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The advent of non-volatile memory (NVM) technologies is expected to transform how software systems

are structured fundamentally, making the task of correct programming significantly harder. This is because

ensuring that memory stores persist in the correct order is challenging, and requires low-level programming

to flush the cache at appropriate points. This has in turn resulted in a noticeable verification gap.

To address this, we study the verification of NVM programs, and present Persistent Owicki-Gries (POG),

the first program logic for reasoning about such programs. We prove the soundness of POG over the recent

Intel-x86 model, which formalises the out-of-order persistence of memory stores and the semantics of the

Intel cache line flush instructions. We then use POG to verify several programs that interact with NVM.
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1 INTRODUCTION

The emergence of non-volatile memory (NVM) technologies [Kawahara et al. 2012; Lee et al. 2009;
Strukov et al. 2008] is expected to revamp the structure of modern software: NVM provides storage
persistency across power failures with performance close to that of traditional (volatile) memory.
As such, programs that require persistency of their data (e.g. databases) can achieve orders of
magnitude lower latency by storing their data on NVM rather than on hard disks. It is therefore
believed that NVM (a.k.a. persistent memory) will supplant RAM in the near future, thanks to
its durable yet competitive performance. This belief is backed by widespread industrial support.
Specifically, the two major architectures, ARMv8 and Intel-x86 which together account for almost
100% of the desktop and mobile market, have extended their official specifications to support
persistent programming [Arm 2018; Intel 2019]. Intel has further (1) manufactured its own line of
NVM, Optane technology [Intel 2019], with an extended academic study evaluating its performance
[Izraelevitz et al. 2019]; and (2) released open-source NVM libraries such as PMDK [Intel 2015].

To describe the behaviour of programs under NVM, Intel has introduced a persistency model for
their x86 architecture [Intel 2019], describing the order in which memory stores may persist to
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NVM. This model was formalised by Raad et al. [2020], wherein they extended the x86-TSO model
[Sewell et al. 2010] (with thread-local buffers to model the delayed propagation of writes to other
threads) with a global persistent buffer to model the out-of-order propagation of stores to NVM.

Although NVM research has grown rapidly in recent years in both persistency semantics [Condit
et al. 2009; Gogte et al. 2018; Izraelevitz et al. 2016; Joshi et al. 2015; Kolli et al. 2017, 2016; Raad and
Vafeiadis 2018; Raad et al. 2020, 2019] and algorithms/libraries that exploit NVM [Friedman et al.
2018; Nawab et al. 2017; Zuriel et al. 2019], there has been little work on verifying such artifacts.
To our knowledge, the existing work [Friedman et al. 2018; Nawab et al. 2017; Raad and Vafeiadis
2018; Raad et al. 2020, 2019; Zuriel et al. 2019] offer low-level proofs about the correctness of small
persistent algorithms and often make simplifying assumptions. In particular, they all work at the
level of traces rather than at the level of program syntax, while [Friedman et al. 2018; Nawab et al.
2017; Zuriel et al. 2019] further assume sequential consistency as their concurrency model.
This is a significant omission because developing correct persistent data structures is rather

error-prone. Since memory stores are typically persisted out of order, one has to use special low-
level instructions for flushing the cache in order to ensure a correct persist ordering. Moreover,
such persistent implementations are virtually impossible to test and debug, as one would have to
use custom hardware to simulate crashes and check correct recovery from them.

To close this gap, we consider the formal verification of (multi-threaded) programs running over
NVM. To this end, we adapt the well-known Owicki-Gries (OG) proof system [Owicki and Gries
1976], and develop POG (Persistent OG), the first program logic for reasoning about NVM programs.
We show that the POG proof system is sound with respect to the Intel-x86 persistency semantics.

We develop POG over Intel-x86 for several reasons. First, Intel-x86 is a ubiquitous architecture
with a formally-defined persistency model [Raad et al. 2020]. Indeed, excluding academic models
proposed as proofs of concept, the only real-world persistency models currently available are
those of low-level architectures, i.e. those of ARMv8 and Intel-x86 [Raad et al. 2020, 2019], and no
existing mainstream programming language such as C/C++ currently has a formal persistency
model. Second, existing research on language-level persistency models (e.g. [Gogte et al. 2020; Kolli
et al. 2017]) suggests that similar persistency primitives to those of Intel-x86 are considered at the
language level, and will likely be lifted to higher-levels. As such, the reasoning principles of POG
will be useful in the future higher-level persistency models. Lastly, POG presents the first formal
framework for reasoning about persistency primitives and their behaviour abstractly, i.e. at the
program syntax level, rather than delving into all possible program executions and reasoning at
the trace level. Given the complexity of the Intel-x86 persistency model, even verifying simple
examples is non-trivial, especially when done at the trace level, and we believe that our syntax-level
proof rules in POG help simplify such proofs significantly.

Challenges. Developing the reasoning principles of POG over the Intel-x86 persistency model
involves two main challenges: (1) dealing with weak memory consistency, i.e. with the thread-local
FIFO buffers of Intel-x86; and (2) dealing with weak persistency, i.e. the persistent buffer of Intel-x86,
which allows for stores to persist asynchronously and out of order.

To address the first challenge, we base our program logic on a variant of OG, named OGRA [Lahav
and Vafeiadis 2015], proved sound under release-acquire consistency (a memory model weaker
than x86-TSO) and thus also sound under the Intel-x86 model as far as consistency is concerned.
To address the second challenge, we develop an intermediate operational model of Intel-x86

persistency, Ix86sim, which forgoes the persistent buffer altogether and operates on the original
x86-TSO model (i.e. with only the thread-local buffers). We show that our Ix86sim model correctly
captures the effect of the Intel-x86’s persistency buffer. That is, the possible outcomes of a program
under the Intel-x86 persistency model with two types of buffers are the same as those under Ix86sim.
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Our next challenge in designing the POG reasoning principles is modelling the behaviour of ex-
plicit persist instructions on Intel-x86, flush and flushopt, which when executed persist all pending
writes on a given cache line to the memory. As we describe shortly in ğ2, flushopt instructions offer
weaker ordering constraints and may be reordered with respect to other instructions more freely.
As such, their effect may not take place at the intended program point, making it more difficult to
reason about their persistency behaviour. To keep the POG reasoning principles simple, we devise
POG to focus only on the stronger flush instructions. We then provide a mechanism to extend our
POG reasoning to weaker flushopt instructions. More concretely, we present a transformation that
allows us in most cases to rewrite a program using flushopt to an equivalent program using flush.
We can then use POG to reason about such programs by first using our transformation to replace
flushopt with flush, and then using POG to verify the transformed program.

Although ourmain contribution is POG, we remark that our Ix86sim model and our transformation
are also valuable contributions per se. Specifically, Ix86sim may serve as the input to automated
verification tools for concurrency, e.g. model checkers, especially those that already support x86-TSO
[Abdulla et al. 2015; Clarke et al. 2004; Huang andHuang 2016]. Our persistency-preserving program
transformation can be used to optimise code (e.g. at compile time) to replace flush with flushopt.

Contributions and Outline. Our contributions (detailed in ğ2) are as follows: (1) in ğ3 we
present POG, the first program logic for verifying persistency guarantees; (2) in ğ4 we use POG to
verify several examples; (3) in ğ5 we present our Ix86sim model and show that it faithfully captures
Intel-x86 persistency; (4) in ğ6 we show the POG is sound with respect to the Ix86sim model; (5) in
ğ7 we present our transformation for rewriting programs with flushopt to equivalent ones with
flush, and show that this transformation is sound. We discuss related and future work in ğ8.

Additional Material. The proofs of all theorems stated in this article are given in full in the
accompanying technical appendix available at http://plv.mpi-sws.org/pog/.

2 OVERVIEW

2.1 Px86sim at a Glance

Memory consistencymodels typically describe the permitted behaviours of programs by constraining
the volatile memory order, i.e. the order in which memory writes are made visible to other threads.
Analogously, memory persistency models [Pelley et al. 2014] describe the permitted behaviours of
programs upon recovering from a crash (e.g. a power failure) by defining a persistent memory order,
i.e. the order in which writes are committed to persistent memory. To distinguish between the
two memory orders, memory stores are differentiated from memory persists. The former denotes
the process of making a write visible to other threads, whilst the latter denotes the process of
committing writes durably to persistent memory.
Raad et al. [2020] recently developed the Px86 (‘persistent x86’) models, formalising the per-

sistency semantics of the Intel-x86 architecture. As they noted, the Intel manual [Intel 2019] is
ambiguous at times and allows for weaker behaviours than originally intended. They thus formu-
lated two persistency models: (1) Px86man, which reflects the behaviour outlined in the manual; and
(2) Px86sim, which is a strengthening of Px86man and captures the architectural intent. As Px86sim
reflects the architectural intent, in this article we focus on the Px86sim model.

The Px86sim model follows a buffered, relaxed persistencymodel. Under a bufferedmodel, memory
persists occur asynchronously [Condit et al. 2009; Izraelevitz et al. 2016; Joshi et al. 2015]: they are
buffered in a queue to be committed to persistent memory at a future time. This way, persists occur
after their corresponding stores and as prescribed by the persistent memory order, while allowing
the execution to proceed ahead of persists. As such, after recovering from a crash, only a prefix
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x:= 1;

y:= 1;

(a)

x:= 1;

flush x ′;

y:= 1;

(b)

x:= 1;

flushopt x
′;

y:= 1;

(c)

x:= 1;

flushopt x
′;

sfence;

y:= 1;

(d)

x:= 1;

flush x ′;

y:= 1;

a:= y ;

if (a=1)

z:= 1;

(e)

 : x , y ∈ {0, 1}  : y=1 ⇒ x=1  : x , y ∈ {0, 1}  : y=1 ⇒ x=1  : z=1 ⇒ x=1

Fig. 1. Example Px86sim programs and possible values upon recovery; in all examples x , y , z are locations in

persistent memory, a is a (local) register, x , x ′∈X (x , x ′ are in cache line X ), y, z ∉X , and initially x=y=z=0.

Replacing the sfence instruction in (d) with mfence or an atomic RMW yields the same result. Similarly,

replacing flush 𝑥 ′ in (e) with flushopt 𝑥
′; c yields the same result when c is an sfence/mfence or an RMW.

of the persistent memory order may have successfully persisted. Under relaxed persistency, the
volatile and persistent memory orders may disagree: the order in which the writes are made visible
to other threads may differ from the order in which they are persisted.
The relaxed and buffered persistency of Px86sim is demonstrated in Fig. 1a. If a crash occurs

during (or after) the execution of this program, at crash time either write may or may not have
persisted and thus x , y ∈ {0, 1} upon recovery. The relaxed nature of Px86sim allows for surprising
behaviours that are not possible during normal (non-crashing) executions. Specifically, the two
writes cannot be reordered under Intel-x86 and thus at no point during the normal execution of
this program x=0, y=1 is observable. Nevertheless, in case of a crash it is possible under Px86sim to
observe x=0, y=1 after recovery. This is due to the relaxed persistency of Px86sim: the store order
(x before y ) is separate from the persist order (y before x ). Under the Px86sim model the writes may
persist (1) in any order, when they are on distinct locations; or (2) in the volatile memory order,
when they are on the same location. That is, for each location, its store and persist orders coincide.

Intel-x86 provides explicit persist instructions, flush x , flushopt x and wb x , in order to afford
more control over when pending writes are persisted. When executed, these instructions asyn-
chronously persist all pending writes on all locations in the cache line of x [Intel 2019]. That is,
when location x is in cache lineX , written x ∈X , an explicit persist on x persists all pending writes
on all locations x ′∈X . As noted by Raad et al. [2020], flush instructions are the strongest of the
three in terms of their constraints on instruction reordering, whereas flushopt and wb are equally
weak and have the same specification, withwb providing better performance than flushopt. That is,
flushopt and wb are indistinguishable under Px86sim. As such, in the remainder of our discussion
we focus on flush and flushopt instructions and describe their behaviour via several examples.

The persistency behaviour of flush is illustrated in Fig. 1b: given x , x ′∈X , executing flush x ′

persists the earlier write on X (i.e. x:= 1). As such, if a crash occurs during the execution of this
program and 𝑦=1 upon recovery, then x=1. That is, if y:= 1 has executed and persisted before
the crash, then so must the earlier x:= 1;flush x ′. This is guaranteed by the ordering constraints
on flush: flush instructions are ordered with respect to both earlier (in program order) and later
writes. Hence, flush x ′ in Fig. 1b cannot be reordered with respect to x:= 1 or y:= 1. As such,
upon recovery 𝑦=1⇒ x=1. Note that flush x persists X asynchronously: its execution does not
block until X is persisted; rather, the execution proceeds and X is made persistent at a future point.
In contrast to flush, flushopt instructions provide weaker ordering guarantees in relation to

writes, in that they are only ordered with respect to earlier writes on the same cache line. This
is illustrated in the example of Fig. 1c obtained from that in Fig. 1b by replacing flush 𝑥 ′ with
flushopt 𝑥

′. Unlike in Fig. 1b, theflushopt 𝑥
′ instruction is not ordered with respect to the later write

(𝑦:= 1) and may thus be reordered after it. As such, flushopt 𝑥
′ may not execute at the intended

program point (after 𝑥:= 1 and before 𝑦:= 1) and thus may not guarantee the intended persist
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Fig. 2. Storage subsystems of x86-TSO (a) and Px86sim (b) as depicted in [Raad et al. 2020]

ordering. That is, unlike in Fig. 1b, the flushopt 𝑥
′ instructions does not guarantee that the 𝑥:= 1

write persists before 𝑦:= 1, and is thus possible to observe 𝑥=0 ∧ 𝑦=1 upon recovery.
In order to prevent such reorderings and to strengthen the ordering constraints between flushopt

and later instructions, one can use either fence instructions, namely sfence (store fence) and
mfence (memory fence), or atomic read-modify-write (RMW) instructions such as compare-and-set
(CAS) and fetch-and-add (FAA). More concretely, sfence, mfence and RMW instructions are
ordered with respect to all (both earlier and later) flushopt, flush and write instructions, and can
be used to prevent reorderings such as that in Fig. 1c. This is illustrated in the example of Fig. 1d
obtained from Fig. 1c by inserting an sfence afterflushopt. Unlike in Fig. 1c, the intervening sfence
ensures that flushopt in Fig. 1d is ordered with respect to y:= 1 and cannot be reordered after it,
thus ensuring that 𝑥:= 1 persists before 𝑦:= 1 (i.e. 𝑦=1 ⇒ 𝑥=1 upon recovery), as in Fig. 1b.

The example in Fig. 1e illustrates how persist orderings can be imposed on the writes of different
threads using message passing. Note that the program in the left thread of Fig. 1e is that of Fig. 1b.
A message is passed from thread 𝜏1 to 𝜏2 when 𝜏2 reads a value written by 𝜏1. For instance, if the
right thread in Fig. 1e reads 1 from y (written by the left thread), then the left thread passes a
message to the right thread. Under Intel-x86 message passing ensures that the instruction writing
the message and all those ordered before it (e.g. x:= 1;flush x ; y:= 1) are executed (ordered)
before the instruction reading it (e.g. a:= y). As such, since x:= 1;flush x ′ is executed before
a:= y , and z:= 1 is executed after a:= y when a=1, we know x:= 1;flush x ′ is executed before
z:= 1. Consequently, if upon recovery z=1 (i.e. z:= 1 has persisted before the crash), then x=1

(x:= 1;flush x ′ must have also persisted before the crash). As before, replacing flush 𝑥 ′ in Fig. 1e
with flushopt 𝑥

′; c yields the same result upon recovery when c is an sfence/mfence or an RMW.
Lastly, observe that flush/flushopt instructions impose a particular persist ordering. Given x ∈X ,

all writes on X ordered before flush x /flushopt x persist before all instructions (regardless of their
cache line) ordered after flush x . For instance, since x:= 1 in Fig. 1b is ordered before flush x ′, and
flush x ′ is ordered before y:= 1, the x:= 1 write is guaranteed to persist before y:= 1. Similarly,
as x:= 1 in Fig. 1d is ordered before flushopt x

′ which is in turn ordered before y:= 1 (thanks to
the intervening sfence), the x:= 1 write is guaranteed to persist before y:= 1.

The Operational Px86sim Model. Raad et al. [2020] developed their operational Px86sim model
as an extension of the x86-TSO model by Sewell et al. [2010]. As illustrated in Fig. 2a, each thread
in x86-TSO is connected to the (volatile) memory via a FIFO buffer. When a thread writes value 𝑣 to
location x , it records it in its buffer as the ⟨x , 𝑣⟩ entry. When a thread reads from x , it first consults
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its own buffer. If it contains buffered writes for x , the thread reads the last such buffered write;
otherwise, it consults the memory. Threads can debuffer their writes by propagating them (in FIFO
order) to the memory at non-deterministic times. Additionally, the execution of a memory fence
mfence drains the buffer of the executing thread.
To model the buffered persists of Px86sim, Raad et al. [2020] extended the x86-TSO storage sub-

system with a persistent buffer as depicted in Fig. 2b, containing those writes that are pending to be
persisted to the (non-volatile) memory. As with the memory, the persistent buffer is accessible by all
threads. However, while the memory is non-volatile, the persistent buffer is volatile and its contents
are lost upon a crash. When writes in the thread-local buffer are debuffered, they are propagated
to the persistent buffer, denoting the store of the write (i.e. when the write becomes visible to
other threads). Pending writes in the persistent buffer are in turn debuffered and propagated to
the memory at non-deterministic times, denoting the persist of the write (i.e. when the write is
committed durably to memory). The execution of reads accordingly traverses this hierarchy: when
reading from x , the thread first inspects its own local buffer for the last write to x when such a
write exists; otherwise, it consults the persistent buffer for the last store to x if such a store exists;
otherwise, it reads x from the memory. Recall that the writes on distinct locations may persist in
any order, whereas the writes on the same location persist in the store order. To capture this, the
persistent buffer is modelled as a queue, where the pending writes on each location are propagated
in the FIFO queue order, while those on different locations are propagated in an arbitrary order.

2.2 Eliminating flushopt Instructions via Program Transformation

As discussed above, the flushopt instructions provide weaker ordering constraints and can be
reordered e.g. with respect to writes on different cache lines. While this flexibility may in certain
cases lead to better performance by affording the compiler more optimisation opportunities through
reordering, it significantly complicates the task of reasoning about persistency behaviours. In
particular, the weak ordering constraints on flushopt can lead to unintended persistency behaviours
such as that in Fig. 1c (where it is possible to observe x=0 ∧ y=1 upon recovery), and to ensure
correct persistency one must thus account for all possible such reorderings. It is therefore simpler
to limit our reasoning to programs that solely use the stronger flush instructions.

As such, in order to support reasoning about the weaker flushopt instructions while simultane-
ously keeping our reasoning principles simple, we first (1) devise a mechanism that in most cases
allows us to transform programs using flushopt to equivalent programs that only use flush; and
then (2) design our POG reasoning principles for programs that only use flush instructions.

More concretely, for step (1) we note that the main use-case of flushopt (in which using flushopt

rather than flush may prove advantageous for performance) prescribes a particular programming
pattern. We then show that given a program C that uses flushopt in this pattern, one can transform
C to a program C′ that uses only flush instructions, such that C and C′ have equivalent persistency
behaviours, in that they yield the same values for all memory locations upon crash recovery.

Note that our intent through this transformation is not to forgo flushopt instructions altogether;
rather, this transformation merely allows us to extend our reasoning to programs that use flushopt

by considering equivalent programs using flush, while keeping our reasoning principles simple.
We present the formal details of this transformation in ğ7; in the remainder of this section and

in ğ3-ğ6 we thus focus on programs using only flush (and not flushopt) instructions.

2.3 An Intermediate Operational Model for Px86sim

Our goal in this paper is to devise a program logic for reasoning about the persistency behaviour of
programs under Px86sim. Although program logics are typically built over operational models that
manipulate the underlying state, such operational models often operate on states that comprise the
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memory alone, without intermediate caches such as those of thread-local and persistent buffers in
Px86sim. This is because a large number of such logics operate under sequential consistency (SC)
[Lamport 1979], while the presence of such caches introduces weak behaviours absent under SC.
To remedy this, recent research [Lahav and Vafeiadis 2015; Sieczkowski et al. 2015; Svendsen et al.
2018; Turon et al. 2014; Vafeiadis and Narayan 2013] demonstrates how to reason about the weak
behaviours introduced by e.g. thread-local buffers (see ğ2.4). However, no existing work currently
supports the challenging task of reasoning about the persistency behaviour of programs. The
difficulty of such reasoning is further compounded when considering the buffered behaviour of
persists due to e.g. the persistent buffer of Px86sim.

To streamline the task of devising a program logic for Px86sim, we first (1) develop an intermediate

operational semantics, Ix86sim, that forgoes the persistent buffer, while emulating all valid Px86sim
behaviours; and then (2) devise a program logic for persistency reasoning over Ix86sim. We proceed
with an intuitive account of our Ix86sim model; we briefly describe our program logic later in ğ2.4.

As discussed above, in our Ix86sim model we forgo the persistent buffer altogether, thus operating
on the x86-TSO storage system in Fig. 2a, with the volatile memory replaced with a non-volatile
one. For simplicity, let us begin by assuming that flush instructions are executed synchronously.
We later lift this assumption and describe how we handle the asynchronous behaviour of flush.

Recall that under Px86sim the store and persist orders may disagree; i.e. the order in which
writes in thread buffers are debuffered may differ from the order in which they are debuffered
from the persistent buffer. As such, when forgoing the persistent buffer, additional care is required
to preserve such weak behaviours. To see this, let us return to Fig. 1a, where x:= 1 is always
store-ordered before y:= 1, while y:= 1 may be persist-ordered before x:= 1. We can then model
the store order as in x86-TSO: upon executing each write the thread adds it to its local buffer,
and non-deterministically debuffers its entries in the FIFO order, thus ensuring x:= 1 is store-
ordered before y:= 1. However, without the additional persistent buffer, we can no longer model
the out-of-order persists.

To remedy this, for each location x we record two versions: (1) the ‘volatile’ version, written xv,
tracking the latest observable value of x ; and (2) the ‘synchronously-persisted’ (‘synchronous’) ver-
sion, written xs, tracking the latest persisted value of x provided thatflush instructions are executed
synchronously. Memory instructions (e.g. writes) are then carried out on volatile versions, leaving
the synchronous versions untouched. Moreover, the volatile versions may non-deterministically
propagate to the corresponding synchronous versions, modelling the notion that writes may be
committed to memory at non-deterministic times. Similarly, since we assume flush instructions
execute synchronously, given x ∈ X , executing flush x copies x ′

v
to x ′

s
, for all x ′ ∈ X .

Let us return to Fig. 1a and write x=𝑣 to denote that the latest value observable for x is 𝑣 ; i.e.
either the thread buffer contains no x entries and the value of x in memory is 𝑣 , or the latest x
entry in the thread buffer is ⟨x , 𝑣⟩. Similarly, let us write x ∈ {𝑣1, 𝑣2} for x=𝑣1 ∨ x=𝑣2. Therefore:

(i) we assume that initially xv=xs=yv=ys=0;
(ii) after executing x:= 1 we have: xv=1 ∧ xs ∈ {0, 1} ∧ yv=ys=0;
(iii) upon subsequently executing y:= 1 we have: xv=1 ∧ xs ∈ {0, 1} ∧ yv=1 ∧ ys ∈ {0, 1}.

Note that since initially xs=0 and the value of xv may be copied to xs non-deterministically, we
must account for this propagation in (ii) and thus we have xs ∈ {0, 1}; similarly for ys in (iii). As
such, at all program points ((i)ś(iii)) we have xs, ys ∈ {0, 1}. That is, if a crash occurs at any point,
upon recovery we have xs, ys ∈ {0, 1}, thus emulating the desired behaviour in Fig. 1a.
We can analogously emulate the behaviour of Fig. 1b:

(a) we assume that initially xv=xs=yv=ys=0;
(b) after executing x:= 1 we have: xv=1 ∧ xs ∈ {0, 1} ∧ yv=ys=0;
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(c) after executing flush x we have: xv=xs=1 ∧ yv=ys=0;
(d) upon subsequently executing y:= 1 we have: xv=xs=1 ∧ yv=1 ∧ ys ∈ {0, 1}.

That is, executing flush x (c) copies xv to xs, and thus we have ys=1⇒xs=1 at all program points.

Modelling the Asynchronous Behaviour of flush. As we demonstrated above, tracking the
synchronous version of locations (e.g. xs) allows us to capture the necessary persist orderings (e.g.
that xs persists before ys). However, as flush instructions execute asynchronously, synchronous
versions do not accurately capture the memory state upon a crash. For instance, if a crash occurs
after flush x ′ is executed (but not yet fully completed) in Fig. 1b, unlike what we wrote in (c) and
(d) above, x may not necessarily contain 1. To address this, for each location x we record a third,
persisted version, written xp, denoting the latest persisted value of x (without assuming flush

instructions are executed synchronously).
Intuitively, there is a chronological order on different versions of a location x : xp → xs → xv,

in that while xp reflects the last persisted value of x in memory, xs and xv denote later updates
on x that are yet to be persisted, with xv describing the latest such update. As discussed, xv may
non-deterministically be copied to xs, allowing xs to catch up with xv. Intuitively, this amounts to a
pending write on x (in the persistent buffer) being committed to memory. Analogously, the effect
of asynchronous flush instructions may take effect at non-deterministic times. We may thus be
inclined to copy xs to xp non-deterministically, allowing xp to catch up with xs. However, this is too
weak. To see this, let us extend the (a)ś(d) steps of Fig. 1b with xp and yp constraints (highlighted):

(a’) xv=xs=xp=yv=ys=yp=0

(b’) xv=1 ∧ xs, xp ∈ {0, 1} ∧ (xp=1 ⇒ xs=1) ∧ yv=ys=yp=0

(c’) xv=xs=1 ∧ xp ∈ {0, 1} ∧ yv=ys=yp=0

(d’) xv=xs=1 ∧ yv=1 ∧ xp, ys, yp ∈ {0, 1} ∧ (yp=1 ⇒ ys=1)

First, note that (xp=1 ⇒ xs=1) in (b’) captures the chronological order between xs and xp: xs may
be copied to xp and thus if xp=1 then xs=1; similarly for (yp=1 ⇒ ys=1) in (d’). Second, note that
xp and yp are our main interest as they denote the latest persisted values of x and y . We are hence
interested in establishing yp=1 ⇒ xp=1 at all program points, thus modelling the desired behaviour
in Fig. 1b. This is, however, not the case as (d’) allows yp=1 ∧ xp=0.

To remedy this, we require that the non-deterministic copying of synchronous values to persisted
ones be carried out for all locations at once, and not a single location. In doing so, we ensure that
yp=1 ⇒ xp=1 holds at (d’), as desired. Intuitively, this captures the global persist orderings imposed
by flush. In particular, recall that when x ∈X , all X writes ordered before flush x persist before
all instructions ordered after flush x . As such, upon propagating a write to the persistent memory,
i.e. copying some ys to yp, we must ensure that the effects of each prior flush x is completed in
that its preceding writes on X have also reached the memory. This amounts to (simultaneous)
copying of xs to xp for x ∈X (since each prior flush on X has copied xv to xs for x ∈X ).
In summary, in our Ix86sim model: (1) memory operations on x (reads/writes) manipulate xv;

(2) when x ∈ X , flush x copies x ′
v
to x ′

s
for every x ′∈ X ; (3) xv may be copied to xs non-deter-

ministically; and (4) xs may be point-wise copied to xp non-deterministically, where xs denotes all
synchronous locations and xp denotes the corresponding persistent ones.

2.4 POG: Persistent Owicki-Gries Reasoning

Having forgone the need for persistent buffers through our Ix86sim operational model, our next
goal is to devise a program logic for persistency reasoning over Ix86sim which operates on the
x86-TSO storage system in Fig. 2a. As mentioned in ğ2.3, our next challenge is accounting for the
weak behaviours caused by the thread-local buffers in x86-TSO. Fortunately, existing work [Lahav
and Vafeiadis 2015; Sieczkowski et al. 2015; Svendsen et al. 2018; Turon et al. 2014; Vafeiadis and
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Narayan 2013] demonstrate how existing program logics for SC can be adapted to reason about
such weak behaviours. Here, we follow the simple approach of [Lahav and Vafeiadis 2015], which
demonstrated how Owicki-Gries (OG) reasoning [Owicki and Gries 1976] can be adapted to reason
about the release-acquire fragment of the C11 memory model [Lahav et al. 2017].

OG Reasoning. As in Hoare logic, the basic constructs in OG are Hoare triples of the form
{

𝑃
}

C
{

𝑄
}

, where 𝑃 and𝑄 are assertions (sets of states) describing the pre- and post-condition of program
C. OG reasoning extends the proof rules of Hoare logic with a rule to reason about concurrent
programs of the form C1 | |C2, which allows one to compose the verified programs C1 and C2 into
a verified concurrent program, provided that the two proofs are non-interfering:

{

𝑃1
}

C1

{

𝑄1

} {

𝑃2
}

C2

{

𝑄2

}

two proofs are non-interfering
{

𝑃1 ∧ 𝑃2
}

C1 | |C2

{

𝑄1 ∧𝑄2

}

As such, OG is often deemed non-compositional as it refers to non-interference of proof outlines that
cannot be checked based solely on the two input triples. However, as demonstrated in [Lahav and
Vafeiadis 2015], presenting OG in the rely-guarantee (RG) [Jones 1983] style allows compositional
reasoning. In this presentation, Hoare triples are interpreted under an RG context, ⟨R;G⟩. The rely
component, R, comprises a set of assertions assumed to be stable under memory updates carried
out by the environment (i.e. other threads). The guarantee component, G, in turn comprises a set
of guarded updates that the thread may perform. A guarded update is of the form ⟨x , e, 𝑃⟩, stating
that when the program state satisfies the guard 𝑃 , then the thread may update x to e.

An RG-style OG triple is of the form ⟨R;G⟩ ⊢
{

𝑃
}

C
{

𝑄
}

, stating that: (1) every terminating run
of C from a state in 𝑃 results in a state in 𝑄 ; (2) C updates the state in accordance with G while
satisfying the prescribed guards; and (3) the same holds when C is run in parallel with any program
C′ whose updates preserve the assertions in R. We can then rewrite the parallel composition rule in
the RG-style as shown in Fig. 3 (par), requiring that the RG contexts of the proofs be non-interfering.
That is, every update of C1 in G1 preserves every assertion in R2, and vice versa.

Invariant-based Reasoning. A main advantage of Hoare logic and its descendants such as OG
is their support for compositional reasoning: once we verify the behaviour of a small program C,
we can use its specification to verify larger programs that use C. For instance, having established
{

𝑃
}

C
{

𝑄
}

, we can then use it to verify the larger program C′
≜ C;C′′. That is, it suffices to find

𝑄 ′ such that
{

𝑄
}

C′′
{

𝑄 ′
}

, as we can then compose the two triples to derive
{

𝑃
}

C′
{

𝑄 ′
}

. In other
words, this allows us to treat C as a black box, jumping over its body and assuming 𝑄 at the end.

However, this is no longer the case in the persistent setting: as the execution of C may crash,
we cannot assume that its execution completed successfully and that 𝑄 describes the state on
its completion. Rather, we must account for the possibility of C crashing at any point during its
execution. As such, the state upon returning from C (either due to a crash or after successful
completion) is that described by the disjunction (union) of states at each program point. To keep
our presentation simple, we typically define an invariant, 𝐼 , that holds at all program points, and
could simply be defined as the disjunction of all states. Intuitively, 𝐼 corresponds to the persistency
behaviour we seek to establish, e.g. y=1 ⇒ x=1 in Fig. 1b. At each program point we can still
strengthen 𝐼 by adding additional conjuncts. However, when C is used in the larger context of C′,
we can simply treat its specification as

{

𝐼
}

C
{

𝐼
}

. Note that this is a generalisation of the approach

in [Chen et al. 2015], where Hoare triples are of the form
{

𝑃
}

C
{

𝑄
}{

𝐼
}

, with 𝑄 denoting the
non-crashing postcondition that holds once C executes successfully, and 𝐼 denoting the crashing
postcondition that holds in case of a crash, and is itself typically defined as a disjunction of
postconditions at each point. As such, the overall postcondition of C is described by 𝑄 ∨ 𝐼 .
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Stability. Recall that under Ix86sim, xv may be non-determi-nistically copied to xs for each
location, while xs may in turn be non-deterministically copied to xp for all locations at once. As
such, we stipulate that the assertions used in our proofs be stable with respect to these propagations.
In particular, we require that for all x : 𝑃 ⇒ 𝑃 [xv/xs]; i.e. if 𝑃 holds beforehand, it should still hold

after xv is propagated to xs. Analogously, we require that for all x : 𝑃 ⇒ 𝑃 [xs/xp].

POG Reasoning. We develop the POG (‘persistent Owicki-Gries’) logic for reasoning about
persistency behaviours of programs under Px86sim. We formulate POG as an extension of OG, and
build it over our Ix86sim model. We present the formal details of POG in ğ3. Here we introduce
POG by verifying the example in Fig. 1b. Later in ğ4 we verify several other examples in POG.
Recall that our goal is to devise an invariant 𝐼 that holds at all program points in Fig. 1b. In

particular, we are interested in establishing 𝐼 ≜ yp=1 ⇒ xp=1, as shown in Fig. 1b. As discussed,
memory operations (e.g. writes) on x in Ix86sim manipulate the xv location. This is reflected in the
(write) rule in Fig. 3, stating that when executing x:= e, the postcondition 𝑄 is obtained from the
precondition 𝑃 by substituting the new value e for xv. Analogously, the (flush) proof rule in Fig. 3
states that when executing flush x , the postcondition 𝑄 is obtained from the precondition 𝑃 by
copying x ′

v
to x ′

s
for every x ′ in the cache line of x . As such, assuming that initially all locations

hold 0 and that x and x ′ are in the same cache line, we can verify the program in Fig. 1b as follows:

{

𝐼 ∧ xv=xs=xp=0 ∧ yv=ys=yp=0
}

x:= 1;
{

𝐼 ∧ xv=1 ∧ xs, xp ∈ {0,1} ∧ yv=ys=yp=0
}

flush x ′;
{

𝐼 ∧ xv=xs=1 ∧ xp ∈ {0,1} ∧ yv=ys=yp=0
}

y:= 1;
{

𝐼 ∧ xv=xs=1 ∧ yv=1 ∧ xp, ys, yp ∈ {0, 1}
}

Note that as the program in Fig. 1b is sequential, we define the RG context as ⟨⊤;⊤⟩; i.e. the
environment must preserve all assertions (R=⊤), and the program may perform any assignment
(G=⊤). For simplicity, we have elided the RG context above. Observe that although x:= 1 solely
manipulates xv and in its precondition we have xs=xp=0, after its execution we weakened the
postcondition to xs, xp ∈ {0, 1}. This is to ensure that the postcondition is stable since the value of
xv (i.e. 1) may non-deterministically propagate to xs (and subsequently from xs to xp), as discussed
above. Moreover, when analogously stabilising the post-condition of y:= 1, we must propagate
both xs to xp and ys to yp simultaneously, thus ruling out xp=0, yp=1 (as xs=1) and establishing 𝐼 .

3 THE POG PROGRAM LOGIC

POG Language. The POG language given below is that of Px86sim in [Raad et al. 2020] excluding
flushopt. We assume a finite set Loc of memory locations; a finite set Reg of (local) registers; a
finite set Val of values; a finite set TId of thread identifiers; any standard interpreted language for
expressions containing registers and values; and a finite set CL of cache lines partitioning locations
(Loc= ⊎ CL). We use x , y , z as metavariables for locations; a, b, c for registers; 𝑣 for values; 𝜏 for
thread identifiers; e for expressions; and X for cache lines.

SCom∋c ::= skip | while(e) c | if (e) then c1else c2 | c1; c2 | a:= e | a:= x | x:= e

| flush x | sfence | mfence | a:= CAS(x , e1, e2) | a:= FAA(x , e)

Com∋C ≜ TId
fin
→ SCom
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⟨{𝑃}; ∅⟩ ⊢
{

𝑃
}

skip
{

𝑃
} (skip)

𝑃 ⇒ 𝑄 [e/a]

⟨{𝑃,𝑄}, ∅⟩ ⊢
{

𝑃
}

a:= e
{

𝑄
} (assign)

𝑃 ⇒ 𝑄 [xv/a]

⟨{𝑃,𝑄}, ∅⟩ ⊢
{

𝑃
}

a:= x
{

𝑄
} (read)

𝑃 ⇒ 𝑄 [e/xv]

⟨{𝑃,𝑄}, {⟨xv, e, 𝑃⟩}⟩ ⊢
{

𝑃
}

x:= e
{

𝑄
} (write)

𝑃 ⇒ 𝑄 [xv/a] [xv+e/xv]

⟨{𝑃,𝑄}, {(xv, xv+e, 𝑃)}⟩ ⊢
{

𝑃
}

a:= FAA(x , e)
{

𝑄
} (faa)

𝑃 ∧ xv≠e1 ⇒ 𝑄 [xv/a]

𝑃 ∧ xv=e1 ⇒ 𝑄 [e1/a] [e2/xv]

⟨{𝑃,𝑄}, {⟨xv, e2, 𝑃 ∧ xv=e1⟩}⟩ ⊢
{

𝑃
}

a:= CAS(x , e1, e2)
{

𝑄
} (cas)

x ∈X X = {x1 . . . x𝑛}

𝑃 ⇒ 𝑄 [x1v /x
1
s . . . x𝑛v /x

𝑛
s ]

⟨{𝑃,𝑄}, ∅⟩ ⊢
{

𝑃
}

flush x
{

𝑄
} (flush)

⟨R1;G1⟩ ⊢
{

𝑃
}

c1

{

𝑅
}

⟨R2;G2⟩ ⊢
{

𝑅
}

c2

{

𝑄
}

⟨R1 ∪ R2;G1 ∪ G2⟩ ⊢
{

𝑃
}

c1; c2
{

𝑄
} (seq)

⟨R;G⟩ ⊢
{

𝑃 ∧ e≠0
}

c1

{

𝑄
}

⟨R;G⟩ ⊢
{

𝑃 ∧ e=0
}

c2

{

𝑄
}

⟨R ∪ {𝑃};G⟩ ⊢
{

𝑃
}

if (e) then c1 else c2

{

𝑄
} (ite)

𝑃 ∧ e=0 ⇒ 𝑄

⟨R;G⟩ ⊢
{

𝑃 ∧ e≠0
}

c
{

𝑃
}

⟨R ∪ {𝑄};G⟩ ⊢
{

𝑃
}

while(e) c
{

𝑄
} (while)

𝑃⇒𝑃 ′ R ′⊆ R G′⊆ G 𝑄 ′⇒𝑄

⟨R ′;G′⟩ ⊢
{

𝑃 ′
}

C
{

𝑄 ′
}

⟨R ∪ {𝑃,𝑄};G⟩ ⊢
{

𝑃
}

C
{

𝑄
} (conseq)

⟨R1;G1⟩ ⊢
{

𝑃1
}

C1

{

𝑄1

}

⟨R2;G2⟩ ⊢
{

𝑃2
}

C2

{

𝑄2

}

⟨R1;G1⟩ and ⟨R2;G2⟩ are non-interfering

𝑄1 ∧𝑄2 ⇒ 𝑄 fr(R1,C1) ∩ wr(C2)=∅ fr(R2,C2) ∩ wr(C1)=∅

⟨R1 ∪ R2 ∪ {𝑄};G1 ∪ G2⟩ ⊢
{

𝑃1 ∧ 𝑃2
}

C1 | |C2

{

𝑄
} (par)

𝑃 ⇒ 𝑃 ′ ⟨⊤;⊤⟩ ⊢
{

𝑃 ′
}

C
{

𝑄 ′
}

⟨⊤;⊤⟩ ⊢
{

𝑅
}

Crec

{

𝑄 ′
}

𝑄 ′⇒ 𝑄 𝑄 ′⇒ ∃𝑣 .𝑅 [𝑣/a] [xp/xs] [xp/xv]

Crec ⊢
{

𝑃
}

C
{

𝑄
} (rec)

Fig. 3. POG proof rules with the implicit assumption that the pre- and post-conditions are stable (Def. 2).

The sequential fragment of the language is given by the c grammar and includes the standard
constructs of skip, loops, conditionals and sequential composition, as well as local variable assign-
ment (a:= e), memory read from location x (a:= x ), memory write to x (x := e), memory persist
(flush x ), store fence (sfence), memory fence (mfence) and atomic RMW (read-modify-write)
instructions. The RMW instruction a:= CAS(x , e1, e2) denotes the atomic ‘compare-and-swap’,
where the value of x is compared against e1: if the values match then x is set to e2 and 1 is returned
in a; otherwise x is left unchanged and 0 is returned in a. Analogously, a:= FAA(x , e) denotes the
atomic ‘fetch-and-add’, where x is incremented by e and its old value is returned in a. Lastly, we
model a multi-threaded program C as a function mapping each thread to its (sequential) program.
We write C=c1 | | · · · | | c𝑛 when dom (C)={𝜏1 · · · 𝜏𝑛} and C(𝜏𝑖 )=c𝑖 , and write C1 | | C2 for C1 ⊎ C2.
We lift a sequential program c to a program in Com and simply write c for C ≜ [𝜏 ↦→ c].

Instrumented Locations. Recall from ğ2 that in order to reason about the persistency be-
haviours of programs, we instrument the memory to track three separate versions for each memory
location. To this end, we define the set of instrumented locations as ILoc ≜

{

xv, xs, xp x ∈ Loc
}

,
and define an instrumented memory, IM : IMem, as a finite map from instrumented locations to

values: IMem : ILoc
fin
→ Val. As discussed in ğ2, for each memory location x :

(1) IM(xv) denotes the volatile value of x , i.e. the value observed for x during the execution;
(2) IM(xs) denotes the synchronously persisted value of x , i.e. the value observed for x after a crash,

had the flush instructions executed synchronously; and
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(3) IM(xp) denotes the persistent value of x , i.e. the value observed for x after a crash.

Intuitively, IM(xp) reflects the current value of x in memory, while IM(xv) and IM(xs) record
additional information that enables persistent reasoning, as discussed in ğ2.

Assertions. The POG assertions represent sets of states in our Ix86sim semantics. Our assertion
language is that of first order logic with equality and i) three constant symbols xv, xs, xp for each
location x ; ii) a constant symbol a for each register; and iii) a constant symbol 𝑣 for each value.

3.1 The POG Proof System

The POG triples are of the form: ⟨R;G⟩ ⊢
{

𝑃
}

C
{

𝑄
}

, stating that: (1) the persistent parts of 𝑄
(describing persistent versions of variables, e.g. xp) are invariant throughout the execution of C;
(2) every terminating run of C from a state in 𝑃 results in a state in 𝑄 ; (3) C updates the state in
accordance with G while satisfying the prescribed guards; and (4) the above holds when C is run in
parallel with any program C′, provided that the C′ updates preserve the assertions in R. That is,
while the persistent parts of 𝑄 hold at all points during the execution of C, those parts describing
register values and volatile/synchronous versions hold only when C terminates successfully.

POG Proof Rules. We present the POG proof rules in Fig. 3. Ignoring the (rec) rule at the bottom,
most rules remain largely unchanged from their OG counterparts and are merely adapted to
RG-style as in [Lahav and Vafeiadis 2015]. Intuitively, the pre- and post-conditions of triples are
accumulated in the rely component R to ensure they remain stable (invariant) under the updates
performed by other threads. Conversely, each time a thread updates a location x via (write), (cas)
and (faa), this is recorded in its guarantee component G with the corresponding precondition.
Moreover, the (read), (write), (cas) and (faa) rules accessing memory location x have been
accordingly adjusted to access the latest value of x , namely that in xv.
As discussed in ğ2.3, when x ∈X , flush x propagates the latest persist-pending value of each

x ′∈X to memory. This is reflected in the 𝑃 ⇒ 𝑄 [x 1

v
/x 1

s
. . . x𝑛

v
/x𝑛

s
] premise of the (flush) rule.

The (par) rule describes the concurrent execution C1 | |C2, where the non-interference premise
ensures that C1 and C2 do not interfere with one another. Intuitively, C1 and C2 are non-interfering
iff each update performed by C1 preserves the state assumptions of C2, and vice versa. Put formally,
when C1 and C2 are respectively run under contexts ⟨R1;G1⟩ and ⟨R2;G2⟩, then every update
⟨x , e, 𝑃⟩ of C in G1 must preserve every assertion 𝑅 in R2, i.e. 𝑃 ∧ 𝑅 ⇒ 𝑅 [e/xv]; and vice versa.

Definition 1. The tuples ⟨R1;G1⟩ and ⟨R2;G2⟩ are non-interfering iff:

• for all ⟨xv, e, 𝑃⟩ ∈ G1 and all 𝑅 ∈ R2: 𝑅 ∧ 𝑃 ⇒ 𝑅 [e/xv]

• for all ⟨xv, e, 𝑃⟩ ∈ G2 and all 𝑅 ∈ R1: 𝑅 ∧ 𝑃 ⇒ 𝑅 [e/xv]

Stability. Recall from ğ2.4 that we require assertions to be stable against volatile-to-synchronous
and synchronous-to-persistent version propagations. This is formalised in Def. 2.

Definition 2. An assertion 𝑃 is stable, written stable(𝑃), iff 𝑃 ⇒ 𝑃 [xs/xp] and ∀xs. 𝑃 ⇒ 𝑃 [xv/xs].

Reasoning about Crash Recovery. The POG triples discussed thus far are of the form ⟨R;G⟩ ⊢
{

𝑃
}

C
{

𝑄
}

, where 𝑄 describes the state once C has terminated (i.e. without crashing). However, as
discussed in ğ2, the execution of Cmay crash (e.g. due to power loss), at which point the volatile and
synchronous versions (e.g. xv and xs) are lost while the persistent versions (e.g. xp) are preserved,
and the execution is resumed by running a recovery program. As such, in anticipation of a possible
crash at any point, we require the persistent parts of 𝑄 to be invariant throughout the execution.
In order to reason about programs in the presence of crashes, we present POG recovery triples

of the form Crec ⊢
{

𝑃
}

C
{

𝑄
}

, stating that every run of C from a state in 𝑃 either: (1) terminates
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successfully (without crashing) in a state in 𝑄 ; or (2) crashes and its execution is resumed by
repeatedly running the recovery program Crec until Crec terminates successfully in a state in 𝑄 .
That is, the execution of Crec may itself crash and is rerun repeatedly until it terminates successfully.
In other words, the volatile (and synchronous) values in the postcondition of POG triples describe
the post-states only if C does not crash, whereas the volatile (and synchronous) values in the
postcondition of recovery triples always describe the post-states after termination (either after C

terminates successfully, or after C crashes and Crec is run repeatedly until it terminates successfully).
The recovery rule (rec) is given at the bottom of Fig. 3. The ⟨⊤;⊤⟩ ⊢

{

𝑃 ′
}

C
{

𝑄 ′
}

premise ensures
that executing C from a state in 𝑃 ′ either terminates successfully in a state in 𝑄 ′, or it crashes and
the recovery Crec is run thereafter from a state in 𝑅, obtained from 𝑄 ′ by resetting register values

and replacing volatile/synchronous versions with persistent ones (𝑄 ′⇒∃𝑣 .𝑅 [𝑣/a] [xp/xs] [xp/xv]),
as they are lost upon a crash. The existential quantification of 𝑣 assigns (havocs) arbitrary values to
local registers 𝑎 upon recovery, ensuring that 𝑅 makes no assumptions about the post-crash values
of registers. The ⟨⊤;⊤⟩ ⊢

{

𝑅
}

Crec

{

𝑄 ′
}

in turn ensures that executing Crec from 𝑅 either terminates
successfully in 𝑄 ′, or it crashes and is rerun from 𝑅. Put together, as 𝑃 ⇒ 𝑃 ′ and 𝑄 ′ ⇒ 𝑄 , this
ensures that executing C (under Crec) from 𝑃 eventually terminates successfully in 𝑄 . Lastly, the
RG contexts ⟨⊤;⊤⟩ ensure that C and Crec are run as closed programs (i.e. not in parallel with
another program). In ğ4 we present an example of using (rec) to reason about recovery.

Fence Proof Rules. Note that our proof system in Fig. 3 does not include rules for sfence
and mfence. For sfence, we can simply extend our rules with: ⟨{𝑃}; ∅⟩ ⊢

{

𝑃
}

sfence
{

𝑃
}

. That
is, sfence acts as a no-op in our Ix86sim model and has the same specification as (skip). This is
caused by two factors. First recall that as discussed in ğ2.3, under Ix86sim a flush x instruction
with x ∈ X copies x ′

v
to x ′

s
for each x ′ ∈X . That is, Ix86sim eliminates each flush instruction on

x ∈X={𝑥1 · · · 𝑥𝑛}, and simply treats it as a series of writes on x 1

s
· · · x𝑛

s
. Second, as noted by Raad

et al. [2020], in the absence of flush/flushopt instructions, sfence instructions behave as no-ops
(skip) and impose no additional ordering constraints. As such, since Ix86sim eliminates flush
instructions (and treats them as writes) and excludes flushopt instructions by design, sfence is a
no-op under Ix86sim. Nevertheless, as discussed in ğ2.1 and detailed later in in ğ7, sfence instructions
can be used to enforce additional ordering constraints on flushopt instructions, allowing us in
most cases to transform programs using flushopt to those using flush instead. We therefore opt to
include sfence in the POG programming language to facilitate such transformations.
Formfence, we can derive reasoning principles by treating them as RMW instructions (as in

Fig. 7 of [Lahav and Vafeiadis 2015]). More concretely, we can treat mfence instructions as RMWs
(e.g. FAA) on a designated location 𝑓 , which enforces a global order on allmfence instructions.

4 EXAMPLES

We use the POG proof rules to verify several representative examples.

Example 1. We begin with the concurrent example in Fig. 1e, with its proof sketch given in Fig. 4a.
The RG contexts of the left and right threads are given respectively by ⟨R1;G1⟩ and ⟨R2;G2⟩,
defined in Fig. 4a. As discussed in ğ3, the rely of each thread contains the assertions used in its
proof outline (e.g. 𝑃1 in R1), while the guarantee contains a guarded assignment for each write
performed by the thread (e.g. ⟨𝑃2, yv, 1⟩ in G1). The invariant we are interested in establishing is
given by 𝐼 . The first three conjuncts capture the chronological order between the different versions
of x and z . The penultimate conjunct states that when zv=1 (i.e. once the second thread executes
z:= 1 after having read 1 for yv in a), then xs=1 (i.e. flush x ′ must have already executed). The last
conjunct is that of main interest, corresponding to the desired property in Fig. 1e. Note that the
assertions at each program point are stable, and that ⟨R1;G1⟩ and ⟨R2;G2⟩ are non-interfering.
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𝐼 ≜ (xs=1 ⇒ xv=1) ∧ (zs=1 ⇒ zv=1)

∧ (zp=1 ⇒ zs=1) ∧ (yv=1 ⇒ xs=1)

∧ (zv=1 ⇒ xs=1) ∧ (zp=1 ⇒ xp=1)

R1 ≜ {𝐼 , 𝑃1, 𝑃2} R2 ≜ {𝐼 ,𝑄1, 𝑄2}

G1 ≜ {⟨𝐼 , xv, 1⟩, ⟨𝑃2, yv, 1⟩} G2 ≜ {⟨𝑄2, zv, 1⟩}
{

𝐼
}

{

𝐼
}

x:= 1;
{

𝑃1 : 𝐼 ∧ xv=1
}

flush x ′;
{

𝑃2 : 𝐼 ∧ xs=1
}

y:= 1;
{

𝐼
}

{

𝐼
}

a:= y ;
{

𝑄1 : 𝐼 ∧ (a=1 ⇒ yv=1)
}

if (a=1)
{

𝑄2 : 𝐼 ∧ yv=1
}

z:= 1;
{

𝐼
}

{

𝐼
}

{

𝐼
}

(a)

𝐼 ≜ (xs=1 ⇒ xv=1) ∧ (zs=1 ⇒ zv=1)

∧ (zp=1 ⇒ zs=1) ∧ (yv=1 ⇒ xv=1)

∧ (zv=1 ⇒ xs=1) ∧ (zp=1 ⇒ xp=1)

R1 ≜ {𝐼 , 𝑃1} R2 ≜ {𝐼 ,𝑄1, 𝑄2, 𝑄3}

G1 ≜ {⟨𝐼 , xv, 1⟩, ⟨𝑃1, yv, 1⟩} G2 ≜ {⟨𝑄3, zv, 1⟩}
{

𝐼
}

{

𝐼
}

x:= 1;
{

𝑃1 : 𝐼 ∧ xv=1
}

y:= 1;
{

𝐼
}

{

𝐼
}

a:= y ;
{

𝑄1 : 𝐼 ∧ (a=1 ⇒ xv=1)
}

if (a=1)
{

𝑄2 : 𝐼 ∧ xv=1
}

flush x ;
{

𝑄3 : 𝐼 ∧ xs=1
}

z:= 1;
{

𝐼
}

{

𝐼
}

{

𝐼
}

(b)

Fig. 4. Proof sketches of Example 1 (a) and Example 2 (b)

Example 2. We proceed with the example in Fig. 4b which is an adaptation of Fig. 4a with the
flush moved to the right thread after reading from y . As such, the invariant 𝐼 is similar to that of
Fig. 4a, with the main difference lying in the fourth conjunct. In particular, when the left thread
executes y:= 1 yielding yv=1, the earlier x:= 1 has already executed, i.e. xv=1. However, due to the
absence of an intervening flush between the two writes, unlike in Fig. 4a we cannot assert xs=1.

Example 3 (Atomic persists). Our next example in Fig. 5a is inspired by the persistent transactions
of Raad et al. [2019], where the authors showed how to ensure multiple stores on different locations
(appear to) persist atomically before subsequent stores. Let us write 𝜏1 and 𝜏2 for the left and right
threads, respectively. As shown in Fig. 5a , 𝜏1 writes 1 to x and y , and 𝜏2 writes 1 to z only if x
contains 1, i.e. only if 𝜏1 has already executed x:= 1. Our goal in this example is to ensure that the
writes on x and y (by 𝜏1) both persist before the write on z (by 𝜏2). That is, we must ensure that
the flush instructions of 𝜏1 are executed before 𝜏2 executes z:= 1.
To this end, since 𝜏2 writes to z only after reading 1 from x (written by 𝜏1), we use a lock to

control the accesses on x . More concretely, 𝜏1 acquires the lx lock on x at the beginning and releases
it only after executing its flush instructions. Similarly, 𝜏2 acquires the lx lock prior to accessing x .
As such, if 𝜏2 reads 1 for x (i.e. observes x:= 1 by 𝜏1) and executes z:= 1, then it must have acquired
lx after it was released by 𝜏1, i.e. after 𝜏1 executed its flush instructions, as required.

The lx lock is acquired by calling lock, implemented as a spin lock in Fig. 5a: the implementation
of lock(lx , a, 𝑣) loops until lx is free (i.e. lx=0), at which point it acquires it by atomically setting it
to the non-zero value 𝑣 . In order to distinguish which thread currently holds the lock, 𝜏1 and 𝜏2
respectively write the distinct values 1 and 2 to lx upon acquiring it. Lastly, the a argument denotes
a thread-local register used as the loop flag by lock, and is passed on to lock by the calling thread.
We present a proof sketch of this program in Fig. 5a, where for brevity we have omitted the

RG contexts. As before, our goal is to establish the 𝐼 invariant, with its first, second and fourth
conjuncts describing the chronological order on different versions of x , y and z . The third conjunct
states that once 𝜏1 has finished executing, i.e. it has released the lock (lx ∈ {0, 2}) having written 1
to x (xv=1), its flush instructions have also executed (xs=ys=1). Similarly, the penultimate conjunct
states that once 𝜏2 has written 1 to z (zv=1) having read 1 for x , i.e. after acquiring lx once it is
released by 𝜏1 (see above), then the 𝜏1 flush instructions must have already executed (xs=ys=1).
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𝐼 ≜

(xs=1⇒xv=1)∧(ys=1⇒yv=1)∧(lx v∈{0, 2}∧xv=1⇒xs=ys=1)

∧ (zs=1 ⇒ zv=1) ∧ (zv=1 ⇒ xs=ys=1) ∧ (zp=1 ⇒ xp=yp=1)
{

𝐼
}

{

𝐼
}

lock(lx , a, 1);
{

𝐼 ∧ lx v=1
}

x:= 1;
{

𝐼 ∧ lx v=1 ∧ xv=1
}

y:= 1;
{

𝐼 ∧ lx v=1 ∧ xv=yv=1
}

flush x ;
{

𝐼 ∧ lx v=1 ∧ xs=yv=1
}

flush y ;
{

𝐼 ∧ lx v=1 ∧ xs=ys=1
}

lx:= 0;
{

𝐼
}

{

𝐼
}

lock(lx , b, 2);
{

𝐼 ∧ lx v=2
}

c:= x ;
{

𝐼 ∧ lx v=2 ∧ c=xv
}

if (c = 1)
{

𝐼 ∧ lx v=2 ∧ xs=ys=1
}

z:= 1;
{

𝐼 ∧ lx v=2
}

flush z ;
{

𝐼 ∧ lx v=2
}

{

𝐼 ∧ lx v=2
}

lx:= 0;
{

𝐼
}

{

𝐼
}

{

𝐼
}

lock(lx , a, 𝑣) ≜ a=1;
{

𝐼 ∧ a=1
}

while(a ≠ 0)
{

𝐼
}

a:= CAS(lx , 0, 𝑣)
{

𝐼 ∧ (a=0 ⇒ lx v=𝑣)
}

{

𝐼 ∧ lx v=𝑣
}

(a)

𝐼 ≜yp=1⇒xp=1 𝐼v ≜yv=1⇒xv=1

x ≡𝑣
def
⇔xv=xs=xp=𝑣

x ∈ {0, 1}
def
⇔ x ≡0 ∨ x ≡1

{

𝑃 ′: 𝐼 ∧ x ∈ {0, 1} ∧ y ≡0
}

C≜ x:= 1;
{

𝐼 ∧ xv=1 ∧ xp ∈ {0, 1}∧ y ≡0
}

flush x ;
{

𝐼 ∧ xv=xs=1∧xp ∈ {0, 1}∧y ≡0
}

y:= 1;
{

𝑄 ′: 𝐼∧ xv=yv=1∧xp, yp ∈ {0, 1}
}

{

𝑅 : 𝐼∧𝐼v∧x ∈ {0, 1}∧y ∈ {0, 1}
}

Crec ≜ a=y ;
{

𝑅 ∧ y ≡a
}

if (a= 0)
{

𝑅 ∧ y ≡0
}

{

𝑃 ′
}

C
{

𝑄 ′
}

{

𝑄 ′
}

Crec ⊢
{

𝑃 : x ≡0 ∧ y ≡0
}

C
{

𝑄 : xv=1
}

(b)

Fig. 5. Proof sketches of Example 3 (a) and Example 4 (b)

The last conjunct describes the desired persist ordering: if the write on z has persisted (zp=1), then
so must have both writes on x and y (xp=yp=1), as required.

Example 4 (Recovery). In Fig. 5b we show how to use the (rec) rule to reason about recovery. The
original program C is similar to that in Fig. 1b: first 1 is written to x and persisted by calling flush,
and then 1 is written to y . As in Fig. 1b, the intervening flush ensures that x:= 1 persists before
y:= 1 and thus yp=1⇒xp=1 as described by 𝐼 , assuming initially x ≡0 (i.e. xv=xs=xp=0) and y ≡0.

As 𝐼 ≜yp=1⇒xp=1 is invariant throughout the execution (𝐼 only concerns persistent versions),
the recovery Crec treats the write on y as a flag to ascertain if x:= 1 has persisted. That is, if y holds
1 upon recovery, then x must also hold 1 and thus Crec simply returns; otherwise, Crec reruns C.

We present a proof sketch of C and Crec in Fig. 5b. We first establish ⟨⊤;⊤⟩ ⊢
{

𝑃 ′
}

C
{

𝑄 ′
}

and

⟨⊤;⊤⟩ ⊢
{

𝑅
}

Crec

{

𝑄 ′
}

, and then use (rec) to prove Crec ⊢
{

𝑃
}

C
{

𝑄
}

. Note that as mandated by the

(rec) premise, we must show 𝑃⇒𝑃 ′,𝑄 ′⇒𝑄 , and𝑄 ′⇒ 𝑅 [xp/xs] [xp/xv] which follow immediately.

5 THE Ix86sim OPERATIONAL SEMANTICS

We present the Ix86sim operational semantics discussed in ğ2.3. Recall that in Ix86sim a memory
operation on x manipulates xv; when x ∈X , flush x copies x ′

v
to x ′

s
for x ′∈X ; xv may be copied

to xs non-deterministically; and xs may be non-deterministically copied to xp. To model this, we
define a translation function that transforms Px86sim programs to access the instrumented memory.

Translation. Our translation function, J.K, is defined in Fig. 6 and uses the auxiliary function, L.M,
to translate sequential programs. As discussed, memory accesses on x are translated to access xv;
conditionals, loops and sequential composition are translated inductively; and flush x is translated
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La:= eM ≜ a:= e La:= x M ≜ a:= xv Lx:= eM ≜ xv:= e La:=CAS(x ,e1,e2)M ≜a:=CAS(xv,e1,e2)

La:=FAA(x , e)M ≜a:=FAA(xv, e) LsfenceM ≜ skip LmfenceM ≜mfence Lflush 𝑥M ≜ ⟨persistX ⟩

Lif (e) then c1 else c2M ≜ if (e) then Lc1M else Lc2M Lwhile(e) cM ≜ while(e) LcM

Lc1; c2M ≜ Lc1M; Lc2M Jc1 | | · · · | | c𝑛K ≜ Lc1M | | · · · | | Lc𝑛M | | cs | | cp

with cs ≜while(∗) ⟨pick 𝑥 ; xs:= xv⟩ cp ≜while(∗) ⟨xp:= xs; ⟩

Fig. 6. Ix86sim program translation where we assume x ∈X

to persistX (when x ∈X ) atomically, as indicated by ⟨.⟩. That is, in one computation step persistX
reads the value of xv and subsequently copies it to xs for each x ∈X , as we describe shortly.
Themfence instructions are left unchanged by the translation, while sfence instructions are

translated as skip. This is because as discussed in ğ3, sfence behaves as a no-op in the absence of
flush/flushopt. As such, since our translation eliminates flush and our language excludes flushopt,
sfence is simply translated to skip. Lastly, the translation of a concurrent program is obtained
from the point-wise translation of each thread, run in parallel with cs and cp. Intuitively, cs models
the non-deterministic propagation of xv to xs for an arbitrary x , carried out atomically. Analogously,
cp models the non-deterministic propagation of xs to xp, for all locations. We write 𝜏s and 𝜏p for
the threads executing cs and cp, respectively. Given a program C, we write Csp for C | | cs | | cp.

We next describe the Ix86sim operational semantics by separating the transitions of its program
and storage subsystems. The former describe the steps in program execution, e.g. how a conditional
branch is triggered. The latter describe how the storage subsystem (the non-volatile memory and
thread-local buffers in Fig. 2a) determine the execution steps. The Ix86sim operational semantics is
then defined by combining the transitions of its program and storage subsystems.

Program Transitions. The Ix86sim program transitions are given at the top of Fig. 7 and are

defined via the transitions of their constituent threads. Thread transitions are of the form: c, S
𝜏 :𝑙
−−→

c′, S′, where c, c′ ∈ SCom denote translated sequential programs, and S, S′ ∈ Stack denote stacks
mapping registers to values. The 𝜏 :𝑙 marks the transition by recording the executing thread 𝜏 , and
the transition label 𝑙 . A label may be 𝜖 for silent transitions of no-ops; (R, x , 𝑣) for reading 𝑣 from
x ; (W, x , 𝑣) for writing 𝑣 to x ; (U, x , 𝑣, 𝑣 ′) for a successful RMW (update) modifying the value of x to
𝑣 ′ when its value matches 𝑣 ; MF for executing an mfence; (FL,X ) for persisting the X cache line;

(S, xs, 𝑣) for the atomic propagation of 𝑣 to xs; and (P, x 𝑖p, 𝑣
𝑖 ) for the atomic propagation of 𝑣𝑖 to x 𝑖p.

Given an expression e, we write S(e) for the value to which e evaluates under S; this defi-
nition is standard and omitted. Most program transitions are standard. The (P-MF) transition
describes executing an mfence. The (P-CAS0) transition describes the unsuccessful execution
of CAS(x , e1, e2); i.e. when the value read (𝑣) is different from S(e1). The (P-CAS1) transition
dually describes the successful execution of CAS. Note that in the failure case no update takes
place and the transition is labelled with a read, and not an update as in the success case. The
(P-FAA) transition behaves analogously. When executing persist X (i.e. a translated flush x with
x ∈ X ), the volatile-to-synchronous propagation of X is modelled by the (FL,X ) transition in
(P-AtomFL). The volatile-to-synchronous propagation of cs is modelled by (S, xs, 𝑣) in (P-AtomS);
mutatis mutandis for (P-AtomP).

Storage Transitions. The Ix86sim storage transitions are given at the bottom of Fig. 7 and are

of the form: IM,B
𝜏 :𝑙
−→ IM

′,B′, where IM, IM′denote the instrumented memory, and B,B′denote the
buffer map, associating each thread with its buffer. Each buffer entry may be of the form: (1) ⟨xv, 𝑣⟩,
denoting a pending write of value 𝑣 on xv; or (2) X ⊆ Loc, denoting a pending flush on cache line
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Program transitions: Com × Stack
TId:Lab∪{𝜖 }
−−−−−−−−−−→ Com × Stack S ∈ Stack ≜ Reg

fin
→ Val

Lab≜
{

(R, xv, 𝑣), (W, xv, 𝑣), (U, xv, 𝑣, 𝑣
′), MF, (FL,X ), (S, xs, 𝑣), (P, x

𝑖
p, 𝑣

𝑖 ) x , x 𝑖 ∈Loc ∧X ∈CL ∧ 𝑣, 𝑣 ′, 𝑣𝑖 ∈Val
}

S′
=S[a ↦→ S(e)]

a:= e, S
𝜏 :𝜖
−→ skip, S′

(P-Assign)
S′
=S[a ↦→ 𝑣]

a:= xv, S
𝜏 :(R,xv,𝑣)
−−−−−−−→ skip, S′

(P-Read)

mfence, S
𝜏 :MF
−−→skip, S

(P-MF)

S(e)=𝑣

xv:= e, S
𝜏 :(W,xv,𝑣)
−−−−−−−→ skip, S

(P-Write)
S(e1) ≠ 𝑣 S′

=S[a ↦→ 𝑣]

a:= CAS(xv, e1, e2), S
𝜏 :(R,xv,𝑣)
−−−−−−−→ skip, S′

(P-CAS0)

S(e)=𝑣 S′
=S[a ↦→ 𝑣0]

a:= FAA(xv, e), S
𝜏 :(U,xv,𝑣0,𝑣0+𝑣)
−−−−−−−−−−−−→skip, S′

(P-FAA)
S(e1)=𝑣1 S(e2)=𝑣2 S′

=S[a ↦→ 𝑣1]

a:= CAS(xv, e1, e2), S
𝜏 :(U,xv,𝑣1,𝑣2)
−−−−−−−−−−→ skip, S′

(P-CAS1)

⟨persist X ⟩, S
𝜏 :(FL,X )
−−−−−−→ skip, S

(P-AtomFL) S(e)≠0 ⇒ c=c1 S(e)=0 ⇒ c=c2

if (e) then c1 else c2, S
𝜏 :𝜖
−→ c, S

(P-If)

while(e) c, S
𝜏 :𝜖
−→ if (e) then c; (while(e) c) else skip, S

(P-While)
skip; c, S

𝜏 :𝜖
−→ c, S

(P-Seq1)

⟨pick 𝑥 ; xs:= xv⟩, S
𝜏s:(S,xs,𝑣)
−−−−−−−→ skip, S

(P-AtomS)
c1, S

𝜏 :𝑙
−→ c′

1
, S′

c1; c2, S
𝜏 :𝑙
−→ c′

1
; c2, S

′

(P-Seq2)

⟨x 𝑖p:= x
𝑖
s ⟩, S

𝜏p:(P,x 𝑖
p
,𝑣𝑖 )

−−−−−−−−→ skip, S

(P-AtomP) C(𝜏), S
𝜏 :𝑙
−→ c, S′

C, S
𝜏 :𝑙
−→ C[𝜏 ↦→ c], S′

(P-Par)

Storage transitions: IMem×IBMap
TId:Lab∪{𝜖 }
−−−−−−−−−−−→ IMem × IBMap B ∈ IBMap ≜ TId

fin
→ IBuff

b ∈ IBuff ≜ Seq ⟨(ILoc × Val) ∪ P (Loc)⟩

B(𝜏)=b

IM,B
𝜏 :(W,xv,𝑣)
−−−−−−−→ IM,B[𝜏 ↦→ b.⟨xv, 𝑣⟩]

(M-Write)
B(𝜏)=𝜖 IM(xv)=𝑣1

IM,B
𝜏 :(U,xv,𝑣1,𝑣2)
−−−−−−−−−−−→ IM[xv ↦→ 𝑣2],B

(M-RMW)

rd(IM,B(𝜏), xv)=𝑣

IM,B
𝜏 :(R,xv,𝑣)
−−−−−−−→ IM,B

(M-Read)
B(𝜏)=𝜖

IM,B
𝜏 :MF
−−→ IM,B

(M-MF)
IM(xv)=𝑣

IM,B
𝜏s:(S,xs,𝑣)
−−−−−−−→ IM[xs ↦→ 𝑣],B

(M-AtomS)

∀𝑖 . IM(x 𝑖s )=𝑣
𝑖

IM,B
𝜏p:(P,x 𝑖

p
,𝑣𝑖 )

−−−−−−−−→ IM[x 𝑖p ↦→ 𝑣𝑖 ],B

(M-AtomP) B(𝜏)=b

IM,B
𝜏 :(FL,X )
−−−−−−−−→ IM,B[𝜏 ↦→ b.X ]

(M-AtomFL)

B(𝜏)=⟨xv, 𝑣⟩.b

IM,B
𝜏 :𝜖
−→ IM[xv ↦→ 𝑣],B[𝜏 ↦→ b]

(M-PropW)
B(𝜏)=X .b X=x 𝑖 ∀𝑖 . IM(x 𝑖v)=𝑣

𝑖

IM,B
𝜏 :𝜖
−→ IM[x 𝑖s ↦→ 𝑣𝑖 ],B[𝜏 ↦→ b]

(M-PropFL)

with rd(IM, b, xv) ≜

{

𝑣 if ∃b1, b2 . b=b1 .⟨xv, 𝑣⟩.b2 ∧ ∀𝑣 ′. ⟨xv, 𝑣
′⟩ ∉ b2

IM(xv) otherwise

Fig. 7. The Ix86sim program transitions (above); the Ix86sim storage transitions (below)

X . When a thread writes 𝑣 to xv, this is recorded in its buffer as the ⟨xv, 𝑣⟩ entry, as described by
(M-Write). Similarly, when a thread makes a (FL,X ) transition (i.e. executes persist X translated
from flush x with x ∈X ), this is recorded in its buffer as X , as shown in (M-AtomFL). Recall that
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Com ⊢ Conf
TId×Lab∪{𝜖, }
===============⇒ Conf Conf≜Com × Stack × IMem × IBMap

C, S
𝜏 :𝜖
−−→ C′, S′

Δ ⊢ C, S, IM,B
𝜏 :𝜖
===⇒ C′, S′, IM,B

(SilentP)
C, S

𝜏 :𝑙
−−→ C′, S′ IM,B

𝜏 :𝑙
−−→ IM

′,B′

Δ ⊢ C, S, IM,B
𝜏 :𝑙
===⇒ C′, S′, IM′,B′

(Step)

IM,B
𝜏 :𝜖
−−→ IM

′,B′

Δ ⊢ C, S, IM,B
𝜏 :𝜖
===⇒ C, S, IM′,B′

(SilentS)
B0 ≜ 𝜆𝜏 .𝜖 IM

′
=IM[xs ↦→ IM(xp)] [xv ↦→ IM(xp)]

Crec ⊢ C, S, IM,B
 
==⇒ Crec, S0, IM

′,B0

(Crash)

Fig. 8. The Ix86sim operational semantics

when a thread reads from xv, it first consults its own buffer, followed by the memory (if no write to
xv is found in the buffer). This lookup chain is captured by rd(IM, b, xv) in the premise of (M-Read).

The (M-MF) rule ensures that anmfence proceeds only when the buffer of the executing thread
is empty, as stipulated by the B(𝜏)=𝜖 premise. In the (M-RMW) rule, when executing an RMW
instruction on xv, a similar lookup chain is followed to determine the value of xv, as with a read.
To ensure their atomicity, RMW instructions may only proceed when the buffer of the executing
thread is drained. Moreover, the resulting update is committed directly to the memory, bypassing
the thread buffer. This is to ensure that the resulting update is immediately visible to other threads.
As with (P-AtomS), (M-AtomS) describes the non-deterministic copying of xv to xs, with the

result written directly to memory, provided that the buffer of the executing thread (i.e. 𝜏s) is empty;
(P-AtomP) behaves analogously. Lastly, (M-PropW) describes the debuffering of a pending write in
a thread-local buffer and propagating it to memory. Similarly, (M-PropFL) describes the debuffering
of a pending flush on X , where the value of x 𝑖

v
(in IM(x 𝑖

v
)) is propagated to IM(x 𝑖

s
), for each x 𝑖 ∈X .

Combined Transitions. The Ix86sim operational semantics in Fig. 8 is defined by combining the
program and storage transitions, under a recovery program, Crec, run after a crash. The (SilentP)
rule describes the case when the program subsystem takes a silent step and thus the storage
subsystem is left unchanged; similarly for (SilentS). The (Step) rule describes the case when the
program and storage subsystems both take the same transition (with the same label) and thus the
transition effect is that of their combined effects. Lastly, the (Crash) rule describes the case when
the program crashes: the registers (in S) and the thread-local buffers are lost (as they are volatile),
and are thus reset; the memory is left largely unchanged (as it is non-volatile); and the execution is
restarted with the recovery program. Note that upon a crash the persistent versions in the resulting
memory (IM′) remain unchanged, while the synchronous and volatile versions are lost and are
simply overwritten by the persistent versions. This is because if xv ≠ xp (resp. xs ≠ xp) upon a
crash, then intuitively the write responsible for the current value of xv (resp. xs) has not yet reached
the persistent memory and is thus lost after recovery.

Ix86sim Subsumes Px86sim. In Thm. 1 below we show that our Ix86sim model is weaker than
Px86sim and subsumes all its behaviours. This then allows us to establish the soundness of POG
over the simpler Ix86sim model. To prove that Ix86sim subsumes Px86sim, we show that for all non-
instrumented memories M produced by a Px86sim trace, there exists an instrumented memory IM

′

produced by an Ix86sim trace such that M and IM agree on the (persisted) values of all locations.

Theorem 1. For all memories M produced by a Px86sim trace, there exists an instrumented memory

IM
′ produced by an Ix86sim trace such that: ∀x . M(x )=IM(xp).
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6 POG SOUNDNESS

We prove that the POG proof rules in Fig. 3 are sound. We proceed with several auxiliary definitions.

Assertion Semantics. We define the set of states as State ≜ IMem × Stack, and use 𝜎 as a
metavariable for states. Assertions are interpreted as sets of states as expected: the instrumented
memory provides the interpretation of the xv, xs, xp constants, and the stack provides the interpre-

tation of the a constants. In what follows we write J𝑃K for
{

𝜎 𝜎 |= 𝑃
}

.

R/G Semantics. R/G components are interpreted as relations on states. The guarantee G is
interpreted point-wise as the smallest preorder that admits all constituent guarded assignments. That
is, if ⟨xv, e, 𝑃⟩ ∈ G and (IM, S) ∈ J𝑃K, then ((IM, S), (IM′, S)) ∈ JGKg, when IM

′
=IM[xv ↦→ S(e)]:

J∅Kg ≜ id JG∪{⟨xv, e, 𝑃⟩}K
g
≜
(

JGKg ∪
{(

(IM, S), (IM[xv ↦→S(e)], S)
)

(IM, S) |= 𝑃
})∗

Dually, the rely R is interpreted point-wise as the largest relation on states that preserves the
stability of all constituent assertions. That is, if 𝑃 ∈ R, 𝜎 ∈ J𝑃K and (𝜎, 𝜎 ′) ∈ JRKr, then 𝜎 ′∈ J𝑃K:

J∅Kr ≜ State × State JR∪{𝑃}Kr ≜ JRKr ∩
{

(𝜎, 𝜎 ′) 𝜎 |= 𝑃 ⇒ 𝜎 ′ |= 𝑃
}

Configuration Safety. We define the semantics of POG triples via an auxiliary predicate,
safe𝑛 (C

sp, 𝜎, 𝑅,𝐺,𝑄, 𝐼 ), stating that executing the translated program Csp over the 𝜎 state is safe
with respect to the interpreted 𝑅, 𝐺 relations, post-states 𝑄 and invariant 𝐼 for up to 𝑛 steps.

Definition 3 (Configuration safety). For all C, IM, S and 𝑅,𝐺 ⊆ State × State, 𝑄 ⊆ State:
safe0 (C

sp, (IM, S), 𝑅,𝐺,𝑄, 𝐼 ) always holds; and safe𝑛+1 (C
sp, (IM, S), 𝑅,𝐺,𝑄, 𝐼 ) holds iff:

(1) (IM, S) ∈ 𝐼 and (2) if C=Cskip, then (IM, S) ∈ 𝑄 , where Cskip ≜ 𝜆𝜏 .skip

(3) for all 𝜎 : if ((IM, S), 𝜎) ∈ 𝑅 ∪ Asp, then safe𝑛 (C
sp, 𝜎, 𝑅,𝐺,𝑄, 𝐼 )

(4) for all 𝜏, 𝑙, IM1, IM2,B1,B2,C
′, IM′, S′, 𝑙≠ :

if C, IM1,B1, S
𝜏 :𝑙
==⇒ C′, IM2,B2, S

′ ∧ IM=⇓(IM1,B1, 𝜏) ∧ IM
′
=⇓(IM2,B2, 𝜏)

then ((IM, S), (IM′, S)) ∈𝐺 ∪ Asp ∧ safe𝑛 ((C
′)sp, (IM′, S′), 𝑅,𝐺,𝑄, 𝐼 )

where ⇓(IM,B, 𝜏)=IM
′ def⇔ (IM,B)

𝜏 :𝜖
−−→∗ IM

′,B′∧ B′(𝜏)=𝜖

and Asp ≜

{

(

(IM, S), (IM[xp ↦→ IM(xs)], S)
)

,
(

(IM, S), (IM[ys ↦→ yp], S)
)

y ∈ Loc
}∗

Recall that a translated program (via J.K) is of the form Csp
≜C | | cs | | cp. A configuration is always

safe for zero steps. For 𝑛+1 steps, a configuration is safe if: (1) (IM, S) is a state in the invariant 𝐼 ;
(2) whenever the program has finished execution (i.e. C=Cskip), then (IM, S) must be a post-state
in 𝑄 ; (3) whenever the environment changes the state according to the rely (in 𝑅) or performs a
(volatile-to-synchronous or synchronous-to-persistent) propagation (in Asp), then the resulting
configuration remains safe for a further 𝑛 steps; and (4) whenever the thread performs an Ix86sim
transition, its changes to the state are either those permitted by the guarantee (in 𝐺) or those of
propagation (in Asp), and the new configuration remains safe for 𝑛 more steps.
Note that the Ix86sim transitions (Fig. 8) are over an instrumented memory and a buffer map.

As such, the memory IM in the pre-state of the thread 𝜏 describes several storage pairs of the
form (IM1,B1) such that ⇓(IM1,B1, 𝜏)=IM. That is, once the pending entries of 𝜏 in B1 (𝜏) are

propagated to IM1 (via
𝜏 :𝜖
−−→ storage transitions in rule (M-PropW) of Fig. 8), the resulting memory

corresponds to IM. Intuitively, IM denotes the view of 𝜏 of the storage subsystem, in that 𝜏 observes
its pending writes and flushes in B1 (𝜏), even though they have not yet reached the memory.

We next define valid POG judgements, and show that POG triples (Fig. 3) yield valid judgements.
Note that the invariant of a triple, 𝑄p, is obtained from the postcondition 𝑄 by erasing the values
of registers as well as the volatile/synchronous versions, and replacing them with arbitrary values.
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Definition 4. A judgement ⟨R;G⟩⊩
{

𝑃
}

C
{

𝑄
}

is valid iff for all 𝑛, 𝜎 ∈ J𝑃K, safe𝑛 (JCK,𝜎,JRK
r, JGKg,

J𝑄K, J𝑄pK) holds with𝑄p≜∃𝑣𝑎, 𝑣v, 𝑣s.𝑄 [𝑣𝑎/a] [𝑣v/xv] [𝑣s/xs]. A judgement Crec⊩
{

𝑃
}

C
{

𝑄
}

is valid

iff for all (IM, S) ∈ J𝑃K, IM′, S′, if Crec ⊢C, S, IM,B0 =⇒
∗

Cskip, S
′, IM′,B0, then (IM′, S′) ∈ J𝑄K.

Theorem 2 (POG soundness). For all POG triples ⟨R;G⟩ ⊢
{

𝑃
}

C
{

𝑄
}

and recovery triples Crec ⊢
{

𝑃
}

C
{

𝑄
}

in Fig. 3, the POG judgements ⟨R;G⟩⊩
{

𝑃
}

C
{

𝑄
}

and Crec⊩
{

𝑃
}

C
{

𝑄
}

are valid.

Finally, we establish the following adequacy theorem showing that POG is sound with respect
to Px86sim. Note that it is sufficient to consider closed triples with RG contexts ⟨⊤;⊤⟩, i.e. whole
programs (not run in parallel with another program) under an empty environment.

Theorem 3 (Adequacy). For all ⟨⊤;⊤⟩ ⊢
{

𝑃
}

C
{

𝑄
}

, (IM, S) |= 𝑃 , and M,M′, S′, if IM and M agree

(i.e. ∀x . M(x )=IM(xv) = IM(xs)=IM(xp)) and starting from (M, S) with empty (thread-local and

persistent) buffers, program C runs to completion under Px86sim and yields (M′, S′) and empty buffers,

then there exists IM
′ such that IM

′and M′agree and (IM′, S′) |= 𝑄 .

7 A TWO-STEP TRANSFORMATION FOR ELIMINATING flushopt INSTRUCTIONS

We describe the most common use-case of flushopt instructions, epoch persistency, where the use of
flushopt (rather than flush) may prove advantageous for performance. We observe that programs
using flushopt for epoch persistency follow a certain pattern, and describe how we transform such
programs to ones that use flush instead, without altering their persistency behaviour.

Epoch Persistency using flushopt. Recall from ğ2 that flushopt instructions provide weaker
ordering constraints and can be reordered e.g. with respect to writes on different cache lines. As
such, in order to mitigate the weak ordering constraints onflushopt and to ensure their execution by
a particular program point, they are typically followed by an sfence/mfence/RMW in program text;
see e.g. Fig. 1d. Indeed, Fig. 1d is an example of epoch persistency. More concretely, by combining
flushopt and sfence/mfence/RMW instructions, one can divide an execution into distinct epochs,
where the writes in each epoch may persist in an arbitrary order, while the writes of earlier (in
program order) epochs persist before those in later epochs. This is illustrated in Fig. 9a, where x:= 1
and y:= 1 both persist before z:= 1, whereas x:= 1 and y:= 1 themselves may persist in either
order; i.e. the write on x , y persist in the first epoch before the write on z in the second epoch.
Let 𝐿 and 𝐿′ denote locations to be persisted in two consecutive epochs; one can then enforce

epoch persistency by following the pattern below in three steps:

(1) executing the writes on 𝐿 and their corresponding flushopt for each cache line,
provided that each flushopt on a cache line X follows the writes in 𝐿 on X ;

(2) executing an epoch barrier, namely an sfence, mfence or RMW; and (Epoch)

(3) executing the writes on 𝐿′.

The combination of flushopt instructions in (1) and the epoch barrier in (2) ensures that the writes
on 𝐿 in (1) persist before those on 𝐿′ in (3) (e.g. 𝐿={x , y} and 𝐿′

={z } in Fig. 9a, assuming that x
and y are in distinct cache lines). Note that in step (1) it is sufficient to execute one flushopt per
cache line as flushopt persists all (earlier) pending writes on the same cache line. For instance, if
y:= 1 in Fig. 9a is replaced with x ′

:= 1 (where x and x ′ are on the same cache line), step (1) may
simply comprise x:= 1; x ′

:= 1;flushopt x (without a separate flushopt x
′). This epoch persistency

pattern is used by e.g. Raad et al. [2020] to implement several persistent libraries.
Note that replacing each flushopt in Fig. 9a with flush also achieves epoch persistency, albeit at

a finer granularity (one write per epoch). This is because each flush is ordered with respect to all
writes and thus introduces a new epoch. Using flushopt thus admits more than one write per epoch,
and may improve performance as it allows the writes in the same epoch to persist in any order.
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c1 ≜ x:= 1;

flushopt x ;

y:= 1;

flushopt y ;

sfence;

z:= 1;

(a)

c2 ≜ x:= 1;

y:= 1;

flushopt x ;

flushopt y ;

sfence;

z:= 1;

(b)

c3 ≜ x:= 1;

y:= 1;

flush x ;

flush y ;

sfence;

z:= 1;

(c)

c𝑖

a:= z ;

if (a=1)

w:= 1;

(d)

 : z=1 ⇒ x=y=1  : z=1 ⇒ x=y=1  : z=1 ⇒ x=y=1  : w=1 ⇒ x=y=1

Fig. 9. Epoch persistency using flushopt (a); the program obtained from c1 by reordering flushoptx (b); the

program obtained from c2 by converting flushopt to flush (c); a common concurrent use-case of flushopt (d),

where c𝑖 ∈ {c1, c2, c3}. The c1, c2, c3 programs all have the same persistency behaviour (observing the same

values upon recovery), and can be used interchangeably in (d) without changing the persistency behaviour.

Two-Step Transformation. Note that as flushopt instructions are not ordered with respect to
writes on different cache lines, eachflushopt in step (1) can be reordered after the writes on different
cache lines without changing the persistency behaviour. For instance, flushopt x in c1 of Fig. 9a
can be reordered past the y:= 1 write to obtain c2 in Fig. 9b, where c1 and c2 have equivalent
persistency behaviours. As such, step (1) of the pattern above can further be split as: (1.a) executing
the writes on 𝐿; (1.b) executing flushopt for each 𝐿 cache line.

Indeed, this intuition informs the first step of our transformation towards eliminating flushopt:
given a program of the form C ≜ c𝑎;flushopt x ; c𝑏 ; c with x ∈ X , if c is the first epoch barrier
following flushopt x (i.e. c𝑏 contains no sfence/mfence/RMW), then one can rewrite C as C′

≜

c𝑎; c𝑏 ;flushopt x ; c without changing its persistency behaviour (i.e. C and C′ yield the same values
for all locations upon recovery), provided that c𝑏 contains no writes on X and no read instructions.
Note that c𝑏 ≜ y:= 1 in Fig. 9a simply meets the stipulated provisos. We shortly elaborate on these
provisos on c𝑏 in ğ7.1, and note that it is always possible to achieve epoch persistency in such a
way that fulfils these conditions. Note that one can repeatedly apply this transformation to push
down all flushopt in step (1) just before the epoch barrier in (2), thus splitting (1) as (1.a) and (1.b).

Next, we observe that once all flushopt have been pushed down before the epoch barrier, one can
almost always replace each flushopt with a corresponding flush without altering its persistency
behaviour. This is thanks to the strong ordering between each flushopt and the subsequent epoch
barrier. For instance, c2 in Fig. 9b can be transformed to c3 in Fig. 9c, while leaving its persistency
behaviour unchanged. This rewriting constitutes the second and last step of our transformation
for eliminating flushopt instructions. In ğ7.2 we elaborate on the only scenarios under which this
rewriting may alter the persistency behaviour, and note that such scenarios do not arise realistically.

Finally, note that this two-step transformation can be used to eliminate flushopt instructions in
concurrent programs by applying the transformation to each thread containing flushopt. This is
illustrated in Fig. 9d, where e.g. c1 in the left thread can be first transformed to c2 and subsequently
to c3, while preserving the persistency behaviour of the concurrent program at each step.

7.1 Caveats of Reordering flushopt after Later Instructions (Transformation Step 1)

Recall that in the first step of our transformation we push down a flushopt x instruction with
x ∈X just before the epoch barrier, provided that there are no writes on X and no reads between
flushopt x and the epoch barrier, as otherwise this transformation alters the persistency behaviour.

In the case of writes on X , consider the example in Fig. 10a where x , x ′∈X and the x ′
:= 1 write

is betweenflushopt x and sfence. Fig. 10b depicts the program obtained from Fig. 10a by reordering
flushopt x after x ′

:= 1. Recall that executing flushopt x persists all earlier writes on X ; as such
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x:= 1;

flushopt x ;

x ′:= 1;

sfence;

z:= 1;

(a)

x:= 1;

x ′:= 1;

flushopt x ;

sfence;

z:= 1;

(b)

x:= 1;

flushopt x ;

sfence;

x ′:= 1;

z:= 1;

(c)

 : z=1⇒x=1 z=1 ∧ x ′=0 ✓  : z=1⇒x=x ′=1 z=1 ∧ x ′=0 ✗  : z=1⇒x=1 z=1 ∧ x ′=0 ✓

Fig. 10. An epoch persistency example not following the (Epoch) pattern (a); the program obtained from (a)

by reordering flushopt x after x ′:= 1 (where x , x ′∈X ), thus altering its persistency behaviour (b); a program

with equivalent persistency behaviour to (a) that follows the (Epoch) pattern (c).

flushopt x in Fig. 10b is guaranteed to persist both x:= 1 and x ′
:= 1 (i.e. z=1 ⇒ x=x ′

=1 upon
recovery), while flushopt x in Fig. 10a is guaranteed to persist only x:= 1 (i.e. z=1 ⇒ x=1 upon
recovery). The two programs may therefore have different persistency behaviours: it is possible to
observe z=1 ∧ x ′

=0 after recovery in Fig. 10a but not in Fig. 10b.
Note that Fig. 10a does not adhere to (Epoch): either x:= 1 and x ′

:= 1 are to persist in the same
epoch and the program should have been rewritten as in Fig. 10b, or they are to persist in separate
epochs in which case the program could have been rewritten as in Fig. 10c. That is, the intended
persistency behaviour of Fig. 10a is ambiguous, and it is better practice to rewrite it as either
Fig. 10b or Fig. 10c, both of which adhere to (Epoch). We thus argue that it is possible to achieve
epoch persistency without an intervening write on X between flushopt x and its epoch barrier. As
such, it is possible to apply our first transformation step while preserving the persistency behaviour.
Observe that the first transformation step in both Fig. 10b and Fig. 10c is idempotent (flushopt x is
already before sfence) and thus trivially preserves the persistency behaviour.

In the case of reads, consider the example in Fig. 11a where the a:= x read is between flushopt x

and sfence. Fig. 11b depicts the program obtained from Fig. 11a by reordering flushopt x after
a:= x . Note that the right thread executes y:= 1 only when a:= x reads 2 from x , which in turn
implies that x:= 2 in the left thread is store-ordered after x:= 1 in the right (otherwise a:= x

would read 1 from x ). That is, y=1 implies the following store order in both Fig. 11a and Fig. 11b:
x:= 1 → x:= 2 → a:= x . In Fig. 11b we further have a:= x → flushopt x . Put together, this
ensures x:= 1 → x:= 2 → flushopt x when y=1 in Fig. 11b. Consequently, executing flushopt x

first persists x:= 1 and then persists x:= 2, as executing flushopt x persists all pending writes on
x in the store order. As such, z=y=1 ⇒ x=2 upon recovery in Fig. 11b. By contrast, in Fig. 11a the
a:= x → flushopt x order does not hold, and thus flushopt x is only guaranteed to persist x:= 1,
yielding z=y=1 ⇒ x ∈ {1, 2} upon recovery. The two programs may thus have different persistency
behaviours: it is possible to observe z=y=x=1 after recovery in Fig. 11a but not in Fig. 11b.

Note that once again Fig. 11a does not adhere to (Epoch) and its intended persistency behaviour
is ambiguous. More concretely, either: (1) x , y are on different cache lines, in which case the absence
of a corresponding flushopt y implies that y:= 1 is to persist in the epoch after x:= 1, and is thus
better practice to rewrite the program as in Fig. 11c; or (2) x , y are on the same cache line but y:= 1
is to persist in the epoch after x:= 1 and thus as in the previous case it is clearer to rewrite the
program as in Fig. 11c; or (3) x , y are on the same cache line and y:= 1 is to persist in the same
epoch as x:= 1, in which case flushopt x must follow y:= 1. That is, in all three cases it is possible
to rewrite Fig. 11c such that adheres to (Epoch) and avoids the intervening read between flushopt

and the epoch barrier. We thus argue that it is possible to achieve epoch persistency without an
intervening read between a flushopt and the epoch barrier, and thus it is often possible to apply
our first transformation step while preserving the persistency behaviour. Finally, we prove that the
first step of our transformation is sound in that it does not alter the persistency behaviour.
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x:= 2;

x:= 1;

flushopt x ;

a:= x ;

if (a=2) y:= 1;

sfence;

z:= 1;

(a)

x:= 2;

x:= 1;

a:= x ;

flushopt x ;

if (a=2) y:= 1;

sfence;

z:= 1;

(b)

x:= 2;

x:= 1;

flushopt x ;

sfence;

a:= x ;

if (a=2) y:= 1;

z:= 1;

(c)

 : z=y=1⇒x ∈ {1, 2} z=y=x=1✓  : z=y=1⇒x=2 z=y=x=1✗  : z=y=1⇒x ∈ {1, 2} z=y=x=1✓

Fig. 11. An epoch persistency example not following the (Epoch) pattern (a); the program obtained from

(a) by reordering flushopt x after a read (a:= x ), thus altering its persistency behaviour (b); a program with

equivalent persistency behaviour to (a) that follows the (Epoch) pattern (c).

Theorem 4 (Step 1 soundness). Given C with C(𝜏)=c𝑎;flushopt x ; c𝑏 ; c and x ∈ X , if c is the

first epoch barrier after flushopt x (i.e. c𝑏 contains no sfence/mfence/RMW) and c𝑏 contains no

writes on X and no reads, then C and C′have equivalent persistency behaviours, where C′
≜C[𝜏 ↦→

c𝑎; c𝑏 ;flushopt x ; c].

7.2 Caveats of Converting flushopt to flush (Transformation Step 2)

Recall that once all flushopt instruction have been pushed down just before the epoch barrier, our
second transformation step replaces each flushopt with a corresponding flush. However, in the
case of a blind persist this transformation may alter the persistency behaviour of the program.

A blind persist denotes a scenario where a persist operation on x is executed without a previous
access (read/write) on x . An example of this is illustrated in Fig. 12a, where flushopt x is issued
without any prior access on x (assuming x , y are on different cache lines). Fig. 12b depicts the
program obtained from Fig. 12a by replacing flushopt with flush. Note that the left thread executes
w:= 1 only when a=2, which in turn implies that y:= 1 in the left thread is store-ordered before
y:= 2 in the right (otherwise a=2 would not be possible). That is, w=1 implies the following
store order in both Fig. 12a and Fig. 12b: x:= 1 → y:= 1 → y:= 2. As flush instructions are
ordered with respect to all writes, in Fig. 12b we further have y:= 2 → flush x . Put together, this
ensures x:= 1 → flush x when w=1 in Fig. 12b, and thus executing flush x persists x:= 1; i.e.
w=z=1 ⇒ x=1 upon recovery in Fig. 12b. By contrast, as flushopt instructions may be reordered
with respect to writes on different cache lines, in Fig. 12a the y:= 2 → flushopt x order does not
hold, and thus flushopt x may not persist x:= 1, yielding w=z=1 ⇒ x ∈ {0, 1} upon recovery. The
two programs may thus have different persistency behaviours: it is possible to observew=z=1∧x=0

after recovery in Fig. 12a but not in Fig. 12b.
Note that blind persists are uncommon: persist instructions are expensive and are not typically

issued without ascertaining that there is a corresponding write pending to be persisted. More
concretely, prior to issuing a flushopt/flush on x , the existence of pending writes on x is usually
ascertained by either reading from x , or by having written to x earlier (in the same thread), as shown
in Fig. 12c and Fig. 12d, respectively, where flush(opt) denotes either flushopt or flush. For instance,
recall that in epoch persistency (Epoch) each persist is non-blind as it is preceded by a write on the
same cache line. In more realistic scenarios such as (Epoch), Figs. 12c and 12d, flushopt instructions
can thus be replaced with corresponding flush without altering the persistency behaviour.

Finally, we prove that the second transformation step is sound (see the accompanying technical
appendix for the definition of blind persists).

Theorem 5 (Step 2 soundness). Given C with C(𝜏)=c𝑎;flushopt x ; c; c𝑏 , if flushopt is not blind and

c is an epoch barrier, then C and C′
≜C[𝜏 ↦→c′;flush x ; c] have equivalent persistency behaviours.
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c1 ≜ x:= 1;

y:= 1;

a:= y ;

if (a=2)

w:= 1;

y:= 2;

flushopt x ;

sfence;

z:= 1;

(a)

c1

y:= 2;

flush x ;

sfence;

z:= 1;

(b)

c1

y:= 2; c:= x ;

if (c=1)

flush(opt) x ;

sfence;

z:= 1;

(c)

c1

y:= 2;

x:= 2;

flush(opt) x ;

sfence;

z:= 1;

(d)

 : w=z=1 ⇒ x ∈ {0, 1}

w=z=1 ∧ x=0 ✓

 : w=z=1 ⇒ x=1

w=z=1 ∧ x=0 ✗

 : w=z=1 ⇒ x=1

w=z=1 ∧ x=0 ✗

 : w=z=1 ⇒ x=2

w=z=1 ∧ x=0 ✗

Fig. 12. A blind persist example with x ∈X , y ∉X (a); the program obtained from (a) by replacing flushopt
with flush, altering its persistency (b); more realistic examples analogous to (a) with non-blind persists, where

flush/flushopt can be used interchangeably (denoted by flush(opt)) without altering the persistency (c, d).

8 CONCLUSIONS, RELATED AND FUTURE WORK

We presented POG, the first program logic for reasoning about persistency behaviours under the
Px86sim fragment that excludes flushopt instructions. We used POG to verify several representative
examples. To establish the soundness of POG, we developed an intermediate operational model,
Ix86sim, which simplifies Px86sim by forgoing its persistent buffer and modelling its persist orderings
by tracking three different versions for each location. We demonstrated that Ix86sim subsumes
Px86sim and emulates all its valid behaviours. We then proved that POG is sound with respect
to Ix86sim and thus also with respect to Px86sim. As we note below (see future work), Ix86sim is
a valuable contribution in its own right, as it facilitates automated verification techniques for
persistency behaviours. Finally, in order to extend the reasoning principles of POG to the full
Px86sim that also containsflushopt instructions, we presented a two-step transformationmechanism
that allows us, in most cases, to rewrite a program using flushopt instructions, to an equivalent
one that uses flush instructions instead without altering its persistency behaviour. As such, to
reason about a program C that uses flushopt, one can first use our transformation to rewrite C to a
program C′ with equivalent persistency behaviour, and then use POG to reason about C′.
We based POG on the OGRA program logic [Lahav and Vafeiadis 2015]. As such, since OGRA

is proved sound for the release-acquire (RA) consistency model and RA is a weaker model than
x86-TSO, POG is also sound for RA. Consequently, POG is incomplete for reasoning about x86-TSO
in that it cannot be used to prove the absence of behaviours that are admissible under RA but not
x86-TSO. For instance, given the program C ≜ (𝑥:= 1;𝑦:= 1) | | (𝑦:= 2;𝑥:= 2), we cannot use POG
to prove that the final states of C exclude those in which 𝑥=1 ∧ 𝑦=2 holds.
However, we note that almost all existing program logics in the literature, including those for

the strong sequential consistency model, are incomplete (e.g. [Dinsdale-Young et al. 2010; Jones
1983; Jung et al. 2015; Kaiser et al. 2017; Lahav and Vafeiadis 2015; Nanevski et al. 2014; Raad
et al. 2015; Svendsen et al. 2018; Turon et al. 2014; Vafeiadis and Narayan 2013]) as their main
aim to enable simple high-level reasoning principles that apply to common patterns, albeit at the
cost of compromising completeness for certain cases. Nevertheless, as shown in the literature,
incompleteness can be remedied to some extent by including ghost state [Jacobs and Piessens 2011].
Specifically, it is possible to prove the example above using ghost state, provided that we also show
that introducing such state is sound under Ix86sim/x86-TSO, which we leave for future work.

Related work. Although existing literature on NVM has grown rapidly in recent years, formally
verifying programs and algorithms that operate on NVM has largely remained unexplored. Fried-
man et al. [2018] developed several persistent queue implementations using the Intel-x86 persist
instructions (e.g. flush); Zuriel et al. [2019] also developed two persistent set implementations
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using Intel-x86 persist instructions. Both [Friedman et al. 2018; Zuriel et al. 2019] argue that their
implementations are correct by providing an informal argument at the level of program traces.
Derrick et al. [2019] provided a formal correctness proof of the queue implementation by Fried-
man et al. [2018]; this proof is also at the level of program traces. Moreover, all three of [Derrick
et al. 2019; Friedman et al. 2018; Zuriel et al. 2019] assume that the underlying memory model is
sequential consistency (SC) [Lamport 1979], rather than Intel x86-TSO. Raad et al. [2019] recently
developed a persistent transactional library on top of the ARM architecture; they later adapted
this implementation to the Px86sim architecture. In both cases they provide a formal proof of their
implementation correctness on top of the corresponding architecture. Nevertheless, these proofs
are low-level in that they operate at the level of execution traces, rather than the program syntax.
To our knowledge, no existing work provides a syntactic proof system for verifying the persis-

tency guarantees of concurrent programs, especially in the presence of relaxed (out-of-order) or
asynchronous persists. The most closely related work to ours are those of [Chen et al. 2015; Ntzik
et al. 2015]. Chen et al. [2015] present crash Hoare logic (CHL) for reasoning about the crashing
behaviour of the FSCQ file system. CHL is more restricted than POG in two ways. First, CHL can
only be used for sequential programs and does not support concurrent reasoning. Second, in contrast
to POG’s support for explicit flush instructions, CHL does not support the Unix explicit persist
instruction fsync. Ntzik et al. [2015] extend the Views framework [Dinsdale-Young et al. 2013] to
support fault conditions. As an extension of Views, this work supports concurrency; however, their
support for persistent reasoning is rather limited: (1) it assumes that the underlying memory model
is SC and does not account for weak concurrent behaviours; (2) it does not distinguish between
stores and persists, and thus assumes that all stores persist synchronously and in the store order;
and consequently (3) does not support any explicit persist instructions such as flush.

Future work. We plan to build on our work here in several ways. First, we will use POG to verify
existing implementations of persistent libraries and data structures such as [Friedman et al. 2018;
Intel 2015; Zuriel et al. 2019]. Second, we will build automated techniques such as model checking
(MC) for verifying persistency. We plan to do this by extending existing MC algorithms that
already support x86-TSO (e.g. [Abdulla et al. 2015; Kokologiannakis et al. 2019a,b]) with the atomic
propagation constructs of Ix86sim. This will allow us to leverage cutting-edge MC tools to verify
persistency with minimal implementation overhead. Lastly, building on the ideas underpinning
POG, we will devise a similar program logic for reasoning about persistency under the ARMv8
architecture [Raad et al. 2019].
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