Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Zeitschriftenartikel

Structural changes of TasA in biofilm formation of Bacillus subtilis

MPG-Autoren
/persons/resource/persons47565

Akbey,  Ümit
MPI for Polymer Research, Max Planck Society;
FMP Leibniz Inst Mol Pharmakol, NMR Supported Struct Biol, D-13125 Berlin, Germany;

/persons/resource/persons78477

Oschkinat,  Hartmut
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Diehl, A., Roske, Y., Ball, L., Chowdhury, A., Hiller, M., Molière, N., et al. (2018). Structural changes of TasA in biofilm formation of Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America. Retrieved from https://www.pnas.org/content/pnas/115/13/3237.full.pdf.


Zusammenfassung
Microorganisms form surface-attached communities, termed biofilms, which can serve as protection against host immune reactions or antibiotics. Bacillus subtilis biofilms contain TasA as major proteinaceous component in addition to exopolysaccharides. In stark contrast to the initially unfolded biofilm proteins of other bacteria, TasA is a soluble, stably folded monomer, whose structure we have determined by X-ray crystallography. Subsequently, we characterized in vitro different oligomeric forms of TasA by NMR, EM, X-ray diffraction, and analytical ultracentrifugation (AUC) experiments. However, by magic-angle spinning (MAS) NMR on live biofilms, a swift structural change toward only one of these forms, consisting of homogeneous and protease-resistant, β-sheet-rich fibrils, was observed in vivo. Thereby, we characterize a structural change from a globular state to a fibrillar form in a functional prokaryotic system on the molecular level.