailed models with more
complex dimensions. The method from [34] tries to find the Π
groups with the smallest exponents. If the model has multiple
quantities with the same dimensions, they trivially cancel each
other out.

This is another point against a large scope for the search;
having several copies of the same element, e.g. two beams
one on each side of the motor, adds spurious dimensionless
groups.

Instead, we add more elements to the local search. For in-
stance, our beam model includes the flexural rigidity property,
which is described as T−2L3M increase the search space to
include the Π groups we need.

Calibration: As explained in Section II-C, the model to
convert sensor readings to observations of the state contains
some unknown dimensionless constants. To find these values,
we move the robot arm into configurations where we can
measure the entire state space. With these measurements we
estimate the constant terms using regression analysis. In our
SCARA arm example, we move the system into an arbitrary
position (here: lower beam vertical, upper beam horizontal)
and attach a series of known weights. For each weight we
record the beam deflection and how much current the motors
consume. After the system is calibrated, the controller will be
able to deduce the payload weight from sensor readings.

While the calibration adds some overhead to the method,
it is likely to be needed anyway for two reasons. First, for
modeling simplifications we ignore some terms, e.g. friction,
due to the revolute actuators being equipped with gearboxes to
increase the torque of the motors. This reduces their efficiency
and by calibrating, the observation model recovers some of
that information. Second, we may know that an element has a
specific property, but we don’t know its value. For instance, if
we measure the load through deflection, it is necessary to know
the flexural modulus. For pre-made parts, this figure is usually
found in the accompanying data sheet, but for 3D printed
parts it is not so easy to report an accurate figure, as printing
conditions, technical parameters (printing temperature, layer
adhesion and size, printer calibration, material, etc.) and
printing parameters (infill, shell size) can significantly alter
the characteristics of the part [42].

Runtime: After the calibration is done we have a com-
plete observation model of the system. We use Newton which
takes as input a description of the system’s dynamics, the
observation model and outputs an extended Kalman filter. The
resulting filter is then connected to the sensors and to the
controller.

IV. EVALUATION

We show that our method works by building a complete
system, including the physical realization and the sensor
configuration. We show that the sensor configurations sug-
gested by our method provides accurate measurements to the
controller.

TABLE I: Parameters for the robot’s components. Each pa-
rameter has the standard dimension associated with the pa-
rameter’s name.

Element (# Parameters) Parameters

Anchor (3) position (x, y, z)
End effector (4) position (x, y, z), force f
Revolute joint (1) angle θ
Revolute actuator (2) angle θ, current i
Revolute actuator with pulley (3) angle θ, current i, radius r
Rigid beam (3) width w, height h, length l
Flex beam (8) width w, height h, length l,

flexural rigidity EI , density ρ,
deflection d, resistance u,
voltage drop v

Pulley (4) position (x, y, z), radius r

We also evaluate Algorithm 1 on three different robotic
manipulator architectures. These experiments only evaluate the
search, without the physical implementation of the robots. We
show that sensor configurations can be efficiently generated
and that our search heuristic effectively reduces the number
of Π-groups to a manageable number. In this section, we
use the term quantities and parameters interchangeably as the
quantities are parameters of the design space for MPERL-Π.
Constants like physical dimensions are only fixed at manufac-
turing time and they can “vary” during the exploration of the
design space.

A. Search for Measurements
In this section, we show that our synthesis algorithm can

effectively generate possible ways of measuring a goal quan-
tity. The goal is given by its dimension and where we try
to measure it. We evaluate the search on three manipulator
architectures: The single SCARA manipulator as shown in
Figure 1, a dual SCARA manipulator [43], and a CoreXY
platform [44]. We give the number of quantities in the search
space in Table I and II. Quantities include constant properties,
e.g. the size of structural elements like beams, or variables
like current consumption of an electric motor. Anchors are
mounting points, used to attach the manipulator to the ground,
the end effector is the element which effects the world; in this
case, the part which carries an object. Beams are divided into
rigid aluminum beams which do not deform under load, and
3D printed beams made of plastic which slightly deform under
load. The flexible beams have a cavity where a flex sensor is
inserted during printing. This flex sensor is fully enclosed and
acts as a variable resistor, along with a Wheatstone bridge,
which makes resistance and voltage drop parameters of the
flexible beam.

For each manipulator, we show that our method can syn-
thesize physically meaningful ways of measuring quantities of
the system’s state. We gather a set of 9 dimensions as goals
to measure. The goals are acceleration, velocity, momentum,
acceleration, their equivalents for rotation, torque, flexural
modulus, and second area moment. For each goal, we try to
take measurements at at various points in the system. For each
manipulator and each goal, we search for physically valid Π
groups which contains the goal, i.e., Π groups which can be
used to derive the goal.
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TABLE II: Components and the total number of quantities in
the manipulators.
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Single SCARA 1 1 2 1 1 22
Dual SCARA 2 1 3 2 2 2 41
CoreXY 2 1 2 8 48

TABLE III: Single SCARA arm, dimensional analysis sum-
mary. As starting node, we use the following numbering: (0)
end effector, (1) wrist, (2) lower arm, (3) elbow actuator, (4)
upper arm, (5) shoulder actuator.

Starting Range Π groups Time
Goal node needed searched [s]

Velocity 0 1 93 0.049
2 1 63 0.023
4 1 54 0.024

Momentum 1 1 19 0.045
3 3 278 0.398
5 5 575 1.020

Acceleration 0 1 93 0.032
2 1 63 0.063
4 1 54 0.032

Angular 1 1 75 0.482
momentum 3 3 152 0.403

5 5 385 1.202

Flexural modulus 2 2 148 0.243

Torque 3 2 261 0.560
5 5 586 1.403

In Table III, IV, and V, we report some statistics about the
search. The search uses iterative deepening and we report the
value of the distance ∆ in Algorithm 1, at which we find
a valid Π group. Goals which can be found directly on the
node where the search starts are omitted from the tables. As
number of Π group searched we give the number of Π groups
generated until we find a valid one. We only count unique Π
groups by filtering out equivalent Π groups, e.g., groups where
all the exponents are multiplied by −1. The time reported in
the tables correspond to MPERL-Π running on a single core
of an Intel i7-6920HQ (2.9Ghz) with Debian Linux.

We observe that the synthesis algorithm efficiently explores
the search space of our manipulator designs even though the
designs contain at least 20 and up to 48 parameters. The
running time are low even when the search range span large
portions of the systems. For larger distances, the number of Π
groups considered can grow above 1000 but the local search
usually keeps the number low.

B. End-to-end Case Study

We now present a more detailed end-to-end case study,
including a physical prototype of the single SCARA system as
shown in Figure 1. The arm’s role is to perform pick-and-place
tasks. While performing these tasks, it has to move different

TABLE IV: Dual SCARA arm, dimensional analysis summary.
As the starting node, we use the following numbering: (0)
end effector, (1) revolute joint middle, (2) beams (distal), (3)
revolute joint, (4) beams (proximal), (5) revolute actuators to
anchors. Due to the system’s symmetry, the starting nodes are
only in one half of the system.

Starting Range Π groups Time
Goal node needed searched [s]

Velocity 0 1 93 0.083
2 1 63 0.054
4 1 54 0.053

Momentum 1 1 102 0.032
3 3 531 0.036
5 5 1667 1.356

Acceleration 0 1 93 0.045
2 1 63 0.036
4 1 54 0.060

Angular 1 1 74 0.041
momentum 3 3 361 0.683

5 5 1054 1.210

Flexural modulus 2 2 242 0.398

Torque 3 2 504 0.705
5 5 1382 1.225

TABLE V: CoreXY platform, dimensional analysis summary.
As starting node, we use the following numbering: (0) revolute
actuators, (1-4) pulleys. Due to the system’s symmetry, the
starting nodes are only in one half of the system.

Starting Range Π groups Time
Goal node needed searched [s]

Velocity 0 4 1464 1.302
1 3 662 0.892
2 2 452 0.714
3 1 272 0.352

Acceleration 0 4 1464 1.321
1 3 662 0.912
2 2 452 0.716
3 1 272 0.420

Torque 0 4 1328 1.453
1 3 568 1.032
2 2 398 0.786
3 1 244 0.596

payloads, each with their own weight. The controller must
ensure that the forces on the actuators stay within the oper-
ating ranges specified by the motors’ respective datasheets.
Exceeding these values would result in the arm collapsing in
an uncontrolled way. Therefore, the controller needs a way of
estimating the payload weight before deciding if it can reach
the target location. In Figure 3, we give a visual representation
of the arm’s workspace and how it is affected by the load.

We describe using MPERL-Π from a user’s perspective
and we test two different sensor configurations found by our
algorithm. First, we explain how the sensor configurations
are derived and how the system is calibrated. Ensuing, we
evaluate the measurement errors for the two configurations
and show, that we can estimate the payload’s mass with a
reasonable accuracy. The root-mean-square error is around 5g
for payloads ranging from 40g to 200g.
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The arm consists of two beams (shoulder and elbow), and
two revolute actuators. The shoulder beam is solid, the elbow
beam is allowed to flex and has a load cell embedded. The
load cell is a resistor that changes with its deflection and is
connected to a Wheatstone bridge for measuring the change
in resistance (and therefore, the deflection). Both revolute
actuators are brushed dc motors, equipped with 48 CPR
quadrature encoders and gearboxes; in addition, their electric
current and power are monitored by two INA219B sensors.
Each actuator has a PID controller that follows the trajectory.
The actuators and sensors are build as self contained units
communicating with a central MPERL-Π controller via UART.
The central controller computes trajectories for the overall
system and dispatches commands to the actuator’s controllers.

1) Measurement with the Euler-Bernoulli Beam Model: We
describe how to use the flexural rigidity of the elbow beam
by polling the system for its embedded sensors, creating the
appropriate Π groups and calibrating the resulting equations
by means of reference weights.

We start with a description of the SCARA system from
[12] which already contains a flex sensor. In that work,
the controller was simply adjusting the actuator’s angle to
compensate for the deflection, but this was not tied to any
force. Now we use MPERL-Π to find how to use this sensor
to compute the weight attached to the beam. As we do not
know the equation, we use dimensional function analysis to
synthesize suitable candidate equations. Starting with a local
search of distance 1 from our beam, we get the following
building parts: the beam itself, the effector, and the actuator.
The beam has geometric properties (length, width, height),
the sensor input (an angle) and sensor output (a resistance),
and fabrication dependent parameters like the flexural rigidity
and density. The effector applies a downward force which
is proportional to the attached weight. Finally, the actuator’s
properties are its positions (angle), current, and torque.

From this generated description, we generate the Π groups;
among them, we get the candidate F 1(EI)−1L3d−1 where F
is the force, L length of the beam, EI the flexural rigidity, and
d the deflection. The Π group results in the tentative equation
C = FL3

EId .
It now remains to determine a value for C by calibration. We

move the systems to a known pose where the two actuators
have the angles θ0 = π/4 and θ1 = −π/4. These angles
correspond to the pose where the shoulder beam is vertical
and the elbow beam is horizontal. We attach known reference
weights to the end effector and measure the deflection. To
average out any noise or outliers, we repeat this step 10 times.
Table VI summarizes the parameters and their values subject
to different weights. Using these values we estimate that the
constant C has the value 4.042.

2) Measurement with the Motor Current: Instead of relying
on the flex sensor, we also have the possibility of deducing the
weight by combining the current consumption of the revolute
actuators, the length of the beams, and the known functional
dependency between torque and power consumption from the
motor’s datasheet. Compared to the previous experiment, we
add to the actuator specification a torque vs current diagram
and perform the Π-group generation and calibration again. We

TABLE VI: Deflection measurements and calibration for ref-
erence weights. Each weight was lifted 10 times, the results
are averaged and rounded.

Reference weight [g] deflection [mm] C

0 0.00 –
100 3.58 4.045
140 5.03 4.032
200 7.18 4.044

Average – 4.042

TABLE VII: We measure current, derive force from
torque/ampere curve, and compare it to actual force (measured
via scale). The force columns has the weight equivalent of
the force [g] in parenthesis. The Root-Means-Square Error
(RMSE) w.r.t. the weight in grams is 4.768.

Current [A] Force [N ] Force [N ]
(measured) (calculated) (measured)

0.20 A 0.39 (40) 0.33 (33.9)
0.31 A 0.59 (60) 0.52 (52.7)
0.46 A 0.78 (80) 0.77 (78.16)
0.60 A 0.98 (100) 0.99 (101.94)
0.69 A 1.18 (120) 1.15 (117.24)
0.85 A 1.47 (150) 1.42 (144.42)

now evaluate the accuracy of the sensor’s predictions. Our
model is idealized as it does not take the friction between
the elements into account. Therefore, the system can stabilize
at the same position but with different current consumption
as long as the difference in torque output is smaller than
the gearbox friction. For this experiment, we change the
measurement method. The robot is put into a pose were it
is possible for it to pull a precision spring scale. By pulling
with varying intensity, the current consumption changes and
can be used to draw conclusion about the force exerted (weight
equivalent). In order to measure the error, the actuator pulls
on the spring scale with similar intensity as when using
reference weights and some intermediate values. Table VII
and VIII reports the respective numbers. We observe that the
model’s simplification and change of setting results in small
measurements errors. In the future, we plan to integrate a more
realistic model of physics and try to derive confidence bounds
on the measurements.

TABLE VIII: We measure the deflection when lifting weights,
derive force from the previously calibrated curve, and compare
it to actual force (measured via scale). The force columns
has the weight equivalent of the force [g] in parenthesis. The
RMSE is 6.770 w.r.t to weight in grams.

Deflection [mm] Force [N ] Force [N ]
(calculated) (calculated) (measured)

1.4223 0.39 (40) 0.49 (50)
2.1442 0.59 (60) 0.69 (70)
2.8262 0.78 (80) 0.83 (85)
3.5401 0.98 (100) 1.03 (105)
4.2498 1.18 (120) 1.18 (120)
5.2716 1.47 (150) 1.42 (145)
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V. RELATED WORK

Robotic hardware and software co-design: Mehta et al.
work on robot creation from functional specification [10] is
the closest to our work. The authors synthesize both a robot
and its controller from a Structured English specification of the
robot’s task. The Structured English description is turned into
Linear Temporal Logic (LTL) where the atomic propositions
are actions of the robot. On the controller side, the authors use
reactive synthesis to find a controller. On the physical side,
the authors start with a common platform and add elements
according to the actions: moving requires wheels or legs,
grabbing an object requires a gripper, etc. They rely on a
database mapping words to components, for both, actuators
and sensors.

Campos et al. [13] work on design of modular manipu-
lators to accomplish a given task. Given a task description
with locations to reach and regions to avoid, their algorithm
searches the space of physical design to produce a robot which
accomplishes the task. At the same time they also produce
the control configuration to move the manipulator. They use
a controller based on local feedback similar to [12], and
therefore, could also benefit from the method presented in this
paper to handle a wider range of tasks’ specification.

Dimensional types: On the software side, physical di-
mensions and units integrated into type systems have a long
history [45], [46], [47]. These works use types to check that
program are well-formed and use numbers in a dimensionally
correct way. In this work we use the type information for
synthesis.

Types for synthesis: Type information has also been used
for code completion and synthesis [48], [49]. The synthesis
engine searches for well-typed expressions to fill gaps within
a program. Using richer typing systems [50], e.g. inductive
datatypes and refinement types, it becomes possible to syn-
thesize whole methods like sorting algorithms. Newton [34]
is the only work we know that uses physical information in
the type system for synthesis. We improve over Newton by
having a goal directed search over the system’s components
with the goals initially coming from the need of a controller.

Controller synthesis with partial information: In this
work, the controller is synthesized a priori without restriction.
This may lead to the controller using more information than
strictly necessary. The work on knowledge-based abstraction
and partial information games [51], [52], [32] could be adapted
to help us by finding the controller requiring the least amount
of information. Or we could try, for a given set of sensors, to
find a controller which optimizes the information provided by
the sensors [53].

VI. CONCLUSION AND FUTURE WORK

Inspired by the advances in controller synthesis and compu-
tational fabrication of robotic systems, we have shown how to
apply dimensional analysis to a robot’s physical design to meet
the requirements of an automatically synthesized controller.
We have applied our method to the design of a robotic arm
and shown that it can find two different sensor configurations
and that these sensors provide enough information to estimate
the system’s state.

In the future, we will work on better filtering techniques
to reduce the number of spurious Π groups generated during
the dimensional analysis. This will also allow better scalability,
especially for larger systems. We use a correct by construction
approach for the controller, but we do not consider measure-
ment precision during the search for sensors; also, the state
estimation does not provide any guarantees. We will also
investigate the possibilities of obtaining end-to-end correctness
guarantees about the system.

Furthermore, our method currently is sequential; once a
step is finished, the choices made during that step will not
be changed again. We plan to extend our method with a feed
back loop, which allows for returning information about the
available sensors to the controller synthesis. For instance, if
we fail to find sensors for a quantity, the controller synthesis
would backtrack and try to find a controller which does not
depend on that quantity.
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