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a b s t r a c t 

Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities 

including fMRI. Choices about which events to report and how to annotate their full natures significantly in- 

fluence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or 

mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical 

Event Descriptors (HED) framework and tools ( hedtags.org ) combines robust event description with details of 

experiment design and metadata in a human-readable as well as machine-actionable form, making event annota- 

tion relevant to the full range of neuroimaging and other time series data. This paper considers the event design 

and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and 

Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset ( bids.neuroimaging.io ). We 

propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS meta- 

data file architecture, examine the impact of event design decisions, and provide a working example of organizing 

events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events 

occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable an- 

notation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution 

of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the 

MEEG data of the Wakeman and Henson dataset ( openneuro.org, ds003645 ). 
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. Introduction 

EEG (electroencephalographic) and MEG (magnetoencephalo-

raphic) neuroimaging, collectively known as MEEG, are non-invasive

rain imaging technologies for capturing neuroelectromagnetic brain

ynamic records at millisecond-scale sampling rates. As MEEG records

rain signals occurring on the time scale of individual thoughts and

ctions, event-related data analysis plays a central role in MEEG and

ther types of neuroimaging experiments. Because of the essential role

hat event markers and their annotations play in linking experimental

ata to the unfolding of the experiment, incomplete event reporting

sing event annotations that are inaccurate, overly simple, or absent

epresents a significant barrier to analysis of shared neuroimaging

ata. Thoughtful choices as to how events are measured, identified, and

nnotated can greatly improve the utility of the collected data for both

mmediate and long-term analyses. 
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Good annotation tools and standards can also incorporate useful in-

ormation about experimental design, participant tasks, data features

for example eyeblinks, movement artifact, ictal activity), and other

etadata into the collected and later shared data, thereby making the

ata ready for efficient within- and across-study analyses using a variety

f approaches. Although here we focus on MEEG applications, event an-

otation standards and practices essential for MEEG data analysis can be

pplied equally well to other types of neuroimaging time series data in-

luding fMRI. For example, growing appreciation of the importance of

mbodied cognition on mental life ( Shapiro, 2019 ), new lightweight,

ow cost methods of recording details of brain activities and motor

ehavior of experiment participants ( Casson, 2019 ) ( Jas et al., 2021 )

 Vitali and Perkins, 2020 ), and emergence of the practice of record-

ng both brain activity and behavior (as well as psychophysiology) at

igher resolution in a broader range of tasks and task environments (of-

en termed Mobile Brain/Body Imaging or MoBI) ( Makeig et al., 2009 ),

ake development of a suitable and more comprehensive data annota-

ion framework ever more urgent. 
ember 2021 
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Events. In everyday life, we use the term “event ” to describe some

xperience (or sequence of interrelated experiences) unfolding through

ime that has some significance distinguishing it from other preceding,

oncurrent, and succeeding events. Events in this sense may be brief

e.g., the experience of hearing an unexpected click) or may unfold over

ny time period (e.g., the experience of viewing a movie, or of repeat-

dly performing a cognitive task during a neuroimaging experiment). 

Moreover, experiences we may refer to as events may be nested in

ime. For example we may recall, as a meaningful event, our emotional

esponse to viewing the surprising first clip of a particular scene in a

ovie presented to us during a neuroimaging recording session. How-

ver, we may equally well recall, and think of as an event, our experience

f viewing that clip, or our experience of viewing the whole scene, or

he whole movie – or, of participating in the entire recording session. In

ecounting another experienced event, we typically recall and describe

ts critical transition points (e.g., “game kickoff”, “the final movie cred-

ts beginning to scroll ”, “my feeling the moment after the electrode cap

ame off”). These we might liken to moments of phase transition in a

ime-limited dynamic process. 

Event markers. In neuroimaging time-series recordings, experiment

vents are typically recorded using event markers marking that each

ark the time of some phase transition or other point of interest in the

nfolding event or event process (most often, time of onset). Unfortu-

ately, in practice these event markers are typically themselves labelled

nd referred to as “events ”, risking conceptual confusion. 

Each event marker designates a single time point, typically expressed

s a time offset from the start of the time series recording. To be use-

ul, the event marker must be associated with metadata that includes

nformation about the type of event phase transition it marks, a refer-

nce to the ongoing event process it marks, as well as a description of

he nature of that event. The description of the event is most conve-

iently associated with the event marker marking its onset. Event mark-

rs of later phase transitions in the event (e.g., its offset) need not repeat

his description if they include an unequivocal reference to the event.

s well as marking event onsets and offsets, event markers may mark

ther meaningful event phase transitions – for example the moments

t which the trajectories of balls thrown by a participant in a juggling

xperiment reach their apex or a presented sound reaches maximum

mplitude. Analyses aimed to better understand how brain activity sup-

orts skilled juggling or speech comprehension may well strongly bene-

t from identifying and then marking these moments in the experiment

ata record. 

Fig. 1 illustrates these concepts schematically. During a task condi-

ion in which spatial target ‘ + ’ images are briefly presented at different

creen positions, the participant is instructed to reach to touch the cen-

er of the current or most recently displayed target. HED annotations

ssociated with the event markers provide essential linkage between

he event processes and the measured data. Below, we also show how

ED annotation can also capture the relation of events to the experiment

esign. 

Event context. An event occurring within longer-duration events

e.g., the experience of a stimulus presentation within a supervening task

lock in a neuroimaging session), and/or during temporally overlapping

vents, may be said to occur within the context of those events. Since

vent marker latencies use a common timeline, software tools may au-

omatically add context information about other ongoing events (wholly

oncurrent or temporally overlapping) to the event marker metadata at

heir time of use in data search and analysis. In the future, tools deal-

ng with event context might be extended to facilitate desired analyses

elating recorded brain dynamics to the experienced preceding and/or

nticipated succeeding events. 

Overview. This paper introduces a practical event design strategy

nd illustrates a set of best practices for event reporting and annotation

ased on combining the new third-generation formulation of the Hier-

rchical Event Descriptor (HED) annotation framework ( Robbins et al.,

021 ) with the MEEG data storage architecture of the Brain Imaging
2 
ata Structure (BIDS) group ( Gorgolewski et al., 2016 ) ( Nisoet al., 2018 )

 Pernet et al., 2019 ) ( Holdgraf et al., 2019 ). The paper is organized

round a case study using MEEG data from a publicly-available multi-

articipant, EEG/MEG and fMRI experiment by Daniel Wakeman and

ichard Henson ( Wakeman and Henson, 2015 ; abbreviated below as W-

) saved in conformity with the BIDS guidelines. The HED/BIDS integra-

ion of event annotation demonstrated and recommended here not only

acilitates automatic and informative summarization of data; it also es-

ablishes a standardized interface for automated pipelines to search for,

ollect, read, preprocess, and perform automated event-related analysis

sing study-independent tools and vocabulary. In particular, the strat-

gy enables analyses to be performed across stored datasets, even when

hese datasets do not have the same experiment design. 

W-H. The W-H experiment was conducted to develop methods for

ntegrating multiple imaging modalities into analysis to increase the ac-

uracy of functional and structural connectivity analyses. Nineteen par-

icipants completed two recording sessions spaced three months apart

one session recorded fMRI data (W-H-fMRI) and the other simultane-

usly recorded MEG and EEG data (W-H-MEEG). During each session,

articipants performed the same perceptual task, evaluating the sym-

etry of presented photographs of famous, unfamiliar, and scrambled

aces. The participants pressed one of two keyboard keys with left or

ight index fingers, respectively, to indicate a subjective yes or no de-

ision as to the relative spatial symmetry of each viewed image. The

riginal, unannotated W-H dataset was made available on OpenNeuro

 openneuro.org, ds000117) . Recently, we have shared a BIDS version of

he W-H joint EEG/MEG data on OpenNeuro ( openneuro.org, ds003645 )

ith the more complete event organization and annotation discussed in

his paper. Although we here focus on the MEEG portion of the W-H data

et, the methods we demonstrate are equally applicable to annotation

f fMRI or other neuroimaging time series data. 

Unlike most MEEG experiments, the W-H overt face-symmetry judg-

ent task was not itself of interest to the experimenters, who thus made

o effort to judge whether participant responses had some objective

asis in the face images themselves. Rather, the experiment was de-

igned to covertly test recognition memory for the three types of face

mages. To this end, each individual face image was presented twice

uring the session. For half of the presented faces, the second presenta-

ion immediately followed the first. For the other half, the second pre-

entation occurred after 5–15 intervening face image presentations. Fa-

ous faces were feature-matched to unfamiliar faces, and half the faces

ere female. Following the neuroimaging sessions, the authors also col-

ected behavioral recognition memory performance measures from par-

icipants to allow testing for interactions between MEEG responses as-

ociated with individual image presentations and subsequent recogni-

ion memory for those images. These behavioral recognition memory

ata were also provided by the data authors for inclusion in our revised

EEG dataset. 

Fig. 2 shows a schematic view of a typical event sequence in the W-H

xperiment. All of the session recordings were conducted using the same

quipment, with the participant seated and facing a computer moni-

or throughout (top black timeline). The bottom two timelines show

he introduced sensory events (visual screen image presentations, green

imeline) and participant actions (left or right index finger key presses,

urple timeline). 

Some of the participants were instructed to follow each face image

resentation onset with a left index finger key press to indicate above

verage facial symmetry and a right index finger press to indicate below

verage facial symmetry. The remaining participants used the opposite

ey assignment. The key assignment was in effect for all of the record-

ngs associated with a particular participant (orange timeline). The par-

icipants were also instructed to fixate on the white cross and asked not

o blink while the fixation cross and face images were presented (thick

ray gaze task timelines). 

The fundamental problem addressed here is how to effec-

ively describe events in a standardized form that is human-
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Fig. 1. Schematic depiction of event processes during an MEEG experiment and their associated event markers displayed as dots on the timeline to index the latencies 

(time points) at which event process time boundaries or phase transitions occur in an experiment data recording. Below the (top, black) experiment timeline: 

(orange bar) Onset and Offset markers for the reach task condition; (green bars) Onset and Offset markers of the visual presentation periods for image 1 and image 

2 presentations; (purple bar) time course of a participant reach to touch movement. In addition to having Onset and Offset event markers, the reaching movement 

includes an intermediate marker of a recognized arm/hand trajectory course correction. 

Fig. 2. Schematic diagram of the temporal organization of events in two trials of a W-H MEEG recording with an excerpt of the BIDS task events file built using 

HED-based encoding strategies. Upper left: Recording begins. Recording setup includes selection of the key assignment for responses in the face symmetry judgment 

task. The participant was asked to fixate on a central cross and to refrain from blinking while face images were presented. Lower timelines: Sensory events were 

visual image presentations; participant action events were key presses representing face symmetry task responses. Bottom table: a BIDS task events file excerpt 

corresponding to the first trial in the data. We will use this example throughout the paper. (See an expanded version in Table 5 , Section 3.1 ). 
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t  
eadable, machine-actionable, and analysis-ready – without plac-

ng undue burden on the annotator. The W-H-MEEG experiment

as five regularly repeating types of events. We demonstrate how

o create locally defined names ( show_cross, show_face,
how_circle, left_press , and right_press ) using a stan-

ardized vocabulary (HED) and to associate these names with event

arkers, resulting in an analysis-ready annotated event stream. 

The following section begins with a brief introduction to the HED

ystem and, using the W-H MEEG experiment as a concrete example,

xplains the event annotation process including annotations relating

vent types to the experiment design. Section 3 shows how these an-

otations can be organized within a BIDS dataset to achieve machine-

ctionable, analysis-ready annotation. Using the example developed in

ections 2 and 3 , Section 4 examines the event design process and pro-

oses a set of guidelines for effective design and annotation in neu-
 e  

3 
oimaging research. We discuss what events should be reported, how

he events should be encoded, and sketch planned further work to ex-

end this encoding to include the relationship of the encoded events to

articipant task(s) and intent. Section 4 also summarizes the importance

nd potential impact of best-practice annotation strategies in making

oth stored and shared data more reproducible, interpretable and us-

ble, first to the annotators themselves, then in any subsequent analysis

nabled by effective data storage and sharing. We give a brief review

nd roadmap for future HED development in Section 5. 

. Machine-actionable event annotation using HED 

The HED system is based on a collection of hierarchically organized

erms (the base HED schema) that can be used to describe experiment

vents, condition variables, participant tasks, metadata, and the record-
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Fig. 3. Left: Graphic of a partially expanded top-level HED schema tree (see https://www.hedtags.org/display_hed.html for a view of the complete schema in an 

easy-to-search expanding format). Right: A table with basic annotations of the five main W-H event marker types using HED. The left column of the table has 

user-defined terms used for convenience to refer to these event markers in the BIDS event files. The right column shows the underlying mapping of these terms to 

the common HED vocabulary. 
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ng’s temporal structure. HED was specifically designed to encode infor-

ation in both human- and machine-actionable format to enable vali-

ation, search, identification, and analysis of events in neuroimaging or

ther time series datasets that include events with known timing. 

The original HED implementation (first-generation) focused mainly

n a description of stimuli and responses ( Bigdely-Shamlo et al., 2013 ).

he second-generation HED framework ( Bigdely-Shamlo et al., 2016 )

ncluded many vocabulary improvements, plus tools for validation, data

earch, and analysis. HED was accepted in 2019 as an optional standard

or event annotation in BIDS formated data. 

HED has recently undergone an extensive third-generation redesign

HED-3G) to enable capture not only of basic event and event marker

escriptions, but also of experimental conditions, temporal structure,

nd event context ( Robbins et al., 2021 ). HED-3G provides a readily ex-

ensible basis for easily interpretable annotation of time series datasets

or use in analysis, re-analysis, and shared data mega-analysis. HED-3G

as officially released in August 2021 and is ready for widespread use

n data archiving, sharing, analysis, and mega-analysis. In this paper,

e use the term HED to refer exclusively to HED-3G. 

The remainder of Section 2 works through the W-H-MEEG case study

tep-by-step to illustrate the HED annotation process and the major fea-

ures of HED. The examples are organized so that the end result is a

ully-annotated BIDS dataset. 

.1. A starting point for HED dataset event annotation 

The HED base schema has seven top-level or root nodes as shown by

he partially expanded schema tree in Fig. 3 , left. The very basic HED

vent annotation shown in the table inset on the right is our starting

oint for development of comprehensive annotation. 

To annotate events, users create comma-separated lists of terms se-

ected from the HED base schema to describe the main events and con-

epts. This can be done as a table such as the one shown on the right

n Fig. 3 . Users first select an item from the Event top-level subtree to

ive a basic characterization of the event category (e.g., Sensory-event,

gent-action, Data-feature ) for each of the main types of event markers.

he top-level event categorization tag often serves as a primary search

ey for identifying events of interest. In addition to the event category,

ags describing the sensory modality for sensory events or the type of

ction for agent actions are included next. In some sense, the annotation

rocess can be thought of as using keywords from a structured vocab-

lary to tag events. The tag group (Press, Keyboard-key) in Fig. 3 then

esembles a verb phrase, and the (Index-finger, (Press, Keyboard-key))

ag group a sentence with a subject and verb clause. 
4 
Additional tags should then be added to provide a more detailed

escription. For follow-on analyses, particularly comparisons of MEEG

ynamics across experiments, having still more detailed annotation can

dd significant and enduring value to the data. In this example, adding

nnotations answering questions such as: “Which fingers pressed the

eys? ”, “How large were the cross, face image, and circle? ”, “What col-

rs were they? ”, “Where were these images presented on the screen? ”,

nd “For how long were they shown? ”, can add details to the annotation

hat could well prove of interest in further analyses and mega-analyses

nvolving the data, even when (as here) the specific hypothesis testing

or which the experiment was designed did not vary nor evaluate effects

ssociated with answers to these questions. 

While classical statistical testing assumes rigidly controlled experi-

ents that involve controlled variation of at most a few features of in-

erest, new statistical methods including machine learning can exploit

iversity in labelled data to learn deep structure in the data – here, links

etween MEEG dynamics and human experience and behavior. In the

ast, the value of neuroimaging data for the researchers who created it

epended primarily on the quality of the scientific paper they published

sing it. Increasingly, the value of neuroimaging data accruing to the

ata authors will also include the number and quality of further analy-

es that exploit the rich information contained in the dataset to power

ross-study analysis. 

.2. Short and long form annotation 

A critical usability innovation in third-generation HED is the require-

ent that each term in the HED schema must have a unique name (i.e.,

ust only appear in one place in the schema). As a result, an anno-

ator can tag using just a single end-node term (e.g., Circle in an Item

ierarchy) , rather than spelling out its full hierarchical schema path

tring (e.g., Item/Object/Geometric-object/2D-shape/Ellipse/Circle ). Auto-

ated HED tools can then map such short-form tags to their complete

long-form) paths whenever the data are to be validated or analyzed. See

he Tools section of the HED specification for links to tools written in

atlab, Python, and JavaScript to perform this mapping ( https://hed-

pecification.readthedocs.io/en/latest/ ). 

The expanded long-form annotations allow tools collecting related

vents for analysis to find HED strings that belong to more general cat-

gories – for example, searching for event markers whose HED strings

ontain the more general term 2D-shape, not only the more specific Cir-

le . This type of organization is particularly useful for gathering data

pochs time locked to a variety of events across datasets that have some

eature or features in common, and/or have been annotated with differ-

nt levels of detail. 

https://www.hedtags.org/display_hed.html
https://hed-specification.readthedocs.io/en/latest/
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Table 1 

The HED event marker annotations that capture repeating details of 

the W-H timeline. 

Event HED 

show_cross Sensory-event, Cue, (Def/ Cross-only , Onset), 

(Def/ Fixation-task , Onset), (Def/ Trial , Onset), 

(Def/ Circle-only , Offset) 

show_face Sensory-event, Experimental-stimulus, 

(Def/ Face-image , Onset), 

(Def/ Blink-inhibition-task , Onset), 

(Def/ Cross-only , Offset) 

show_circle Sensory-event, Cue, (Def/ Circle-only , Onset), 

(Def/ Trial , Offset), 

(Def/ Face-image , Offset), 

(Def/ Blink-inhibition-task , Offset), 

(Def/ Fixation-task , Offset) 

left_press Agent-action, Participant-response, 

Def/ Press-left-finger 

right_press Agent-action, Participant-response, 

Def/ Press-right-finger 
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The HED tag examples in this paper are given in short form for read-

bility, and HED tags are always italicized. Supplementary Table 2 has

xamples of short form to long form tag expansion. While HED tags are

ase insensitive, by convention HED tags start with a capital letter and

ndividual words in a tag are hyphenated. This convention makes it eas-

er to pick out individual tags in a lengthy string of comma-separated

ags. Also, HED tags cannot themselves contain blanks. In this paper

e display locally-defined terms in fixed point type. Terms used in BIDS

vent files (e.g., show_face or event_type ) use underbars as word

eparators to allow tools to directly map identifiers into program vari-

bles or structure fields. 

.3. Identifying event concepts using HED definitions 

Fig. 3 (above) gives minimal HED annotations for the five most reg-

larly occurring event types in the W-H dataset as described schemati-

ally in Fig. 2 . This level of annotation allows analysts to isolate events

f different types (e.g., stimulus events vs. participant actions), but does

ot provide sufficient detail to support advanced analysis and cross-

tudy comparisons. Further, the annotation treats each event as occur-

ing instantaneously, but the image presentation events have distinct

nsets, durations, and offsets, all of which are known to affect brain

ynamics measured by MEEG or fMRI. 

HED user event definitions allow annotators to document the struc-

ure of the experiment, as laid out in Fig. 2 , by “defining ” or “declar-

ng ” experiment event-related concepts using names of their choosing

nd associating them with tag groups. During the annotation process,

sers can then use the defined names in place of the longer tag strings.

ED definitions allow data authors to use shorthand terms from the col-

oquial lab jargon that they use in everyday lab conversations, while

llowing data search and analysis to make use of the full HED anno-

ations in analyses. Definitions also make it easier to initially identify

nd then later refine (all within the single definitions) annotations by

dding tags to give further details. HED definitions thus can improve

nnotation process organization similar to the way first planning and

hen programming sub-functions can simplify the coding process and

mprove the resulting computer code. 

Importantly, HED user definitions also play an integral role in assist-

ng data authors in documenting experiment architecture, event tempo-

al extent, and other dataset aspects. Consider a simple user definition

 Face-image ) for the presentation of a face image on a black background

ith a white fixation cross. 

(Definition/ Face-image , (Visual-presentation, 

(Foreground-view, ((Image, Face, Hair), Color/Grayscale), ((White,

ross), 

(Center-of, Computer-screen))), (Background-view, Black))) 

Here we embolden defined terms for ease of reading. For simplic-

ty the definition uses short-form encoding (e.g., Visual-presentation

nstead of the full path string Property/Sensory-property/Sensory-

resentation/Visual-presentation ). Of course, this definition can be made

ore detailed, at any point in the annotation process. Note, however,

hat to avoid circularities HED definitions cannot be nested. 

Once defined, annotators can use Def/ Face-image in building anno-

ations in place of the more complete but much longer and harder to

emember tag string, thus increasing the readability of the dataset an-

otation while allowing the annotator to use (and more easily recall)

erms that seem most natural to them. 

Next, we focus on the use of HED definitions to annotate more of the

emporal fine structure of the participant experience. The green timeline

f Fig. 2 ( Section 1 ) shows the time courses of the sensory events in the

-H data. The bright green bar marks the “pre-stimulus period ” during

hich a white cross is displayed, while the dark green bar marks the

ime during which the face image is displayed, and the light green bar

arks the period during which a white circle is displayed. 
5 
The boundaries between these displays are marked by the

how_cross , show_face , and show_circle event markers, re-

pectively. In the W-H experiment, face display ends when the circle

mage is presented. In addition, performance periods for two additional

nstructed eye-control tasks (represented by the thick gray timelines in

ig. 2 ) coincide with these events: 1) participants were asked to main-

ain eye gaze fixation on the white cross while it was displayed, and 2)

o inhibit eye blinks during face image presentations. 

Table 1 shows an expanded version of the table inset of Fig. 3 us-

ng definitions grouped with Onset and Offset tags to document tempo-

al relationships between events indicated schematically in Fig. 2 . (See

upplementary Table 1 for the complete annotation.) 

When a defined term such as Face-image is grouped with an Onset

ag (e.g., such as Def/Face-image in the annotation for show_face in
able 1 ), the annotation represents the Onset marker of an event that un-

olds over some duration. Face-image is assumed to be in effect until the

ext event in which a Face-image tag appears grouped with an Onset or

ffset tag (the next show_circle event). In the BIDS event file excerpt

f Fig. 2 ( Section 1 ), a show_face event onsets at time 23.87 s, while

he next show_circle event (whose annotation includes a Def/Face-

mage grouped with an Offset tag) occurs at 24.75 s, Thus, the face image

vent presentation process unfolds over 24.75 − 23.87 = 0.88 s. 

Table 1 gives similar encodings for all the task-related sensory and

articipant action events. The Press-left-finger and Press-right-finger

efinitions of Table 1 do not include Onset or Offset tags because here

nly the time of key release was recorded; thus we only model these par-

icipant actions as instantaneous events that occur at a single moment

n time. 

.4. Event context and temporal events 

Effects of both preceding and concurrent event context on event-related

EEG brain dynamics have long been reported ( Squires et al., 1977 ) al-

hough not frequently studied. When the full annotation of an event is

ssembled at time of data search or analysis, HED tools can automat-

cally insert information about ongoing events in an Event-context tag

roup. For example, suppose a participant presses a key while a movie

lip is playing. After creating a Play-movie definition to describe the

ovie presentation, the researcher can annotate the event marking the

tart of the movie with (Def/ Play-movie , Onset) and the event marking

he end of the movie with (Def/ Play-movie , Offset) . HED tools can insert

nformation that the movie was playing into the annotations of any con-

urrently occurring events. A future goal is to allow HED context tool

nnotation to also support studies of consequences of recent past events

n the behavior and brain dynamics associated with current events. 
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.5. Annotating experiment design and condition variables 

The event marker sequences and the annotations described in the

revious section define what happens during the experiment, but do

ot convey the purpose of the experiment or the relation of events to

he underlying experimental design. A goal of HED is to provide con-

enient mechanisms for annotating this information in sufficient detail

hat tools can automatically extract and make use of experimental design

nformation during analysis. HED supports the first steps in this process.

his section introduces the Condition-variable tag and combines this tag

ith concept definitions to encode the W-H experimental design. 

The W-H experiment design. The W-H experiment uses a factorial

 × 3 matrix whose two factors are face type and repetition status, each

ith three levels. The primary author analyses ( Henson et al., 2011 )

 Wakeman and Henson, 2015 ) ( Henson et al., 2019 ) focused on face type

nalyses (with three levels corresponding to the display of famous, unfa-

iliar, and scrambled faces, respectively). The authors computed across-

rial averaged event-related potentials (ERPs) and some frequency-based

easures for MEEG responses to different types of face images with an

nderlying purpose of improving source localization by leveraging par-

icipant information obtained from multiple imaging modalities. 

Each face (or scrambled face) image was shown twice during a ses-

ion. The repetition status factor (with levels corresponding to the first

isplay of an image, an immediately repeated display, and a delayed

epeated display) encodes the position in the sequence of face image

resentations with respect to their matching images. The delayed-repeat

evel indicates that the first presentation of this image occurred 5 to 15

ace image presentations previously. The repetition status design vari-

ble was introduced to support study of the effects of image novelty and

einforcement on face recognition in the W-H data, supported by a later

behavior-only) face image recognition task session not included in the

riginal version of the shared data. 

Documenting experiment control events. In BIDS datasets, informa-

ion about changes in experiment conditions (e.g., in task or stimulus

onditions) during a data recording session can be entered in one of

wo ways in the BIDS (...events.tsv) event file: either by inserting new

olumns in the event file table or by inserting new rows (events) in the

vents table. 

Additional columns encode some item of information about every

ecorded event (row). The presence or absence of the informative con-

ition is then indicated by the value in the cell of that column in every

vent row of the table ( n/a used to indicate its absence or irrelevance).

hen the information is relevant to only a small fraction of the recorded

vents, this can waste space and computation. 

The alternative approach is to add new rows (event markers) to en-

ode the information as their own events. Tools must then use context

earch to determine whether or not the information is relevant during

he occurrence of any particular event. BIDS leaves the choice of repre-

entation (by row or column) to the user. 

Table 2 summarizes the 3 × 3 W-H experimental design ma-

rix and demonstrates how the experiment design can be en-

oded using HED. Here we will encode design factor information in

olumns added to the BIDS ...events.tsv event files. The factor names

see column 1 in Table 2 ) correspond to BIDS event-file column

eadings ( face_type and rep_status , respectively). The lev-

ls ( famous_face , unfamiliar_face , scrambled_face ) for

he face type factor will appear as values in the face_type col-

mn of the BIDS event files. Similarly, the levels ( first_show ,
mmediate_repeat , delayed_repeat ) of the repetition status

actor appear as values in the rep_status column. The complete an-

otations are given in Supplementary Table 1. 

The recommended strategy for annotating the factors and their lev-

ls using HED (as illustrated in Table 2 ) is to first create, for each level,

 convenient HED “event concept ” definition that includes a Condition-

ariable tag whose value is the factor name. The name of the defini-

ion is interpreted programmatically as the variable level for that factor
6 
e.g., Definition/ Famous-face-cond is a level for condition variable Face-

ype ). These elements appear in boldface in Table 2 to emphasize their

ole in documenting the experiment design. Notice that the BIDS event

le excerpt in Fig. 2 ( Section 1 ) includes a face_type column whose

alues (such as famous_face ) give the factor levels. 

The event file excerpt in Fig. 2 also includes a rep_lag column giv-

ng the number of trials past since the same image was first presented.

his column includes numerical values only when the rep_status
as values immediate_repeat or delayed_repeat , and n/a
therwise. Note that these values could be computed from the event ta-

le itself, but are included here (and in the accompanying W-H dataset

ubmitted to OpenNeuro) to make that computation unnecessary. 

Column-wise encoding of event (and experiment) design variables

akes manual or automated extraction of the event design matrix from

IDS task events files straightforward. Here, the choice of column en-

oding for the face type and repetition status factors makes sense be-

ause the factor levels change with each face image presentation. When

 condition variable has the same value for most (or all) events in the

ecording, using the event marker (row) encoding method to mark con-

ition changes may be more appropriate. 

The W-H experiment used a between-participants response-key as-

ignment variable to control for handedness bias. The key assignment

actor (with levels left_sym_cond and right_sym_cond ) en-

odes the assignment of which index finger key press indicates the par-

icipant’s decision that the presented face is more symmetric than aver-

ge. In the left_sym_cond condition, participants press a key with

he left-index finger to indicate they perceived more than average facial

ymmetry, and press a key with the right index finger to indicate less

han average facial symmetry. The left-right key assignment is coun-

erbalanced across participants. Table 3 shows how to encode this key

ssignment using experiment control events. 

Notice that key_assignment does not correspond to a column in the

able of Fig. 2 , Section 1 . Because the level of this variable is con-

tant for the entire recording, this variable is better encoded by in-

erting an experiment control event at the beginning of the recording

o mark the Onset of this control-condition assignment. Here we insert

n initial experiment control event with an event_type value of ei-

her setup_left_sym or setup_right_sym to encode the initial

ecording setup and key assignment. The onset time of this experiment

ontrol event is that of the first data point of the recording (see the first

vent of the table in Fig. 2 , Section 1 ). 

Section 3 discusses in more detail how the definitions in Tables 2 and

 can be used in conjunction with BIDS …events.tsv event files to fully

ocument the experimental design within the BIDS dataset annotation.

ED tools now under development will then be able to automatically

xtract the design matrix and other statistics about the experimental

esign from HED definitions that include the Condition-variable tag and

rom experiment control events associated with these definitions. 

. HED annotation of a BIDS-formated dataset 

BIDS recommendations for archival data storage have quickly be-

ome a de facto standard for sharing raw neuroimaging data. This sec-

ion demonstrates how HED event annotations are actually mapped into

achine-actionable annotation of datasets organized according to BIDS

pecifications. A BIDS dataset typically holds data from an experimen-

al study that includes a number of brain imaging data files recorded

rom one or more participants in one or more sessions and/or task or

ther conditions. BIDS specifies a particular dataset directory structure,

le naming conventions, and permitted image data formats, making it

asier for users and tool developers to access data without manual or

omputerized recoding. 

In BIDS-formated datasets, much of the metadata is located in .json

JavaScript Object Notation) text files called sidecars. File naming and

older architecture conventions associate the sidecar metadata with the

ata files. When the same metadata applies to many data files, BIDS
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Table 2 

Encoding of the 3 ×3 experimental design for the W-H experiment using columns face_type and rep_status in the event 

files. 

Level (Column value) HED Annotation 

Factor (column name): face_type 
famous_face Description : A face that should be recognized by the participants. 

HED: (Definition/ Famous-face-cond , (Condition-variable/ Face-type , (Image, (Face, Famous)))) 

unfamiliar_face Description : A face that should not be recognized by the participants. 

HED: (Definition/ Unfamiliar-face-cond , (Condition-variable/ Face-typ e, (Image, (Face, 

Unfamiliar)))) 

scrambled_face Description : A scrambled face image generated by the face 2D FFT. 

HED: (Definition/ Scrambled-face-cond , (Condition-variable/ Face-type , (Image, (Face, 

Disordered)))) 

Factor (column name): rep_status 
first_show Description : Factor level indicating the first display of this face. 

HED: (Definition/ First-show-cond , 

(Condition-variable/ Repetition-status , Item-count/1)) 

immediate_repeat Description : Factor level indicating this face was the same as previous. 

HED: (Definition/ Immediate-repeat-cond , 

(Condition-variable/ Repetition-status , Item-count/2, Item-interval/1)) 

delayed_repeat Description : Factor level indicating face was seen 5 to 15 trials ago. 

HED: (Definition/ Delayed-repeat-cond , 

(Condition-variable/ Repetition-status , Item-count/2)) 

Table 3 

Encoding of the key-assignment condition variable using experiment control events (rows rather than columns of the task events 

files). 

Encoding in the task events file Condition-variable level HED definitions 

Event file column: event_type 
Column value: setup_left_sym 
Annotation: (Def/ Left ‑sym-cond , Onset) 

Description : Left finger key press signifies the presented face has above average symmetry 

(the right press, the opposite) 

HED: (Definition/ Left ‑sym-cond , (Condition-variable/ Key-assignment , ((Mouse-button, 

(Left-side-of, Computer-mouse)), (Behavioral-evidence, Symmetrical)), ((Mouse-button, 

(Right-side-of, Computer-Mouse), (Behavioral-evidence, Asymmetrical))))) 

Event file column: event_type 
Column value: setup_right_sym 
Annotation: (Def/ Right ‑sym-cond , Onset) 

Description : Right finger key press signifies the presented face has above average symmetry 

(the left press, the opposite). 

HED: (Definition/ Right ‑sym-cond , (Condition-variable/ Key-assignment , ((Mouse-button, 

(Right-side-of, Computer-mouse)), (Behavioral-evidence, Symmetrical)), ((Mouse-button, 

(Left-side-of, Computer-Mouse), (Behavioral-evidence, Asymmetrical))))) 

Table 4 

Mechanisms HED annotations in BIDS .json and .tsv metadata files. Many datasets may need only one …events.json file 

placed in the top (Dataset) level folder. Note: ...events.json files may also be placed at intermediate levels of the BIDS 

dataset to annotate items specific to a participant, session, or modality. 

BIDS folder level Information file Function 

Dataset …events.json Provides descriptions of the columns that are applicable to all the …events.tsv files in the 

dataset. [The ‘HED’ keys in this JSON dictionary link HED annotations to values in the 

events files.] 

participants.tsv Lists the participants. [A HED column may be used to add 

participant-specific information in HED annotation.] 

Subject ...sessions.tsv Lists the sessions per participant. [A HED column may be used to add session-specific 

information in HED annotation.] 

Session ...scans.tsv Lists the scans in the session (optional). [A HED column may be used to add scan-specific 

information in HED annotation.] 

Modality(Scan) …events.tsv Lists the events in the scan (run). The column meanings and associated HED tags are given in 

the dataset-level …events.json file or other applicable …events.json files in the hierarchy. [A 

HED column in …events.tsv gives event-specific information in HED annotation.] 
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llows metadata files to be placed higher in the dataset directory hi-

rarchy. The metadata information is then inherited by data files in

ataset sub-directories (the BIDS Inheritance Principle ), thereby avoid-

ng the need to repeat the same metadata within multiple files in lower

evels of the BIDS folder hierarchy. HED leverages the inheritance prin-

iple by placing HED annotations in a JSON sidecar ideally at the top

evel in the dataset. HED tools are available to take concept tables such

s those of Table 1 and Table 2 to automatically create a BIDS JSON

idecar for events files. 

Table 4 below summarizes different mechanisms for including HED

nnotations in a BIDS dataset. The current case study includes HED in-

ormation ONLY in the top-level …events.json sidecar file contained

n the dataset root directory. That information is keyed to the column
7 
ames of the individual …events.tsv files ( Fig. 2 and Table 5 below) lo-

ated at the lowest level of the dataset, each containing the list of event

arkers in the corresponding recording. 

As summarized in Table 4 , it is also possible to incorporate HED an-

otations in other BIDS .tsv files by including an extra column titled

ED . These annotations are particular to the row of the file and should

nly contain HED strings (not HED definitions). For example, a HED

tring appearing in the HED column of participants.tsv pertains to the

articipant described in that row. In annotating more complex experi-

ent designs, some HED information could be placed most efficiently

n any or all of the four BIDS .tsv file types listed in Table 4 (if present)

s well as in additional …events.json sidecars placed at lower levels in
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Table 5 

An excerpted BIDS …events.tsv file from the dataset displayed schematically in Fig. 2 . The table includes the initial setup events as well as those defined 

in Table 1 . Color-coded columns have relevant HED annotations defined in the …events.json sidecar file. Table 7 uses the same color-coding to dissect the 

expanded HED annotation of one of these events (the emboldened row in task events table below). 
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t  
he dataset hierarchy, possibilities that for simplicity we do not discuss

urther here. 

It is also possible to annotate individual events, or parameters that

ary across individual events by recording additional individual-event

ED tags in a HED column in the events files. Because of the difficulty

n reading and editing annotations spread across individual events, this

ype of annotation should be avoided unless needed. However when, for

xample, presented stimuli have randomly varied properties (screen lo-

ation, pitch, size, etc.), these details can be documented in this manner.

eparate value columns in the event file with HED value annotations in

he pertinent JSON sidecar can also be used to encode this information.

.1. BIDS ...events.tsv files 

At the lowest, single scan (data recording or run) level of the dataset

older hierarchy, BIDS event files are tab-separated value formated text

les with file names ending in …events.tsv. The BIDS naming conven-

ion associates the column headings in the …events.tsv event files with

nnotations contained in the relevant …events.json sidecar files – al-

ays including the top (full dataset-level) …events.json file. Here we

se …prefixes in the filenames as placeholders for information embed-

ed in the filename prefixes concerning data modality, task, session,

ubject, and run. The first line in a BIDS event file is a header line iden-

ifying each column, and each subsequent line corresponds to an event

arker (an identified time point of interest within an identified event

rocess) in the data. 

Table 5 shows the excerpt of the BIDS event file of Fig. 2 , color-coded

o indicate the source of the expanded event annotations as shown in

able 7 (following, see Section 3.3 ). 

Note that Table 5 differs slightly from the events listed in Fig. 2 in

hat the second event has an event_type called show_face_initial rather

han the show_cross of Fig. 2 . As is often the case, the startup event in

 block of trials differs from the internal block trials. The first reported

vent in all W-H recordings corresponded to the first showing of a face

mage rather than the showing of a fixation cross, although ERP analysis

f the data suggests that this event actually occurred. Thus, the HED

ags for show_face_initial includes (Def/ Fixation-task , Onset) and does

ot include (Def/ Cross-only , Offset) . 

Each row in the task events file table gives information about a single

vent, typically functioning as a marker of the onset of an event process.

IDS requires event files to have onset and duration columns giving the

nset time (in the data) and duration of each event in seconds. Users

ay add additional columns as needed. All columns in the task events

le should be documented in one or more accompanying JSON-format

idecar files as described in the next section. 

t

8 
BIDS event files have two types of columns: categorical and value.

ategorical columns allow a small number of distinct defined levels

r categories, represented as text or numeric values. Other columns are

alue columns . The …events.tsv file in Table 5 has three categorical

olumns: event_type (blue), face_type (plum), rep_status
green), each with a relatively small number of distinct levels that will

e annotated individually. Value columns in this file include onset ,
uration , sample , value (all in white), and rep_lag (in mus-

ard). The final stim_file column (tan) could be treated either as a

ategorical or as a value column depending on the number of distinct

timulus images. Here we treat stim_file as a value column because

f the relatively large number of different face stimulus images used in

he W-H experiment. 

The distinction between categorical and value columns is impor-

ant mainly because HED annotations are encoded differently for the

wo types of columns, as explained below. The column labeled value in

he above example corresponds to the trigger values from the experi-

ental control program and is retained for informational purposes. The

olumns displayed in white in Table 5 will not be annotated with HED.

.2. BIDS ...events.json sidecar files 

Many experiments can use a common and relatively simple event

esign strategy that requires building only a single …events.json an-

otation file at the top level directory of the dataset to provide

omplete machine-actionable event annotation across participants and

ecordings when combined with the values in the individual recording

events.tsv files. In general, an organization using a single dataset-level

events.json sidecar is easier to annotate, understand, and maintain, so

hat is the organization we focus on here. The W-H annotation case study

 Section 2 ) assumes that all the annotation of dataset events is in a sin-

le …events.json sidecar file (task-FacePerception_events.json) located

n the top level dataset directory. Table 6 shows a portion of this sidecar

le. See Supplementary Table 1 for the complete version. 

The …events.json sidecar files are structured as dictionaries. The ex-

erpt shown in Table 6 has three top-level keys ( onset , rep_status ,
nd stim_file ) corresponding to column names in the …events.tsv

le excerpt shown in Table 5 . (Here the annotations for the columns

ample , event_type , face_type , and rep_lag are omitted for

eadability but are included in Supplementary Table 1.) HED tools as-

ociate column metadata with particular columns in the event file using

hese column names. BIDS users may use additional top-level keys to

nclude additional metadata in the JSON sidecars (e.g., the Levels and

escription under rep_status in Table 6 ). We also use additional

op-level keys to separate out the HED definitions for readability, al-

hough definitions may be included in the other annotations. 
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Table 6 

Excerpt of the top (dataset) level JSON sidecar file (…events.json) for the W-H data. 
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In Table 6 , the metadata dictionaries associated with rep_status
nd stim_file have HED keys and hence include HED annotations. In

ontrast, the metadata dictionary associated with top-level key onset
oes not include a HED key, so it is considered to be an unannotated

olumn and is ignored by the HED tools. If the HED key references a

ictionary (as does rep_status in Table 6 ), HED assumes the task

vents table column is categorical, while if the HED key references a

tring (like stim_file in Table 6 ), HED tools assume it is a value

olumn. In either case, HED tools use the corresponding HED key values

o assemble the annotation for the event. 

Categorical column annotations in …events.json sidecar files include

 separate HED annotation for each categorical value that appears in the

orresponding column of the …events.tsv file (e.g., the categorical value

irst_show appearing in column rep_status of Table 5 ). Value

olumn annotations (such as the one appearing for the stim_file col-

mn) use a single HED string with a hash symbol (#) value placeholder

o annotate the column. When the complete annotation for an event is

ssembled, the HED assembler tool replaces the hash symbol with the

alue from the respective row and column of …events.tsv file. 

The next section explains how the annotation for an event is assem-

led by combining event information in the …events.tsv files with the

ED annotations in the …events.json sidecar dictionaries. 

.3. Assembling and using the complete event annotation 

HED assembler tools gather the BIDS …events.json sidecars applica-

le to an …events.tsv file and assemble a single HED string represent-

ng the annotation for each event marker (as represented by a line in

he BIDS event file). The assembled HED string annotation for the sec-
9 
nd face display event ( show_face ) in Table 5 is shown in Table 7 .

arts of the HED string are color-coded to indicate which column an-

otation that portion corresponds to. The corresponding columns in the

events.tsv file of Table 5 use the same color shadings. 

To annotate this show_face event (from the …events.tsv file excerpt

f Tables 1 and 5 ), the HED assembler looks up the column annota-

ions defined in the accompanying …events.json sidecar. As the onset ,
uration , sample, and value columns of the …events.tsv file do not

ave HED annotations in the …events.json sidecar file in this exam-

le, they are skipped. (Note: these columns could have been annotated

s value columns). The show_face value in column event_type
s translated into its HED definition ( Table 1 ), then concatenated to

he assembled annotation (light blue shading). Next, the annotation for

amous_face in the face_type column is found in the sidecar and

ppended (plum shading). Then the category immediate_repeat in the

ep_status column is looked up, and the corresponding HED anno-

ation is included (green shading). Finally, the repetition lag value in the

ep_lag column and the filename value in the stim_file column

re substituted for their respective #’s in the corresponding annotations

mustard and tan shadings). The other column values are skipped in this

rocess, because they have no HED keys in the …events.json sidecar dic-

ionary. 

During analysis, the HED tools can expand the definitions so that

heir values are available for searching and filtering. Supplementary

able 2 shows the assembled annotation of Table 7 in several forms,

nd demonstrates how the Def-expand tag is used with the substituted

efinitions to accomplish this expansion. 

Combining the information in the BIDS …events.tsv files with the ap-

ropriate …events.json sidecar annotation file(s) enables powerful auto-
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Table 7 

Assembled HED string for an immediate repeat of an image of a famous face (the seventh event in Table 5 ). The annotation also marks the end of the 

cross-only presentation and the onset of a blink inhibition period. The color coding of Table 5 is used to show the correspondence between annota- 

tion from the JSON sidecar file and the …events.tsv file column ( event_type : blue, face_type : plum, rep_status : green, rep_lag : 
mustard, and stim_file : tan). 
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ated tools to be implemented. Given this information, such HED tools

ould automatically extract and optionally visualize the experiment task

ist, the underlying experimental design, and the temporal structure of a

ecording. Extensive statistics about the number of event markers with

ifferent properties could also be computed. Data could be separated

nto event-locked epochs with similar HED tags fitting a simple or com-

lex description, and automatically bootstrapped to look for differences

ssociated with different experimental parameters. Complex searches

ould be conducted across datasets (including datasets using different

asks and experimental designs) without need for manual re-coding. 

The case study developed in Section 2 and 3 illustrates the annota-

ion process. The next section extracts “lessons to be learned ” from this

ase study to formulate a set of “best practices ” for event design and

nnotation. 

. Best practices in event design and annotation 

A myriad of events, overt or covert, planned or unplanned, may un-

old during the execution of an experiment. How a researcher chooses

o organize, report, and annotate events can completely change the

apacity of a given dataset to support analysis, reuse, and repro-

ucibility. It may not be possible to record markers for every conceiv-

ble recordable event, nor may it be feasible to describe precisely their

very detail. Incorporating fine details of all known events might in-

eed prove valuable to future analyses and mega-analyses. However,

ome limit in time and energy available must be accepted. One im-

ortant strategy is to be sure to include the actual stimuli and/or vir-

ual environments with the stored/shared data, as included here in the

-H data. Others wanting to exploit the analysis value of more de-

ailed annotations of the data could then be in a position to add fur-

her details to the annotations. For example, the StudyForrest project

 https://www.studyforrest.org/ ) organized a team to more fully anno-

ate events in the movie Forrest Gump that had been shown to partici-

ants in several neuroimaging studies. 

Event design as used here refers to the process of identifying, or-

anizing, reporting, and sufficiently annotating the nature of events to

 degree allowing complete interpretation of the event-related dynam-

cs recorded during the experiment. The process includes listing the re-

urring types of event markers in the data, giving them easily recalled

erms, and then defining each term using HED annotation. Ideally, these

vent markers and descriptions should include all that is relevant to both

urrent, planned and future potentially fruitful analyses. Event design

hould be the first step in augmenting a dataset with HED annotation. 

Best practice in event design encourages researchers to look beyond

he immediate use of their data to broader questions. In particular:

hich aspects are potentially important to future analysis (performed

ither by the data authors or others)? These analyses are likely to include

eta-analyses and mega-analyses ( Costafreda, 2012 ) ( Boedhoe et al.,

019 ) ( Bigdely-Shamlo et al., 2019 ) across shared datasets that may in-
10 
olve different designs, participant tasks, experimental conditions, and

vent types. 

The event design process has two steps: first identifying which events

o report or mark and then mapping the resulting event markers into

sable annotations. The most critical part of this process is record-

ng and marking the events , as events not marked in the data may

ot be recoverable. Ideally, the event design process should be per-

ormed before data collection begins , as the event design process clar-

fies what is being measured and whether those measurements can be

sed to achieve experimental goals. In any case, most of the information

equired by a good event design process will be required in publications

eporting the work, so performing a preliminary event design can help

o assure that important details are not confused or overlooked later. In

his section, we discuss the event design process and suggest guidelines

or it using the W-H dataset as a case study. Even when HED annotation

s performed after data collection, beginning the annotation process with

vent design is useful for deciding how to best annotate the data. 

.1. Event design for the W-H experiment 

The W-H event design developed in Sections 2 and 3 above is not the

ne distributed with the original shared OpenNeuro dataset ds000117 ,

ut was developed based on the recommended event design practices

ith the generous assistance of the data authors Wakeman and Henson

o make additional event type and timing information available in the

ata. The MEEG data of the redesigned dataset are available as Open-

euro dataset ds003645 . The event design of Table 5 marks the onsets

nd offsets of all the experimental stimulus sensory presentations and

articipant action motor responses using the annotations and encoding

f the event_type column of Table 1 . Further, the 3 × 3 experimen-

al design is represented (using information in the face_type and

ep_status columns and the encoding described in Table 2 .) 

Table 3 defines a setup_left_sym experiment control meta-event

hose time is that of the first data sample. This meta-event can also

e used to store other annotations applicable to the entire recording,

uch as the visual presentation screen size and participant distance (as

vailable). Since the (left = ‘symmetric’) key assignment is in effect for

his entire recording, it is more efficient and clearer for tools to encode

t as an initial meta-event rather than giving it its own column in the

events.tsv files requiring the same value to be repeated for every mo-

or response event. If we want to use the single JSON events sidecar

t the top level in the BIDS dataset file hierarchy, every value in the

events.tsv files must have the same meaning across the entire BIDS

ataset. A setup_right_sym meta-event must also be introduced

here to apply in the datasets using the (right = ‘symmetric’) key assign-

ent. 

The event table also includes a column labeled sample that gives the

ata sample number of the event marker. This column is recommended

n the BIDS standard and is good practice since the precision of the on-

et values is left completely open in BIDS and accurate event timing is

https://www.studyforrest.org/
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Table 8 

MEEG event file for run 1 of session 1 of subject 01, as originally shared. 

onset duration onset_sample stim_type trigger stim_file 

24.2073 0 26,628 Unfamiliar 13 meg/u032.bmp 

27.2473 0 29,972 Unfamiliar 14 meg/u032.bmp 

30.3545 0 33,390 Unfamiliar 13 meg/u088.bmp 

33.3618 0 36,698 Unfamiliar 13 meg/u084.bmp 

Table 9 

The 12 trigger values from the original W-H (shaded rows) and their respective interpretations. 

0 5 6 7 13 14 

show_circle show_face 
famous_face 
first_show 

show_face 
famous_face 
immediate_repeat 

show_face 
famous_face 
delayed_repeat 

show_face 
unfamiliar_face 
first_show 

show_face 
unfamiliar_face 
immediate_repeat 

15 17 18 19 256 4096 

show_face 
unfamiliar_face 
immediate_repeat 

show_face 
scrambled_face 
first_show 

show_face 
scrambled_face 
immediate_repeat 

show_face 
scrambled_face 
delayed_repeat 

left_press right_press 
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xtremely important for MEEG analysis. The value column is not neces-

ary, because its information is already encoded in the face_type ,
ep_status , and rep_lag columns, but we have retained it to

aintain the connection with the original shared dataset, since the value

olumn captures the actual event code triggers produced by the experi-

ent control software. 

For comparison, Table 8 shows a sample of the event file for the

EEG portion of the W-H data, as originally shared. The …events.tsv

les only give the onsets of the face presentations and contain no mark-

rs for other sensory presentation or participant responses, limiting

he usability of the data for analysis, further analysis, and meta/mega-

nalysis. 

Table 8 is considerably shorter and narrower than Table 5 (our

ecommended version), but it is missing critical information (e.g.,

ep_status and all the events marking presentations of the fixation cross

nd focusing circle, as well as the key press events). Difficulties intro-

uced for downstream analysis by not recording and reporting all pos-

ible sensory and participant action events are discussed in more detail

n Section 4.3 and Section 4.4 , respectively. 

Another difficulty in Table 8 is the use of non-orthogonal encoding of

he experimental design in the event-recording hardware system trigger

olumn, whose 12 distinct values are shown in Table 9 . 

While it is possible to tag each trigger value as in Table 9 to as-

ociate it with the factors and levels it represents, the non-orthogonal

r mixed encoding used to build the trigger codes makes downstream

nalysis much more likely to require manual re-coding, thereby mak-

ng the dataset difficult to include in further analysis. In the recom-

ended design ( Table 5 ) the independent factors face_type and the

ep_status are represented by independent columns in the events

le, making it easy for automated processing to detect the 3 × 3 de-

ign. Encoding of experimental conditions is discussed in more detail in

ection 4.5 . 

.2. Pitfalls in reporting events by-trial rather than by-event 

An overall guideline for reporting events strongly favors expressing

ach relevant event with its own (onset) event marker and correspond-

ng line in the event file. Where relevant, offset time information for

vents representing processes with appreciable duration should also be

eported. In some cases, event markers for intermediate points of inter-

st in an event process may also be important for analysis, for exam-

le onsets of individual syllables in spoken words or critical points of

and/arm movements in reach trajectories. HED also supports use of

uch markers, though we have not here given an example of their use. 
11 
Guideline 1: Event files should be organized by event. Event files should 

report one event marker per line. Event files should contain markers (lines) for 

all onsets and offsets of relevant sensory stimuli, motor actions, participant 

tasks and task conditions, condition changes during the recording, time 

organization, plus setup meta-event information organized during event 

design. When computation of response times, delays, or results of other computations 

on the basic event data are stored in a column added to an event table, the event table 

should still include rows representing the onsets and offsets of the actual framing 

events used to compute these response times or delays to avoid the complications of 

interleaving events. 

While this recommended by-event organization may seem logical,

urrently many shared BIDS datasets instead use a by-trial organization

r some hybrid organization. By-trial organization treats each trial as

 single event that is given one row in the event file, and expresses all

ther relevant trial event markers in that row as offsets from the trial la-

ency in the data. Such by-trial organization has many disadvantages for

vent-related and more general analysis approaches, most prominently a

ack of clarity with respect to the timing of other MEEG data-influencing

vents. As an illustration consider the sample of an event file originally

hared for the fMRI portion of the W-H experiment shown in Table 10 . 

When motor response events are reported only as response_time
elays, it is not always clear whether the time is relative to the trial

nchor event or to some other event. Events that occur before the an-

hor event are not always expressed with a negative delay (e.g., here

ross_duration is positive, although the cross display occurs be-

ore the anchor face presentation onset event). While it is possible to

alculate the onsets and offsets of the visual stimuli from the various

urations and response times relative to the anchor event, a data user

ould have to do a very careful analysis of the documentation and pub-

ished papers to correctly identify the sensory and motor action event

nsets and offsets. Performing this anew for each shared dataset in any

uture mega-analysis across shared datasets would be infeasible – or at

est heroic. 

By clearly identifying all experimental sensory events in a column

amed event_type or something similar, the design of Table 5 makes

rocessing much easier. To reiterate, identifying all event onsets and

ffsets is increasingly important for many analyses, in particular those

hat use standard or new methods to model the complex, interacting

ffects of events on cognition and MEEG dynamics. 

A second issue with by-trial organization of an event table is its lack

f extensibility. For consistency, each row in by-trial reporting should

ontain information about the event sequence for the trial. Often how-

ver, conditions change and other events need to be recorded outside

he strict by-trial structure, thereby complicating the annotation process.

hen later adding event markers (lines) to the event file to identify addi-

ional events in the data (such as blinks, alpha spindles, interictal spikes,
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Table 10 

The W-H experiment fMRI event file for the first run of session 1 for subject 01, as originally shared. 

onset duration cross_duration ∗ stim_type trigger button_pushed response_time stim_file 

0 0.908 0.534 FAMOUS 5 4 2.158 func/f013.bmp 

3.273 0.962 0.586 FAMOUS 6 4 1.233 func/f013.bmp 

6.647 0.825 0.546 UNFAMILIAR 13 4 1.183 func/u014.bmp 

∗ Note this column, mistakenly labeled circle_duration in the original distribution, has been corrected. 
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ackground noise or outbreaks), researchers must decide whether to add

dditional columns and express the new times in terms of trial offsets

r to add additional rows and treat the new markers as separate non-

rial events. The difficulty with the latter approach is that the marked

vent times are likely to cross trial boundaries, thus requiring dataset-

pecific manual coding and analysis to unwind the information about

hose events. Operations such as regressing out the effects of overlap-

ing events or determining effects of ongoing event context cannot be

erformed without first obtaining a distinct, well-ordered record of the

ataset event onsets and offsets. 

.3. Documenting sensory presentations 

Guideline 2: All known sensory presentations that are intended to or may 

affect neural responses should be marked and annotated. Sensory 

presentations (including their onsets and offsets), as well as transitions between trial, 

performance blocks, stimulus or task condition changes, and other known or easily 

computed significant moments) should be given event markers. In addition to the 

formally designated experiment “stimuli, ” dataset sensory presentations may include 

delivery of instructions, feedback, auxiliary stimuli including fixation points, cues, 

other filler images, changes in background, plus any unplanned events noted as 

having occurred during the recording. The role of each sensory presentation within the 

task and experiment, as well as a description of the sensory presentation and 

modality itself should be documented. 

Event annotation should aim to document all that the participant experiences. 

At a minimum, thoughtfully detailed reporting of participant sensory experience 

allows analysts to regress out the influences of other sensory presentations on 

dynamics associated with presentations of the primary stimuli; nonlinear modes of 

analysis may benefit still more from this information, quite possibly in ways yet 

undocumented. 

As first shared, the shared W-H MEEG dataset noted only face image

resentation onsets, while the fMRI dataset also included cross duration

nd key press response times as well as indicating which key was pressed

left or right). Papers published by the authors on the fMRI dataset also

ncluded a somewhat more complete description of the event sequence

epicted by the timeline of Fig. 2 . 

We found some ambiguity in the published description of the W-H

EEG experiments. When did the first trial begin? Did recording begin

t the start of the first trial? If not, was a white circle displayed at the

eginning of the recording? To avoid such ambiguities, it is best practice

o write experiment control scripts that automatically output event

arkers for every sensory presentation event as well as the data

tself. 

.4. Documenting participant responses 

Guideline 3: Participant motor responses (and any other recorded 

participant actions) should be reported. Instructed participant responses or 

actions should be marked as individual events (or event sequences) rather than 

reported only as reaction times and/or by noting the category of the participant 

response ( e.g. , for the W-H experiment, only noting responses as having indicated a 

‘symmetric’ or ‘asymmetric’ judgment). Motor actions themselves, their planning, and 

accompanying and ensuing assessment processes are all supported by brain dynamics 

that are very likely to be reflected (in part) in neuroimaging data features. 
f

12 
As with sensory presentations, motor responses should be first annotated from the 

perspective of what the participant does , not what it means in terms of the 

experiment design and task. At a minimum, the annotation should document who acts 

and what action they take. The experiment control program’s handling of correct, 

incorrect, and omitted response actions (if computed by it) should also be articulated 

if these affect the selection of later stimuli. 

Other types of participant actions, instructed or incidental, should also be documented 

using appropriate vocabulary from the HED base schema. If these actions were not 

instructed, they are not likely to be part of the initial experiment design, so they need 

to be entered as data features post hoc. 

In the W-H experiment, participants were instructed to press one

f two keys with their respective left or right index fingers to indicate

heir assessment of the symmetry of the presented faces. This symmetry

valuation task was unrelated to the experimenters’ own true objective

n running the experiment. Perhaps for this reason, the participant re-

ponses were not fully documented in the W-H data as originally shared,

nd there was no indication in the dataset documentation of what would

ccur when or if the participant withheld a key press entirely. 

Thinking more broadly about potential further uses for the data (e.g.,

hen building the event design) may hopefully inspire data authors an-

otating their data to make it fit for a broader range of uses and sharing,

hereby considering it worthwhile to add all available detail about sub-

ect performance to the shared dataset to enhance continued dataset us-

bility. Here, for example, the W-H face symmetry evaluation task might

tself be of some future interest, as might be how the pose or gender of a

resented face affects brain dynamics and motor responses. Such read-

ly recorded variables might also be treated as dependent variables to

trengthen the statistical reliability of effects of interest in any analysis

f the data. 

.5. Documenting experimental conditions, controls, and designs 

Guideline 4: Experimental conditions, both fixed and changing, should be 

identified, whether they are part of the experimental design or are put in 

place to control experimental bias. All experimental conditions should be 

documented, not just the main design variables. Full documentation allows 

researchers to systematically test for statistical differences in data features under 

various conditions. The explicitly stated experimental design provides the obvious 

factors to be annotated. 

Any aspect of the experiment that was controlled for bias can provide a 

condition for annotation. Elements that are counterbalanced or randomized in a 

specified range should always be given serious consideration for explicit annotation as 

experimental conditions. 

The span of each condition should also be identified. Was the condition varied by 

trial, by block, by run, by session, or by participant? If so, how and when – precisely? 

In addition to the experimental conditions encoded in Tables 2 and

 , the W-H dataset has other potential condition variables such as the

ace image sex (with levels female and male ), to encode the perceived

ex of the presented faces. There is a large literature on the relevance

f sex/gender in face recognition ( Mishra et al., 2019 ), and the dataset

escription mentions that 50% of the stimulus faces were female and

0% male. The sex of the study participants was recorded; it would also

e possible to identify, record, and annotate the sex of the faces in the

hared stimulus images. One could then for example ask whether sex of

he imaged face influenced judgment response time or any MEEG data

eature. 
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.6. Task specification 

Guideline 5: All explicit as well as implicit participant tasks should be 

identified. A participant task is an organized participant activity performed during 

(or sometimes before or after) the experiment that may influence participant brain 

dynamics. Explicit tasks usually (though not always) determine and lead to actions 

that the participant performs (or inhibits) intentionally during the experiment – and 

should always be documented. Implicit tasks , whether or not directly reflected in 

participant actions, should also be documented – particularly if they are part of the 

experimental design. Explicit pre- or post-session tasks external to the recording 

session (often an aspect of experiments on learning or memory, for example) may 

also be considered for annotation, as they may be intended to produce residual or 

priming effects in the session data. 

Explicit tasks. The W-H experiment has three instructed or explicit

asks: face symmetry evaluation, gaze fixation, and blink-inhibition. The

ace symmetry evaluation task was the primary explicit task that the

xperimental participants were told to focus on. However, in the original

ata evaluation plan, this task was chosen solely to direct participant

ttention to each face and was irrelevant to the actual scientific goals

f the experiment. Because this explicit task was the central activity

he participant was instructed to perform, it should be documented as

n explicit task (even if, as here, it did not enter into the original data

valuation plan). 

As is common with many neuroimaging experiments, the W-H exper-

ment instructions also included two other explicit tasks: blink inhibition

nd gaze fixation. Participants were asked not to blink when a face was

eing shown and were also told to fixate their gaze on the cross when

isible. 

Intentional fixation not only reduces the extent of natural eye move-

ents but also may impose an additional mental load on participants.

nstructed participant actions that may affect the recorded brain dynam-

cs including, here, blink inhibition ( Shultz et al., 2011 ) ( Berman et al.,

012 ) and fixation ( Stacchi et al., 2019 ), should always be considered

xplicit tasks for annotation. At a minimum, future analyses of the W-H

ataset might test how successful participants were in inhibiting blinks

uring the specified period. Failures to inhibit might also be linked to

ariation in the recorded brain dynamics. 

The separation of the two eye activity-related tasks into distinct tasks

s necessary for the W-H dataset because the blink inhibition task applies

nly while the face image is being displayed, while the gaze fixation

ask is active during both the pre-stimulus interval and the face image

resentation. Thus, these instructed intentions (affecting action) must

e documented as separate tasks. While blink inhibition and gaze fixa-

ion could be annotated as experimental conditions in Table 2 , activities

erformed intentionally by participants should usually be annotated as

asks, while elements that correspond to the setting and varying of ex-

erimental parameters should be annotated as experimental conditions

r controls. 

The W-H fMRI sessions also included data from a behavioral face-

emory test conducted after the imaging session was completed. Since

he participants did not have foreknowledge of the behavioral test, an

xperimental note to this effect should be included in the annotation of

hose data to inform further analysis. In the post-imaging face-memory

est , W-H asked participants to view face images and to record whether

hey remembered seeing the face in the experiment sessions. These re-

ponses were not included in the original shared W-H dataset. To include

hem, BIDS conventions expect that they be stored as a third, behavior-

nly modality directory. This behavioral data is included in the new

-H-MEEG dataset available on OpenNeuro. 

Implicit tasks. The inclusion of repetition status as a design variable

ndicates that the experimenters were aware that detection of face nov-

lty (or repetition) was very likely associated with brain dynamic effects

n these data. The repetition status factor helps researchers assess the in-

uence of this design factor in the data. The detection of face novelty

ight thus be considered to be an implicit task, that is, an activity that

he participants were not directly instructed to perform, but rather could

e expected to perform (either intentionally or near-automatically) dur-
13 
ng the course of the experiment, or at very least, that could affect the

ecorded brain dynamics in some systematic manner. The repetition sta-

us design variable could also be associated with another implicit task,

ace recall, as repeated-face recognition and new-face novelty detection

re associated with distinct brain activity patterns ( Debener et al., 2005 ;

urashko and Shmukler, 2019 ; Courchesne et al., 1975 ). 

The face_type design variable, indicating whether the image is

f a famous face, an unfamiliar face, or a scrambled face, is also an obvi-

us candidate here for implicit task designation. The mixed presentation

f these three rather different sets of images can be expected to have

osed one or more implicit task demands on most or all of the partic-

pants. Here, possible implicit tasks include nonface recognition, known

ace recognition, unknown face appraisal , and known face identification .

ere the scrambled face ( nonface ) images were a ( ⅓ ) minority of the

resented stimuli and differed markedly from the other face stimuli in

isual presentation. Neuroimaging responses to novel, outside-expected-

ategory stimuli have distinct and long-known features. 

Clearly, potentially a large number of implicit tasks could be an-

otated for analysis of these data. The choice of how to identify and

nnotate implicit tasks depends on what the annotator thinks may be of

alue to explore or test in the data. Very often, implicit tasks are associ-

ted with experimental control variables for experimental design or bias

ontrol. Even when an implicit task has no direct indication of whether

he user actually performed the task, the annotation can be useful for

irecting downstream users of the data towards aspects of the exper-

ment that are or may be associated with effects in the data or when

omparing differences in effects across experiments. 

By annotating such implicit tasks, shared datasets become amenable

o future cross-dataset meta-analysis (of computed data features) and

ega-analysis (of the raw data). We anticipate that common best prac-

ice norms will develop gradually as researchers see the value added to

heir data by performing the annotation in a style compatible with other

hared datasets involving different experiment and task designs. 

.7. Documenting temporal organization and architecture 

Guideline 6: The temporal architecture of each recording should be 

annotated. The internal temporal architecture of each recording should be 

documented , including timing of performance blocks and rest periods between task 

blocks. If blocks of trials were used to vary or counterbalance some aspect of the 

experiment, event markers for the beginnings and ends of these blocks should also be 

included. More generally, information that remained fixed throughout the 

recording should be gathered and annotated using a meta-event marker 

inserted at the time of the first data sample. 

Many neuroimaging datasets are organized into blocks of continu-

us or repeated task performance interspersed with rest periods. The

-H MEEG recording sessions were organized into 6 runs of 7.5 min

uration containing between 140 and 150 face stimulus presentations

and thus, trial event sequences). Within each run, the W-H MEEG data

o not have an explicit block structure beyond the trial level, though

ther experiments may have temporal structure within runs imposed to

ounter-balance various experimental factors. 

A review of the W-H MEEG metadata showed that between 3 and

 min elapsed between MEEG session runs. Analysts assume that elec-

rode caps or other sensors were not repositioned between runs in the

ame session . If this was not the case, the information should be clearly

arked in the data, typically by separating it into separate data sessions

n which channel locations do not (or are assumed to not) vary. Head

ovements with respect to the MEG dewar and its embedded sensors are

 key concern in MEG studies, and movement files acquired at 1-second

ntervals are available for the W-H MEEG dataset. 

Although the W-H experiment does not have a particularly complex

emporal architecture, the authors do use the concept of an experimen-

al trial, so a definition (Definition/Trial, (Experimental-trial)) could be

ncluded in the annotation to indicate the onset and offset of these tri-

ls, when this would seem useful for planned analyses. The distributed

IDS task event data includes a trial column to make the grouping of the
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vents in each trial more clear. Note however our cautions ( Section 4.2 )

bout annotating events only in relation to trial event groupings. 

.8. The event design process 

Event design is usually an iterative process. Below are suggested

teps to maximize the chances that the design leads to complete and

aluable annotation: 

Sketch a rough time-line (as in Fig. 2 ). Having a good picture in mind of how 

the experiment unfolds is a helpful starting point. 

List the basic event concepts of the experiment and give them concise, 

easily interpretable names. Relevant concepts include sensory presentations, 

participant tasks and motor and/or verbal responses, experiment design, and 

bias control factors. 

Write a concise but complete text description of each event concept. A 

good starting point is to create a table of component names and descriptions. 

List the needed event marker types (as in Fig. 2 ), and include Onset and Offset 

tags. 

Assign a primary HED Event category tag to each marker (as in Fig. 3 ). 

Determine which additional columns if any should be in the BIDS 

…events.tsv file. 

Verify that the event concepts (stimuli, responses, factors, levels, tasks) 

can be associated either with …events.tsv event table markers (rows) or with 

event table columns having HED definitions in the …events.json files. 

Check and iterate as needed. 

In performing event design, annotators should initially not try too

ard to complete detailed HED tags but should make sure that the re-

ation of the event markers to the experiment structure is correctly ex-

ressed. Detailed event annotation can be easily added (or edited as

eeded) later in the process by editing the …events.json files. 

. Discussion and roadmap 

Good event design and annotation are essential for ensuring the

sability and longevity of both shared and stored neuroimaging data.

esearchers need to think beyond the immediate problem to be ana-

yzed and think about how to share data in a manner that allows other

esearchers to rely on the data and benefit their research by its use.

any publishers encourage researchers to publish their data in a pub-

ication distinct from the primary published work. Separate publication

ncreases the visibility of the work and provides authors with the oppor-

unity to produce data with high quality documentation. 

Current standards and conventions for sharing neuroimaging data in-

luding BIDS focus on file structure and inclusion of basic metadata but

ave few requirements with respect to annotation of experiment events.

n fact, we know of no system other than HED that supports annotation

f the detailed nature of events in human neuroimaging time series data.

any of the BIDS-validated MEEG datasets that we have evaluated on

penNeuro have sparse or missing event annotations ( Delorme et al.,

020 ). For such BIDS datasets, adding a single …events.json sidecar

le, as illustrated here, or improving an existing one may be all that

s needed to turn an otherwise impoverished and unusable dataset into

 richly informative one. 

Annotators should begin by simply naming and describing sensory

resentations, participant response actions, explicit tasks, and task con-

itions. Even without including very detailed HED tags in the definitions

f these concepts, their presence in the annotation can allow future au-

omated tools to produce detailed informative dataset summaries and

tructural information. For example, the presence of Condition-variable

ags allows tools to extract information about condition variables even

f no other tags are provided. Additional details can be added to the

events.json file at any time without modifying the rest of the dataset.

Ideally, a thoughtful approach to event design as defined here should

e initiated before the experiment begins. The reported event streams
14 
hould be unwound so that each event phase is reported ( by-event ) in its

wn row in an …events.tsv file rather than having some event phases

eing reported indirectly as offsets or response times relative to other

eported events ( Section 4.2 ). The latter ( by-trial ) approach can result in

opelessly convoluted event streams, particularly when additional data-

eature or expert-annotation events are added post hoc . Such reporting

akes analyses as simple as regressing out the effects of overlapping

emporal events nearly impossible without extensive manual re-coding

pecific to each dataset. 

HED Library Schema . HED now supports library schema, specialized

ED vocabulary trees used when needed for an annotation in conjunc-

ion with the HED base schema for annotation terms needed by specific

esearch user communities and applications. Currently, a SCORE library

chema for standard labeling of neurophysiological clinical EEG record-

ngs ( Beniczky et al., 2017 ) is under development, and work is beginning

n a MOVIE library schema for annotating experiments involving 4-D

animated) stimulus presentation. A linguistics library schema is under

onsideration by another group. We are ready to assist any interested

ser groups in developing library schemas to make available specialized

ubfield annotation vocabularies available in HED, for example those

eeded to describe experiments involving biomechanics, virtual reality,

usic, or other research areas. 

We also expect to make more progress on difficult remaining annota-

ion issues including documenting spatial relationships, body movement

rames, and task designs in HED. We also plan to work with experi-

ent control program developers to investigate approaches for adding

ED tags to experimental events and recorded participant actions dur-

ng data acquisition. We look forward to documenting and demonstrat-

ng the value of the HED context framework, only briefly discussed here

 Section 2.4 ), for performing context-aware analysis of neural dynamics.

HED tools for validation and analysis support, some already im-

lemented and others now under development, are being written in

ython. A HED JavaScript validation tool has been incorporated into

he official BIDS validator and is being continually improved. On-

ine tools are available at https://hedtools.ucsd.edu/hed . The CTag-

er annotation tool available at https://github.com/hed-standard/

Tagger provides a simple-to-use interface that supports “learning

hrough doing ” HED annotation. HED tools for MATLAB have also

een incorporated into EEGLAB ( Delorme and Makeig, 2004 ) includ-

ng tools to select and process data epochs based on searches through

ataset HED annotations. Additional HED support for EEGLAB high-

erformance pipelines is also planned ( Martínez-Cancino et al., 2020 ).

ll HED code and issue forums are available on the HED organization

itHub website at https://github.com/hed-standard . The HED spec-

fication and list of tools and resources is available at https://hed-

pecification.readthedocs.io/en/latest/index.html . Further documenta-

ion is available on the HED website at https://www.hedtags.org . 

Finally, we should not ignore the suitability for HED annotation to

e applied equally well and in the same manner to events in other time

eries data including fMRI. The sensory presentations and participant ac-

ions, as well as in-data changes in experimental parameters and condi-

ions in the many thousands of reported fMRI experiments are as equally

ell suited to HED annotation as are the (typically quite similar) exper-

ment events in many MEEG experiments. 

We believe that the time has now arrived for widespread recogni-

ion and acceptance of the need for a common framework for perform-

ng event annotation of neuroimaging time series data that facilitates

eplication as well as advanced analysis, either within or across experi-

ents and datasets. Third-generation HED and its supporting tools are

ow in open release,. We welcome reader comments, suggestions, and

articipation. 
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