Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!DetailsÜbersicht

Verworfen

Forschungspapier

Single-cell motion of magnetotactic bacteria in microfluidic confinement : interplay between surface interaction and magnetic torque

MPG-Autoren
/persons/resource/persons206776

Codutti,  Agnese
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;
Stefan Klumpp, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons245168

Charsooghi,  Mohammad
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons255241

Cerdá Doñate,  Elisa
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons252727

Taïeb,  Hubert M.
Amaia Cipitria, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons195358

Robinson,  Tom
Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121274

Faivre,  Damien
Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121488

Klumpp,  Stefan
Stefan Klumpp, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

(Kein Zugriff möglich)

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Codutti, A., Charsooghi, M., Cerdá Doñate, E., Taïeb, H. M., Robinson, T., Faivre, D., et al. (2021). Single-cell motion of magnetotactic bacteria in microfluidic confinement: interplay between surface interaction and magnetic torque. bioRxiv, 2021.03.27.437322. doi:10.1101/2021.03.27.437322.


Zusammenfassung
Swimming microorganisms often experience complex environments in their natural habitat. The same is true for microswimmers in envisioned biomedical applications. The simple aqueous conditions typically studied in the lab differ strongly from those found in these environments and often exclude the effects of small volume confinement or the influence that external fields have on their motion. In this work, we investigate magnetically steerable microswimmers, specifically magnetotactic bacteria, in strong spatial confinement and under the influence of an external magnetic field. We trap single cells in micrometer-sized microfluidic chambers and track and analyze their motion, which shows a variety of different trajectories, depending on the chamber size and the strength of the magnetic field. Combining these experimental observations with simulations using a variant of an active Brownian particle model, we explain the variety of trajectories by the interplay between the wall interactions and the magnetic torque. We also analyze the pronounced cell-to-cell heterogeneity, which makes single-cell tracking essential for an understanding of the motility patterns. In this way, our work establishes a basis for the analysis and prediction of microswimmer motility in more complex environments.