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Abstract
The ultra-high precision spectroscopy of highly charged ions (HCI) paves way for a new
atomic clock standard. To match the larger transition energies in HCI, a near-infrared
(NIR) frequency comb operating at 100 MHz is extended into the extreme ultraviolet
(XUV) regime via high harmonic generation (HHG) inside a femtosecond-enhancement
cavity (fsEC). Large HHG yield is favored by correct coupling of the incident beam to
the desired Gaussian mode of the fsEC. Optimal alignment induces a small focus size,
reduces residue plasma between pulses, and allows for the desired focus intensity of
up to ∼ 1014 W/cm2. Manual mode optimization can be time consuming, prone to er-
ror, and requires far off-resonance operation. This thesis concentrates on the automatic
mode optimization. A hill climb (HC) algorithm is adapted for close to resonance op-
eration and demonstrates intensity gain of up to 300% in less than 100 iterations, while
correcting for resonance shifts and successfully depleting higher order transverse elec-
tromagnetic modes (TEM) in favor of the desired Gaussian mode.

Zusammenfassung
Die Ultrahochpräzisionsspektroskopie von hochgeladenen Ionen bereitet den Weg für
einen neuen Atomuhrstandard. Um die hohen Übergangsenergien der Ionen zu erre-
ichen wird ein Frequenzkamm im nahen Infrarotbereich bei 100 MHz betrieben und per
Generation von hohen Harmonischen in einem Überhöhungsresonator in den extrem
ultravioletten Bereich erweitert. Eine hohe Ausbeute an hohen Harmonischen wird
durch die korrekte Einkopplung des einfallenden Gauß-Strahls in den Überhöhungsres-
onator begünstigt. Die optimale Justierung führt zu einem kleinen Fokusvolumen, re-
duziert das Restplasma zwischen aufeinanderfolgenden Pulsen und ist maßgebend für
eine Intensität von bis zu 1014 W/cm2 im Laserfokus. Die manuelle Modenoptimierung
erfordert Zeit, ist anfällig für Fehler und muss weit von der Resonanzlänge durchge-
führt werden. Diese Arbeit konzentriert sich auf die Automatisierung der Spiegelaus-
richtung. Ein Bergsteigeralgorithmus demonstriert einen Zuwachs in Intensität von bis
zu 300% des erwünschten Gauß-Strahls in weniger als 100 Iterationen bei resonanzna-
her Anwendung.
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1 Motivation

1 Motivation
1.1 Fundamental research
Modern physics stands divided between the smallest and largest scales; between the
Standard Model (SM) [1], which describes the interactions of the most fundamental par-
ticles, and General Relativity (GR) [2] interpreting the interactions that form stars, solar
systems, galaxies, and superclusters. Experiments express the success of the SM, by
confirming its predictions at high precision. However, evidently a substantial amount
of our universe consists of dark matter and dark energy, making up 26% [3] and 69% [4]
of our universe, respectively. When it comes to their existence, the SM is incapable of
predicting either. Furthermore, the asymmetry between baryonic and antibaryonic mat-
ter hints at unexplained interactions tracking back to the early stages of the universe [5],
another shortcoming of the SM. As modern physics is unable to describe 95% of what
makes up our universe, fundamental research is probing for new physics.

As opposed to collider experiments, which probe for new particles and fields at ener-
gies in the range of TeV, high precision spectroscopy is being conducted at small scale.
Colliders, such as the Large Hadron Collider (LHC) at CERN, were able to detect and
confirm the existence of all particles predicted by the SM, including the finding of the
Higgs boson as of lately [6]. On the other hand, table-top experiments, which run at
considerably lower energies in the range of eV, can probe for deviations from the SM
instead, by studying atomic transitions at high precision. These high precision mea-
surements were enabled by laser technology advances [7, 8].
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1 Motivation

1.2 Variation of fundamental constants
Paul Dirac was one of the first physicist to consider the variation of fundamental con-
stants in 1937 [9], influenced by Edward Milne’s work in 1935 [10]. While the SM de-
clares the values of these fundamental constants as unchanging, the search for unity be-
tween the SM and GR led to the rise of theories that propose variation of fundamental
constants. A wide range of work was committed to the search of variation: investigat-
ing natural nuclear reactors, Big Bang nucleosynthesis, and quasar absorption spectra
[11]. The typical candidates for probing of variation are dimensionless constants, as
their variation can be distinguished from variation of units. Most noteworthy are the
proton-to-electron mass ratio µ = mp/me and the fine structure constant, with the vac-
uum permittivity ∈0, elementary charge e, Planck constant h, and speed of light c:

α =
1

4π ∈0

e2

hc
(1.1)

In 2005 analysis of distant quasar spectroscopy led to the proposal of the so-called Aus-
tralian Dipole [12, 13], which characterizes a spatial variation of the fine structure con-
stant. However, the data largely produced by the Keck telescope and the New Very
Large (VLT) telescope is under debate, as systematic errors are suspected to have had
influence on the results [14]. Nonetheless, or just because of these debates, laboratory
research sparked. As the earth traverses the Australian Dipole, the fine structure con-
stant is expected to vary with time in the laboratory frame. When assuming a stationary
dipole with respect to the cosmic microwave background (CMB), a limit to the variation
of α̇/α = 1.35× 10−18cos(ψ) yr−1 can be expected, where ψ is the angle between the mo-
tion of our solar system and the dipole [15].

This estimation lies far beyond the fractional uncertainty of the Cs microwave fre-
quency standard at 10−16 [16], which was used to define the second in 1967. Since then
optical atomic clocks have overtaken in accuracy and the current most accurate limit
to the variation of the fine structure constant was set via quantum logic spectroscopy
(QLS) [17] in 2008 by the frequency ratio of Al+ and Hg+ [18] with fractional uncertain-
ties of 2.3× 10−17 and 1.9× 10−17, respectively. At this accuracy, measurements over the
course of a year resulted in a limit of:

α̇

α
= (−1.6± 2.3)× 10−17 yr−1. (1.2)

As it stands, the accuracy of atomic clocks still has room for improvements and frac-
tional uncertainties in the order of 10−18 are feasible [19, 20].

2
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1.3 Highly charged ions
The energy dependence of atomic transitions on the variation of the fine structure con-
stant can be quantified by [21]:

E = E0 + q

[(
α

αl

)2

− 1

]
, (1.3)

with the factor q, E0 = hf0 as the fine structure splitting within one multiplet, and αl
as the laboratory value of the fine structure constant. Frequency variations can thus be
linked to the ratio K between the q factor and the frequency f0 by:

ḟ

f0

=
2q α̇

f0 α0

≡ K
α̇

α0

. (1.4)

As a result, the sensitivity of two atomic transitions to the variation of α strongly relies
on the difference in their K factors. This is where the charge state Q of HCI becomes
advantageous. At optical transitions, close to the level crossings of HCI [22], the fre-
quency scaling of f0 ∝ (Q+1) is being suppressed. Consequently, the K factor becomes
proportional to the charge state [23]:

K ∝ 2q ∝ 2(Q+ 1)2. (1.5)

Forbidden transitions with long lifetimes provide higher accuracy and can be found in a
multitude of HCI. These optical transitions appear at level crossings with near degener-
acy. Following these considerations, a range of suitable candidates were proposed [24,
25, 26], including HCI with K factors of several hundreds.

Another advantage is given by the reduced influence of external perturbations on
HCI; the few remaining electrons experience increased binding energies and systemat-
ical effects, such as Stark shifts and Zeeman shifts, are less impactful [27]. The impor-
tance of HCI for a new atomic clock standard was already proposed in 2007 in conjunc-
tion with the variation of fundamental constants [28].

3
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1.4 Electron beam ion traps
Despite evident practical challenges, the aforementioned advantages of HCI provoked
further studies. The production and manipulation of HCI is far from trivial and calls for
a specialized trap. Figure 1.1 depicts a schematic of an electron beam ion trap (EBIT).
An EBIT [29] utilizes an electron beam, to strip the injected species of their electrons
and trap the produced HCI. This high-intensity electron beam is collimated by a mag-
netic field, which is produced by two Helmholtz coils. After injection, the beam quickly
ionizes the atoms and provides radial confinement for the now positively charged ions.
Along the electron beam, the confinement is provided by several drift tubes. As a result,
the HCI are heated up to temperature levels of 106 K by the electron beam, reproducing
conditions usually found in the Sun’s corona or solar winds. Spectroscopy of the HCI
fluorescence is of high interest, not exclusively for the determination of the charge state.
An abundance of ions and their decay channels remain unstudied, which is referred to
as the spectral desert [22].

Figure 1.1: Schematic of an EBIT: Figure from S. Bernitt [30]. The electron beam (yellow),
emitted at the electron gun, ionizes atoms (green) at the trap center before it is being absorbed at
the collector. Together with the drift tube potential (blue), a radial and axial confinement for the
HCI is produced. The beam is collimated by the magnetic field (purple) of two Helmholtz coils.

Returning to the topic of high precision spectroscopy, these conditions are rather in-
convenient. The cooling process is complicated by the scarcity of fast-cycling optical
transitions, as standard laser cooling becomes inaccessible for most HCI. However, the
Cryogenic Paul Trap Experiment (CryPTEx) [31] presented successful sympathetic cool-
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ing of HCI in 2015. CryPTEx accomplished the cooling of a single Ar+13 ion by a single
Be+ ion, achieving a seven-order-of-magnitude decrease in temperature. Furthermore,
the Be+ ion provides access to QLS. Conclusively, CryPTEx paved way for the promis-
ing high precision spectroscopy of HCI and was realized recently, in 2020, via the for-
bidden optical transition at 441 nm in 40Ar13+ [32].
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1.5 Extreme ultraviolet spectroscopy
As mentioned earlier, optical atomic clocks have overtaken the microwave standard in
accuracy. This phenomenon can be tracked back to the so-called Allen deviation σ [33].
The statistical errors that are being accumulated during a Ramsey interrogation scheme
of a clock frequency can be quantified by:

σ =
1

2πν0

√
NTmt

, (1.6)

where ν0 is the probed frequency, N the number of uncorrelated atoms, Tm the probe
time, and t the total averaging time. The deviation can be suppressed by increasing the
number of atoms, the averaging time, and the probe time. While the first two depend
on each other, the probe time is limited by the coherence time of the laser or the life-
time of the probed transition. The remaining factor, the transition frequency, is partly
responsible for the shift from microwave clocks to optical clocks. Consequently, XUV
transitions are expected to outperform both.

Unfortunately, XUV transitions are hard to come by, as most atomic systems are ion-
ized, when exposed to XUV radiation. This leads right back to HCI. Their high charge
state results in higher binding energies and XUV transitions become available. Addi-
tionally, for the same reason, HCI are not ionized as easily. On the other hand, the
technical realization poses multiple challenges. As most matter absorbs XUV radiation,
the experimental realization requires a vacuum. To complicate matters, coherent XUV
radiation sources are limited. Free-electron lasers and synchrotrons only provide quasi-
coherent radiation and the resulting HCI spectroscopy [34, 35, 36] is limited to fractional
uncertainties above 10−6.

6
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1.6 Frequency combs

Figure 1.2: Frequency comb illustration: The frequency spectrum of a frequency comb with
marked repetition rate and carrier-envelope offset. The evenly spaced comb teeth provide an
optical ruler for absolute and relative high precision measurements.

The arise of optical atomic clocks transpired hand in hand with advances in laser
technology. Pulsed lasers provide an optical measurement tool: so-called frequency
combs, which get their name from their comb-like frequency spectrum. Repeated pulses
result in evenly spaced teeth in the frequency domain, effectively providing an optical
ruler. Each nth tooth can be found via the repetition rate of the pulses frep and the
carrier-envelope offset (CEO) fceo, which quantifies the phase-slip between subsequent
pulses:

fn = nfrep + fceo (1.7)

Early relative frequency measurements via pulse trains were already presented in 1970
[37]. However, without control of the carrier-envelope offset, absolute measurements re-
mained inaccessible.

This was until in 2000 a new method was presented [38, 39]; utilizing a so-called op-
tical octave, the teeth on the low-frequency end of the spectrum can be compared to the
high-frequency end, by means of frequency doubling. This self-referencing technique fi-
nally allowed for the extraction and control of the carrier-envelope offset. As time went
on, frequency combs were extended far into the XUV regime by a technique called high
harmonic generation, which allows for the production of coherent sub 100 nm radiation
[40]. Typically, a noble gas injected at the resonators focus point is repeatedly exposed
to laser pulses. The Coulomb potential of the atom is being modified during each laser
cycle, initially allowing the outer electron to tunnel, to then be accelerated back, and
finally recombine with the ion, where coherent high-energy photons are being emitted

7
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[41]. As it stands, XUV frequency combs have the potential to revolutionize frequency
metrology and provide an indispensable tool for ultra-high precision spectroscopy.

8



1 Motivation

1.7 Resonator stabilization and alignment
HHG requires high laser power at a focal volume. Pulse amplification can be realized
by employing an enhancement cavity, in the scope of this thesis a fsEC [42]. Multiple
pulses are being overlapped coherently and the repetition rate determines the optimal
resonance length of the longitudinal fsEC modes, while the transverse modes are be-
ing controlled by the resonators alignment. Minimal deviations from the resonance
length or resonator alignment rapidly eliminate the required enhancement, as subse-
quent pulses are mismatched and the laser power is shifted to higher modes.

The reflected fsEC signal can be studied, to lock the resonator length. This signal
follows a parabolic shape and initially, lasers were locked by operating the resonator
length on either side of the resonance [43]. The resulting linear response uncovers the
required length correction. With this method operation on resonance is inaccessible, as
the linearity of the response signal is lost. Furthermore, intensity fluctuations are not
distinguishable from variations in resonator length. Initially, attempts were made to sta-
bilize the intensity separately [44], until an advanced locking technique was published
in 1983 [45]. The Pound-Drever-Hall frequency stabilization takes advantage of the beat
signal produced by side bands, to recover linearity while operating on resonance and
has become state of the art.

Resonator alignment is often controlled manually, by performing beam walks and
observing the intra-cavity intensity distribution. Automatic adjustments can save time
and provide better alignment. Genetic algorithms [46] and stochastic parallel gradient
descents [47] have been shown to actively optimize alignment. Since UHV is required
at XUV operation, shortage of space as well as the difficulty of implementing diagnos-
tics complicate the automated adjustment setup and absolute mirror positions become
unobtainable. Therefore, a simple but effective position independent search algorithm
for transverse resonator alignment is advantageous. In this thesis, the development and
implementation of such an algorithm for close to resonance operation is presented.

9
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2 Theoretical background
2.1 Laser pulses and enhancement cavities
2.1.1 Laser pulses

Figure 2.1: Illustration of superposition of several plane waves producing a pulse: From top to
bottom this figure shows four plane waves with decreasing wavelength. Their maxima align at
the center. The fifth illustration, in red, depicts a pulse produced by superposition of an infinite
amount of plane waves; it consists of a carrier frequency modified by a Gaussian envelope. An
intuitive understanding can be acquired, as the constructive interference at the center of the
illustration results in a peak for the pulse.

In order to describe the nature of laser pulses one can start at the electromagnetic
wave equation in a vacuum, absent of charges and currents, as obtained from Maxwell’s
equations in one dimension [48]:(

∂2

∂z2
− 1

c2

∂2

∂t2

)
E(z, t) = 0. (2.1)

This equation describes the change in the electric field E(z, t) along the axis of propaga-
tion z at the time t, which travels with the speed of light c. Together with the identical
equation for the magnetic field B(z, t) they characterize the propagation of electromag-
netic waves in one dimension. The most simple solution, the plane wave, is given by:

E(z, t) = A0 e
i(ωt−kz), (2.2)

11



2 Theoretical background

where k = 2π/λ is the wave number with λ as the wavelength, ω = ck the frequency,
and A0 the amplitude. Furthermore, a sum of solutions to the wave equation provides
a new solution. This is known as the superposition principle. A Fourier transform
allows a pulse to be described as an integral over many plane waves, each with a dis-
tinct frequency. Intuitively, their superposition leads to constructive and destructive
interference, which approximates a laser pulse for an infinite amount of superposed
frequencies, as illustrated in Figure 2.1. A pulse can be represented by integration as:

Et(z, t) =
1

2π

∫ ∞
−∞

A(ω − ωc)e iωte −i(k+kc)z dω, (2.3)

where ωc is the central carrier frequency and A(ω−ωc) are the amplitudes of each plane
wave. A separation of A(ω − ωc) = A(ω)e iωct can be made, if the spectral bandwidth is
sufficiently small compared to the carrier frequency [49], resulting in:

Et(z, t) = e i(ωct−kcz)
∫ ∞
−∞

A(ω)e iωte −ikz dω = A(z, t)e i(ωct−kcz). (2.4)

Consequently, a pulse consists of a carrier wave and an envelope A(z, t) which de-
termines the pulse shape. The typical pulse shape is Gaussian, that being said other
shapes, such as Lorentzian, are also feasible. A Gaussian envelope in the time domain
is mapped onto another Gaussian in the frequency domain by a Fourier transform and
their relation becomes:

A(ω − ωc) = A0 τ

√
π

4 ln 2
exp

[
−τ

2(ω − ωc)2

16 ln 2

]
, (2.5)

A(t) = A0 exp
[
−4 ln 2 t2

τ 2

]
, (2.6)

where the pulse duration τ is chosen to equal the full-width half-maximum (FWHM) in
the time domain τ = 2

√
2 ln 2σ, with σ as the standard deviation.
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2 Theoretical background

2.1.2 Frequency combs

Figure 2.2: Fourier transform of a single pulse compared to a pulse train: The pulses are
depicted in red, the envelopes in black, and the spectra in blue. The pulses are spaced by Trep in
the time domain and the comb teeth are separated by frep = 1/Trep in the frequency domain. As
more pulses are added, the comb teeth grow more narrow. In order to achieve a short pulse
duration τ the width of the spectrum envelope has to be increased; more available frequencies
produce shorter pulses.

As the fsEC used in this thesis is fed by a pulse train, it is requisite to study the
interference of N pulses at a fixed position z = 0, spaced by the repetition time Trep,
and shifted by the carrier-envelope phase ∆φcep [49]. Accordingly, Equation 2.4 can be
summed up to yield the electric field of such a pulse train:

E(t) =
N−1∑
n

A(t− nTrep) exp[i(ωct− nωcTrep + n∆φcep)]. (2.7)

The carrier-envelope phase leads to a shift in phase between the carrier and its envelope,
as the name suggests. Therefore, each subsequent pulse increases its offset between
carrier maximum and envelope maximum, known as carrier-envelope offset, until they
eventually align again at multiple of 2π. After applying the Fourier transform:

E(ω) =
N−1∑
n

exp[i n(−ωcTrep + ∆φcep)]

∫ ∞
−∞

A(t− nTrep) exp[−i(ωt− ωc)] dt, (2.8)

13
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the following equation is recovered:

E(ω) = A(ω − ωc)
N−1∑
n

exp[i n(−ωcTrep + ∆φcep)]. (2.9)

Simplifying the sum with the identity
∑N−1

n=0 x
n = 1−xN

1−x and applying some trigono-
metric identities yields the intensity spectrum for the pulse train via Ipt(ω) = |E(ω)|2:

Ipt(ω) = |A(ω − ωc)|2
sin2(N(ωTrep + ∆φcep)/2)

sin2((ωTrep + ∆φcep)/2)
. (2.10)

To lay this result side by side with a single pulse of sufficiently small bandwidth com-
pared to its carrier frequency, the Fourier transform of Equation 2.4 is calculated as:

Ipulse(ω) = |Eω|2 = |
∫ ∞
−∞

Et(z, t) e
−iωt dt|2 = |A(ω − ωc)e−ikz|2 = |A(ω − ωc)|2 (2.11)

and it can now be seen that for N = 1 the spectrum of a single pulse Ipt = Ipulse is recov-
ered. Consequently, the spectrum of a pulse train consists of an envelope |A(ω − ωc)|2
modified by a periodic function. While the spectrum of a single pulse is continuous, a
pulse train forms a sort of "comb" of increasingly narrow lines for N → ∞, as is pre-
sented in Figure 2.2. This comb is known as a frequency comb. The repetition rate,
which describes the spacing between the teeth of the comb, is given by frep = 1/Trep
and the combs offset, the so-called carrier-envelope offset (CEO) frequency, becomes
fceo = ∆φcep/2πTrep. Finally the nth comb tooth frequency can be found by applying:

fn = fceo + nfrep. (2.12)
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2.2 Resonator optics
2.2.1 Gaussian modes
Consider the plane wave that is traveling along the z direction at t = 0:

U(r) = A(r)exp(−ikz), (2.13)

with A(r) as a slowly varying envelope depending on the position r [48]. Solving the
Helmholtz equation∇2U + k2U = 0 imposes a restriction on the complex envelope:

∇2A− i2k∂A
∂z

= 0. (2.14)

This can be shown to be solved by the complex envelope of a Gaussian beam as:

A(x, y, z) =
A1

q(z)
exp

(
−ikx

2 + y2

2q(z)

)
, q(z) = z + iz0, (2.15)

withA1 as a constant and z0 as the Rayleigh range. This solution resembles a paraboloidal
solution with the addition of the imaginary shift in the so-called q-parameter q(z). It
also can be expanded to non-Gaussian intensity distributions, that retain their wave-
fronts, as described by Equation 2.15. The q-parameter is separated in order to describe
the beam width and the wavefront radius of curvature. Consider the inverted q-factor
1/q(z) = 1/(z + iz0) which can be rewritten as 1/q(z) = 1/R(z)− iλ/πW 2(z) with W (z)
and R(z) as:

W (z) = W0

√
1 +

(
z

z0

)2

, (2.16)

R(z) = z

[
1 +

(z0

z

)2
]
. (2.17)

Equation 2.16 describes the beam width with the waist radius W0, while Equation 2.17
describes the wavefront radius of curvature. In order to get a better understanding of
their properties and why they describe these features of a Gaussian beam, a look at the
intensity distribution of a Gaussian beam is necessary. By inserting Equation 2.15 into
Equation 2.2 the following equation is retrieved:

U(r) =
A1

iz0

W0

W (z)
exp

[
−
(

ρ

W (z)

)2
]

exp
[
−ikz − ikx

2 + y2

2R(z)
+ i arctan

(
z

z0

)]
, (2.18)

with ρ =
√
x2 + y2 as the radius. The intensity calculation I(r) = |U(r)|2 will cancel the

imaginary parts and results in a Gaussian-like intensity distribution perpendicular to
the propagation in z direction:

I(x, y, z) = I0

[
W0

W (z)

]2

exp
[
−2(x2 + y2)

W 2(z)

]
, (2.19)
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with I0 = A2
1/iz

2
o as the complex amplitude. The intensity distribution can be seen

in Figure 2.3. At the focus position z = 0 the minimal beam size width of W0 is
reached, from which the beam diverges along the optical axis. The beam width fol-
lows an hourglass-like shape along the optical axis and approximates a linear function
in z for large z. At this point it is important to note that the theoretical intensity distri-
bution in Figure 2.3 remains point symmetric at any distance. Depending on the mirror
setup the beam width in the sagittal plane can differ from the tangential plane, leading
to astigmatism. The bow-tie resonator used for this thesis focuses the beam at an an-
gle and compensates the resulting astigmatism to produce a point symmetric intensity
distribution at the focus position. This leads to distorted images in the observational
plane and the transmitted intensity distribution appears oval at a distance. The integra-

Figure 2.3: Gaussian beam intensity distribution along the optical axis in units of the Rayleigh
range: The dashed circles depict the beam width W (z), which becomes the beam waist W0 at
z = 0. Within the dashed line approximately 86% of the beam power is located.

tion over the intensity distribution from ρ = 0 to ρ = ∞ results in the beam power of
P = 1

2
I0(πW 2

0 ). Consequently, the normalized integration up to ρ0 can now be calculated
as:

1

P

∫ ρ0

0

I(ρ, z)2πρdρ = 1− exp
[
− 2ρ2

0

W 2(z)

]
. (2.20)

Coming back to the beam width from Equation 2.16, it is now trivial to show that within
a radius of ρ0 = W (z) approximately 86% and within a radius of 1.5W (z) almost 99% of
the beam power of a Gaussian beam is located, which is why W (z) is referred to as the
beam width. Another look at Equation 2.18 reveals the phase of the Gaussian beam as:

φ(ρ, z) = kz − χ(z) +
kρ2

2R(z)
, χ = arctan

(
z

z0

)
. (2.21)

It consists of the phase of a plane wave, a phase retardation χ along the z direction, and
the wavefront radius of curvature. The phase retardation shifts the phase from −π/2 to
π/2. This effect can be seen in Figure 2.4 and is called Gouy effect. The third component
of Equation 2.21 depends on ρ and is only non-zero off axis. It describes the bending
of the wavefronts perpendicular to the beam propagation, as shown in Figure 2.5. At
z = 0 the Gaussian beam wavefront resembles that of a plane wave, while for increas-
ing z the wavefronts behave like spherical waves. Due to this property, the Gaussian
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Figure 2.4: Gouy effect: The phase shift reaches ±π/4 at the Rayleigh range. For z = ±∞ the
Gouy phase shift approaches its limit of ±π/2.

Figure 2.5: Gaussian beam wavefronts for k = 0.3z0: At z = 0 the wavefront resembles a plane
wave, while for higher z the wavefront curvature becomes spherical. Consequently, a
spherically curved mirror can match the wavefronts in good approximation.

wavefronts can match the curvature of spherical mirrors and can reproduce themselves
between them, laying the basis for optical resonators. As mentioned prior, not exclu-
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sively Gaussian beams posses the ability to reproduce and result in so-called resonator
eigenmodes, also referred to as modes. Solutions to the Helmholtz equation which share
this wavefront behavior but exhibit non-Gaussian intensity distributions are also able to
build modes in a resonator. This applies for example to Bessel, Hermite-Gaussian and
Laguerre-Gaussian beams. The next chapter will focus on Hermite-Gaussian beams,
considering their relevance in the scope of this thesis. While Laguerre-Gaussian beams
result from cylindrical symmetry, Hermite-Gaussian beams are found when solving the
Helmholtz equation for Cartesian symmetry.
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2.2.2 Hermite-Gaussian modes
To further investigate Hermite-Gaussian modes, consider the modulated Gaussian beam
A with the Gaussian envelope AG from Equation 2.15:

A(x, y, z) = α

[√
2

x

W (z)

]
β

[√
2

y

W (z)

]
exp(i γ(z) )AG(x, y, z), (2.22)

where α, β, and γ are real functions [48]. Since γ(z) is independent of ρ, the same
wavefront radius of curvature from Equation 2.17 appears in this modulated Gaussian,
which in return implies that this beam is able to produce resonator modes. Inserting
this function into the Helmholtz equation leads to:

1

α

(
∂2α

∂u2
− 2u

∂α

∂u

)
+

1

β

(
∂2β

∂v2
− 2v

∂β

∂v

)
+ kW 2(z)

∂γ

∂z
= 0, (2.23)

where for simplicity x and y were replaced by the dimensionless variables u =
√

2x/W (z)
and v =

√
2y/W (z), respectively. Each term of Equation 2.23 has its own independent

variable and a separation of variables can be applied, which yields three differential
equations:

−1

2

d2α

du2
+ u

dα

du
= µ1α, (2.24)

−1

2

d2β

dv2
+ v

dβ

dv
= µ2β, (2.25)

z0

[
1 +

(
z

z0

)2
]
dγ

dz
= µ1 + µ2, (2.26)

where the constants µ1 and µ2 are chosen to simplify later calculations. The first two
differential equations are solved by Hermite polynomials, hence the name of the modes.
For the first differential equation, these are be given by:

Hn(u) = (−1)n exp(u2)
dn

dun
exp(−u2), n = 0, 1, 2, ... (2.27)

The first four polynomials are H0(u) = 1, H1(u) = 2u, H2(u) = 4u2 − 2, and H3(u) =
8u3 − 12u. In similar fashion, the second differential equation is solved by Hermite
polynomials, by replacing u and n with v and m. Now, µ1 = n and µ2 = m can be sub-
stituted, allowing for the last differential equation to be solved via integration, which
yields γ = (l + m)χ(z). Inserting and rearranging the results into the initial Equation
2.22 finally gives rise to the Hermite-Gaussian beam equation:

Unm = Anm

[
W0

W (z)

]
Gn

[ √
2x

W (z)

]
Gm

[ √
2y

W (z)

]
exp[iφnm], (2.28)
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Figure 2.6: Normalized intensity of a Hermite-Gaussian beam along one of its symmetry axes
for W0 = z0 = Anm = 1: The intensity distribution drastically deviates from the Gaussian
beam for higher orders, while the wavefront curvature stays the same. Note that the
normalization hides the intensity maxima decrease for increasing orders. The integrated beam
power does not change.

with the phase:

φnm = −kz − kρ2

2R(z)
+ (n+m+ 1)χ, (2.29)

the amplitude Anm, and the Hermite-Gaussian equations for n and m:

Gn(u) = Hn(u)exp
(
−u2

2

)
, (2.30)

Gm(v) = Hm(v)exp
(
−v2

2

)
. (2.31)

This group of modes is referred to as transverse electromagnetic modes and often de-
noted as TEMnm. The Gaussian mode is a transverse electromagnetic mode of order
(n,m) = (0, 0) or TEM00, since for the order n = m = 0 the Gaussian mode is recovered.
The higher orders result in G1(u) = 2u exp(−u2/2), G2(u) = (4u2 − 2) exp(−u2/2), and
so on. The intensity distribution for different Hermite-Gaussian beam modes can be
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Figure 2.7: Hermite-Gaussian beam intensity distribution for different orders (n,m).

seen in Figure 2.6 and Figure 2.7, and is calculated via:

Inm(x, y, z) = |Anm|2
[
W0

W (z)

]2

G2
n

[ √
2x

W (z)

]
G2
m

[ √
2y

W (z)

]
. (2.32)
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2.2.3 Resonance frequencies

Figure 2.8: Resonance frequencies for Hermite-Gaussian modes in units of νf for varying
mirror distances: The dashed resonances are of order q = 0, solid ones are of order q = 1, and
color denotes a change in the sum of (n,m). The intensities are chosen to visually amplify the
TEM00 and have no physical relevance.

Consider the phase of the Gaussian beam from Equation 2.21 along the optical axis,
with two mirrors located at z1 and z2:

φ(0, z1) = kz1 − χ(z1), (2.33)

φ(0, z2) = kz2 − χ(z2). (2.34)

As mentioned earlier, a stable resonator mode requires the Gaussian beam wavefronts
to fit the mirror curvature, which requires a shared phase on each point of each mirror. It
is therefore sufficient to only regard the phase change on the optical axis, to discuss the
resonance frequencies of the resonator [48]. The phase gained due to the reflection on
the mirrors will be neglected in the following calculations, since it usually equates to an
additional phase shift of 2π. The phase accumulated during the propagation between
mirror one and mirror two then becomes:

φ(0, z2)− φ(0, z2) = k(z2 − z1)− (χ(z2)− χ(z1)) = kd−∆χ, (2.35)
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with d as the distance between both mirrors and ∆χ = χ(z2) − χ(z1). For the beam to
reproduce itself, the phase accumulated in one round-trip needs to equal a multiple of
2π. Note that the total phase accumulated in one round-trip is equal to 2(kd−∆χ). In a
linear cavity the wave needs to travel the mirrors distance twice before it retraces itself.
This is not directly applicable for more complicated resonator geometries, for which
the round-trip length may be calculated differently. For a linear cavity the resonance
frequencies are determined as:

νq = qνf +
∆χ

π
νf , (2.36)

here νf = c/2d is the so-called free spectral range (FSR) and q an integer. As to be
expected, the Gouy phase needs to be respected when considering the resonances of
a Gaussian beam. When extending this approach to Hermite-Gaussian beams, the
resonance frequencies include another dependency; the orders (m,n) of the Hermite-
Gaussian beam phase φnm from Equation 2.29. A similar calculation [48] results in:

νqnm = qνf + (n+m+ 1)
∆χ

π
νf . (2.37)

These resonances are visualized in Figure 2.8. The resonance frequencies of the Hermite-
Gaussian beam differ from the Gaussian beam by (n + m)∆χνf/π. For the same longi-
tudinal mode q this results in a spacing between two transverse modes of:

νqnm − νqn′m′ = [(n+m)− (n′ +m′)]
∆χ

π
νf . (2.38)

Note that for different orders with the same sum n+m the resonances coincide.
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2.2.4 Lossy resonators

Figure 2.9: Hermite-Gaussian resonances in units of νf for varying mirror distances in a lossy
resonator: The maximal intensities are Imax = 5 and Imax = 3 for the (n,m) = (0, 0) and
n+m > 0 modes, respectively, which again are chosen to visually amplify the TEM00 and have
no physical relevance. The broadening is shown for a Finesse of F = 10 and correctly extends
the lossless resonances from Figure 2.8 for any integer q.

The resonance frequencies as given in Equation 2.37 imply strict resonance condi-
tions, which only apply for lossless resonators [48]. For simplicity consider two mirrors
with the same reflectivity R = |r|2 < 1. The round-trip amplitude attenuation factor:

h = |r|exp(−iφ) (2.39)

characterizes the amplitude loss that is linked to each reflection, where φ is the phase
difference. An incident plane wave U0 will superpose with the wave U1 = hU0 after one
round-trip, both will superpose with U2 = hU1, and so on. Unlike the lossless cavity, the
result is a geometrical series where each round-trip reduces the previous amplitude by
h < 1:

U0 + U1 + U2 + ... = U0(1 + h+ h2 + ...) =
U0

1− h
(2.40)

The total intensity inside the resonator depending on the attenuation factor and the
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incident intensity I0 = |U0|2 can now be written as:

I =
I0

(1− |h|)2 + 4|h|sin2(φ/2)
. (2.41)

This can further be simplified, by defining Imax = I0/(1− |h|)2 and introducing a quan-
tity known as the finesse:

F =
π
√
|h|

1− |h|
. (2.42)

A larger finesse, caused by increased mirror reflectivity and consequently, an attenu-
ation factor |h| that is closer to 1, leads to a more sharply peaked intensity function.
Equation 2.41 now takes the form:

I =
Imax

1 + (2F/π)2sin2(φ/2)
. (2.43)

This result is visualized in Figure 2.9 for Hermite-Gaussian modes. The phase shift
φ = k2d = 4πνd/c for one round-trip of the TEM00 mode in a Fabry-Perot resonator,
neglecting the Gouy effect, can be rearranged to ν = (c/4πd)φ. Inserting the free spectral
range νf = c/2d yields:

ν =
νf
2π
φ. (2.44)

Note that the factor of 2d in the phase shift and free spectral range in Equation 2.44
cancel each other. The result can thus also be applied to non-linear resonators. The
approximation sin(φ/2) ≈ φ/2 for small deviations around φ ≈ 2π is made and Equation
2.43 becomes:

I(φ) ≈ Imax
1 + (Fφ/π)2

. (2.45)

The intensity decreases to half its maximum at φ ≈ π/F , consequently the FWHM is
equal to ∆φ ≈ 2π/F . The spectral width δν ≡ ν(φ = ∆φ), as derived in equation 2.44, of
an individual resonator mode therefore depends on the free spectral range and finesse
of the resonator as:

δν ≈ νf
F
. (2.46)

Following the same calculation as before, the spectral width of the Hermite-Gaussian
mode of order TEMnm inside a linear resonator results in:

δν ≈ νf
F

[1 + (n+m+ 1)2∆χ]. (2.47)

To conclude, the importance of matching the cavity length to the beam frequency for
efficient build up of modes has been discussed in detail. Figure 2.9 demonstrates how
the intensity inside a resonator behaves for different Hermite-Gaussian modes. The
FSR, which depends on the resonator geometry, has to coincide with the frequency of
the desired mode.
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2.3 Resonator alignment
Resonator alignment refers to the correct coupling of an incident beam to the eigen-
modes of the resonator. Consider a resonator with Hermite-Gaussian eigenmodes. An
incident TEM00 beam will not exclusively couple to the desired eigenmode of the res-
onator, unless proper alignment can be ensured. Misalignment can present itself in the
form of transverse displacement, rotational displacement, waist size mismatching, and
axial waist displacement. In 1st order approximation, the rotational displacement can
be neglected, this approximation is known as the paraxial approximation. In the scope
of this thesis the effects of transverse x-axis displacement in 1st order approximation
are derived, assuming that the waist size and axial position are matched with the res-
onator. Recall the lowest two Hermite-Gaussian equations derived from Equation 2.30
G0(u) = exp(−u2/2) and G1(u) = 2u exp(−u2/2). For simplicity, the following calcula-
tions will be carried out in one dimension. The Gaussian equation of the incident beam,
with the transverse displacement du, can then be written as:

Ψ0(u− du) = exp
(
−(u− du)2

2

)
= exp

(
−u

2

2

)
exp

(
−du2

2

)
exp(udu). (2.48)

For sufficiently small displacements du =
√

2dx/W (z) < 1, the terms in 2nd order

Figure 2.10: Transverse and rotational displacement of an incident beam in respect to a linear
resonator.

for du2 ≈ 0 can be ignored. The second exponential function in Equation 2.48 can
therefore be neglected, since exp (−du2/2) ≈ 1, while the third exponential function can
be expanded to the 0th and 1st order: exp(udu) ≈ 1 + udu. When inserting this back
into Equation 2.48, the result becomes:

Ψ0(u− du) ≈ (1 +
du
2

2u) exp
(
−u

2

2

)
. (2.49)

Reordering and inserting the 0th and 1st order Hermite-Gaussian equations leads to:

Ψ0(u− du) ≈ G0(u) +
du
2
G1(u). (2.50)
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Thus, it can be seen that small transverse displacements cause an incident Gaussian
beam to couple to the TEM10 of the resonator. The resulting Hermite-Gaussian beam
equation in one dimension can be calculated similar to Equation 2.28:

U0 = Ψ0(u− du) exp(φ0) ≈ AΨ

[
G0(u) +

du
2
G1(u)

]
exp(iφ0), (2.51)

with the factor Aψ = A0W0/W (z). Note that G0 and G1 share a phase, as they origi-
nate from the same Gaussian beam. Depending on the resonator length, either G0 or
G1 can retrace itself and become a resonator mode. The coupling coefficient from the
incident beam to the 1st order Hermite-Gaussian mode is du/2. From here the intensity
distribution IΨ(u) can be determined:

IΨ(u) = |AΨ|2 |G0(u) +
du
2
G1(u)|2 = |AΨ|2 (G2

0 +

(
du
2

)2

G2
1 + duG0G1). (2.52)

The result is a superposition between TEM00, TEM10, and the term G0(u)G1(u). The
resulting intensities are:

I0(u) = |AΨ|2 exp(−u2), (2.53)

I1(u) = |AΨ|2 du2 u2 exp(−u2), (2.54)

2
√
I0(u)I1(u) = 2|AΨ|2 du u exp(−u2), (2.55)

respectively, and integration over u from −∞ to∞ yields the power for each term:

P0 =
√
π|AΨ|2, (2.56)

P1 =

√
π

2
|AΨ|2 du2, (2.57)

P01 = 0. (2.58)

Now the coupling efficiency F (du) for an incident TEM00 coupled to the resonator
eigenmode TEM00 can be determined via F (du) = P0/(P0 + P1) and is visualized in
Figure 2.11:

F (du) =
1

1 + du2/2
. (2.59)

For small rotations dαu � 1 the transformation u′ = u cos(dαu) projects the tilted beam
onto the resonator axis. Expanding the cosine and dropping all terms depending on
dαnu for n > 1 leads to:

u′ = u

(
1− dα2

u

2
+

dα4
u

24
+O(dαu)

)
≈ u. (2.60)
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Figure 2.11: Gaussian mode coupling efficiency as function of the transverse displacement:
The Figure shows the excited power of the resonators Gaussian eigenmode depending on the
transverse displacement du =

√
2dx/W (z) < 1 for an incident Gaussian beam.

Rotations along the resonator axis can consequently be neglected in 1st order approx-
imation, as stated by the paraxial approximation. To conclude, in 1st order approxi-
mation transverse misalignment results in 1st order Hermite-Gaussian mode coupling,
while tilts can be neglected. Misalignments need to be corrected to improve the cou-
pling to the desired transverse modes of the resonator. For a bow-tie resonator, find-
ing the exact displacements can be challenging. Piezoelectric elements and stick-slip
motors, used to control the alignment, are prone to hysteresis effects and statistical in-
accuracies. Calibrations of such elements are usually determined by employing cavity
resonances. Additionally, complicated resonator geometries, as well as previous beam
transformations, for example mode-matching, chirp pulse amplification, and generally
the guiding of the beam, make it difficult to achieve perfect alignment in a real setup.
Slight misalignments are unavoidable and add up; manual alignment can be time con-
suming, prone to error and requires far off-resonance operation. This is where optimiza-
tion algorithms can shine.
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2.4 Femtosecond enhancement cavities
In the prior sections pulses and pulse trains were discussed in detail. In this section
the passive amplification of multiple pulses, by effectively "overlapping" them inside
a femtosecond enhancement cavity, will be studied [50]. In order to achieve optimal
amplification of a pulse train, or frequency comb, not only one but many frequencies
are required to be in resonance with the enhancement cavity. Considering Equation
2.12: fn = nfrep+fceo, the spacing between two adjacent teeth depends on the repetition
rate of the pulses, which was visualized in Figure 2.2. In order to amplify the complete
spectrum, this spacing must coincide with the FSR spacing, as illustrated in Figure 2.12.
Now consider the resonance condition for the accumulated phase in one round-trip

Figure 2.12: Illustration of comb spacing in a fsEC for F = 10, k = 1, and ignoring the Gouy
phase: The frequency comb teeth are depicted in red, the cavity resonances in blue. The upper
illustration depicts optimal alignment between the cavity resonances and the comb spacing. A
small mismatch in spacing, as exaggerated in the lower illustration, will significantly reduce
the enhancement, as the number of comb teeth reaches up to 105.

from Equation 2.35, combining any additionally acquired phase in φd(f):

φ =
2πfL

c
+ φd(f) = 2πq, (2.61)

with f as the frequency. Rewriting the relation for the comb spacing results in:

n =
f − fceo
frep

. (2.62)

Introducing a new integer m = q − n, both equations can now be combined yielding:

q = n+m =
f − fceo
frep

+m =
fL

c
+
φd(f)

2π
. (2.63)
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Reordering and solving for the round-trip length L results in:

Lm(f) =
c

frep
+
c

f

(
fceo
frep

+m

)
− c

2π

φd(f)

f
. (2.64)

Each tooth frequency f is therefore resonant at a specific resonant length L(f), as de-
scribed in this equation. For m = 0 each tooth aligns with a cavity resonance at L0,
which is illustrated in Figure 2.12, neglecting the additional phase φd(f) and CEO fre-
quency fceo. Consequently, at the length L0 the frequency comb spectrum shares the

Figure 2.13: Normalized total intensity of a frequency comb in a fsEC for F = 50, 103 comb
teeth, λc = 1040 nm, and φd = fceo = 0: The top right figure displays the frequency comb
spectrum with a standard deviation of σ = 10 nm. The top left shows the tilted resonances. The
tilt is a result of the slight deviation in resonance length for higher longitudinal modes,
depending on the wavelength. The sum over the intensity distribution for all comb modes
results in the total intensity depicted in the lower half of the figure. As a result of the tilt, the
resonances are broadened out and less intense.

same resonance length for all teeth, resulting in optimal enhancement. At Lm, for
|m| > 0, broadened resonances appear, as shown in Figure 2.13. These fsEC modes are
longitudinal modes, as opposed to the transverse modes discussed in previous chap-
ters. A relation for the total intensity can be calculated by summing over the intensity
distributions for each comb tooth wavelength λn = 2πc/ωn resulting in:

Itot(L) =
n=105∑
n=0

A(λn − λc)
1 + (2F/π)2sin2(πL/λn)

, (2.65)
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where the intensity distribution from Equation 2.43 was utilized, the Gaussian enve-
lope from Equation 2.5 describes the maximal intensity, and with the length dependent
phase from Equation 2.61, neglecting the additional phase.

Until now, the phase shift introduced by the mirrors was neglected. As a wide range
of frequencies are circulating the resonator, the mirror reflectivity is required to cover
the whole spectrum and it is necessary to consider the so-called dispersion, which de-
pends on the frequency. The dispersive phase can be expanded around the central fre-
quency fc of the comb, giving rise to:

φd(f) = φ(fc) + φ′(fc)(f − fc) +
1

2
φ′′(fc)(f − fc)2 +O(f), (2.66)

≡ φ0 + φ1(f − fc) + φ2(f − fc)2 +O(f). (2.67)

In 0th order a constant phase shift φ0 is added to the pulse, in 1st order the so-called
group delay φ1 is responsible for a time delay of the pulse envelope, and in 2nd order
the group delay dispersion φ2 leads to broadening of the pulse envelopes. The 0th order
phase shift behaves similarly to the CEO phase, as it also shifts the carrier frequency
maximum in respect to the envelope maximum. This can be corrected for, by adjusting
the CEO phase accordingly. An initial pulse, that has accumulated the same amount
of phase due to 0th order dispersion, will constructively interfere with a succeeding
pulse, that has the same phase shift introduced by the CEO. The envelope delay caused
by 2nd order dispersion can be canceled out, by adjusting the resonators round-trip
length. Additionally, optimized mirrors with low dispersion can be installed, to further
reduce 2nd order dispersion.
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2.5 Optimization algorithms
2.5.1 Problem assessment
Automated optimization has taken over in all different aspects of research and industry
alike [51]. Just as abundant as the applications of automated optimizations are, such
is the diversity of optimization algorithms. Each problem has its own specifications,
advantages, and disadvantages each favoring a different approach. This consequently
also applies to the alignment optimization problem presented in this thesis. A suitable
alignment optimizing algorithm must operate within the restrictions of the setup and
physics, to achieve its objective of increasing the intensity of the desired Gaussian mode
in a fsEC, by adapting its alignment. Suitable input parameters, which are processed by
the algorithm, and output parameters, which are returned, have to be determined.

The alignment of the cavity operated in this thesis is controlled by piezoelectric stick-
slip motors also known as inertia motors, which effectively change the angles of the
mirrors step-wise. A piezoelectric element inside the motor is expanded, by applying
high voltage. This expansion is slow enough to "stick" to the mechanism that is adjust-
ing the tilt of the mirror, due to its static friction. The voltage is then quickly released and
the piezoelectric element "slips" past the mechanism, as it overcomes the static friction
in favor of kinetic friction, leaving the mechanism in its new position. The advantage
of these type of actuators lies within their increased range, as the mechanisms position
can be increased by a multitude of the elements expansion. On top of that, shutting of
the power supply does not impact the actuator position. On the other hand, it is not
straight forward to acquire its exact position. Tracking the amount of steps performed
introduces errors due to hysteresis effects between forward and backward motions and
statistical effects, as the element might fail to "stick" or "slip" from time to time, resulting
in a missed step. The evaluation of the initial state for the determination of the absolute
position is also challenging. Even with individual calibrations for each actuator, the er-
ror grows with each step and an additional method, such as the implementation of an
interferometer or goniometer, is indispensable to determine the exact position. There-
fore, steps were selected as an output parameter, while a more advanced setup could
provide the algorithm with a precise position.

Continuing with the input parameters, the motor control should depend on the inten-
sity of the Gaussian mode inside the resonator. The diagnostics of the setup provide two
appropriate sources: charged-coupled device (CCD) cameras and photodiodes. A CCD
camera can be used to find the intensity distribution of the TEMs inside the resonator,
but distinguishing between different modes turned out to become rather demanding, as
mode decomposition would have to be performed in real time. Image analysis involves
finding the exact center, tilt and beam width in each plane, all of which are influenced
by the subsequent optimization steps and the positioning of the camera. Furthermore,
the desired close to resonance operation requires a continuous resonator length scan,
as depicted in Figure 2.14, to distinguish between the fundamental Gaussian mode and
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Figure 2.14: Illustration of resonator length scan and photodiode response over time: The
resonator length is being scanned continuously by a triangle voltage signal applied to a
piezoelectric element. This element is directly changing the resonator length and has a smaller
range than the stick-slip motors, in exchange for a quicker response time. The here illustrated
transmitted intensity presents multiple TEMnm in intensity decreasing order: the prominent
one for n+m = 0 adjacent to the n+m = 1, and lastly the n+m = 2 mode. In this
illustration no higher longitudinal modes are displayed. Both signals are synced and send to the
algorithm as input parameters.

Figure 2.15: Closed-loop optimization process: The blue arrows depict the input and the red
one the output, which is determined by the algorithm. The length scan itself is not part of the
closed loop.

higher modes, which are supposed to be diminished. One solution would be to limit the
cameras integration time to one scanning period and synchronize both. However, the
only advantage of the CCD camera over the photodiode is the possibility to distinguish
between higher TEMs with the same resonance frequency, due to the two-dimensional
intensity distribution being unique. Since the bow-tie resonator in this thesis does oper-
ate with a lower mirror spacing than the 0.5z0 shown in Figure 2.9 and the intensity of
higher modes drops off significantly, it is reasonable to assume that the Gaussian mode
does not share its resonance with any other mode. Additionally, the optimization of the
TEM00 is of interest, therefore the photodiode provides the more accessible fitness func-
tion and requires less computational power. As the length of the cavity is scanned the
photodiode returns the TEM intensities as shown in Figure 2.14. Finally the photodiode
is synchronized with the scanning frequency and can produce a suitable fitness func-
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tion, while the CCD camera can be used to qualitatively visualize the different modes.
A more advanced setup could analyze the camera images in real time and allow for
optimizations of higher modes.
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2.5.2 Hill climb algorithms
An algorithm suited for this type of optimization has to work without relying on the
state the system is in, as it cannot reproduce any mirror positions. This premise leads
to the exclusion of genetic algorithms (GA), which otherwise would provide an effec-
tive solution. The amount of input information is restricted to a few modes inside the
scanning range, while vibrations can strongly influence the input. The amount of au-
tomated mirrors can be modified, resulting in multidimensional solution spaces. Based
on these restrictions, a well suited type of optimization algorithms are given by the so-
called hill climb (HC) algorithms [51]. A HC performs a local search around the current
state and generally moves towards a favorable neighbor, until none provide favorable
results. Although HCs are not systematic, they have their advantage in adaptability,
amount of storage required, and they are often able to find reasonable solutions within
a larger search space. Furthermore, the Gaussian mode intensity provides a single fit-
ness function as an input, which is sufficient for a HC.

However, HC algorithms have their downside as well; they only search locally. Con-
sequently, HCs can get stuck in local extrema, rigid slopes, or even plateaus. One pos-
sible state space is shown in Figure 2.16. A HC trying to maximize the fitness function
and approaching from the left would get stuck in the rigid slope, due to the abundance
of local maxima. On the other hand, a HC approaching from the right could get stuck on
the plateau, since no neighbor provides a superior solution. Finally, a HC starting in the
middle would have a chance to look for a superior neighbor to its right, which would
lead it to the local maxima. To overcome these issues, a variety of HCs have been de-
veloped over the past. A popular adaptation is the so-called random-restart HC. As the

Figure 2.16: State space for arbitrary fitness function: The displayed state spaces can be
troublesome for a hill climb, as the algorithm can get stuck in a rigid slope, local maxima, or on
a plateau.

name suggests, it performs multiple HC, each time from a new and randomly selected
initial state. Given enough time, the initial state must be close to the global maxima
and the desired solution is found. As a trade-off more iterations are required, to find
a solution. Transverse misalignment in first order approximation results in coupling
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to first order TEM and the resulting coupling efficiency from Figure 2.11 depicts the
corresponding fitness function. It can be deducted, that a random-restart HC is not nec-
essary, since no local maxima are present. This has to be taken with a grain of salt. The
assumptions made to derive the coupling efficiency do not include vibrations, higher
mode coupling due to strong rotational displacement, beam waist misalignment, and it
was assumed that a Gaussian mode is coupled in without any higher modes present. In
order to verify the HC approach, the coupling efficiency has to be measured directly.

The explicit hill climb algorithm for this thesis will be explained in more detail in a
following chapter. Each time a step is made, the intensity before and after the step are
compared and, if the difference in intensity is smaller than the error due to intensity
fluctuations, a step in the wrong direction can occur. This can be overcome by starting
with a large step size and, each time the fitness function decreases, reducing the step
size and inverting the direction. The HC effectively overshoots its target, turns around,
and looks for the maximum in the opposite direction, this time with a reduced step
size. This way fluctuations can be "jumped over" and only take effect when the step
size becomes sufficiently small, at which point the HC is already in close proximity to
the global maximum. Close to the global maximum this method loses its effectiveness,
as the fitness function error becomes bigger than its gain, where the coupling efficiency
gradient approaches zero.
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2.5.3 Genetic algorithms
Genetic algorithms (GA) are a type of stochastic algorithm [51]. GA produce new states
from two or more previous states. Starting off, the fitness of two parent states is de-
termined, after which they get mixed up and the resulting fitness of the child state is
compared to the parent state. The state of lowest fitness is then removed. Each gener-
ation, a new set of states is produced and given a sufficiently large random initial state
space, each generation converges closer to the global extremum. Without the ability
to reproduce a, comparisons between multiple states become impossible. Including an
interferometer, to measure the exact mirror tilt after each step, could enable different
variants of GA, for example differential evolution (DE), as viable optimization algo-
rithms. But due to the vacuum, the setup is tight, expensive, and diagnostic becomes
difficult and time consuming.

The implementation of a GA, more specifically DE, was attempted but failed to the
above mentioned reasons. Even with implementation of calibration factors, the statis-
tical error of the mirror tilt position lead to falsely reproduced previous states, as each
iteration required a large amount of steps to reproduce multiple states, which could be
distanced by more than 100 steps at a time. This quickly lead to degradation of the
fundamental Gaussian mode instead of optimization and increased runtimes.

37





3 Experimental setup

3 Experimental setup
3.1 Enhancement cavity
A schematic of the experimental setup is shown in Figure 3.1. The near-infrared fre-
quency comb, at a repetition rate of frep = 100 MHz, is mode-matched and coupled into
the bow-tie resonator. The frequency comb operated in this thesis can be extended into
the XUV regime, by means of HHG [49]. To counteract the high absorption in air, an
UHV chamber envelopes the resonator mirrors. One arm of the bow-tie geometry is
folded by two additional flat mirrors, since the UHV chamber restricts the dimension of
the setup and a round-trip length for the fsEC of ∼ 3 m is required, which corresponds
to the repetition rate frep. The transmitted light is picked up and divided by a beam
splitter, and the intensity distribution is read out by a CCD camera (Allied Vision Mako G-
234B), while the intra-cavity power is monitored by a photodiode. The resonator length
can be controlled fast within a short range via a piezo chip (HPCh 150/12-6/2) mounted
mirror and slower at a higher range via a piezo-controlled translation stage. The cavity
length is scanned by the piezo chip through a signal produced by a Red Pitaya. The in-
put coupling (IC) mirror and the piezo-controlled translation stage mirror, from here on
referred to as PZT mirror, are placed inside piezo actuated mirror mounts. These actua-
tors control the tilt of the mirrors in x-axis and y-axis and thus the alignment. Except for
the piezo chip, all piezo actuators are controlled by "Physik Instrumente" (PI) devices.
The optimization algorithm reads out an oscilloscope (InfiniiVision DSOX2024A) and re-
turns the calculated output parameters to the stages, which control the mirror tilts. The
oscilloscope is used to acquire a trace containing the synchronized intra-cavity power
and the length scan signal. The scanning signal is first amplified by a factor of four
before it is converted to high-voltage and fed to the piezo chip. The unamplified scan-
ning signal and resonance power voltages are passed as an input to the optimization
algorithm. The algorithm returns the output parameters, effectively controlling the IC
and PZT mirror tilt and the resonator length in a closed-loop operation. The optimiza-
tion algorithm can be monitored and controlled from a dedicated computer. The control
software was written for this thesis and does not consists exclusively of the optimiza-
tion algorithm. Control and read out for the resonator length piezo stage, oscilloscope
trace, and camera image are implemented as well. This software will be discussed in
more detail in the following chapter.

The setup could be expanded upon, by including the mode-matching telescope into
the optimization algorithm. Furthermore, by adapting a faster synchronization method
for the input parameters, the oscilloscope read out could be avoided. This read out
tends to be time consuming, as the oscilloscope needs to be read out multiple times per
algorithm iteration, slowing down the process considerably. The number of iterations
per optimization is not affected and provides a more fitting quantity, to determine the
optimization speed.
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Figure 3.1: Resonator and control hardware setup: The automated optimization setup retrieves
the oscilloscope trace composed of the synchronized resonance power and the resonator length,
as scanned by a piezo chip. For larger length adjustments, the PZT mirror is mounted onto a
translation stage. The IC and the PZT mirrors are mounted on actuators, that control the
mirror tilt in the x-axis and y-axis.
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3.2 Control software
The control software [52] was designed and written within the frame of this thesis for
the purpose of automated alignment optimization. It is written in python, using the
flask web framework, for the back-end and JavaScript, HTML, and CSS for the front-
end. This application runs on a designated computer, which is physically connected to
the oscilloscope, in the same network as the piezo elements and monitoring devices, and
acts as a server. Clients can access the control application in their browser via the server
IP, if they are connected to the same network. This allows multiple clients to control
the application and observe the system at the same time. The application is not exclu-
sively useful for the alignment optimization. It also allows the user to connect to and
control any PI devices or Allied Vision cameras, that are located within same network,
providing a convenient compilation of otherwise separated control software. Figure
3.2 depicts a screenshot of the graphical user interface (GUI) of the control application.
Larger screenshots of the different parts follow in the next sections.

Figure 3.2: Control application GUI screenshot: The control application can be divided into
four parts: The control panels (here minimized), which display system settings and allow for
user input. The console, where user inputs and system outputs are logged. The camera stream,
where the cavity mode is monitored. And two figures, which display the mode fitting over both
camera axes in real time.
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3.2.1 Hill climb control panel
The GUI control panels are depicted in Figure 3.3 and Figure 3.4. Clicking on the buttons
HILL CLIMB ALGORITHM or DEVICE CONTROL will open up a section with further
buttons and input fields, to control the application. On top of the panels various infor-
mation is shown, shaded in blue.

Figure 3.3: Hill climb control panel: Here the HC settings can be controlled. The text boxes
highlighted in light gray are buttons, while the area shaded in blue displays various settings.

In the hill climb control panel, see Figure 3.3, the hill climb optimization can be
started, halted, and a recording option can be toggled. This option will output a de-
tailed log file along with camera images of the hill climbing process in a designated
folder at the chosen path. The log file contains detailed information, such as the axis
driven, the number of steps, iterations, intensities, warnings, runtime, and more. The
recording interval can be set as well, to control the number of iterations between sub-
sequent camera captures. Further down below, the z-axis device can be selected. This
device will be used by the HC algorithm to control the resonator length. Similarly an
alignment device can be set, which will be used to control the alignment. Finally the
HC settings can be adjusted. These settings include the initial number of steps, the re-
duction factor, and the number of steps cutoff. These settings and their impact will be
discussed in more detail in the following sections.

In the area highlighted in blue, various settings and results are updated and displayed
in real time. The axes combination refers to the axes that are optimized per iteration,
which is set to optimize each axis once by default. This can be adapted within the code,
to optimize multiple axes per iteration or even the same axis multiple times in a row.
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3.2.2 Device control panel

Figure 3.4: Device control panel: This panel is used to control PI devices, oscilloscopes and
cameras. As before, text boxes highlighted in light gray are buttons, while the area shaded in
blue displays various settings.

direction axis 1 axis 2 axis 3 axis 4

negative 7 4 1 0

positive 9 6 3 .

Table 3.1: Numeric keypad hotkeys used to control the active PI device axes: The number of
steps per hotkey press can be set in the input field between the arrows.
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• The preset auto-connect all devices button utilizes a preset, to connect to the standard
oscilloscope, camera, and PI devices. After using the preset connection, the HC can al-
ready be started, if the length scan is running and the mode to optimize is within the
scanning range.

• To get a complete list of all PI devices located within the same network, including
their IP address, MAC address, and connection status, the button refresh list of PI devices
can be used. These PI devices can then be connected to or disconnected from.

• The active PI device setting is used to determine which device is actively controlled.
The active device will be used for any manual adjustments: calibration, moving an axis,
resetting all axes to their initial positions, and initializing all axes to their current posi-
tions.

• The calibration setting can be used, to calibrate positive steps to negative ones for the
specific axis, as chosen in the axis number input field. If for example npos = 9 steps in one
direction could be reversed by nneg = 10 steps in the opposite direction, the resulting
calibration factor would be 0.9. This calibration factor will be used by the application,
when driving an axis. However, due to the statistical error caused by missed steps, after
driving many steps the tracked position does not resemble the real position very well,
despite calibrating.

• The arrow buttons are used to manually drive the axes of the active PI device by the
number of steps displayed. Alternatively, it is possible to use the hotkeys, which are
displayed in the brackets next to the arrows and in Table 3.1.

• Resetting all axes will physically drive all axes back to the position they were initial-
ized in. This does respect the set calibration for these axes and, if no calibration is set,
will likely not reproduce the initial state very well.

• The initialize all axes to 0 button will set the position tracking of all axes to the position
0. This process does not physically move any piezo actuators.

• After connecting to an oscilloscope, the display can be acquired. This display will
update in real time and depict the oscilloscope traces. As the readout is quite slow, the
acquisition is as well. During the HC this acquisition will be halted automatically, to
improve the applications performance.

• The application allows to connect via Ethernet to Allied Vision cameras in the same
network. The gain and exposure time of a connected camera can be adjusted.

44



3 Experimental setup

3.2.3 Console
The console, shown in Figure 3.5, allows the user to track the application processes.
When any actions are performed, it will confirm said actions, give detailed information
and warnings or error messages. The log messages include the updated list of available
PI devices, driving an actuator, connecting any device, changing settings, and many
more. The console output can be logged during hill climbing. If the Toggle record HC
setting is turned on, recording of the console log will be enabled.

Figure 3.5: Control software console: Here the application processes can be tracked. In this
window the user successfully connected to and disconnected from the same PI device.
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3.2.4 Mode monitoring
The mode monitor starts when a camera is connected. The intra-cavity mode will be
streamed and fitted in real time. A typical camera image can be seen in Figure 3.6.

Figure 3.6: Control software mode monitoring: The camera is capturing the intra-cavity
Gaussian mode. The vertical lines on the right side of the mode are likely caused by diffraction
off an unknown optical element.
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3.2.5 Mode fitting
The monitored mode is being analyzed in real time. For this, the intensity distribution
is integrated over both camera image axes and fitted appropriately. The resulting mode
fitting is depicted in Figure 3.7.

Figure 3.7: Control software mode fitting: In the top right side of the lower image the fit
parameters are updated and displayed. The fit height mean value results from an average over
the past 10 fits, the actual height depicts the highest value of the intensity distribution.
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3.3 Optimization algorithm
3.3.1 Alignment optimization algorithm

Figure 3.8: Optimization algorithm flowchart: The dashed blue lines depict conditional paths.
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1. The algorithm cycles through all displayed steps separately for each IC and PZT
mirror axis. The respective axis is initialized and the initial number of steps is set to
Ninit = 100.

2. The most intense mode (MIM) within the oscilloscope trace, see Figure 3.9, is deter-
mined, its position is centered with respect to the scan, and its voltage Vinit saved. The
centering process is explained in more detail in the upcoming section.

3. The previously initialized axis is now moved by n steps. This will impact the coupling
of the incident mode to the resonator, as well as the resonator length. For sufficiently
high n the MIM can leave the scan entirely.

4. The current MIM voltage V is compared to the initial voltage Vinit. If V < 0.65Vinit
the algorithm determines that the mode must have left the scanning range, as n ≤ 100
steps are not sufficient to decrease the intensity by 35%.

5. The MIM is relocated.

6. The MIM is centered.

7. The final MIM voltage Vfinal is determined and compared to Vinit from the state before
the step was made. If the voltage increased, the algorithm will loop back to step 3 and
update the initial voltage. If the voltage decreased instead, the maximum is expected
in the opposite direction, since the fit function is given by the coupling efficiency from
Figure 2.11.

8. The algorithm will inverse the direction, reduce the step size by the reduction factor
fred = 0.8, and then loop back to step 3. If the absolute step size falls below the cutoff
number of steps Ncutoff = 25, the hill climb for this axis has finished.

9. The respective axis has finished its optimization process and the process restarts for
the next axis. When all axes have been optimized, the algorithm exits.
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The algorithm input consists of the synchronized resonator length scan and the trans-
mitted intensity, as produced by the oscilloscope and illustrated in Figure 3.9. This trace
is then analyzed and a dictionary of modes is produced including the position within
the trace, the peak intensity, and the modes width. Additionally, the cavity length,
which is scanned by applying a voltage ramp to the piezo chip actuator, is analyzed to
find the periodically reoccurring center position of the scanning signal within the trace.

Figure 3.9: Illustration of an oscilloscope trace: The oscilloscope trace is analyzed and the
MIM voltage is determined by the algorithm. Usually, the MIM is the TEM00 mode. In case
the algorithm starts on the higher TEMnm, further displacement shifts the coupling to the
TEMn+1 m+1, which would decrease the MIM intensity. Consequently, the direction would be
reversed and the TEMnm improved, until the TEMn−1 m−1 becomes the MIM. In this
illustration the MIM is the TEM00 at a resonator length of L0, which has already been centered
in respect to the length scan. Also displayed are higher longitudinal fsEC modes and higher
Hermite-Gaussian modes. These TEM are almost completely diminished, which implies that the
resonator is well aligned. The fluctuations in intensity between the same modes at different
scanning periods are largely caused by vibrations. These vibrations impact the resonator length,
allowing for increased or decreased buildup of power inside the resonator. As a countermeasure,
the algorithm determines the MIM voltage by averaging over multiple scanning periods.
Alternatively the oscilloscopes time per division can be increased, at the cost of losing resolution.
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3.3.2 Relocation algorithm

Figure 3.10: Relocation algorithm flowchart: The relocation algorithm is a HC algorithm. It
aims to relocate the MIM within the length scan by driving the resonator length, after losing
the MIM, due to alignment adjustments. The dashed blue lines depict conditional paths.

1. The relocation algorithm, as shown in Figure 3.10, begins by initializing the piezo-
controlled translation stage, which is used to control the resonator length on a wider
scale than the piezo chip. The number of steps to drive per iteration is set to n = 10.

2. The initial MIM voltage Vinit, from before the axis was driven by the alignment op-
timization algorithm, is retrieved. This Vinit is expected to be close to the MIM voltage
after driving, as the mirror tilt per HC iteration is set to be sufficiently small. The re-
location algorithm expects the new MIM voltage to be larger than 0.65Vinit. The initial
MIM voltage is also saved as V1.
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3. The stage is driven by n steps. Consider the calculated intensity distribution from Fig-
ure 2.13. As the resonator length is changed by approximately the center wavelength of
the frequency comb, the L0 mode is replaced by the L1 or L−1 mode as the MIM. Since
the intensity decreases in both directions, another HC is applied to relocate the initial
MIM.

4. The MIM voltage V2 after driving is determined and compared to Vinit and V1. There
are three different outcomes that need to be considered. Firstly, the algorithm checks if
the initial MIM was relocated. Since it was impacted by the mirror tilt, its intensity could
have either increased or decreased. The algorithm will accept an intensity decrease of
up to 35%, to determine if the MIM was relocated. If the MIM was not relocated, the
algorithm checks if V2 < V1, as this implies that the stage was driven in the wrong direc-
tion. Lastly, no significant change in MIM voltage is possible, if the length change was
not sufficiently large, resulting in additional n steps in the same direction.

5. If the stage was driven in the wrong direction, the direction is reversed and the algo-
rithm jumps back to step 3, after updating the voltage V1.

6. The MIM is relocated within the length scan. Subsequently, the MIM needs to be
centered within the length scan.
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3.3.3 Centering algorithm

Figure 3.11: Centering algorithm flowchart: In contrast to the alignment optimization and
relocation algorithms, this algorithm searches for a minimal distance between the MIM and
scan center. As before, the dashed blue lines depict conditional paths.

1. The centering algorithm flowchart is shown in Figure 3.11. The translation stage is
initialized and the number of steps to drive per iteration is set to n = 4.

2. The initial MIM position PMIM and its closest center position Pcenter are determined.
The scan itself consists of multiple center positions and the closest one to PMIM is al-
ways the target position. The initial distance between both positions is calculated via
D = |PMIM−Pcenter|. The scanning period T is also retrieved for later usage. It is impor-
tant to note that these positions correspond to the specific time within the oscilloscope
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trace. The length scan determines the speed at which the length is scanned and conse-
quently the time differences, referred to as distances, calculated by this algorithm.

3. The stage is moved by n steps. This will shift the resonances within the scanning
range, by a smaller amount than the relocation algorithm did.

4. The centering algorithm searches for the optimal solution in one direction. If the dis-
tance increases after an iteration, the algorithm will not turn around right away. Since
the search space is sufficiently small, a few steps are enough to either center the MIM
or drive the MIM out of the scanning range. To determine which case set in, the final
distance Dfinal and the final voltage Vfinal are analyzed.

5. If the MIM left the scanning range, the voltage will have dropped off significantly
and, at more than 35% loss in voltage, the direction is reversed. To further accelerate
the process, 5n steps are driven in the correct direction. This number was determined
experimentally and shifts the MIM close to the center, resulting in faster centering.

6. As the distance between the MIM and scan center has been decreased to less than a
fraction of the scanning period Dfinal < 0.025T , the centering has finished.
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4 Analysis and discussion
4.1 Coupling efficiency
When it comes to hill climbs, the optimal fit function posses only one extremum. The
coupling efficiency of the TEM00 provides the fit function for the hill climb optimization
and was measured for each axis tilt of the IC and PZT mirrors. When a mirror is tilted,
the length and resonator axis are impacted as well. Despite not altering the incident
beam path, transverse displacement between resonator axis and incident beam is pro-
duced as a result, as the resonator axis changes in regard to the incident beam. Each
mirror axis was tilted on purpose, driven past the optimal coupling, and stopped as
soon as TEM10 or TEM01 coupling became dominant. The TEM00 power was measured
every few steps during this measurement and the initial, optimal, and final intensity
distributions were recorded, to visualize the Hermite-Gaussian modes. The coupling

mirror axis beam width (µm) fit parameter (step) displacement per step ( µm
step )

IC x 819 582± 13 1.40± 0.03

IC y 595 525± 19 1.13± 0.04

PZT x 819 277± 7 2.95± 0.07

PZT y 652 1198± 23 0.54± 0.01

Table 4.1: Coupling efficiency calibration: The beam widths W (z) are taken from the
theoretical resonator geometry design and, in combination with the fit factors, the transverse
displacement per step was calculated.

efficiency was fitted to the results, as shown in Figure 4.1, and used to calibrate the
transverse displacement per step made for each axis. Consider the coupling efficiency
from Equation 2.59:

F (dx) =
1

1 + (
√

2 C dx/W (z)2)/2
, (4.1)

where the dimensionless transverse displacement duwas replace with the displacement
dx and the transverse displacement per step C = W (z)/f according to:

du =

√
2

W (z)
C dx =

√
2

f
dx, (4.2)

with f as the fit parameter. The beam widths W (z) at the mirror positions were taken
from the theoretical resonator geometry design and, consequently, the transverse dis-
placement per step could be determined as depicted in Table 4.1. These results need
to be viewed critically. In the derivation for the coupling efficiency it was assumed
that the transverse displacement stays significantly smaller than the beam width. The
measurement and fit reach beyond that estimation, where a deviation from Equation
2.59 becomes evident, most likely caused by higher order coupling. This measurement
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however confirms that the fitness function for the hill climb has a single maximum for
displacements up to 1000 µm.

Figure 4.1: Coupling efficiency calibration: In red the measured coupling efficiency of the
TEM00, as a function of the displacement, is shown. The black dashed line visualizes the fitted
coupling efficiency. At initial, optimal, and final alignment, the intensity distributions were
recorded and coupling to the TEM01 and the TEM10 is evident. The misalignment of the IC
mirror x-axis resulted in diffraction, as the beam started to graze another setup element,
manifesting itself as vertical lines in the distorted intensity distribution. These distortions did
not affect the measured TEM00.
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4.2 Length shifts due to axis tilts
When an axis is tilted, the resonator length is slightly affected as a byproduct. As a
result, the scanning range is shifted and the desired modes, which are produced inside
the fsEC at L0, are no longer resonant within the scanning range. When it comes to
the MIM, a higher longitudinal mode can replace the desired mode. This effect was
measured and is shown in Figure 4.2, where the x-axis of the IC mirror was tilted by
100± 5 steps and thus a transverse displacement of 140± 8 µm was produced. The HC
algorithm will automatically correct these shifts via the relocation algorithm.

Figure 4.2: Resonance shift cause by tilting the x-axis of the IC mirror by 100 steps: The laser
operates at a central wavelength of λc = 1040 nm, which equals the spacing (dotted lines)
between the fsEC modes. These longitudinal modes are marked with (a) and (b), corresponding
to L±1 and L±2, respectively. Note the broadening of these longitudinal modes, as discussed in
the theory section. The spacing between the TEM modes, marked with (c), is significantly
smaller, as it depends on the Gouy phase and consequently on the mirror spacing, as calculated
in Equation 2.38. After tilting the mirror, the L±1 mode replaces the L0 mode as MIM. The
resonator length shift is corrected utilizing the PZT mirror translation stage and the initial
resonances are recovered and recentered after 40 steps. The higher TEM mode (c) is visibly
reduced by this process, since the x-axis tilt improved the alignment.
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4.3 Length scan hysteresis effects
The resonator length is constantly swept by a piezo chip during the HC optimization
process. Therefore, the centering algorithm is crucial, as the piezo element that scans
the resonator length is prone to hysteresis effects. Additionally, towards the edges of the
scan the linearity of the scan is impacted. Both effects manifest themselves in less res-
onator length change towards the edges of the scan, allowing for an increased buildup
of power inside the resonator. The intensity can increase significantly, as shown in Fig-
ure 4.3. Since the optimization process strongly depends on comparing the same mode
before and after each iteration, the algorithm centers the mode before determining its
intensity. Failing to do so will significantly impair the algorithm, as will be presented
in more detail in the following section. Vibrations can have a similar effect and are
compensated for, by averaging over 3 traces per oscilloscope readout.

Figure 4.3: Mode intensity at different positions within the length scan: Higher longitudinal
modes are marked with (a) and (b), corresponding to L±1 and L±2, respectively. The TEM for
n+m = 1 and n+m = 2 are marked with (c). Here the MIM voltage increased by ∼ 18%,
due to not being centered. Additionally, it can be seen that vibrations caused the L±1 mode to
increase slightly in intensity.
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4.4 Hill climb optimization
The hill climb algorithm was applied to 11 different initial states, to highlight vari-
ous challenges that had to be tackled by the algorithm. The intensity of the MIM was
tracked, as well as the number steps made, the oscilloscope traces, and the intensity dis-
tribution of the modes. The optimizations were analyzed with respect to the iterations
each optimization required, rather than their runtime. The number of iterations per
optimization is unaffected by adaptions in data acquisition or processing speed. The
typical runtime per optimization for the setup employed in this thesis ranges around
20− 30 min, limited by the readout time of the oscilloscope. The length scan amplitude
before amplification was set to Uscan = 2. The initial number of steps, number of steps
cutoff, and reduction factor were set to Ninit = 100, Ncutoff = 25, and fred = 0.8, re-
spectively. The error for the mode intensities was determined to be ±15 mV. The step
error was determined to be ±5%. The power of the incident beam varied between mea-
surements, which does not impact the optimization process. A few measurements were
selected, to illustrate the process and will be discussed in detail.

59



4 Analysis and discussion

4.4.1 Optimization 1: Strong x-axis and y-axis misalignment

Figure 4.4: Optimization 1: The uppermost figure displays the intensity increase of the
Gaussian mode during the HC. In the middle, the steps per iteration are depicted along with the
absolute steps. Lastly, the intensity distributions are displayed. Considerable alignment
improvement can be observed especially for the y-axis of the IC mirror and the x-axis of the PZT
mirror.

Optimization 1 is visualized in Figure 4.4 and Figure 4.5. It stands out with the most
misaligned initial state between all 11 optimizations. This is reflected in the largest num-
ber of iterations and largest intensity gain for this measurement.

The algorithm started with the IC mirror. No significant improvement could be achieved
for the x-axis, as can be seen by comparing the initial intensity distribution with the in-
tensity distribution after Niter = 17 iterations. This is also reflected in the number of
total steps made of Nsteps = −21± 38, which effectively implies no change in alignment
within one sigma. Continuing with the y-axis, compared to the x-axis, almost double
the amount of iterations Niter = 30 were required, as this axis allowed for significant
alignment improvement after a total of Nsteps = −819± 78 steps. The mode monitoring
confirms this considerable improvement, by portraying the reduction of higher TEM
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contributions. Figure 4.5 nicely visualizes the increase in TEM00 and TEM10 intensity,
as well as the decrease in intensity of higher Hermite-Gaussian modes during the opti-
mization of the IC mirror y-axis.

The algorithm continues with the PZT mirror. The x-axis allows for additional op-
timization by decreasing the intensity of the TEM10. After Niter = 21 iterations and
Nsteps = −251± 50 steps this axis is optimized. Finally, a small adjustment to the y-axis
of the PZT mirror is made, ending the optimization process. The algorithm adjusted
the last axis by Nsteps = −143 ± 43 steps after Niter = 20 iterations. The final intensity
distribution mode monitoring appears misleadingly more intense than its predecessor,
considering the minimal rise in intensity. This is likely linked to the integration time of
the camera. As the integration time is set to roughly span one scanning period, a slight
mismatch can lead to the same mode being captured twice in the same frame, thus
resulting in more intensity. To conclude the first optimization, a significant increase in
intensity of the Gaussian mode of (304±34)% was achieved within 88 iterations, demon-
strating the successful application of the HC algorithm to the alignment optimization
problem posed in this thesis.

Figure 4.5 gives more information on the input parameters of the optimization algo-
rithm. The initial resonances are all of similar intensity and the algorithm struggles
to distinguish these, especially while centering or relocating or when strong intensity
fluctuations are present. The oscilloscope traces do also emphasize the decrease in in-
tensity of higher Hermite-Gaussian modes. Especially the PZT mirror y-axis seems to
have little influence on the desired Gaussian mode on first glance. Nonetheless, the HC
diminished the TEMnm coupling, with n + m = 2. Figure 4.4 shows quick ascents in
intensity before plateauing, especially for the y-axis of the IC mirror. Two factors take
part in this outcome: firstly, the minimal step size of Ncutoff = 25, which is reached after
turning around eight times, and secondly the reduction factor of fred = 0.8, by which
the step size is decreased. The optimal setting of both depends on the stability and sen-
sitivity of the resonator. A higher minimal step size can be chosen, if small amounts of
steps have less effect on the intensity than vibrations do. The rate at which the step size
decreases needs to be adjusted, to efficiently correct when overshooting the optimal po-
sition. Adjusting these parameters can decrease the total amount of iterations that are
required to optimize the alignment, since plateauing can be avoided. The following
measurements will partly present optimization without plateauing, which verifies the
choice of parameters, despite occasional plateauing.

61



4 Analysis and discussion

Figure 4.5: Optimization 1: Oscilloscope traces: The left figures show the oscilloscope traces
after each axis optimization, while the mode is being monitored on the right. The impact of
optimizing the y-axis of the IC mirror and the x-axis of the PZT mirror is shown in row 2, 3,
and 4. The traces do not just visualize the increase in intensity of the Gaussian mode, but also
how the higher modes are being diminished.
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4.4.2 Optimization 2: Initially non-Gaussian MIM

Figure 4.6: Optimization 2: The initial intensity distribution consists mainly of higher TEM
along the x-axis. The TEM10 is depleted when the x-axis of the PZT mirror is optimized,
resulting in a dominant Gaussian mode.

Figure 4.6 and 4.7 depict the second optimization. The initial intensity distribution con-
sists mainly of higher TEM along the x-axis. This optimization started out with the
TEM10 as MIM. Within the first Niter = 17 iterations the Gaussian mode becomes the
MIM, showing that the algorithm can correct the alignment when starting on the wrong
MIM. This behavior can also be noticed in the first and third optimization.

The algorithm starts with the x-axis of the IC mirror, driving a total of Nsteps = 568± 45
steps. The MIM intensity seems to increase only slightly. The oscilloscope traces re-
veal that the initial MIM is not Gaussian, but rather a TEM mode with n + m = 1. As
the alignment is adjusted, the desired Gaussian mode overtakes this TEM mode in in-
tensity. The mode monitoring confirms, that initially the TEM10 is most dominant and
after Niter = 17 iterations the Gaussian mode takes over. Hereafter, the y-axis is opti-
mized. Although neither the mode monitoring nor the MIM intensity show significant
improvement, a total amount of Nsteps = 515± 55 steps were driven after Niter = 20.
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Figure 4.7: Optimization 2: Oscilloscope traces: The first two axes impact the initial intensity
only slightly, while shifting the MIM to the Gaussian mode and depleting higher TEM. The
optimization of the last axis shows no improvement.
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The corresponding trace, shown in Figure 4.7, shows a slight increase in MIM intensity,
while higher TEM with a sum of n+m > 1 were decreased significantly.

The subsequent x-axis optimization of the PZT mirror leads to the most dominant in-
crease in intensity during this optimization. It strongly depletes the intensity of the
TEM01 after Nsteps = 430 ± 46 and Niter = 14. The algorithm moves to the last axis,
where it is unable to achieve any additional improvement. After only Niter = 9 itera-
tions and Nsteps = 8± 25 the HC finishes.

This optimization required less iterations to find the optimized state after Niter = 60
compared to the Niter = 88 from the first optimization. This results from the more
optimized initial state of the alignment. The optimization of the first two axes show, that
the HC settings of Ncutoff = 25 and fred = 0.8 are appropriate, despite the plateauing in
intensity during the optimization of other axes.
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4.4.3 Optimization 3 & 4: Importance of the centering algorithm

Figure 4.8: Optimization 3: The algorithm is unable to center a MIM with a voltage of less
than 100 mV. Despite this hindrance the algorithm manages to optimize the alignment.

Optimization 3 and 4 emphasize the importance of the centering algorithm. As the volt-
age of the MIM was initially too low for the centering algorithm, optimization 3 ran
without centering until a MIM voltage of more than 100 mV was achieved. This mea-
surement is shown in Figure 4.8. The subsequent optimization 4 is depicted in Figure
4.9. Both measurements stand out, since they display the importance of the centering
algorithm, as well as the effectiveness of repeated optimizations.
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Both optimizations together achieved an increase of (538± 121)% from the initial inten-
sity of (68±15) mV to the final intensity of (366±15) mV. The x-axis optimization of the
the IC mirror during optimization 3 significantly diminishes higher TEM and does not
plateau right away as opposed to earlier measurements, again confirming that the HC
settings are chosen appropriately.

Figure 4.9: Optimization 4: Optimization 3 is being continued in this optimization. Since the
MIM voltage exceeds 100 mV, the algorithm is able to center, as opposed to measurement 3.
Note that the last axis was already aligned properly, as the previous optimization already
optimized this axis.
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Figure 4.10: Optimization 3: Oscilloscope traces: The optimization of the y-axis of the PZT
mirror shifts the MIM from a higher TEM to the TEM00, achieving sufficient MIM intensity
for the relocation algorithm. As a consequence, the algorithm is able to center the MIM in the
subsequent iterations.
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Figure 4.11: Optimization 4: Oscilloscope traces: Optimization 3 is being continued in this
optimization. Since the MIM voltage exceeds 100 mV, the algorithm is able to center, as
opposed to optimization 3.
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4.4.4 Optimization 5: Improving a manually aligned mode

Figure 4.12: Optimization 5: The initial alignment was manually adjusted.

Optimization 5 presents the improvement of a previously manually aligned mode. Fig-
ure 4.12 depicts the initial intensity distribution. It becomes apparent, that the initial
mode was adjusted manually, without consideration of the oscilloscope trace or astig-
matism, which leads to a oval TEM00 at the mode monitoring. A gain of (222 ± 27)%
was achieved after Niter = 60. This results in a gain per iteration of (3.7± 0.5)%, which
lies above the average of the 11 optimizations that were recorded. This measurement
highlights the difficulty of manual adjustments to the resonator alignment.

70



4 Analysis and discussion

Figure 4.13: Optimization 5: Oscilloscope traces: The trace visualizes the higher mode
contributions, which are not as noticeable in the intensity distribution.
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4.4.5 Overview
In total 11 measurements were conducted. The first four measurements were ran at
ambient pressure, while all consequent measurements were performed at UHV condi-
tions. The initial and final intensity and intensity distributions are shown in Figure 4.14.
Each optimization was successful in increasing the MIM intensity. Table 4.2 provides an
overview of all measurements. The average gain strongly depends on the initial state
of the setup, since an already optimized alignment does not allow for much gain. The
number of iterations depends partly on the initial position, with a lowest possible num-
ber of iterations based on the initial step size, the reduction factor, and the number of
steps cutoff. Therefore the gain per iteration provides a more reliable quantity, as it
depends less on the initial state. The average gain per iteration over all measurements
was calculated to be (3.4±0.4)%. Note that the optimized alignment still contains higher
TEM mode residue. This is largely a consequence of misaligned optical elements, which
guide the beam into the fsEC and cannot be influenced by IC or PZT mirror adjustments.

measurement initial MIM
intensity (mV)

final MIM
intensity (mV) gain (%) total iterations gain per iteration (%)

1 139± 15 422± 15 304± 34 88 3.5± 0.4

2 139± 15 336± 15 242± 28 60 4.0± 0.5

3 68± 15 125± 15 184± 46 54 3.4± 0.9

4 127± 15 366± 15 288± 36 59 4.9± 0.6

5 370± 15 394± 15 106± 6 45 2.4± 0.1

6 134± 15 298± 15 222± 27 60 3.7± 0.5

7 303± 15 310± 15 102± 7 48 2.1± 0.1

8 129± 15 307± 15 238± 30 58 4.1± 0.5

9 129± 15 316± 15 245± 31 58 4.2± 0.5

10 177± 15 199± 15 112± 13 49 2.3± 0.3

11 228± 15 299± 15 131± 11 51 2.6± 0.2

average −−−− −−−− 198± 25 57 3.4± 0.4

Table 4.2: HC optimization overview: The table depicts the initial intensity, final intensity,
gain, total iterations, and gain per iteration for all measurements. Measurement 1 was the
longest measurement with Niter = 88 iterations and the highest gain. The shortest
measurement finished after only Niter = 45 iterations, showing almost no improvement.

To conclude, the successful application of a hill climb optimization algorithm to the
alignment problem of a fsEC was demonstrated. An average gain per iteration of
(3.4 ± 0.4)% was presented for Ninit = 100, Ncutoff = 25, and fred = 0.8 at a total of
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11 measurements. It was also demonstrated that repeated measurements can further
optimize the alignment. Figure 4.14 visualizes the improvement in intensity distribu-
tion for each measurement, showing that the optimization algorithm is able to optimize
a wide range of initial settings, including intensity distributions that include diffraction
patterns.

Figure 4.14: HC optimization overview: The initial and final intensity of each measurement
along with the intensity distributions are depicted. Various initial couplings were corrected,
despite present diffraction patterns.
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5 Outlook
In this thesis the effective implementation of a HC optimization application has been
presented and as it stands, further advances are within reach. A decrease in iterations
per optimization, less residue of higher TEM in the final alignment, and specific mode
selection are feasible.

The two most time consuming factors are the readout process of the oscilloscope, in re-
gard to processing speed, and the relocation and centering of the MIM, when it comes
to the time per iteration. The acquisition of the synchronized signal, consisting of the
transmitted intensity and resonator length scan, could be directly read out from the cor-
responding sources, bypassing the oscilloscope. Regarding the time per iteration, the
resonator length change could be reduced by implementing mirrors that rotate about
the incidence point of the beam. Furthermore, goniometer and generally the precise de-
termination of mirror tilts, would allow for less length change and the implementation
of a GA for the optimization.

Currently two mirror tilts, namely the IC mirror and the PZT mirror, are being opti-
mized. Expansion to further optical elements, such as the mode-matching telescope,
would provide a cleaner end result, as higher TEM coupling could be further sup-
pressed. Additionally, vibrations and fluctuations in laser intensity influence and limit
the ability to optimize the alignment. Further decoupling of the optical setup from the
UHV pumps might allow for more precision.

Finally, specific mode selection could be achieved. As the TEM are degenerate within
the scan for equal sums of order, mode decomposition through the intensity distribution
would be required for higher mode selection. "Overlapping" the camera images with
theoretical calculations requires precise knowledge of the theoretical beam shape at the
camera position, including tilts and astigmatism. After decreasing the optimization
time, mode decomposition could be implemented without pushing optimization times
to multiple hours.
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