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We apply the charge-pumping argument to fermionic tensor network representations of d-dimensional
topological insulators (TIs) to obtain tensor network states (TNSs) for (d + 1)-dimensional TIs. We exemplify
the method by constructing a two-dimensional projected entangled pair state (PEPS) for a Chern insulator
starting from a matrix product state (MPS) in d = 1 describing pumping in the Su-Schrieffer-Heeger (SSH)
model. In extending the argument to second-order TIs, we build a three-dimensional TNS for a chiral hinge
TI from a PEPS in d = 2 for the obstructed atomic insulator (OAI) of the quadrupole model. The (d + 1)-
dimensional TNSs obtained in this way have a constant bond dimension inherited from the d-dimensional TNSs
in all but one spatial direction, making them candidates for numerical applications. From the d-dimensional
models, we identify gapped next-nearest-neighbor Hamiltonians interpolating between the trivial and OAI phases
of the fully dimerized SSH and quadrupole models, whose ground states are given by an MPS and a PEPS with
a constant bond dimension equal to 2, respectively.
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I. INTRODUCTION

Higher-order TIs [1–4] have recently been introduced as a
new class of symmetry-protected topological systems general-
izing the framework of TIs with surface states [5]. According
to one definition, a TI of order n in d spatial dimensions
has topological boundary modes at the (d − n)-dimensional
intersection of n crystal faces. In this terminology, conven-
tional TIs such as Chern insulators [6] are of order n = 1
with protected boundary modes at (d − 1)-dimensional edges.
On the other hand, second-order TIs protected by mirror or
rotation symmetries have zero-dimensional corner states in
d = 2 dimensions (in which case they may exemplify ob-
structed atomic limits [7] with local Wannier states) and one-
dimensional chiral or helical hinge states in d = 3 dimensions
(and bulk bands without a local Wannier description). Proto-
typical examples of second-order topological phases include
the two-dimensional quadrupole model of Ref. [1], a natural
extension [8] of the Su-Schrieffer-Heeger (SSH) model [9],
and the three-dimensional chiral hinge insulator of Ref. [2],
both of which have been experimentally observed in either
materials [10] or mechanical [11], acoustic [12,13], photonic
[14–17], and electrical [18–20] systems.
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The bulk-boundary correspondence states that the topolog-
ical properties of a system are reflected in the excitations at
its physical boundary. For instance, a two-dimensional Chern
insulator is characterized by an integer number of gapless
chiral edge modes [21]. Similarly, second-order TIs in two
dimensions possess gapless corner modes at the intersection
of two edges compatible with the crystal symmetry [1]. In
three dimensions, one type of second order TI is characterized
by the presence or absence of a chiral hinge mode [2]. For
strong TIs [22] as well as chiral topological phases, the
universal features in the boundary energy spectrum are en-
coded in its entanglement spectrum (ES) [23] characterizing
the bulk entanglement properties. The convenience of this
bulk characterization makes the ES an important tool for the
numerical analysis of topological phases. Recently, it was also
observed, as expected, that the ES of higher-order TIs displays
characteristic (d − n)-dimensional boundary states as long as
the entanglement cut preserves the crystal symmetries of the
phase [24–26].

A natural platform for the bulk-boundary correspondence
is provided by tensor network states (TNSs) [27] in which the
entanglement between physical particles is mediated through
virtual particles hosting the lower-dimensional boundary the-
ory [28]. Physical and virtual particles are related by a lo-
cal tensor whose bond dimension determines the maximal
amount of entanglement in the state [29,30]. The structure of
the local tensor encodes the topological properties of the quan-
tum state, and an analysis of this relation has led to valuable
insight for the systematic understanding of one-dimensional
symmetry-protected topological (SPT) phases [31] and intrin-
sically ordered topological phases [32]. Free-fermion systems
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can be described using Gaussian fermionic TNSs (GfTNSs)
that are defined purely in terms of two-point correlation
functions [33]. Starting from such Gaussian TNSs, interacting
states can be constructed, whose topological properties derive
from the features of the initial Gaussian model [34].

Many nonchiral topologically ordered phases in two di-
mensions [35,36] have a simple representation in terms of
projected entangled pair states (PEPSs) [37] with a finite and
constant bond dimension [38,39]. However, Gaussian PEPSs
with chiral topological properties do not adequately describe
the bulk of a gapped phase since their correlation functions
decay algebraically [40,41]. Indeed, the existence of gapped
Gaussian PEPSs with finite bond dimension for SPT phases
of free fermions is forbidden in dimensions d > 1 [41,42].
The no-go theorem states that only Wannierizable phases
corresponding to the product of one- and zero-dimensional
systems can be exactly represented as a Gaussian TNS.

This no-go theorem does not prevent TNSs from being a
useful numerical description at finite system size for chiral
topological phases like the fractional quantum Hall effect
[43]. Hence, numerically efficient TNSs for such phases
are valuable, especially in two and three dimensions. One
method for the construction of TIs in d + 1 dimensions from
d-dimensional TIs is given by charge pumping [44]. For
instance, a two-dimensional Chern insulator is obtained from
a charge-pumping interpolation in the one-dimensional SSH
model when the periodic time direction is identified with the
momentum in the second spatial direction [45]. For second-
order TIs, dipole pumping in the quadrupole model defines a
three-dimensional chiral hinge insulator [2,3]. In both cases,
the zero-dimensional boundary modes of the d-dimensional
model give rise to one-dimensional chiral boundary modes in
the (d + 1)-dimensional system.

In this paper, we exemplify how the charge-pumping
argument applied to d-dimensional GfTNSs with constant
bond dimension yields gapped GfTNSs for TIs in d + 1
dimensions. By construction, the (d + 1)-dimensional TNS
has a constant finite bond dimension in a hybrid coordinate
system with d real-space axes and one momentum axis in the
additional dimension. In order to obtain a real-space tensor
network for the (d + 1)-dimensional state, we apply to the
hybrid TNS an inverse Fourier transform (FT) in the direction
d + 1. As a result, the bond dimension of the real-space local
tensor in this direction generically grows with the system size
due to the nonlocality of the FT, whereas it is identical to the
finite bond dimension of the d-dimensional TNS in the other d
directions. We apply this construction both to a matrix product
state (MPS) [46] for the SSH model in order to obtain a PEPS
for a Chern insulator, and to a Gaussian PEPS with finite bond
dimension for the topological quadrupole model in order to
obtain a three-dimensional GfTNS for the second-order chiral
hinge state TI of Refs. [2,3]. Therefore, our approach provides
us with a gapped TNS with one-dimensional chiral boundary
states and a constant finite bond dimension in all but one of the
spatial directions. This representation is therefore potentially
useful for tensor network algorithms.

This paper is structured as follows: In Sec. II we begin
with a brief overview of charge pumping in the SSH model
and fermionic TNSs, and continue by studying an MPS for
the SSH ground state along the charge-pumping interpolation.

In the following Sec. III, we employ this MPS to construct
a two-dimensional PEPS describing a Chern insulator. In
Sec. IV we extend our method to the two-dimensional second-
order quadrupole insulator and the construction of a three-
dimensional PEPS for the chiral hinge state higher-order TI.
Finally, we summarize our results and discuss remaining open
questions in Sec. V.

II. FERMIONIC MPS FOR CHARGE PUMPING
IN THE SSH MODEL

In this section we introduce a fermionic MPS that describes
a charge-pumping cycle in the SSH model corresponding to
a Chern insulator with Chern number C = 1 in two spatial
dimensions. We begin by briefly reviewing the SSH model,
the charge-pumping argument, and its relation to Chern insu-
lators in Sec. II A. We continue with a short introduction to
fermionic MPSs in Sec. II B. In Sec. II C, we construct the
MPS for the SSH model and study its parent Hamiltonian.

A. Chern insulator from charge pumping in the SSH model

The SSH model describes a one-dimensional chain of
spinless fermions with two orbitals denoted A and B per
unit cell [9]. We consider the model at half-filling where the
number of particles is equal to the number Nx of unit cells. For
open boundary conditions, the Hamiltonian reads as

HSSH = t (0)
Nx−1∑
x=0

(â†
A,xâB,x + H.c.)

+ t (1)
Nx−1∑
x=1

(â†
B,x−1âA,x + H.c.), (1)

where we use the notation âA,x and âB,x for the fermionic
annihilation operators of the orbitals A and B in unit cell x
with x = 0, . . . , Nx − 1, respectively. Here, t (0) denotes the
hopping amplitude between A and B orbitals within the same
unit cell, and t (1) the hopping amplitude between sites on
neighboring unit cells [see Fig. 1(a)]. For |t (1)| > |t (0)|, the
hopping between unit cells dominates the hopping within unit
cells and the SSH model is in a phase topologically different
from the case |t (0)| > |t (1)|. This phase is protected by spa-
tial inversion symmetry and characterized by fermionic edge
modes [45] and a “filling anomaly” [8]. It is called obstructed
atomic insulator (OAI) [7]. When the intracell hopping t (0)

vanishes in the deep OAI phase, the system is dimerized since
its bulk splits into decoupled two-site blocks. In this case, the
edge excitations are created by the mode operators â†

A,0 and

â†
B,Nx−1 and have exactly zero energy in this specific model,

but can generally be moved in energy. On the other hand, for
|t (0)| > |t (1)| the SSH model is trivial, with a dimerized point
at t (1) = 0 and no state at zero energy.

A gapped interpolation between the trivial and OAI phases
of the SSH model can be constructed by adding to the Hamil-
tonian HSSH the term

Nx−1∑
x=0

(μAâ†
A,xâA,x + μBâ†

B,xâB,x ) (2)

introducing a staggered chemical potential μA = −μB = μ

which breaks the inversion symmetry as shown in Fig. 1(a).
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FIG. 1. (a) Extended SSH model with a staggered chemical po-
tential μ, nearest-neighbor hoppings t (0) and t (1) within and between
unit cells, and next-nearest-neighbor hoppings t (2)

A and t (2)
B on the A

and B sublattices, respectively. The unit cells consisting of one site
of each sublattice are marked by gray rectangles. (b) Action on the
local MPS tensors of the U(1) symmetry ensuring that the MPS of
Eq. (11) lies at half filling of the chain.

In Ref. [3], the authors consider the periodic time-dependent
Hamiltonian Hpump(t ) with time t ∈ (−π, π ] defined by the
couplings

(μ, t (1), t (0) ) =
{

(cos(t ), 0,− sin(t )), −π < t � 0

(cos(t ), sin(t ), 0), 0 < t � π.

(3)
At t = −π (equivalent to t = π ), the system is in an atomic
phase with only the A orbitals occupied. For −π < t < 0,
the coupling between A and B sites in the same unit cell
is nonzero and the charge is transferred from left to right
by the changing chemical potential until only the B orbitals
are occupied at t = 0. At t = −π/2, the staggered chemical
potential vanishes and the system is in the trivial dimerized
phase of the SSH model. For 0 < t < π , the intra-unit-cell
coupling vanishes whereas the hopping between different unit
cells is nonzero and the charge is transferred from left to
right such that at t = π the system returns to the state with
all A orbitals occupied. At t = π/2, the chemical potential
vanishes and the system is in the OAI dimerized phase of the
SSH model. The ground state of the pumping Hamiltonian
Hpump(t ) is continuous as a function of time t if the chain has
periodic and antiperiodic boundary conditions for Nx odd and
even, respectively.

The charge-pumping interpolation of Eq. (3) can be used
to generate a lattice model in one dimension higher with the
topology of a Chern insulator [3]. Indeed, Hpump(t ) corre-
sponds to the time-dependent Bloch Hamiltonian

Hpump(kx, t ) = [t (0)(t ) + t (1)(t ) cos kx]σ1

+ t (1)(t ) sin kx × σ2 + μ(t ) σ3, (4)

where σ1 = (0 1
1 0), σ2 = (0 −i

i 0 ), and σ3 = (1 0
0 −1) are the

Pauli matrices and kx = π
Nx

(2 j − Nx ) ∈ [−π, π ] for 0 � j �
Nx − 1 the lattice momentum. Since the interpolation is
cyclic, the time t ∈ [−π, π ] may be interpreted as the lattice

momentum ky of a second spatial direction y and Eq. (4) as the
Bloch Hamiltonian of a two-dimensional system with closed
boundaries in both directions. This Hamiltonian has a Chern
number C = 1 due to the charge transport between unit cells
induced by the interpolation for t ∈ [0, π ] [3].

We note that the cycle of Eq. (3) can be deformed to
a smooth charge-pumping interpolation, without changing
the topology or breaking the dimerization. In this cycle,
the couplings μ(t ), t (1)(t ), and t (0)(t ) and hence the Bloch
Hamiltonian are smooth functions of the time t , i.e., they are
infinitely often continuously differentiable with respect to t .
As explained in the previous paragraph, a two-dimensional
Chern insulator model is obtained by identifying the time t
and the momentum ky. Due to the smoothness of the cycle, the
real-space representation of the Chern insulator has couplings
which decay faster than any polynomial [47]. The smooth
cycle is obtained by smoothing out the nonanalyticities of
Eq. (3) at t = 0, π using smooth functions that interpolate
between 0 and 1. This can be done in such a way that,
like in Eq. (3), at each time t the smooth couplings satisfy
μ(t )2 + t (1)(t )2 + t (0)(t )2 = 1 [48].

B. Fermionic MPSs for a half-filled lattice

Similarly to bosonic MPSs for spin chains, fermionic
MPSs describing chains of electrons are obtained by associ-
ating virtual particles to each physical particle which mediate
the entanglement between different physical constituents [33].
In the case of fermionic tensor networks, the virtual particles
obey fermionic statistics. A fermionic MPS with f physical
complex fermionic modes per site and ξ virtual complex
fermionic modes per lattice site and nearest-neighbor bond
has physical dimension dp = 2 f and bond dimension D = 2ξ .
The state is fully characterized by the set of local maps
which relate the virtual and physical particles associated to
one lattice site. With respect to orthonormal bases {|i〉} with
i = 0, . . . , dp − 1 for the physical Hilbert space and {|l〉},
{|r〉} with l, r = 0, . . . , D − 1 for the left and right virtual
spaces on one site, respectively, the local maps are represented
by dp local matrices Ai

lr of dimension D × D [49].
In order to fix the global parity of the state, we restrict

ourselves to parity-even local tensors which preserve the
fermion parity between the physical and virtual layers [49].
We choose the orthonormal basis for the physical Hilbert
space such that all basis states |i〉 have either even fermion
parity |i| = 0 or odd fermion parity |i| = 1, and similarly for
the virtual Hilbert spaces. A local tensor is parity even if for
all nonvanishing elements Ai

lr �= 0, the total fermion parity
|i| + |l| + |r| = 0 is even, such that

(−1)|i|Ai
lr = (−1)|l|Ai

lr (−1)|r| (5)

for all configurations of i, l , and r (where no summation is
implied). If the MPS is constructed from tensors A[ j] at each
site j with this property, the state on a closed chain with Nx

sites is given by

|ψ〉 =
∑

i0,... ,iNx−1

∑
l

(−1)ε|l|

× (A[0]i0 . . . A[Nx − 1]iNx−1 )ll |i0, . . . , iNx−1〉. (6)
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Here, |l| is the parity of the virtual basis state on the link
between the first and last site, and ε = 1 or 0 corresponding to
periodic and antiperiodic boundary conditions for the many-
body state, respectively [49].

Below, we construct a fermionic MPS with parity-even
local tensors for the ground state of the SSH model along
the dimerized charge-pumping interpolation. Due to the parity
symmetry of Eq. (5), this MPS necessarily has an even number
of physical particles on a closed chain where all virtual bonds
are contracted. On the other hand, the ground state of the
SSH model is half-filled such that the number of particles is
odd if the number of unit cells is odd. Therefore, to construct
the parity-even SSH MPS we use a many-body basis built by
acting with creation operators on the state |�〉 that contains Nx

physical particles. To that end, we define new mode operators
aA,x and aB,x for the physical fermions by performing a
particle-hole transformation on all B orbitals of the SSH chain
while leaving the A orbitals unaltered,

aA,x ≡ âA,x, (7a)

aB,x ≡ â†
B,x. (7b)

The state |�〉 is the vacuum of the new operators, given
in terms of the original vacuum state |�̂〉 with âA,x|�̂〉 =
âB,x|�̂〉 = 0 as

|�〉 =
∏

x

â†
B,x|�̂〉. (8)

It satisfies aA,x|�〉 = aB,x|�〉 = 0. Therefore, the new vacuum
contains Nx of the original fermions and thus is half-filled. The
MPS of the SSH model along the interpolation is then defined
with respect to the Fock states constructed from the modes
a†

A,x and a†
B,x acting on the new vacuum |�〉. This particle-hole

transformation is motived by our desire to write the MPS in
terms of parity-even local tensors, which will in turn enable us
to express the state as a GfTNS and thereby compute a Bloch
parent Hamiltonian analytically.

C. MPS for the SSH model

In this section, we study a fermionic MPS for the SSH
model. In Sec. II C 1, we define the state in terms of its
local tensors and identify the U(1) symmetry leading to a
conserved number of particles. In Sec. II C 2, we derive a
parent Hamiltonian for the MPS, allowing us to conclude in
Sec. II C 3 that the MPS describes the SSH model along the
charge-pumping cycle of Eq. (3).

1. Local tensors and U(1) symmetry

In order to describe the ground state of the SSH model
along the dimerized charge-pumping interpolation, we con-
sider a fermionic MPS with physical dimension dp = 2 corre-
sponding to one fermionic mode per site and bond dimension
DSSH = 2. This is the minimal bond dimension for an MPS
along the charge-pumping cycle since the ES of an open
SSH chain in the OAI and trivial dimerized phases has two
degenerate levels with respect to all cuts between and within
unit cells, respectively.

The fermionic MPS is translation invariant with a unit
cell of two sites. It is therefore fully specified by the local

matrices Ai
lr and Bi

lr with i, l, r ∈ {0, 1} for sites on the A and
B sublattices, respectively. In terms of the local tensors the
physical state on a closed chain is given as

|ψ〉 =
∑

iA,0, . . . , iA,Nx−1
iB,0, . . . , iB,Nx−1

|iA,0, iB,0, iA,1, . . . , iB,Nx−1〉

×
∑

l

(−1)ε|l| × (AiA,0 BiB,0 AiA,1 . . . BiB,Nx−1 )ll , (9)

where ε = 1 or 0 for periodic and antiperiodic boundary
conditions. The physical many-body basis state is∣∣iA,0, iB,0, iA,1, . . . , iB,Nx−1

〉
= (a†

A,0)iA,0 (a†
B,0)iB,0 (a†

A,1)iA,1 . . .
(
a†

B,Nx−1

)iB,Nx−1 |�〉 (10)

with the vacuum |�〉 from Eq. (8). Guided by the dimerized
limits to be discussed below, for the local MPS matrices we
make the ansatz

A0 =
(

γ 0
0 0

)
, A1 =

(
0 β

−α 0

)
, (11a)

B0 =
(

γ 0
0 0

)
, B1 =

(
0 −α

−β 0

)
, (11b)

depending on parameters α, β, γ ∈ R. Note that the nor-
malized quantum state defined by these local MPS matrices
depends only on the two quotients α/γ and β/γ . Nonetheless,
we choose to work with the parametrization of Eq. (11) since
the case γ = 0 can be treated more conveniently without
divergences.

In order to motivate the ansatz of Eq. (11) for the local
matrices, let us see how the MPS from Eq. (9) can describe the
ground state of the SSH model both in the trivial and the OAI
dimerized phases with appropriate choices for the parameters
α, β, and γ . In the trivial dimerized phase of the SSH model,
each unit cell decouples from the rest of the system and is
in the state (a†

Aa†
B − 1)|�〉. In order to ensure the absence of

entanglement on the bonds between unit cells, the blocked
MPS matrices (AiA BiB )lr for one unit cell should be nonzero
only if l = r = 0. Then, the restriction of the MPS to the unit
cell,

∑
iA,iB

(AiA BiB )00|iA, iB〉, is proportional to (a†
Aa†

B − 1)|�〉
if the blocked MPS matrices have only two nonzero entries
(A0B0)00 = −(A1B1)00. Therefore, the MPS represents the
trivial dimerized phase of the SSH model if the parameters
are chosen as α = 0 and |β| = |γ | �= 0. Similarly, in the OAI
dimerized phase the chain splits into decoupled plaquettes
composed of two adjacent sites from different unit cells. The
state on each of the plaquettes is given by the superposition
(a†

Ba†
A + 1)|�〉 such that the blocked MPS matrices for the

plaquette should have only two nonzero entries (B0A0)00 =
(B1A1)00. This is achieved if β = 0 and |α| = |γ | �= 0. The
ansatz of Eq. (11) is chosen such as to allow an interpolation
between these two cases.

The MPS of Eq. (9) with the parametrization of Eq. (11)
has a U(1) symmetry which ensures that the physical state
lies at half-filling of the chain. The U(1) rotation acts on
a single complex fermion with the matrix U (ϕ) = (1 0

0 eiϕ ).
The local tensors for the two sublattices are invariant under a
combination of U(1) rotations of the physical and virtual legs
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as sketched in Figs. 1(b) and 1(c) (see for instance Ref. [50]
for MPSs with physical symmetries):

Ai
lr =

∑
j

∑
l ′r′

U (ϕ)i jU (ϕ)†
ll ′A

j
l ′r′U (ϕ)†

r′r, (12a)

Bi
lr =

∑
j

∑
l ′r′

U (ϕ)†
i jU (ϕ)ll ′B

j
l ′r′U (ϕ)r′r . (12b)

If we choose ϕ = π , these identities correspond to the
parity symmetry of Eq. (5), showing that the local MPS
tensors are parity even. For each nearest-neighbor bond, one
virtual leg transforms with U (ϕ) and the other with U (ϕ)†

in Eq. (12), such that the two U(1) rotations cancel if the
bond is contracted. Therefore, the state on a chain with
closed boundaries after the contraction of all virtual bonds
is invariant under the physical part of the U(1) rotations of
Eq. (12), given by staggered transformations U (ϕ) and U (ϕ)†

on A and B orbitals, respectively. Invariance under this global
symmetry implies that

0 =
〈∑

x

[a†
A,xaA,x − a†

B,xaB,x]

〉

=
〈∑

x

[â†
A,xâA,x + â†

B,xâB,x]

〉
− Nx, (13)

forcing the number of particles measured in terms of the
original physical modes to be equal to the number of unit
cells as required for the SSH ground state. In Eq. (12),
the physical legs on the A and B sublattices transform as
particles and holes, respectively, as expected due to the
particle-hole transformation of Eq. (7). In addition, Eq. (12)
implies that the virtual legs on the A and B sublattices trans-
form as holelike and particlelike degrees of freedom (DOFs),
respectively.

In order to gain a better understanding of the parameters
α, β, and γ as well as of the systems described by the MPS
from Eq. (9), it is helpful to consider a parent Hamiltonian for
which it is the exact ground state. This Hamiltonian can be
computed directly in terms of its Bloch representation once
the MPS of Eq. (9) is expressed as a Gaussian fermionic TNS.

2. Parent Hamiltonian

Since the charge-pumping Hamiltonian of Eq. (3) describes
noninteracting fermions, its ground state is a fermionic Gaus-
sian state. It is thus fully characterized by its covariance
matrix (CM) (see Appendix A for a summary of our conven-
tions) [51]. As we review in Appendix B, the tensor network
formalism may be used to construct Gaussian fermionic TNSs
which are ground states of free-fermion Hamiltonians [33].
The CM in Fourier space of a translationally invariant Gaus-
sian TNS is given by a simple expression which can often
be evaluated analytically. Then, any positive function ε(k) >

0 on the Brillouin zone gives rise to a parent Hamiltonian
with dispersion relation ε(k), whose Bloch representation is
obtained by multiplying the CM by ε(k).

For all values of the parameters α, β, and γ , the MPS of
Eq. (11) corresponds to a Gaussian fermionic TNS whose
Fourier CM is computed analytically in Appendix E. We
show that this MPS with bond dimension D = 2 is the

unique ground state of a longer-range SSH-like model with
a staggered chemical potential μ and next-nearest-neighbor
hoppings t (2)

A and t (2)
B on the A and B sublattices, respec-

tively, as sketched in Fig. 1(a). The coupling constants of the
parent Hamiltonian HMPS depend on the parameters of the
MPS as

μ = γ 4 − α4 − β4

α4 + β4 + γ 4
, (14a)

t (0) = 2β2γ 2

α4 + β4 + γ 4
, (14b)

t (1) = 2α2γ 2

α4 + β4 + γ 4
, (14c)

t (2)
A = −t (2)

B = −2α2β2

α4 + β4 + γ 4
, (14d)

where t (0) and t (1) denote the hopping amplitudes between
nearest-neighbor sites on the same and adjacent unit cells,
respectively.

Depending on the parameter values, HMPS describes differ-
ent phases of the fermionic chain. If any two out of the three
parameters α, β, γ vanish, the system is in an atomic state
without entanglement between different sites. Indeed, if only
γ is nonzero, all hopping constants vanish and the chemical
potential is μ = +1 such that we obtain the state with all B
sites occupied. On the other hand, if either only α or only
β is nonzero, all hopping constants vanish and the chemical
potential is μ = −1 such that the MPS is equal to the state
with all A sites occupied. This implies that the atomic state
with occupied A orbitals is obtained from two distinct pa-
rameter configurations (α, β, γ ) = (1, 0, 0) and (α, β, γ ) =
(0, 1, 0) whose corresponding local MPS matrices are related
by a virtual unitary gauge transformation with representation
matrix σ1.

On the other hand, if only γ and β are nonzero, the sys-
tem is in a dimerized phase where the next-nearest-neighbor
hopping as well as the nearest-neighbor hopping between unit
cells vanishes, whereas the nearest-neighbor hopping within
unit cells is finite. Unless |γ | = |β|, inversion symmetry is
broken by the nonzero chemical potential. For |γ | = |β|,
we obtain the trivial dimerized phase of the SSH model.
Similarly, if only γ and α are nonzero, all couplings vanish
except for the nearest-neighbor hopping between unit cells
and the chemical potential. For |γ | = |α|, inversion symmetry
is restored and we obtain the OAI dimerized phase of the
SSH model. Finally, if all three parameters are nonzero, both
nearest-neighbor hopping constants t (0) and t (1) are nonzero
and there is an additional next-nearest-neighbor hopping
t (2)
A = −t (2)

B which is odd under inversion.

3. Charge-pumping interpolation

We now use the MPS of Eq. (11) to describe charge
pumping by considering the evolving state obtained from
time-dependent parameters α(t ), β(t ), and γ (t ) with time
t ∈ (−π, π ]. In Eq. (14) we saw that the MPS can represent
charge pumping with a dimerized nearest-neighbor as well
as a longer-range nondimerized Hamiltonian. For simplicity,
we focus on the dimerized case. For the MPS given by the
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FIG. 2. (a), (b) Coupling constants of HMPS and (c), (d) single-
particle ES for the MPS of Eq. (11) along topologically nontrivial
and trivial interpolations. In (a) and (c), along the charge-pumping
interpolation of Eq. (15) corresponding to a Chern insulator with
Chern number C = 1. In (b) and (d), along the topologically trivial
interpolation of Eq. (17). In both (a) and (b), the vanishing next-
nearest-neighbor coupling t (2)

A = t (2)
B = 0 of HMPS is not shown. The

ES in (c) and (d) was computed on half of a periodic chain with
Nx = 10 unit cells.

parametrization

φpump : (α(t ), β(t ), γ (t ))

=
{

(0,
√| sin t/2|,√| cos t/2|), −π < t � 0

(
√| sin t/2|, 0,

√| cos t/2|), 0 < t � π
(15)

the parent Hamiltonian HMPS is exactly equal to the time-
dependent Hamiltonian Hpump(t ) of the dimerized charge-
pumping cycle of Eq. (3). The evolution of the couplings in
HMPS along the parametrization is shown in Fig. 2(a). Hence,
the MPS of Eq. (11) can describe the ground state of the
pumping model of Eq. (3) with the topology of a Chern
insulator for all times t ∈ (−π, π ].

The ground state of the charge-pumping cycle Hpump(t )
and its correlation functions are continuous along the entire
interpolation. However, the local MPS tensors parametrized
by φpump are discontinuous at the point t = ±π along the
cycle: α → 0 and β → 1 as t → −π from above, whereas
α → 1 and β → 0 as t → π from below. In fact, at t = ±π

the system is in the atomic state with all A orbitals occupied.
As discussed in the paragraph beneath Eq. (14), there are two
distinct configurations for the MPS parameters corresponding
to this state which are attained for t = ±π .

For the MPS we are considering, the discontinuity in the
parametrization φpump is related to the chiral edge mode of the
Chern insulator defined by the interpolation. Indeed, charge
pumping in the SSH model with open boundaries corresponds
to a Chern insulator on a cylinder with periodic and open
boundaries in the vertical and horizontal directions, respec-
tively. In the topological phase with Chern number C = 1,
each edge of the cylinder hosts a one-dimensional chiral mode
[21]. These modes are reflected in the ES of the SSH chain

along the charge-pumping cycle. For instance, the single-
particle ES [52] of half the chain with periodic boundaries
computed from the representation of the state as a Gaussian
fermionic TNS along φpump is shown in Fig. 2(c). It has both a
left- and a right-moving mode which are localized at the two
virtual edges and which are degenerate in the SSH topological
phase at t = π/2.

Using the representation of the MPS in terms of local
tensors, we can also compute the many-body ES of half of
an infinite chain with open boundaries. Indeed, the many-
body ES is isometric to the spectrum of the logarithm of the
normalized and symmetrized left and right fixed points of
the MPS transfer matrix [28]. In the case of the MPS from
Eq. (11), the fixed point is a matrix of dimension 2 × 2 with
eigenvalues

1

2
± −α4 + β4 + γ 4

2
√

(−α4 + β4 + γ 4)2 + 4α2β2γ 4
. (16)

Therefore, the many-body ES has two nontrivial levels that
are related by normalization and which describe the spinless
fermion at the single virtual boundary of the half-infinite
chain. If and only if α4 = β4 + γ 4, the two eigenvalues from
Eq. (16) are degenerate. This corresponds to a crossing of the
Fermi level by the edge fermion. If the interpolation describes
a Chern insulator with Chern number C = 1, a degeneracy of
the eigenvalues from Eq. (16) should therefore occur exactly
once along the cycle. For the parametrization φpump this hap-
pens in the SSH topological phase at t = π/2 with α = γ and
β = 0. Indeed, α4 < β4 + γ 4 for t < π/2 and α4 > β4 + γ 4

for t > π/2. Hence, the nontrivial Chern number implies that
for MPS of the form of Eq. (11) the parametrization has to
be discontinuous along the cycle in order to combine the two
parts of the interpolation where α4 ≷ β4 + γ 4 with only a
single degenerate point.

We emphasize that this discontinuity in the MPS interpola-
tion is required by the topology of the charge-pumping cycle,
even if the pumping cycle itself is infinitely often continuously
differentiable. For example, the smooth deformation of the
topological pumping cycle, whose existence is discussed in
Sec. II A, has an MPS ground state of the form of Eq. (11).
Due to the nontrivial topology of the cycle, this MPS has
a discontinuous interpolation despite the smoothness of its
Bloch Hamiltonian.

The MPS of Eq. (11) can also describe cyclic interpola-
tions corresponding to topologically trivial two-dimensional
models. For instance, the MPS with parametrization

φtriv : (α(t ), β(t ), γ (t )) = ( 1
2 e−(tan |t |

2 )−2
, 0, 1

)
(17)

for t ∈ (−π, π ] corresponds to the ground state of a model
with finite chemical potential and nearest-neighbor hopping
t (1) between unit cells, whereas the hopping within unit cells
and the next-nearest-neighbor hopping vanish [see Fig. 2(b)].
From the single-particle ES in Fig. 2(d) we see that the
conduction and valence bands in this system are not con-
nected by the edge modes such that the Chern number is
zero. Indeed, both the MPS parametrization φtriv and the
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corresponding Bloch parent Hamiltonian are smooth along
the cycle.

III. CHERN INSULATOR PEPS FROM SSH
CHARGE PUMPING

In this section we discuss how charge pumping can be
used to construct tensor networks in d + 1 dimensions starting
from d-dimensional TNSs. Specifically, we show how the
MPS from Sec. II for the SSH model along a charge-pumping
cycle leads to a two-dimensional PEPS for a Chern insula-
tor. In Sec. III B we define a hybrid real-momentum space
PEPS with finite bond dimension for the Chern insulator.
In Sec. III C, we perform an inverse FT in the direction
d + 1 required to transform the state to a fully real-space
representation. In Sec. III D we study how the resulting state
can be expressed as a real-space PEPS, whose bond dimension
is investigated in Sec. III E.

A. (d + 1)-dimensional TIs from charge pumping

Charge pumping provides a systematic method to obtain
a TI in d + 1 spatial dimensions from a d-dimensional TI.
Indeed, if the Bloch Hamiltonian of the d-dimensional model
is smooth along the charge-pumping interpolation as a func-
tion of the cyclic time t ∈ (−π, π ], t can be identified with
the momentum kd+1 in the (d + 1)st direction of the (d +
1)-dimensional system. The time-dependent Hamiltonian of
the d-dimensional model then gives the Bloch Hamiltonian
of the (d + 1)-dimensional system as a function of kd+1.
For instance, charge pumping in the SSH model with d = 1
defines a two-dimensional Chern insulator with Chern number
C = 1 (cf. Sec. II A).

We discretize the (d + 1)st dimension with a finite num-
ber Nd+1 of lattice sites. The discrete momentum values
in (−π, π ] are k( j)

d+1 = π
Nd+1

(2 j − Nd+1) for even Nd+1, and

k( j)
d+1 = π

Nd+1
(2 j − Nd+1 + 1) for odd Nd+1. They are identified

with discrete times t ( j) = k( j)
d+1 for j = 0, . . . , Nd+1 − 1.

Let us express the identification of time t and momentum
kd+1 as a relation between the mode operators of the hy-
brid and real-space systems. The d-dimensional system has
annihilation operators âτ,x(t ( j) ) for the physical fermion on
the orbital τ = 1, . . . , f on the unit cell x ∈ Zd , where f
is the number of orbitals per unit cell. They depend on the
discretized time value t ( j) along the pumping interpolation at
which the d-dimensional model is evaluated. For example, in
the SSH model we have mode operators âA,x (t ( j) ), âB,x (t ( j) )
with x = 0, . . . , Nx − 1.

The (d + 1)-dimensional model obtained from charge
pumping has the same number of orbitals as the d-
dimensional model it is derived from. For instance, the Chern
insulator constructed from the SSH model also has sublattices
A and B. Therefore, the physical creation operators of the
(d + 1)-dimensional system in real space are âτ,(x,xd+1 ), where
xd+1 = 0, . . . , Nd+1 − 1 is the real-space coordinate in the
(d + 1)st direction and τ = 1, . . . , f . The charge-pumping
construction of the (d + 1)-dimensional model requires pe-
riodic boundary conditions in the direction d + 1. We may
therefore consider the FT of the mode operators in the

direction d + 1, while keeping the real-space coordinate x in
the other d dimensions, given by

â
τ,(x,k( j)

d+1 ) =
Nd+1−1∑
xd+1=0

Fk( j)
d+1xd+1

âτ,(x,xd+1 ) (18a)

with

Fk( j)
d+1xd+1

= e−ik( j)
d+1xd+1

√
Nd+1

. (18b)

In terms of these mode operators, the identification of time
t and momentum kd+1 is the expressed by the identity

âτ,x(t ( j) ) = â
τ,(x,k( j)

d+1 ) (19)

for all d-dimensional unit cells x and sublattices τ =
1, . . . , f . For example, in the case of the SSH charge
pumping we have âτ,x(t ( j) ) = â

τ,(x,k( j)
y ) for τ = A, B and x =

0, . . . , Nx − 1.
The Bloch Hamiltonian of the (d + 1)-dimensional model

is the time-dependent Hamiltonian of the d-dimensional sys-
tem. Hence, with the identification of Eq. (19), the (d + 1)-
dimensional ground state is given by the direct product

|ψd+1〉 =
Nd+1−1⊗

j=0

|ψd (t ( j) )〉 (20)

of the many-body ground states |ψd (t )〉 of the d-dimensional
model evaluated at the Nd+1 discrete times along the interpola-
tion. From Eq. (19) it is clear that this defines the ground state
with respect to hybrid (d + 1)-dimensional real-momentum
space coordinates (x, k( j)

d+1).
In order to obtain the state in terms of (d + 1)-dimensional

real-space coordinates (x, xd+1), we need to apply the inverse
of the FT of Eq. (18) to the hybrid state of Eq. (20). If
the d-dimensional pumping Bloch Hamiltonian is smooth as
a function of time, the real-space correlation functions are
guaranteed to decay faster than any polynomial [47].

B. Hybrid real-momentum-space Chern PEPS

We now specialize this construction, which we explained
above in terms of generic free-fermionic TIs, to d-dimensional
TIs which are described by a GfTNS at all times along their
charge-pumping cycle. We will thereby obtain a GfTNS for
the (d + 1)-dimensional TI.

For the remainder of this section and for pedagogical
purposes, we will focus on the one-dimensional case (i.e.,
d = 1) and the corresponding notation. We will mostly rely on
charge pumping in the SSH model which is described by the
MPS with bond dimension DSSH = 2 from Eq. (9). Hence, we
will obtain a Gaussian fermionic PEPS for the Chern insulator
with Chern number C = 1. Extensions to other models and
higher dimensions are straightforward.

In case the d-dimensional ground state along the pumping
cycle is given as a GfTNS, Eq. (20) allows to define the
(d + 1)-dimensional ground state as a hybrid TNS, where the
first d dimensions correspond to real space and the (d + 1)st
dimension is expressed in momentum space. Indeed, the local
tensor of the hybrid TNS at the position (x, k( j)

d+1) is given
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FIG. 3. (a) Hybrid real-momentum-space PEPS for Ny = 3 sites in the vertical direction obtained by stacking rows of the MPS of Eq. (11)
evaluated at different times t ( j) along the charge-pumping interpolation. Physical and virtual legs transforming as particles and holes under the
U(1) symmetry of Eq. (12) are marked in red and blue, respectively. Since the vertical bond dimension is trivial, i.e., equal to one, it is omitted
in this sketch. (b) Inverse FT F̃ acting separately on the physical and horizontal virtual legs of one column of A sites of the hybrid PEPS. The
result defines the column tensor Acol for the real-space PEPS. (c) Decomposition of the column tensor Acol into the contraction of local PEPS
tensors A2D for the two-dimensional state. The vertical virtual legs of A2D marked in red have a bond dimension Dy,A which generally grows
with the system size Ny due to the nonlocality of the inverse FT. The inverse FT and decomposition of a column of B sites is analogous.

by the local tensor of the d-dimensional model at the d-
dimensional real-space position x and time t ( j).

Thus, the virtual DOFs of the hybrid TNS in the first d
directions are identical to those of the d-dimensional model.
In other words, the identification of time and momentum from
Eq. (19) holds not just for the physical mode operators, but
also for the virtual mode operators in the first d dimensions.

On the other hand, due to the direct product in the direction
of kd+1 in Eq. (20), the hybrid TNS does not need virtual legs
in the direction d + 1, and we say that the bond dimension in
this direction is equal to one (implying that the contraction of
this direction corresponds trivially to a product).

The hybrid Chern PEPS obtained from the SSH charge
pumping MPS of Eq. (9) is sketched in Fig. 3(a) in the hybrid
coordinate system where the horizontal axis describes x and
the vertical axis corresponds to ky ≡ kd+1. The local tensor for
a site on the A sublattice at the position (x, k( j)

y ) is given by the
SSH local tensor Ai

lr (t ( j) ) at the time t ( j) along the cycle, and
similarly for the B sublattice. In the horizontal direction, the
two-dimensional hybrid state hence inherits both the transla-
tion invariance and the constant finite bond dimension DSSH of
the MPS. As discussed in the previous paragraph, virtual legs
in the vertical direction are not needed for the hybrid Chern
PEPS and are hence not shown in Fig. 3(a).

C. Inverse Fourier transform

As discussed below Eq. (20), the hybrid state obtained
from charge pumping is mapped to a (d + 1)-dimensional
real-space coordinate system by applying an inverse FT in the
direction d + 1 to the fermionic mode operators. For GfTNSs,
which have virtual in addition to physical DOFs, the inverse
FT should be applied to both the physical mode operators and
the virtual fermionic mode operators in the first d directions.
For the hybrid Chern PEPS, we therefore apply the inverse
FT in the vertical direction to the physical and the horizontal
virtual legs. The extension of the FT to the horizontal virtual

modes amounts to a virtual basis change and does not alter
the physical state, but ensures that the real-space PEPS is
invariant under vertical translations y 	→ y + 1 of its physical
and virtual legs (see also Appendix F).

For the hybrid Chern PEPS, the correct definition of the
inverse FT in the vertical direction y entails a subtlety. Indeed,
recall that the SSH charge-pumping MPS from Eq. (9) is
defined with respect to mode operators aτ,x(t ( j) ) related to the
âτ,x(t ( j) ) used in Eq. (19) by the particle-hole transformation
of Eq. (7). For the Chern PEPS, we perform an analogous
particle-hole transformation in two-dimensional real space
and define new mode operators

aA,(x,y) = âA,(x,y), (21a)

aB,(x,y) = â†
B,(x,y). (21b)

The operators aA,(x,y), a†
A,(x,y), aB,(x,y), a†

B,(x,y) span the basis in
which we want to express the real-space Chern PEPS.

The SSH particle-hole transformation of Eq. (7) acts within
the set of operators at time t ( j). Since we identify time and
momentum, this is equivalent to a particle-hole transformation
acting on the modes of the Chern PEPS in momentum space
rather than real space like in Eq. (21). Due to the antiunitarity
of the particle-hole transformation, the inverse FT relating
the modes aB,x (t ( j) ) and aB,(x,y) on the B sublattice therefore
contains an additional complex conjugation. Hence, the phys-
ical mode operators aτ,x(t ( j) ) of the SSH models, providing
the basis for the hybrid Chern PEPS, and the mode operators
aτ,(x,y) for the real-space Chern PEPS are related as

aτ,(x,y) =
Ny−1∑
j=0

F̃τ,τ ;y,t ( j) aτ,x(t ( j) ) (22a)

with the inverse vertical FT

F̃τ,τ ′;y,t ( j) = δτ,τ ′√
Ny

eiητ yt ( j)
. (22b)
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Here, ηA = 1 and ηB = −1 for the physical modes which
are particlelike on the A sublattice and holelike on the B
sublattice.

The inverse FT of the horizontal virtual legs of the hybrid
PEPS is analogous to Eq. (22) for the physical modes. Here,
the particlelike or holelike character of the virtual modes is
determined by their transformation under the U(1) symmetry
of Eq. (12). Specifically, the left and right virtual legs on the A
sublattice transform as holes, i.e., ηL,A = ηR,A = −1, whereas
the left and right virtual legs on the B sublattice transform as
particles such that ηL,B = ηR,B = 1.

Let us now study how the inverse vertical FT F̃ acts on
the hybrid Chern PEPS. Due to the translation invariance in
the horizontal direction, it is enough to consider one column
of the hybrid state given by the sites (x, k( j)

y ) for a fixed
horizontal position x and j = 0, . . . , Ny − 1 [see Fig. 3(a)].
Under F̃ , the hybrid column is mapped to one column of the
two-dimensional real-space state, given by the sites (x, y) with
y = 0, . . . , Ny − 1.

Since the inverse FT F̃ is nonlocal, for a generic inter-
polation there are long-range correlations in the real-space
column {(x, y)}0�y�Ny−1 of the PEPS. In the tensor network
language, the real-space column is therefore described by
a single tensor obtained from the application of F̃ to one
column of the hybrid PEPS [in contrast to the hybrid column
{(x, k( j)

y )}0� j�Ny−1 which is described by a product of individ-

ual tensors for each k( j)
y , signifying the absence of correlations

in the vertical direction]. For a real-space column of A sites,
we denote this tensor by Acol as shown in Fig. 3(b). Similarly,
we define a tensor Bcol for a real-space column of B sites. The
tensors Acol and Bcol have Ny physical legs of dimension dp =
2 and Ny left and right virtual legs of dimension DSSH = 2,
which describe the physical and horizontal virtual DOFs of
the real-space PEPS.

The SSH pumping MPS is a Gaussian MPS for free
fermions. Thus, the column tensors Acol and Bcol are also
Gaussian states, which can be described by their covariance
matrices (CMs). These CMs are computed in Appendix F
for the general d-dimensional case. There we show that the
CMs of the real-space columns Acol and Bcol, defined by the
application of the inverse FT of Eq. (22) to the physical and
horizontal virtual legs of the hybrid columns, are given by
the inverse FT of the time-dependent CMs describing the
local SSH tensors Ai

lr (t ( j) ) and Bi
lr (t ( j) ) along the pumping

cycle. This result fully characterizes the column tensors Acol

and Bcol.

D. Translation-invariant real-space PEPS

From the previous subsections, we are now ready to discuss
how the two-dimensional real-space state can be expressed
as a TNS with local tensors for each site. For that purpose,
the column tensors Acol and Bcol have to be decomposed
into a column of local PEPS tensors A2D and B2D with both
horizontal virtual legs of dimension DSSH and vertical virtual
legs with dimension Dy,A and Dy,B, respectively. We require
the local PEPS tensors to be identical on all sites of the same
sublattice as shown in Fig. 3(c) in order to make the invariance
under real-space translations explicit.

The decomposition of the column into PEPS tensors can
be achieved using tools developed for one-dimensional MPSs
[53,54]. To that end, we define one-dimensional pure states
|ψ1D(Acol )〉 and |ψ1D(Bcol )〉, whose many-body wave func-
tions are the tensor elements of Acol and Bcol, respectively.
Therefore, |ψ1D(Acol )〉 effectively describes a chain of length
Ny, where the local Hilbert space at each site of the fictitious
chain is the tensor product of the physical and horizontal
virtual Hilbert spaces of Acol at the corresponding physi-
cal site (and similarly for |ψ1D(Bcol )〉 and Bcol). Pictorially,
|ψ1D(Acol )〉 and |ψ1D(Bcol )〉 are obtained by merging at each
site the physical and horizontal virtual legs of Acol and Bcol

into an effective physical index of dimension d̃p = dpD2
SSH

per site.
Our goal is now to express |ψ1D(Acol )〉 and |ψ1D(Bcol )〉

as translation-invariant MPSs with periodic boundary condi-
tions. Then, after unfolding the effective physical index into
the physical and horizontal virtual indices of the PEPS, the
local tensors of these MPSs will define the PEPS tensors A2D

and B2D, respectively. Similarly, the MPS bond dimensions
Dy,A and Dy,B are equal to the vertical bond dimensions of the
PEPS local tensors A2D and B2D, respectively.

Numerically, the translation-invariant MPSs for
|ψ1D(Acol )〉 and |ψ1D(Bcol )〉 can be obtained as follows.
Multiple steps are necessary since the common and
stable MPS algorithms rely on the presence of open
boundary conditions and do not directly find a periodic
translation-invariant MPS for a translation-invariant state.
Instead, in a first step the Gaussian states |ψ1D(Acol )〉 and
|ψ1D(Bcol )〉 can be decomposed into non-translation-invariant
Gaussian MPSs with open boundary conditions by
performing successive Schmidt decompositions of the
system [53,55]. We are not aware of any method to
transform a Gaussian open-boundary MPS into a Gaussian
translation-invariant MPS. We therefore interpret the
Gaussian MPSs for |ψ1D(Acol )〉 and |ψ1D(Bcol )〉 as regular
fermionic open-boundary MPSs by choosing physical and
virtual basis states and computing the local MPS tensors for
each site. Finally, these open-boundary MPSs are transformed
into translation-invariant and generically non-Gaussian MPSs
with periodic boundary conditions following the standard
procedure described in Ref. [54]. This approach leads to the
bond dimension of the translation-invariant MPS being given
by the sum of the bond dimensions of the open-boundary
MPS for each site. Therefore, the bond dimension grows at
least linearly with the system size [54].

E. Vertical PEPS bond dimension

Above, we showed that the inverse FT of the hybrid PEPS
can be decomposed into a (d + 1)-dimensional real-space
TNS, where the bond dimension in the first d directions is
equal to that of the original d-dimensional state. The core
question is the scaling of the bond dimension in the (d + 1)st

real- space dimension with respect to the system size in
this direction.

1. Lower bound from ES

The bond dimension of a tensor network is intimately
related to the entanglement between its physical particles: For
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FIG. 4. Schmidt decomposition of the one-dimensional effective
state |ψ1D〉 for the PEPS column with physical dimension d̃p into the
subsystem AL of the first L sites and its complement. When |ψ1D〉 is
written as a translation-invariant MPS with bond dimension Dy, the
virtual boundary of the subsystem AL , marked in blue, crosses two
bonds of the MPS.

a TNS describing a physical system with a subsystem A, the
total dimension of all virtual legs at the boundary ∂A can be
no smaller than the rank of the state’s Schmidt decomposition
into the DOFs of A and its complement. This constraint allows
us to infer a lower bound for the vertical bond dimension
of the real-space PEPS from the ES of the one-dimensional
column states.

We consider a generic one-dimensional effective column
state denoted |ψ1D〉 with an effective physical dimension d̃p.
Below, we will choose either |ψ1D〉 = |ψ1D(Acol )〉 or |ψ1D〉 =
|ψ1D(Bcol)〉 with d̃p = dpD2

SSH. We assume that |ψ1D〉 is ex-
pressed as a translation-invariant MPS with a bond dimension
Dy corresponding to the vertical PEPS bond dimension (see
Fig. 4). Such a representation can be obtained for instance
using the procedure described in the previous subsection. We
now perform a Schmidt decomposition of the pure state |ψ1D〉
with respect to the subsystem AL of the first L sites 0 � y �
L − 1, and denote the rank of the decomposition by rL(|ψ1D〉).
As sketched in Fig. 4, the cut between AL and its complement
crosses exactly two virtual bonds of the MPS, namely, those
between sites (L − 1, L) and (Ny − 1, 0), each of dimension
Dy. Since the virtual dimension can be no smaller than the
Schmidt rank for any subsystem size L, we obtain the bound

D2
y � max

1�L�Ny−1
rL(|ψ1D〉). (23)

The Schmidt rank rL(|ψ1D〉) may be obtained by counting
the nontrivial levels in the single-particle ES of the Gaussian
column state |ψ1D〉. This ES can be computed numerically
based on the explicit result for the CM of |ψ1D〉 given in
Appendix F. Since the state |ψ1D〉 with physical dimension d̃p

has log2(d̃p) free-fermionic modes per lattice site, its single-
particle ES with respect to the subsystem AL consists of levels

0 � |λi(L)| � 1 with 1 � i � L log2(d̃p) [see Eq. (A5) for a
definition of the single-particle ES and its levels |λ j |]. For an
improved numerical stability, we actually compute μi(L) =√

1 − λi(L)2 that may be conveniently extracted from the
CM [see Eq. (A6)]. Here, values μi(L) = 1 and μi(L) = 0
correspond to maximally entangled and nonentangled modes,
respectively. The many-body Schmidt rank of the state |ψ1D〉
is therefore given by the exponential

rL(|ψ1D〉) = 2#{μi (L) > 0} (24)

of the number of entangled modes in the single-particle ES
with μi(L) bigger than zero.

2. Exponential growth

The number of entangled modes in the single-particle ES of
a column Acol of unit cells of the real-space PEPS is displayed
in Fig. 5(a) for two different cyclic interpolations of the MPS
from Eq. (11): on one hand, the parametrization φpump of
Eq. (15) giving rise to a two-dimensional Chern insulator,
and on the other hand the parametrization φtriv of Eq. (17)
corresponding to a topologically trivial two-dimensional state.
The corresponding data of the column Bcol is identical.

For φpump the number of entangled modes is equal to

#{μi(L) > 0} = min{3L, Ny} (25)

when L � Ny/2 (the spectra for L and Ny − L are identical).
In Appendix G we show that this is the maximal number of
entangled modes which is compatible with the global U(1)
symmetry of Acol inherited from the SSH model MPS. Here,
the factor 3 in Eq. (25) is a consequence of the column
tensor having three fermions (one physical fermion and two
virtual fermions) per site. The validity of Eq. (25) can be
seen in Fig. 5(a) for the smallest system size Ny = 28. For
larger system sizes, the number of entangled modes shown
in Fig. 5(a) is lower than Eq. (25) because of the finite
numerical resolution, as shown by the ES in Fig. 5(b). We
have checked that for the Chern PEPS obtained from the MPS
corresponding to the smooth charge-pumping cycle described
in Sec. II A, the number of entangled modes is also given
by Eq. (25).

For φtriv, the number of entangled modes is given by 2L
when L � Ny/2. This is lower than Eq. (25) for φpump except
at L = Ny/2, where both numbers agree. As discussed in
Appendix G, this reduction of entangled modes is due to
the decoupling of all right virtual legs and is not related to
topology. Indeed, for the trivial cycle, the parameter β(t ) = 0
vanishes for the entire duration of the interpolation φtriv. Any
small perturbation of φtriv by a nonzero β increases the num-
ber of entangled modes to Eq. (25). Moreover, these additional
decoupled modes disappear when blocking the two columns
Acol and Bcol, i.e., by contracting the bonds connecting them.
Hence, the column for AB unit cells has the same Schmidt
rank for both φpump and φtriv.

The number of entangled modes from Eq. (25) corresponds
to a maximal Schmidt rank

max
1�L�Ny−1

rL[|ψ1D(Acol )〉] = 2Ny (26)
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FIG. 5. Single-particle ES of a column Acol of the two-dimensional real-space TNSs defined by two different parametrizations for the MPS
of Eq. (11): the charge-pumping interpolation φpump of Eq. (15) leading to a Chern insulator, and the parametrization φtriv of Eq. (17) leading
to a topologically trivial two-dimensional state. (a) Number of modes in the single-particle ES with a finite entanglement corresponding to a
value μi > δ with δ = 10−13 the numerical accuracy for different system sizes Ny as a function of the subsystem size L. (b) Single-particle ES
for a column with Ny = 256 sites with respect to the subsystem AL with L = 20. The double degeneracy in the ES corresponding to φtriv is due
to the decoupling of all right virtual legs since β(t ) = 0 along φtriv.

for the state |ψ1D(Acol )〉, and similarly for |ψ1D(Bcol)〉. The
bound of Eq. (23) therefore implies that the vertical bond
dimensions Dy,A and Dy,B grow exponentially as a function
of Ny. This is a generic feature of our construction and
not related to the topology of the state: It originates in the
nonlocality of the inverse FT which couples all states in the
exponentially growing Hilbert space of one column. Indeed, a
generic quantum state requires an exponentially growing bond
dimension to be represented exactly as a TNS.

Despite the faster decay of the single-particle entanglement
energies for the topologically trivial state than for the Chern
insulator in Fig. 5(b), this does not allow us to make any
statement about differences in the growth of the vertical
bond dimension required for an approximative PEPS for the
two systems.

IV. FERMIONIC PEPS FOR TWO-DIMENSIONAL
HIGHER-ORDER TI

In this section, we study a Gaussian fermionic PEPS for
the topological quadrupole model from Ref. [1], which is
reviewed in Sec. IV A. The PEPS is defined in Sec. IV B,
where we also provide its parent Hamiltonian. In Sec. IV C we
discuss a three-dimensional PEPS with chiral hinge states ob-
tained from a dipole-pumping interpolation of the quadrupole
model [2,3].

A. Second-order quadrupole insulator

A two-dimensional second-order topological phase with
a quantized bulk quadrupole moment was recently proposed
theoretically [1] and has subsequently been observed experi-
mentally in mechanical [11], photonic [14–17], and electrical
[18,19] systems. This phase is described by a microscopic
free-fermionic model with one spinless fermionic mode per

site and a unit cell of 2 × 2 sites depicted in Fig. 6(a). We
consider the system at half-filling where only the lowest
two bands are occupied. With open boundary conditions, the
nearest-neighbor Hamiltonian is given by

HQuad =
∑

x

∑
j=0,1

[
t ( j)
x (â†

1,xâ3,x+ jx̂ + â†
4,xâ2,x+ jx̂ )

+ t ( j)
y (â†

1,xâ4,x+ jŷ − â†
3,xâ2,x+ jŷ) + H.c.

]
, (27)

where x̂ and ŷ denote the unit vectors in the horizontal and
vertical direction, respectively. The positions of the unit cells
are x = xx̂ + yŷ with 0 � x � Nx − 1 and 0 � y � Ny − 1
on a lattice with Nx and Ny unit cells in the horizontal and
vertical directions. For τ = 1, . . . , 4, â†

τ,x denotes the creation
operator for a fermion in orbital τ and unit cell at position x.
The Hamiltonian of Eq. (27) contains four nearest-neighbor
hopping amplitudes t (0)

x , t (0)
y , t (1)

x , and t (1)
y , where the subscripts

x and y refer to hoppings in the horizontal and vertical
directions, and the superscripts (0) and (1) indicate hopping
between sites on the same and adjacent unit cells, respectively.
The signs of the hopping amplitudes ensure that there is a flux
π through every plaquette of the square lattice.

The quadrupole model of Eq. (27) is in a second-order
topological OAI phase protected by the horizontal and ver-
tical mirror symmetries Mx and My if t (0)

x /t (1)
x ∈]−11[ and

t (0)
y /t (1)

y ∈]−11[ [1,56]. In this phase, corners host gapless
protected states at the intersection of two gapped edges.
Moreover, the system possesses a quantized bulk quadrupole
moment, edge dipole moment, and corner charge [3]. When
the hopping amplitudes t (0)

x and t (0)
y within unit cells vanish

in the OAI phase, the model is in a dimerized OAI phase
where every site in the bulk is contained in a decoupled
plaquette shifted from the unit cell by one site in the horizontal
and vertical directions. Hence, the corner modes are fully
localized on the four corner sites of a rectangular patch. On
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FIG. 6. (a) Sketch of the quadrupole model from Ref. [3]. A unit cell (marked with a green square) contains four sites. The horizontal
and vertical nearest-neighbor hoppings t (0)

x and t (0)
y within unit cells are sketched in black, whereas the nearest-neighbor hoppings t (1)

x and t (1)
y

between unit cells are sketched in red. The couplings corresponding to dashed bonds carry a negative sign to ensure a flux π through every
plaquette. Lattice sites marked in blue and red have a chemical potential μ and −μ, respectively. (b) Sketch of a unit cell of the quadrupole
PEPS from Eq. (29). For each site 1, 2, 3, or 4 marked by a dashed blue square, the blue (red) circles denote its physical (virtual) fermions.
Each edge connecting a physical and virtual fermion is labeled with the amplitude of the local tensor when these two fermions are in state
|1〉 and all other virtual fermions of the same site are in state |0〉. (c) Next-to-nearest-neighbor hopping terms of Eq. (32) in the parent
Hamiltonian HPEPS.

the other hand, for |t (0)
x /t (1)

x | > 1 or |t (0)
y /t (1)

y | > 1 the model
of Eq. (27) is in a trivial phase with gapped edges and corners.
If the hoppings t (1)

x and t (1)
y between adjacent unit cells vanish,

the system is in a trivial dimerized phase where each unit cell
decouples from the rest of the system.

Similarly to the charge-pumping cycle discussed in
Sec. II A, a dipole-pumping cycle interpolating between the
trivial and OAI dimerized phases of the quadrupole model can
be defined by adding the chemical potential μ to all sites on
the sublattices 1 and 2 and −μ to all sites on the sublattices
3 and 4 [3]. Therefore, the staggering pattern breaks the sym-
metries protecting the topological phase but preserves the C2

rotation symmetry [see Fig. 6(a)]. The dipole-pumping cycle
is obtained from C4-symmetric hopping amplitudes t (0) ≡
t (0)
x = t (0)

y and t (1) ≡ t (1)
x = t (1)

y and a chemical potential μ

evolving according to the same cyclic interpolation of Eq. (3)
as for the SSH charge pump.

The properties of the dipole-pumping cycle for the
quadrupole model are analogous to those of the charge-
pumping cycle for the SSH model. In particular, the system
remains in a dimerized state throughout the interpolation
since at all times t ∈ [−π, π ] only one of the two hopping
amplitudes t (0)(t ) and t (1)(t ) is nonzero. At t = ±π and t = 0,
the system is in an atomic state with only the orbitals 1 and 2
occupied at t = ±π and only the orbitals 3 and 4 occupied
at t = 0. For −π < t < 0, the hopping within unit cells is
nonzero, whereas the hopping between unit cells is nonzero
for 0 < t < π . In both cases, charge gets transferred by the
changing chemical potential. At t = −π/2 and π/2, the
chemical potential vanishes such that the mirror symmetries
are restored and the Hamiltonian corresponds to the trivial and
OAI dimerized phase of the quadrupole model, respectively.

In the same manner as charge pumping relates the SSH
model to a Chern insulator, dipole pumping induces a model
with chiral hinge states from the quadrupole model [2,3].
The chiral hinge model is a three-dimensional second-order

topological insulator whose one-dimensional protected
boundary modes occur at the intersection of a pair of
two-dimensional faces. The topology of the hinge model
obeys a Z2 classification protected by the product MxMyT
of the horizontal and vertical mirror symmetries and time
reversal T [2].

B. PEPS for the quadrupole model

In this section, we provide a Gaussian fermionic PEPS
for the ground state of the quadrupole model. After giving
the details of the construction in Sec. IV B 1, we compute
its parent Hamiltonian in Sec. IV B 2 and discuss its ES in
Sec. IV B 3.

1. Construction

In order to construct a Gaussian PEPS for the ground state
of the quadrupole model, we use similar ideas as in the SSH
model MPS derived in Sec. II. In analogy to the particle-hole
transformation of Eq. (7) on the B sublattice of the SSH chain,
we define new physical modes aτ,x by performing a particle-
hole transformation on the sublattices 3 and 4 while leaving
the sublattices 1 and 2 unaffected,

a1,x = â1,x, a2,x = â2,x, (28a)

a3,x = â†
3,x, a4,x = â†

4,x. (28b)

The vacuum |�〉 of the new modes, satisfying aτ,x|�〉 = 0
for τ = 1, . . . , 4, contains exactly 2NxNy physical particles
as required for the quadrupole model at half-filling. Thus,
the particle-hole transformation allows us to express the
quadrupole PEPS in terms of a separate and parity-even local
tensor for each lattice site. Parity evenness is required in
order to ensure that the state is independent of the order of
contractions in the network [57].
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The quadrupole PEPS has bond dimension DQuad = 2 and
is constructed from four local tensors A[τ ]i

lurd for sites on the
four sublattices τ = 1, . . . , 4, respectively. Here, i ∈ {0, 1}
corresponds to the physical index and l, u, r, d ∈ {0, 1} to
the left, up, right, and down virtual indices, respectively. The
physical basis states |0〉 = |�〉 and |1〉 = a†

τ,x|�〉 are obtained
from the transformed mode operators of Eq. (28).

Due to the close relation between the SSH and the
quadrupole models, we are guided in our ansatz for the
local tensors of the quadrupole PEPS by the MPS tensors
of Eq. (11). This can be most easily seen from Fig. 6(b).
We obtain the quadrupole model by coupling neighboring
sites both horizontally and vertically according to the pattern
of an SSH chain. In the PEPS tensors, the couplings of the
horizontal SSH chains are transmitted by the left and right
virtual fermions associated to parameters αx, βx analogous to
Eq. (11). Similarly, the vertical SSH chains are implemented
using the top and bottom virtual fermions associated to the
parameters αy, βy. Using the analogy to Eq. (11), we there-
fore obtain local PEPS tensors whose nonvanishing elements
are given in terms of five real parameters γ , αx, αy, βx,
and βy as

A[1]0
0000 = A[2]0

0000 = A[3]0
0000 = A[4]0

0000 = γ , (29a)

−A[1]1
1000 = A[2]1

0010 = A[3]1
0010 = A[4]1

1000 = βx, (29b)

A[1]1
0001 = A[2]1

0100 = A[3]1
0001 = A[4]1

0100 = βy, (29c)

A[1]1
0010 = −A[2]1

1000 = A[3]1
1000 = A[4]1

0010 = αx, (29d)

−A[1]1
0100 = −A[2]1

0001 = A[3]1
0100 = A[4]1

0000 = αy. (29e)

All the other tensor elements are equal to zero. The phases
in Eq. (29) were chosen such as to ensure that there is a
flux π through every plaquette. As sketched in Fig. 6(b), the
parameters βx and βy represent the coupling of the physical leg
to the virtual legs corresponding to the horizontal and vertical
bonds pointing into the unit cell, respectively. Similarly, αx

and αy control the coupling of the physical leg to the virtual
legs pointing out of the unit cell.

The PEPS of Eq. (29) has a global U(1) symmetry analo-
gous to Eq. (12) for the SSH MPS. Indeed, the local tensors
are invariant under a combination of U(1) rotations of the
physical and virtual legs given by

A[τ ]i
lurd =

∑
j

∑
l ′u′r′d ′

U (ϕ)i jU (ϕ)†
ll ′U (ϕ)†

uu′

× A[τ ] j
l ′u′r′d ′U (ϕ)†

r′rU (ϕ)†
d ′d (30a)

for sites on the sublattices τ = 1, 2, and

A[τ ]i
lurd =

∑
j

∑
l ′u′r′d ′

U (ϕ)†
i jU (ϕ)ll ′U (ϕ)uu′

× A[τ ] j
l ′u′r′d ′U (ϕ)r′rU (ϕ)d ′d (30b)

for sites on the sublattices τ = 3, 4. Here, U (ϕ) = (1 0
0 eiϕ )

is the U(1) rotation acting on a single fermion. Equation
(30) implies that the virtual legs for the local tensors on
the sublattices τ = 1, 2 and τ = 3, 4 transform as holes and
particles. Hence, each pair of virtual legs associated with
the same nearest-neighbor bond transforms oppositely under

the U(1) rotation, such that the PEPS is invariant under the
physical part of Eq. (30). The charge associated with this
symmetry is

∑
x

[∑
τ=1,2

a†
τ,xaτ,x −

∑
τ=3,4

a†
τ,xaτ,x

]

=
∑

x

4∑
τ=1

â†
τ,xâτ,x − 1

2
NxNy (31)

such that the U(1) symmetry ensures that the state lies exactly
at half-filling of the lattice just as in the one-dimensional case.

2. Parent Hamiltonian

For all values of the parameters γ , αx, αy, βx, and βy, the
PEPS from Eq. (29) can be expressed as a Gaussian TNS
for free fermions. In Appendix H, we show that the PEPS
with parameters α ≡ αx = αy and β ≡ βx = βy is the unique
ground state of an extended version of the quadrupole model
HPEPS with C4-symmetric hoppings, with a staggered chemical
potential that breaks C4 symmetry and with an additional
next-to-nearest-neighbor hopping∑

τ

∑
x

t (2)
τ [â†

τ,xâτ,x+x̂ + â†
τ,xâτ,x+ŷ + H.c.] (32)

between sites on the same sublattice τ with amplitude t (2)
τ .

The pattern of next-to-nearest-neighbor hoppings is shown in
Fig. 6(c). The couplings of HPEPS depend on the parameters of
the PEPS as

μ = γ 4 − α4 − β4

α4 + β4 + γ 4
, (33a)

t (0)
x = t (0)

y =
√

2β2γ 2

α4 + β4 + γ 4
, (33b)

t (1)
x = t (1)

y =
√

2α2γ 2

α4 + β4 + γ 4
, (33c)

t (2)
1 = t (2)

2 = −t (2)
3 = −t (2)

4 = −1

2

α2β2

α4 + β4 + γ 4
. (33d)

Similarly to the parent Hamiltonian HMPS of the SSH
model MPS of Eq. (11), HPEPS describes different phases
depending on the values of the parameters α, β, and γ .
When two out of the three parameters vanish, the system
is in an atomic insulator state: If α = β = 0, the particles
are localized on the orbitals τ = 3, 4, whereas they are lo-
calized on the orbitals τ = 1, 2 if α = γ = 0 or β = γ = 0.
In contrast, when α = 0 and β, γ �= 0, all hoppings of the
parent Hamiltonian vanish except for the nearest-neighbor
hopping within unit cells. Similarly, when β = 0 and α, γ �=
0, the only nonzero hopping is the nearest-neighbor hop-
ping between unit cells. In both cases, the system is in a
dimerized phase with a staggered chemical potential. Setting
β = γ and α = γ , respectively, we recover the trivial and
OAI dimerized phases of the quadrupole model with van-
ishing chemical potential. Finally, when all three parameters
are nonzero, the system has a nonvanishing nearest- and
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next-nearest-neighbor hopping as well as a finite staggered
chemical potential.

3. Corner states and entanglement spectrum

The characteristic (d − 1)-dimensional gapless edge states
of a conventional d-dimensional TI are reflected in the state’s
bulk ES [22]. Similarly, the ES of the quadrupole model in its
dimerized OAI phase hosts gapless corner states as long as the
virtual cut is compatible with the protecting symmetries [24].
In order to further characterize the different phases described
by the PEPS from Eq. (29), we therefore study the ES of
the state defined on a torus with respect to a rectangular
subsystem ALx×Ly of Lx and Ly unit cells in the horizontal and
vertical direction.

For β = 0, the PEPS from Eq. (29) is in a dimerized
phase where the system splits into four-site plaquettes shifted
from the unit cell by one site in the horizontal and vertical
directions. For α = γ , we obtain the OAI dimerized phase of
the quadrupole model, whereas for α �= γ there is a nonzero
staggered chemical potential that breaks the symmetries pro-
tecting the OAI phase. Due to the dimerization, with open
boundaries the system has SSH chains with a staggered chem-
ical potential at the edges, and corner sites which decouple
from each other and the bulk. Correspondingly, the single-
particle ES of the PEPS with respect to the subsystem ALx×Ly

has three distinct contributions from the bulk, the edges,
and the corners as sketched in Fig. 7. The bulk consists
of (Lx − 1)(Ly − 1) plaquettes decoupled from the rest of
the system, which contribute 4(Lx − 1)(Ly − 1) nonentangled
modes with levels |λbulk| = 1 (in the dimerized limit) to the
single-particle ES.

On the other hand, the corner and edge sites belong to
plaquettes crossed by the boundary of the subsystem ALx×Ly .
In Appendix H 3 we show that the four boundaries pro-

FIG. 7. Quadrupole model in the dimerized OAI phase with a
rectangular subsystem A marked by a blue rectangle. The four-site
plaquettes coupled by the nearest-neighbor hopping t (1) (drawn in
red) are shifted from the unit cells (denoted by green squares) by one
site in both directions. The decoupled plaquettes in the bulk of A
(marked in blue) do not contribute to the ES. In contrast, nontrivial
levels in the ES come from both the plaquettes at the corners with a
single site in A (marked in green), and from those at the edges with
two sites in A (marked in orange).

vide 4(Lx − 1 + Ly − 1) entangled modes with levels ±λedge,
where

λedge =
√

γ 8 + α8

γ 4 + α4
. (34a)

Since the number of these entangled modes grows linearly
with the size of the edge, the boundary leads to an area-law
term in the entanglement entropy.

Furthermore, each corner site hosts exactly one mode
corresponding to a level ∓λcorner with

λcorner = γ 4 − α4

γ 4 + α4
. (34b)

Here, the negative sign holds for the top right and bottom
left corner sites on the sublattices τ = 1 and 2, respectively,
whereas the positive signs applies to the top left and bottom
right corner sites on the sublattices τ = 3 and 4, respectively.

For α = γ , the PEPS of Eq. (29) describes the OAI phase
of the quadrupole model. Indeed, in this case the edges have
entanglement levels λedge = 1/

√
2 and the four corners have

degenerate levels λcorner = 0 corresponding to maximally en-
tangled corner modes. On the other hand, for α = 0, both
λedge = 1 and λcorner = 1 such that the TNS describes an
atomic state.

Finally, if the OAI dimerized phase is perturbed by a small
nonzero value β �= 0, one can check numerically that the
corner modes acquire a finite splitting λcorner �= 0 and are no
longer perfectly localized at the corner sites. This confirms
that the TNS with β �= 0 is not in the OAI phase of the
quadrupole model as expected from the breaking of the mirror
symmetries and C4 symmetry by the next-nearest-neighbor
hopping and the chemical potential.

C. 3D chiral hinge PEPS from dipole pumping

The PEPS of Eq. (29) with parameters α = αx = αy and
β = βx = βy describes a dimerized dipole-pumping cycle of
the quadrupole model if α, β, and γ follow the parametriza-
tion φpump which we found for the dimerized charge-pumping
cycle of the SSH model MPS. The coupling constants of
the parent Hamiltonian HPEPS derived from the parametriza-
tion φpump are shown in Fig. 8(a). They differ from those
of the dipole-pumping Hamiltonian of Ref. [3] only by a
factor of 1/

√
2 for the hopping amplitudes, which does not

affect the topology of the interpolation. The single-particle
ES of the PEPS along φpump is shown in Fig. 8(b). In the
first half of the cycle, the system is in a dimerized phase
with each unit cell decoupled from the rest of the system.
Hence, the single-particle ES contains only the bulk bands
with λ = ±1. However, in the second half of the cycle for
0 < t < π , the contributions from the edges and corners can
be clearly distinguished. The four corner modes connect the
bands with λ = ±1 and are degenerate in the OAI dimerized
phase of the quadrupole model obtained for t = π/2. In the
three-dimensional second-order TI of Ref. [2] obtained by
the identification of the time t along the dipole-pumping
cycle with the momentum kz in the third direction, these
corner modes generate the chiral modes localized at the
hinges.
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FIG. 8. (a) Coupling constants of the parent Hamiltonian HPEPS

and (b) single-particle ES of the PEPS of Eq. (29) along the dipole-
pumping interpolation generated by the parametrization φpump. In (a),
the vanishing of the next-nearest-neighbor coupling t (2)

τ = 0 of HPEPS

is not shown. In (b), we marked the bulk contribution in blue and for
times t ∈ [0, π ] with β(t ) = 0, the edge contribution in orange and
the corner contribution in green. The ES was computed on a torus
with Nx = Ny = 10 unit cells with respect to the subsystem ALx×Ly

with Lx = Ly = 5.

Following the steps described in Sec. III, we may use
the PEPS of Eq. (29) along the interpolation φpump to de-
fine a three-dimensional PEPS for the second-order hinge
TI. Moreover, we can construct a topologically trivial three-
dimensional state from the interpolation φtriv from Eq. (17).
These PEPSs have a finite bond dimension DQuad = 2 in the
x and y directions. In the hybrid real-momentum space where
the third dimension corresponds to the momentum kz or time
t , the states have a finite bond dimension equal to one also in
the third direction.

On the other hand, due to the nonlocality of the inverse FT,
in real space their bond dimension Dz,τ in the third direction
for sites on the sublattice τ for τ = 1, . . . , 4 grows with
the system size Nz. As in Sec. III E, we can estimate Dz,τ

from the ES of a column of sites on the sublattice τ with
respect to the subsystem AL of the first L sites.

The number of entangled levels in the single-particle ES
of a column of sites on the sublattice τ = 1 of the three-
dimensional PEPSs is shown in Fig. 9(a). As we can see
from the smallest system size Nz = 28, for both φpump and
φtriv the number of entangled modes is identical to the two-
dimensional case from Sec. III when replacing Ny with Nz.
Moreover, the spectra displayed in Fig. 9(b) are similar,
although not identical, to the corresponding results for the
two-dimensional PEPSs.

As we show in Appendix G, for φpump this number of
entangled modes is the maximal number compatible with the
symmetries of the quadrupole PEPS, here the U(1) symmetry
from Eq. (30), and the mirror symmetry Mxy of the local
tensor on the sublattice τ = 1. Indeed, the latter causes the
decoupling of one superposition of the left and down virtual
legs, and similarly for the up and right virtual legs. For φtriv,

0 10 20 30 40 50 60

L

0

20

40

60

80

100

#
{ μ

i(
L

)
>

δ}

φpump

Nz = 28

Nz = 64

Nz = 128

Nz = 256

φtriv

Nz = 28

Nz = 64

Nz = 128

Nz = 256

0 20 40 60

i

100

10−4

10−8

10−12

μ
i

(a) (b) Nz = 256, L = 20

φpump

φtriv

FIG. 9. Single-particle ES of a column of sites on the sublattice τ = 1 of the three-dimensional real-space TNSs defined by two different
parametrizations for the quadrupole PEPS of Eq. (29): the charge-pumping interpolation φpump of Eq. (15) leading to a chiral hinge insulator
(blue) and the parametrization φtriv of Eq. (17) leading to a topologically trivial three-dimensional state (red). (a) Number of modes in the
single-particle ES with a finite entanglement corresponding to a value μi > δ with δ = 10−13 the numerical accuracy for different system
sizes Nz as a function of the subsystem size L. Due to the mirror symmetry Mxy of the quadrupole PEPS tensor on the sublattice τ = 1, the
number of entangled modes for both parametrizations is identical to the two-dimensional case shown in Fig. 5(a). (b) Single-particle ES for a
column with Nz = 256 sites with respect to the subsystem AL with L = 20. The double degeneracy in the ES corresponding to φtriv is due to
the decoupling of the left and down virtual legs since β(t ) = 0 along φtriv (see Appendix G). The spectra are similar, with the same number of
entangled modes, but not strictly identical to those of the two-dimensional state shown in Fig. 5(b).
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there is an additional reduction of the number of entangled
modes since the left and down virtual legs decouple due to the
vanishing parameter β = 0 along the trivial interpolation (see
Appendix G).

Analogously to Sec. III E, we therefore conclude that the
bond dimension Dz,τ in the third direction grows exponen-
tially with Nz for τ = 1, 2, 3, 4. Due to the mirror symmetries
of the quadrupole model, Dz,τ has the same value as the ver-
tical bond dimension of the two-dimensional PEPSs obtained
from cyclic interpolations of the SSH model. The increase in
spatial dimensionality therefore does not cause an increase of
the bond dimension in the (d + 1)st direction.

V. CONCLUSION

In this paper, we showed how to use charge pumping to
define TNSs for (d + 1)-dimensional conventional or higher-
order TIs starting from TNSs of TIs in d-space dimensions.
To that end, we constructed a Gaussian fermionic MPS for
the SSH model with bond dimension DSSH = 2 in d = 1
dimension, and a Gaussian fermionic PEPS for the topolog-
ical quadrupole model with bond dimension DQuad = 2 in
d = 2 dimensions. We proved that these TNSs have local
gapped parent Hamiltonians with up to next-nearest-neighbor
hopping, and thereby showed that they describe the SSH
model along a charge-pumping cycle and the quadrupole
model along a dipole-pumping cycle, respectively. We em-
ployed these TNSs to construct a two-dimensional PEPS for
a Chern insulator and a three-dimensional PEPS for a chiral
hinge higher-order topological insulator (HOTI), respectively.
The (d + 1)-dimensional TNSs inherit the finite bond di-
mension DSSH and DQuad in the first d dimensions, respec-
tively. In a hybrid coordinate system where the (d + 1)st di-
mension corresponds to momentum, the (d + 1)-dimensional
TNSs have a finite bond dimension in this direction. In
contrast, we showed that the bond dimension in the (d +
1)st direction grows exponentially in a real-space coordinate
system.

Our results suggest several directions for future work. On
one hand, it would be interesting to study if a real-space PEPS
for the Chern insulator with a polynomially growing bond
dimension can be found by truncating the Schmidt values of
the real-space column in our construction. Such a result could
potentially provide insight into the physical origin for the
obstructions preventing the existence of chiral PEPSs with a
finite bond dimension. On the other hand, we expect the TNSs
constructed here to be useful for finite-size simulations despite
their growing bond dimension since the bond dimension is
finite in all but one direction. By their local nature, they could
be employed as the building block of interacting (d + 1)-
dimensional TIs obtained by Gutzwiller projection or parton
constructions [58–61].
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APPENDIX A: COVARIANCE MATRICES OF GAUSSIAN
FERMIONIC STATES

Eigenstates and thermal states of free-fermion systems are
given by Gaussian states which satisfy Wick’s theorem. They
are hence fully characterized by their covariance matrix (CM)
of two-point correlation functions [51]. In this Appendix,
we review the definitions of the complex and real CM for
pure and mixed states in Appendix A 1. We summarize the
relation with the entanglement spectrum in Appendix A 2 and
provide the concrete expression for the CM of a Gaussian
state parametrized as the exponential of a fermion bilinear in
Appendix A 4.

1. Definitions

We consider a generic system of N fermionic DOFs with
annihilation operators a j and creation operators a†

j for j =
1, . . . , N . In a pure or mixed state of this system, its covari-
ance matrix is defined as

Gμν = i

2
〈[χ†

μ, χν]〉 =
(

R∗ Q∗
Q R

)
, (A1)

where μ, ν = 1, . . . , 2N and χ = (a1, . . . , aN , a†
1, . . . , a†

N )
is the mode vector. The blocks R and Q of dimension N × N in
Eq. (A1) are anti-Hermitian and antisymmetric, respectively,
i.e., R† = −R and QT = −Q, such that G is anti-Hermitian.
For a generic mixed state, G satisfies the inequality GG† � 1

41

and its eigenvalues come in complex-conjugate pairs ± i
2 |λ j |

with 0 � |λ j | � 1 for 1 � j � N . For pure states, GG† = 1
41

such that its eigenvalues are given by |λ j | = 1.
For a state with charge conservation, the levels −1 �

λ j � 1 can be computed directly including their sign [62]:
Since 〈a†

j a
†
k〉 = 0 for all 1 � j, k � N , the off-diagonal block

Q∗ vanishes in the complex CM G of Eq. (A1), and the
eigenvalues of the diagonal block R∗ are given by i

2λ j .
For a generic system with pair creation and annihilation, it

is convenient to define Majorana fermionic modes c2 j = a†
j +

a j , c2 j−1 = (−i)(a†
j − a j ) for j = 1, . . . , N with {cμ, cν} =

2δμν [63]. We denote the matrix corresponding to this basis
change by

Sμν =
{
δν,μ/2 + δν,μ/2+N , μ even
i(δν,(μ+1)/2 − δν,(μ+1)/2+N ), μ odd (A2)
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with cμ =∑ν Sμνχν and S† = 2S−1. In terms of the Majorana
modes, the CM

�μν = i

2
〈[cμ, cν]〉 = [S∗ G ST ]μν (A3)

of size 2N × 2N is real and antisymmetric. Hence, each of
its singular values |λ j | with 1 � j � N is doubly degenerate.
Moreover, � satisfies ��† � 1 with equality for a pure state.

2. Relation to entanglement spectrum

We frequently consider the restriction of a pure quantum
state |ψ〉 to a subsystem A of the entire system, which is
described by the reduced density matrix ρA = trĀ[|ψ〉〈ψ |]
obtained by tracing over the DOFs in the complement Ā of A.
The many-body entanglement Hamiltonian HEnt with respect
to this partition is given by the logarithm of the reduced
density matrix as [23]

ρA = 1

Z
e−HEnt , (A4)

where Z = tr(e−HEnt ).
If |ψ〉 is a Gaussian state with CM G, then ρA is Gaussian

with its CM GA = (Gμν )
μ,ν∈A given by the restriction of G to

the modes of A. In this case, the many-body entanglement
Hamiltonian is a bilinear function of the fermionic mode
operators defined by a square matrix referred to as the single-
particle entanglement Hamiltonian. The eigenvalues β j of the
single-particle entanglement Hamiltonian are related to the
eigenvalues ± i

2 |λ j | of GA as |λ j | = tanh β j

2 , where 1 � j � L
and L is the number of modes in the subsystem A [52]. We
therefore refer to the collection

{|λ j |}1� j�L (A5)

as the single-particle ES of ρA.
The single-particle ES can also be computed from the

Majorana CM � of Eq. (A3) for the Gaussian state |ψ〉. One
obtains the levels |λ j | for 1 � j � L directly as the singular
values of the block (�μν )μ,ν∈A associated with the DOFs in
A. On the other hand, the levels can be computed indirectly
from the off-diagonal block (�μν )μ∈A,ν∈Ā describing the cor-
relations between A and its complement Ā. Indeed, the two
blocks are coupled by the constraint ��T = 1 originating in
the purity of the state |ψ〉. Concretely, the singular values of
the off-diagonal block are given by

μ j =
√

1 − λ2
j (A6)

for 1 � j � L [64]. This allows to infer the single-particle
entanglement energies for weakly entangled modes |λ j | ≈ 1
with an improved numerical accuracy.

3. Gaussian projections and Schur complements

In the construction of GfTNSs to be discussed in
Appendix B, we will frequently encounter the following
situation: Let us take a total system of N + M fermionic
modes with mode operators aj, a†

j for j = 1, . . . , N + M,
and consider the subsystem defined by the M last modes
j = N + 1, . . . , N + M. Let |Q〉 be a Gaussian pure state of

the total system and |ω〉 a Gaussian pure state of the subsystem
of the last M modes. Then, the projection

|ψ〉 = 〈ω|Q〉, (A7)

which is a state of only the first N modes, is again a Gaussian
state. The Majorana CMs �ψ , �Q, and �ω of the three Gaus-
sian states are given by the expression in Eq. (A3), where the
expectation values are taken in the states |ψ〉, |Q〉, and |ω〉,
respectively.

�ψ can be computed from �Q and �ω using a Schur
complement coming from the Gaussian integration over the
last M modes [51,65–67]. Indeed, we can write the antisym-
metric Majorana CM �Q of the unprojected state of the total
system as

�Q =
(

A B
−BT D

)
, (A8)

where the block A of size 2N × 2N refers to the Majorana
modes corresponding to a j, a†

j for j = 1, . . . , N , and the
block D of size 2M × 2M refers to the Majorana modes cor-
responding to a j, a†

j for j = N + 1, . . . , N + M. The block B
of size 2N × 2M encodes the correlations between the first N
and last M modes. In terms of these blocks and the CM �ω of
size 2M × 2M, the CM of the projected state is

�ψ = A + B [D + �ω]−1 BT . (A9)

Mathematically, this is the Schur complement of the block
corresponding to the last M modes.

4. Parametrization of Gaussian states

We consider a normalized Gaussian state with even
fermionic parity which, anticipating Appendix B, we will
denote by |ψ〉 = |Q〉. |Q〉 is parametrized in terms of
the antisymmetric complex matrix M of dimension N × N
as [51,68]

|Q〉 = N × e
∑

i j Mi j a
†
i a†

j |�〉, (A10)

where |�〉 is the fermionic vacuum and N is a normalization
factor.

A relevant case is given by states whose parametrization
matrices have nonzero entries only in the first row and column
(or more generally, in the nth row and column). In particular,
we will see in Appendices E and H that the local tensors of the
MPS of Eq. (11) and the PEPS of Eq. (29) define Gaussian
states of this form. In this case, Mi jMkl a†

i a†
j a

†
ka†

l = 0 for all
1 � i, j, k, l � N since all nonvanishing terms contain the
factor (a†

1)2 = 0 [(a†
n)2 = 0 in the general case]. Therefore,

the series expression of the exponential in Eq. (A10) termi-
nates after first order such that

|Q〉 = N

⎡
⎣1 +

N∑
i, j=1

Mi ja
†
i a†

j

⎤
⎦|�〉, (A11)

leading to the CM

G = i

2

(−1N + 8N 2 × M†M −4N 2 × M†

−4N 2 × M 1N − 8N 2 × MM†

)
,

(A12)
where the normalization is N−2 = 1 + 2 tr(MM†).

115134-17



ANNA HACKENBROICH et al. PHYSICAL REVIEW B 101, 115134 (2020)

APPENDIX B: CONSTRUCTION OF GfTNS

Gaussian fermionic tensor network states (GfTNS) de-
scribe free-fermion systems. They have the advantage that
the contraction of the network can be performed in terms of
covariance matrices, allowing efficient computations even for
large systems. In this Appendix, we review the construction of
Gaussian TNSs in one and two spatial dimensions. We begin
in Appendix B 1 by illustrating the construction of a TNS via
fiducial states using the simple example of a bosonic MPS,
where we do not need to take care of fermionic signs in tensor
products. In Appendix B 2, we move to the case of fermionic
physical and virtual particles. In Appendix E, the concepts
introduced here are illustrated using the pedagogical example
of the SSH model MPS from Sec. II C.

1. Fiducial state approach

We recall that the construction of a TNS can be performed
in several different but equivalent ways. Within the most well-
known approach, the local information on the state is encoded
in the local tensor with physical and virtual legs. For example,
for a one-dimensional bosonic MPS |ψbMPS〉 the local tensor
at position x takes the form A[x]ix

lxrx
, where ix is the physical

index, lx is the left virtual index, and rx is the right virtual
index. The global state is obtained by contracting, for each
nearest-neighbor bond, the two virtual legs associated with
this bond which belong to neighboring tensors. This is done
by identifying and summing over the corresponding virtual
indices. For example, the contraction of two neighboring MPS
tensors gives

∑
rx,lx+1

A[x]ix
lxrx

δrx lx+1 A[x + 1]ix+1

lx+1rx+1
.

More formally, this can be expressed as follows: First, we
create a total maximally entangled state in the virtual layer
whose role it is to implement the contraction of bonds. The
total maximally entangled state is the tensor product over all
nearest-neighbor bonds of a maximally entangled state of the
two virtual particles for this bond. In our MPS example, the
maximally entangled state for the bond between sites x and
x + 1 is

|ωx,x+1〉 =
∑

rx,lx+1

δrx lx+1 |rx, lx+1〉. (B1)

Second, at each site we translate the local tensor into a local
projection map, which maps the virtual particles onto the
physical particle at this site. The representation matrix of the
local projection map is given by the local tensor. For instance,
the MPS local projection map at site x is

Â[x] =
∑

ix,lx,rx

A[x]ix
lxrx

|ix〉〈lx, rx|. (B2)

The bond between sites x and x + 1 is contracted by applying
the projection maps Â[x] and Â[x + 1] to |ωx,x+1〉, giving

Â[x]Â[x + 1]|ωx,x+1〉
=
∑

ix, ix+1
lx, rx+1

|ix, ix+1〉〈lx, rx+1|

×
∑

rx,lx+1

A[x]ix
lxrx

δrx lx+1 A[x + 1]ix+1

lx+1rx+1
. (B3)

The global state is then obtained by contracting all bonds, i.e.,
by applying the product of all local projection maps to the total
virtual maximally entangled state. For instance, the MPS on a
chain with Nx sites and periodic boundaries takes the form

|ψbMPS〉 =
Nx−1∏
x=0

Â[x]
Nx−1⊗
x=0

|ωx,x+1〉, (B4)

where the lattice site indices are x = 0, . . . , Nx − 1. This is a
state of only the physical particles.

For GfTNSs, we will deal with fermionic particles and
therefore follow a slightly different, but equivalent, approach
to construct the TNSs using so-called fiducial states (see
Refs. [47,68] for pedagogical introductions). In this approach,
we consider fiducial states instead of local projection maps,
which contain only creation operators. The fiducial state on
each lattice site lies in the joint Hilbert space of the physical
and virtual particles on this site. Its basis coefficients are
given by the entries of the local tensor. For example, the local
fiducial states of the MPS are

|Qx〉 =
∑

ix,lx,rx

A[x]ix
lxrx

|ix〉|lx, rx〉. (B5)

Hence, the fiducial states are equivalent to the local projection
maps or local tensors; in particular, they contain all the local
information about the TNSs. The total state is obtained by
projecting the tensor product of all local fiducial states on the
total virtual maximally entangled state. For the MPS, we have

|ψbMPS〉 =
Nx−1⊗
x=0

〈ωx,x+1|
Nx−1⊗
x=0

|Qx〉 (B6)

which is equivalent to the expression in Eq. (B4). We are now
ready to generalize the fiducial state formalism to fermionic
physical and virtual particles.

2. Fermionic particles

We consider a one- or two-dimensional lattice system
of free fermions with f fermionic modes per lattice site
x, which are associated to the physical creation operators
a†

τ,x with τ = 1, . . . , f . A Gaussian fermionic TNS for this
system with physical dimension 2 f and bond dimension 2ξ

is obtained by associating ξ complex virtual fermionic modes
with each physical lattice site x and nearest-neighbor direction
α, where α = L, R for one-dimensional MPSs with left and
right nearest-neighbor bonds and α = L,U, R, D for two-
dimensional PEPSs on the square lattice with left, up, right,
and down nearest-neighbor bonds [33,68]. We denote the
creation operators for these virtual modes by b†

α, j,x where
j = 1, . . . , ξ labels the different modes per bond and lattice
site. For each lattice site, there are hence nmodes = f + 2ξ

modes for a fermionic MPS and nmodes = f + 4ξ modes for a
two-dimensional fermionic PEPS. The mode operators needed
for the construction of the SSH MPS are discussed in the first
paragraph of Appendix E.

We collect the mode operators associated with one lattice
site into a mode vector

χx = (a1,x, a2,x, . . . , a f ,x, bL,1,x, bL,2,x, . . . , bR,1,x, . . . ,

a†
1,x, . . . , b†

L,1,x, . . . , b†
R,1,x, . . . )T (B7)
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of length 2nmodes. The physical and virtual mode operators
obey canonical anticommutation relations

{(χx)μ, (χx′ )ν} = δx,x′δ|μ−ν|,nmodes (B8)

for 1 � μ, ν � 2nmodes. Their joint vacuum state |�〉 satisfies

aτ,x|�〉 = bα, j,x|�〉 = 0 (B9)

for all x, τ = 1, . . . , f , α, and j = 1, . . . , ξ .
The local information about the TNS is contained in the

local fiducial states |Qx〉, introduced in Eq. (B5), which are
equivalent to the local tensors A[x] used in the main text.
We can easily translate between the two approaches since the
basis elements of the local fiducial state are by definition equal
to the local tensors [cf. Eq. (B5)]. For fermions, we write
|Qx〉 = Qx|�〉 where Qx is a polynomial of creation operators
which acts on the vacuum to create the fiducial state. For
fermionic MPSs and PEPSs in one and two dimensions we
have [49,57]

A[x]i
lr = [〈r| ⊗ 〈i| ⊗ 〈l|]Qx|�〉, (B10)

A[x]i
lurd = [〈d| ⊗ 〈r| ⊗ 〈u| ⊗ 〈l| ⊗ 〈i|]Qx|�〉, (B11)

where |i〉 with i = 0, . . . , 2 f − 1 is a basis for the Fock space
associated with the physical mode operators {a†

τ,x}1�τ� f , and
|l〉 with l = 0, . . . , 2ξ − 1 is a basis of the Fock space associ-
ated with the left virtual mode operators {b†

L, j,x}1� j�ξ on site x

(similarly |u〉 for the up mode operators {b†
U, j,x}1� j�ξ , |r〉 for

the right mode operators {b†
R, j,x}1� j�ξ , and |d〉 for the down

mode operators {b†
D, j,x}1� j�ξ ). For the SSH model MPS, the

fiducial states obtained thus are given in Eq. (E1).
A Gaussian fermionic TNS has the property that all local

fiducial states |Qx〉 satisfy Wick’s theorem. In this case, the
global physical state |ψ〉 is also Gaussian [33,51]. We denote
by �Q the Majorana CM of the product of all fiducial states,∏

x Qx|�〉, also referred to as total fiducial state. From now
onward, we consider GfTNSs with parity-even local tensors
as discussed in Sec. II B, whose local fiducial states therefore
have an even number of physical and virtual fermions. The
maps Qx can thus be expressed as in Eq. (A10) as the expo-
nential of a quadratic form of the physical and virtual creation
operators on the site x, which are contained in the last nmodes

entries [(χx)nmodes+m]1�m�nmodes
of the mode vector of Eq. (B7)

[51,68]. Concretely, the local fiducial state is parametrized as

Qx = exp

[
nmodes∑

m,m′=1

(Mx)mm′ (χx)nmodes+m(χx)nmodes+m′

]
, (B12)

with an antisymmetric square matrix Mx of dimension nmodes.
For the SSH model MPS, this matrix is given in Eq. (E2).

In order to illustrate the concepts introduced above, let us
construct a Gaussian maximally entangled state of the virtual
fermions for each nearest-neighbor bond 〈x′x′′〉. Let us denote
by α′ and α′′ the type of virtual fermion involved in the bond
〈x′x′′〉 on the site x′ and x′′, respectively. For instance, if
x′′ = x′ + x̂, then α′ = R and α′′ = L. A fermionic maximally
entangled state for this bond is then given by [33]

|ωx′x′′ 〉 =
ξ∏

j=1

1√
2

(1 + b†
α′, j,x′b

†
α′′, j,x′′ )|�〉. (B13)

Due to the fermionic anticommutation relations, this expres-
sion is not symmetric under exchange of (α′, x′) and (α′′, x′′);
we say that the bond points from the initial site x′ to the
final site x′′.

The state |ωx′x′′ 〉 is a Gaussian state satisfying Wick’s
theorem. To see this, we first consider the simple case of a
one-dimensional MPS with ξ = 1 virtual fermion per nearest-
neighbor bond and lattice site. In this case, the virtual maxi-
mally entangled state from Eq. (B13) for the bond 〈x, x + x̂〉
becomes

|ωx,x+x̂〉 = 1√
2

[1 + b†
R,xb†

L,x+x̂]|�〉

= 1√
2

[
1 + (b†

R,x b†
L,x+x̂ )

1

2

(
0 1

−1 0

)(
b†

R,x

b†
L,x+x̂

)]
|�〉,

(B14)

where the bond points from site x to site x + x̂. This is a
Gaussian state of the form of Eq. (A11) parametrized by the
antisymmetric matrix M = (i/2)σ2. Hence, its complex CM
G can be computed from Eq. (A12) and is given by

G = −1

2

(
0 σ2

−σ2 0

)
, (B15)

where σ2 = (0 −i
i 0 ) denotes the second Pauli matrix. Accord-

ing to Eq. (A3), the corresponding Majorana CM � is obtained
by conjugation with the matrix S, and is found to be

� =
(

0 σ1

−σ1 0

)
, (B16)

where σ1 = (0 1
1 0) denotes the first Pauli matrix. For a two-

dimensional TNS with ξ = 1, the real CM of the virtual state
for the vertical nearest-neighbor bond 〈x, x − ŷ〉 is also given
by Eq. (B16). In this case, we choose the bond to be oriented
downward from x to x − ŷ to comply with our ordering of
the virtual legs as L,U, R, D. For TNS with more virtual
fermions, ξ > 1, the virtual maximally entangled state from
Eq. (B13) is a tensor product of multiple states of the form of
Eq. (B14). Hence, the corresponding real CM is a direct sum
of multiple copies of the � from Eq. (B16). We denote by
�ω the Majorana CM of the total virtual maximally entangled
state ⊗〈x′x′′〉|ωx′x′′ 〉. Since the total virtual maximally entangled
state is a tensor product over all bonds, �ω is a direct sum of
multiple copies of the � from Eq. (B16).

As explained in Appendix B 1, the global physical state
|ψ〉 is obtained from the constituents introduced above by
projecting the total fiducial state onto the virtual maximally
entangled state

|ψ〉 =
⎡
⎣⊗

〈x′x′′〉
〈ωx′x′′ |

⎤
⎦∏

x

Qx|�〉. (B17)

We recall from Appendix A 3 that for Gaussian states, this
projection can be formulated in terms of CMs and gives rise
to a Schur complement. This is the approach we take in the
following.

Let us see how we can apply the general Schur complement
expression of Eq. (A9) in order to compute the Majorana
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CM �|ψ〉 for the physical state from the CMs �Q and �ω

defined above for the fiducial and virtual maximally entangled
states. We introduce the symbols p and v to collectively refer
to all Majorana mode operators for the physical and virtual
fermions. Therefore, (�Q)pp and (�Q)vv denote the blocks of
the CM of the total fiducial state that describe the reduced
state of only the physical and virtual degrees of freedom
(DOFs), respectively. On the other hand, the blocks (�Q)pv =
−(�Q)T

vp encode the correlations between physical and virtual
fermions. In Eq. (B17), we are projecting the fiducial state of
physical and virtual modes onto a maximally entangled state
of the virtual modes in order to obtain a state of only the
physical modes. According to Eq. (A9), this is represented by
the Schur complement of the virtual block (vv) given by

�|ψ〉 = (�Q)pp + (�Q)pv[(�Q)vv + �ω]−1(�Q)T
pv. (B18)

Note that the CM on the left-hand side of this equation tracks
every physical mode independently. Hence, its dimension
is proportional to the system size and becomes large for
our cases of interest. We will now specialize Eq. (B18) to
translation-invariant states, where we can achieve a massive
reduction of the size of the physical CM down to the number
of Bloch bands independent of the system size.

APPENDIX C: TRANSLATION-INVARIANT GfTNSs

In this Appendix, we specialize the formalism reviewed in
Appendix B to translation-invariant GfTNSs, where the con-
traction of the network can often be performed analytically. In
Appendix C 1, we compute the CM of a translation-invariant
GfTNS, which we then use in Appendix C 2 to construct a
parent Hamiltonian for the state.

1. Covariance matrix

For translation-invariant Gaussian TNSs, we introduce the
Fourier transform (FT) of the physical and virtual mode
operators as

aτ,k =
∑

x

Fk,xaτ,x, (C1a)

bα, j,k =
∑

x

Fk,xbα, j,x (C1b)

for all τ = 1, . . . , f , j = 1, . . . , ξ , α = L, R for MPSs, and
α = L,U, R, D for two-dimensional PEPSs. Here, the FT in
two spatial dimensions with Nx and Ny sites in the horizontal
and vertical direction, respectively, position vector x = (x, y)
and momentum vector k = (kx, ky), is given by

Fk,x = 1√
NxNy

e−ikx. (C1c)

The momenta in the horizontal (kx) and vertical (ky) direc-
tion take values kx = 2π j

Nx
with 0 � j � Nx − 1 and ky = 2π j

Ny

with 0 � j � Ny − 1. The FT for a single spatial direction is
analogous.

We define the FT of the mode vector χx from Eq. (B7)
to be

χk =
∑

x

Fk,xχx. (C2)

Therefore,

χk = (a1,k, a2,k, . . . , a f ,k, bL,1,k, bL,2,k, . . . , bR,1,k, . . . ,

a†
1,−k, . . . , b†

L,1,−k, . . . , b†
R,1,−k, . . .)

T (C3)

mixes mode operators at momenta k and −k similarly to a
Nambu spinor.

Due to the translation invariance of the GfTNS, the FT
brings the CMs of the physical state, the total fiducial state,
and the total virtual maximally entangled state into a block-
diagonal form. We denote the Majorana CM of the total
fiducial state with respect to the Fourier transform of the mode
operators by

(�Q)μ,ν;kq =
∑
x,x′

F∗
k,x(�Q)μ,ν;xx′Fq,x′ = δkq(�̃Q(k))μ,ν,

(C4)

where the last equality defines the Majorana CM �̃Q(k)
restricted to the block of momentum k. Note that the size
of �̃Q(k) is given by twice the number of Bloch bands,
2 × nmodes, and therefore no longer grows with the system
size. Analogous statements hold for the physical CM �|ψ〉
with the Fourier block matrix �̃|ψ〉(k) of size 2 f , and for the
CM of the total virtual maximally entangled state �ω with
Fourier block �̃ω(k) of size 2(nmodes − f ).

Since the TNS is translation invariant, the local fiducial
state |Qx〉 is the same on every unit cell. Hence, the Fourier
CM of the total fiducial state is localized at momentum k = 0,

�̃Q(k) = �Qx × δk,0. (C5)

Here, �Qx is the CM of the local fiducial state |Qx〉 on a single
site of dimension 2nmodes. It has the block structure

�Qx =
(

A B
−BT D

)
, (C6)

where the real antisymmetric blocks A and D of dimension 2 f
and 2(nmodes − f ) describe the physical and virtual subspaces,
respectively, whereas the block B encodes the coupling be-
tween physical and virtual modes.

On the other hand, the CM of the total virtual maximally
entangled state �̃ω(k) has a nontrivial momentum dependence
since the maximally entangled states from Eq. (B13) connect
different unit cells. It is a direct sum of the contributions from
the different spatial directions. For a single virtual fermion
with ξ = 1, the Majorana Fourier CM of the horizontal bonds
oriented from left to right is the Fourier transform of the
matrix � from Eq. (B16). It reads as [40]

�̃ω(kx ) =
(

0 −σ1e−ikx

σ1eikx 0

)
. (C7)

This matrix is written in the basis of the FT of the
Majorana operators constructed from the complex modes
(bL,x, bR,x, b†

L,x, b†
R,x ) where we have omitted the index j since

ξ = 1. The contribution from the vertical bonds is given by
Eq. (C7) with kx 	→ −ky since the vertical bonds are oriented
downward and hence in the direction of negative ky. There-
fore, the Fourier CM of the virtual bonds is anti-Hermitian
and satisfies the identities �̃ω(k)∗ = �̃ω(−k) and �̃ω(k)T =
−�̃ω(−k).
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We are now in a position to compute the physical Majorana
CM in momentum space by taking the FT of Eq. (B18). In
momentum space, the right-hand side simplifies significantly
due to the expression for the fiducial state CM given in
Eqs. (C5) and (C6). We thus find [33]

�̃|ψ〉(k) = A + B[D + �̃ω(k)]−1BT . (C8)

The physical state is well defined if the matrix inversion can
be carried out, i.e., if the determinant

q(k) = det[D + �̃ω(k)] (C9)

is not equal to zero. We emphasize that the matrices in
Eq. (C8) have a constant size given by the number of Bloch
bands, such that Eq. (C8) can typically be evaluated ana-
lytically. In Appendix E, we use Eq. (C8) to evaluate the
Bloch CM of the SSH model MPS from Sec. II A, and in
Appendix H, we use Eq. (C8) to evaluate the Bloch CM of
the quadrupole model PEPS of Sec. IV B.

2. Parent Hamiltonian

A translation-invariant Gaussian fermionic TNS |ψ〉 has an
infinite number of parent Hamiltonians for which it is an exact
ground state. For any non-negative scalar function ε(k) � 0
on the Brillouin zone,

Hε = i

4

∑
k

ε(k)
(
χ

(p)
k

)†
[ST �̃|ψ〉(k)S∗]χ (p)

k (C10)

is a parent Hamiltonian for the Gaussian fermionic TNS |ψ〉
[33,40]. Here,

χ
(p)
k = (a1,k, . . . , a f ,k, a†

1,−k, . . . , a†
f ,−k )T (C11)

is the physical part of the mode vector of Eq. (C3), and S is the
transformation matrix defined in Eq. (A2) from the Majorana
fermions to the complex fermions.

The properties of the parent Hamiltonian Hε depend on
the dispersion function ε(k). If ε(k) > 0 is strictly positive
throughout the Brillouin zone, Hε is gapped. Moreover, if all
matrix entries of the product ε(k)�̃|ψ〉(k) are polynomials in
e±ikx and e±iky , the parent Hamiltonian is strictly local.

A natural, but not unique, choice for the dispersion function
is given by ε(k) = q(k) from Eq. (C9). Indeed, since D
and �̃ω(k) are anti-Hermitian and of even dimension [see
Eqs. (C6) and (C7)], it follows that q(k) is real. If more-
over q(k) is strictly positive throughout the Brillouin zone,
implying that the PEPS has exponentially decaying real-space
correlations, the parent Hamiltonian Hq is gapped and strictly
local with all terms acting on at most 2ξ successive unit
cells [40,47].

APPENDIX D: GfTNSs WITH CONSERVED
PARTICLE NUMBER

In the main text, we consider Gaussian fermionic TNSs
with a conserved particle number: the ground states of both
the SSH model and the quadrupole model lie at half-filling.
The TNSs are written in a basis related to the physical basis
by a staggered particle-hole conjugation [cf. Eq. (7) for the
SSH MPS and Eq. (28) for the quadrupole PEPS]. Hence,
the U(1) symmetry of the local tensors, which imposes the

conservation of the physical particle number, also takes a
staggered form [cf. Eq. (12) for the SSH MPS and Eq. (30)
for the quadrupole PEPS]. In this Appendix, we rephrase this
U(1) symmetry in the language of fiducial states, and show
that it enforces many vanishing elements for the CM of the
local fiducial state. These are equivalent to the vanishing of the
off-diagonal block Q = 0 of the complex CM of a state with
conserved particle number (see Appendix A 1), but expressed
in the basis after the staggered particle-hole transformation.
We focus on the one-dimensional case since the computation
for two-dimensional GfTNSs is analogous.

For one-dimensional Gaussian fermionic MPS, we con-
sider a U(1) symmetry of the local tensor of the general form

A[x]i
lr =

∑
i′l ′r′

(
f⊗

τ=0

U (ητ,xϕ)

)
ii′

⎛
⎝ ξ⊗

j=0

U (ηL, j,xϕ)

⎞
⎠

ll ′

×
⎛
⎝ ξ⊗

j=0

U (ηR, j,xϕ)

⎞
⎠

rr′

A[x]i′
l ′r′ , (D1)

where ητ,x, ηL, j,x, ηR, j,x ∈ {±1} for τ = 1, . . . , f and j =
1, . . . , ξ . Here,

U (ϕ) =
(

1 0
0 eiϕ

)
(D2)

is the U(1) rotation acting on a single spinless fermion. Posi-
tive and negative values for η indicate that the corresponding
physical or virtual modes transform as particles and holes,
respectively. The symmetries of Eq. (12) for the local tensors
on the A and B sublattices of the SSH charge-pumping MPS
are examples with f = ξ = 1.

Since the elements of the local tensor A[x] are the basis
coefficients of the local fiducial state |Qx〉 [cf. Eq. (B10)],
Eq. (D1) is equivalent to the invariance of the local fiducial
state under the U(1) symmetry

Ûx(ϕ) =
f∏

τ=0

Ûτ,x(ητ,xϕ)
ξ∏

j=0

ÛL, j,x(ηL, j,xϕ)ÛR, j,x(ηR, j,xϕ)

(D3)

whose many-body basis representation is given in Eq. (D1).
Here, each individual operator Û in the product acts on exactly
one fermion. For instance, the operator acting on the physical
fermion τ is given by

Ûτ,x(ητ,xϕ) = eiητ,xϕa†
τ,xaτ,x + aτ,xa†

τ,x (D4)

and similarly for the virtual fermions. This agrees with the
matrix representation of the U(1) rotation acting on a single
mode given in Eq. (D2).

We observe that the U(1) operator of the physical
fermion τ from Eq. (D4) satisfies aτ,xÛτ,x(ητ,xϕ) = eiητ,xϕ

Ûτ,x(ητ,xϕ)aτ,x and a†
τ,xÛτ,x(ητ,xϕ) = e−iητ,xϕÛτ,x(ητ,xϕ)a†

τ,x.
Extending this to all of the modes in the mode operator of
Eq. (B7), we find that

(χx)μÛx(ϕ) = eiϕ(ηx )μÛx(ϕ)(χx)μ, (D5)

where 1 � μ, ν � 2nmodes. Here, we collected all the parame-
ters η into a vector of length 2nmodes using the same ordering
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as in the mode vector of Eq. (B7),

ηx = (η1,x, η2,x, . . . , η f ,x, ηL,1,x, ηL,2,x, . . . , ηR,1,x, . . . ,

− η1,x, . . . ,−ηL,1,x, . . . ,−ηR,1,x, . . . ), (D6)

where the last nmodes entries describe the creation opera-
tors which transform with the opposite sign under the U(1)
symmetry.

We are now ready to infer the consequences of the local
fiducial state’s invariance under the U(1) symmetry from
Eq. (D3) for its complex CM. Indeed, due to the rela-
tion of Eq. (D5), correlation functions transform under the
symmetry as

〈Qx|(χ†
x )ν (χx)μ|Qx〉 = 〈Qx|Û †

x (ϕ)(χ†
x )ν (χx)μÛx(ϕ)|Qx〉

= eiϕ[(ηx )μ−(ηx )ν ]〈Qx|(χ†
x )ν (χx)μ|Qx〉.

(D7)

Therefore, they vanish unless (ηx)μ = (ηx)ν . This shows that
the symmetry of Eq. (D1) forces the vanishing of half the
elements of the complex CM of the local fiducial state

(Gx)μν = 0 if (ηx)μ �= (ηx)ν, (D8)

where 1 � μ, ν � 2nmodes.

APPENDIX E: COVARIANCE MATRIX FOR SSH MPS

In this Appendix, we illustrate the formalism of GfTNS
introduced in Appendices B and C using the example of the
MPS from Eq. (11) describing charge pumping in the SSH
model. After expressing the state as a GfTNS in Appendix E 1,
we demonstrate the computation of its Bloch CM and parent
Hamiltonian in Appendix E 2.

1. Expression as GfTNS

Our goal is to express the SSH charge-pumping MPS,
which is already fully defined by Eq. (11) in the lan-
guage of local tensors, as a GfTNS using the formalism
from Appendix B. Since the MPS has physical dimen-
sion 2 and bond dimension 2, it is described by f = 1
physical fermion and ξ = 1 virtual fermion per nearest-
neighbor bond and lattice site (cf. the first paragraph of
Appendix B 2). On the A sublattice, the annihilation operators
for the physical, left virtual, and right virtual modes are aA,x,
bL,A,x, and bR,A,x, respectively, and similarly for the B sublat-
tice. Following the recipe given above, we need to find the
local fiducial states |QA,x〉 = QA,x|�〉 and |QB,x〉 = QB,x|�〉
that match the local tensors A and B from Eq. (11) at each unit
cell x. The link between the local tensors and fiducial states
is then given by Eq. (B10) stating that the local tensor entries
are the basis coefficients of the fiducial state. For example,
the tensor element A1

01 = β tells us that the local fiducial map
QA,x contains a term βa†

A,xb†
R,A,x. Performing this matching for

every nonzero tensor entry, we find that the fiducial maps are
given by

QA,x = γ + αa†
A,xb†

L,A,x + βa†
A,xb†

R,A,x, (E1a)

QB,x = γ + βa†
B,xb†

L,B,x − αa†
B,xb†

R,B,x. (E1b)

In a second step, we want to write the local fiducial states as
Gaussian states satisfying Wick’s theorem in order to express
the MPS as a GfTNS. Since the local tensors are parity even,
the local fiducial states |QA,x〉 and |QB,x〉 can be parametrized
as in Eq. (B12) using the exponential of antisymmetric coeffi-
cient matrices MA,x and MB,x. In the case of the SSH pumping
MPS, this is very simple since the fiducial states we derived in
Eq. (E1) have the form of Eq. (A11), allowing us to directly
read off MA,x and MB,x (imposing antisymmetry). We find that
the coefficient matrices are given by

MA,x = 1

2

⎛
⎝ 0 a b

−a 0 0
−b 0 0

⎞
⎠, (E2a)

MB,x = 1

2

⎛
⎝ 0 b −a

−b 0 0
a 0 0

⎞
⎠. (E2b)

Here, we defined the quotients a = α/γ and b = β/γ of
the parameters used in Eq. (11), and we absorbed the remain-
ing factor γ into the normalization constant N in Eq. (A11).
The complex CMs of these local fiducial states are computed
from MA,x and MB,x using Eq. (A12), and are then transformed
to the Majorana representation using Eq. (A3). One finds that
the Majorana CM �QA,x is

�QA,x = 1

c

⎛
⎝(c − 2)iσ2 4aσ1 4bσ1

−4aσ1 (8a2 − c)iσ2 8abiσ2

−4bσ1 8abiσ2 (8b2 − c)iσ2

⎞
⎠,

(E3)
where we introduced the shorthand notation c ≡ 1 +
4a2 + 4b2, and the basis is the Majorana basis de-
rived from (aA,x, bL,A,x, bR,A,x, a†

A,x, b†
L,A,x, b†

R,A,x ). The Ma-
jorana CM �QB,x in the Majorana basis derived from
(aB,x, bL,B,x, bR,B,x, a†

B,x, b†
L,B,x, b†

R,B,x ) is given by Eq. (E3)
with the replacements a 	→ b and b 	→ −a. We have thus
successfully expressed the MPS from Eq. (11) as a GfTNS.

The virtual maximally entangled states for the SSH MPS
are of the form discussed in Appendix B 2. In particular,
the Majorana CM �|ωA,x,B,x〉 of the state |ωA,x,B,x〉 within a
unit cell is given by Eq. (B16) in the Majorana basis ob-
tained from (bR,A,x, bL,B,x, b†

R,A,x, b†
L,B,x ). Similarly, the Ma-

jorana CM of the state |ωB,x,A,x+1〉 between unit cells is
given by Eq. (B16) in the Majorana basis obtained from
(bR,B,x, bL,A,x+1, b†

R,B,x, b†
L,A,x+1).

2. Bloch CM and parent Hamiltonian

Now that we have expressed the MPS from Eq. (11) as a
GfTNS, we want to use the power of the formalism introduced
in Appendix C to derive its CM and parent Hamiltonian on a
chain with periodic boundary conditions. We will compute the
Bloch CM by evaluating Eq. (C8), and from there obtain the
parent Hamiltonian via Eq. (C10).

a. CM for a unit cell

The expression for the Bloch CM from Eq. (C8) is valid
for a translation-invariant GfTNS. In particular, the CM �Qx

with its blocks A, B, and D from Eq. (C5) is the Majorana
CM of the fiducial state of a unit cell, not a single site. In
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order to proceed, we therefore need to derive the fiducial state
of an entire unit cell by contracting the virtual bond within
a unit cell. In the language of GfTNSs, this is described by
projecting the fiducial states QA,xQB,x|�〉 of the two sites
in one unit cell onto the virtual maximally entangled state
connecting them:

〈ωAB|[QA,xQB,x|�〉]. (E4)

This projection is a special case of Eq. (A7). Hence, the
CM �Qx of the resulting state is given, as in Eq. (A9), by
the Schur complement of the block of size 4 × 4 corre-
sponding to the Majorana mode operators constructed from
(bR,A, bL,B, b†

R,A, b†
L,B):

�Qx = A′ + B′ [D′ + �|ωA,x,B,x〉]
−1 B′T . (E5)

Here, A′ and D′ are the blocks on the diagonal of the di-
rect sum �QA,x ⊕ �QB,x corresponding to the Majorana modes
derived from (aA,x, aB,x, bL,A,x, bR,B,x, a†

A,x, a†
B,x, b†

L,A,x, b†
R,B,x )

and (bR,A,x, bL,B,x, b†
R,A,x, b†

L,B,x ), respectively. Correspond-
ingly, B′ is the off-diagonal block.

�Qx has the block form

�Qx =
(

A B
−BT D

)
, (E6)

where A and D are real antisymmetric blocks of size 4 × 4,
and B is a real block of size 4 × 4. We find that the diagonal
blocks A and D are of the form

Z (1)(r, s) =

⎛
⎜⎝

0 −r 0 −s
r 0 −s 0
0 s∗ 0 −r
s∗ 0 r 0

⎞
⎟⎠, (E7)

where r and s are parameters. Specifically, the physical and
virtual blocks are

A = Z (1)(rp, sp), (E8a)

D = Z (1)(rv, sv ) (E8b)

with

rp = 1 − a4 − b4

1 + 2a2 + a4 + b4
, (E8c)

sp = 2b2

1 + 2a2 + a4 + b4
, (E8d)

rv = 1 − a4 + b4

1 + 2a2 + a4 + b4
, (E8e)

sv = 2a2b2

1 + 2a2 + a4 + b4
. (E8f)

Here, the denominator is a consequence of the matrix
inverse in Eq. (E5). In addition, the block containing the
coupling between physical and virtual fermions is

B = a

⎛
⎜⎝

0 rp + 1 0 −sp

rp + 1 0 sp 0
0 −sp 0 −rp − 1
sp 0 −rp − 1 0

⎞
⎟⎠. (E9)

b. Bloch CM

We can now directly compute the Fourier Majorana CM
�̃|ψ〉(kx ) of the physical state defined by the MPS on a chain
with Nx sites and periodic boundary conditions. �̃|ψ〉(kx )
is given by the Schur complement in Eq. (C8), where the
Fourier Majorana CM �̃ω(kx ) for the virtual bonds is given by
Eq. (C7), and A, B, and D are given in the previous section.

For the SSH pumping MPS, Eq. (C8) is a matrix equation
of size 4 × 4 since there are two physical Bloch bands. The
matrix inverse can be evaluated analytically using the special
parametrization Z (1)(r, s) from Eq. (E7). Indeed, the Fourier
Majorana CM for the virtual bonds from Eq. (C7) can be
written as �̃ω(kx ) = Z (1)(0, eikx ). One easily checks that

Z (1)(r, s) + Z (1)(r′, s′) = Z (1)(r + r′, s + s′), (E10a)

det[Z (1)(r, s)] = (r2 + ss∗)2, (E10b)

(Z (1)(r, s))−1 = − Z (1)(r, s)√
det[Z (1)(r, s)]

. (E10c)

Using these identities, the matrix inverse in Eq. (C8) can
be performed by hand,

(D + �̃ω(kx ))−1 = (Z (1)(rv, sv + eikx ))−1

= − Z (1)(rv, sv + eikx )√
r2
v + (sv + eikx )2

, (E11)

and we evaluate the determinant q(kx ) from Eq. (C9) as

q(kx ) = [r2
v + (sv + eikx )2

]2
= 4(1 + a4 + b4 + 2a2b2 cos kx )2

((a2 + 1)2 + b4)2 . (E12)

Unless γ = 0 and |α| = |β|, q(kx ) is strictly positive such
that the MPS is well defined everywhere except for these
parameter values.

After the matrix inversion in Eq. (C8), the remaining
matrix multiplications in Eq. (C8) can be performed using
a computer algebra system. We thus find that the Fourier
Majorana CM �̃|ψ〉(kx ) of the physical state is again of the
form of Eq. (E7):

�̃|ψ〉(kx ) = Z (1)(r(kx ), s(kx )) (E13a)

with parameters

r(kx ) = 1 − a4 − b4 − 2a2b2 cos kx

1 + a4 + b4 + 2a2b2 cos kx
, (E13b)

s(kx ) = 2(b2 + a2e−ikx )

1 + a4 + b4 + 2a2b2 cos kx
. (E13c)

c. Parent Hamiltonian

Using Eq. (C10), we can now find a Bloch parent Hamil-
tonian Hε for the MPS from its Majorana Fourier CM which
we computed in Eq. (E13). In order to gain a physical under-
standing of the parent Hamiltonian, we express it in terms of
the original complex physical modes before the particle-hole
transformation of Eq. (7) given by

âA,k = aA,k, (E14a)

âB,k = a†
B,−k (E14b)
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after the FT of Eq. (C1). We find

Hε =
∑

kx

ε(kx )

(
âA,kx

âB,kx

)†(
r(kx ) s(kx )
s(kx )∗ −r(kx )

)(
âA,kx

âB,kx

)
, (E15)

where the functions s(kx ) and r(kx ) are defined in Eq. (E13).
In order for Hε to be gapped and strictly local, we need to

find a dispersion function ε(kx ) which is strictly positive such
that ε(kx )s(kx ) and ε(kx )r(kx ) are polynomials in e±ikx . As
explained in Appendix C 2, a natural choice is ε(kx ) = q(kx ).
Indeed, q(kx ) computed in Eq. (E12) cancels the denominator
of Eq. (E13). Since q(kx )s(kx ) and q(kx )r(kx ) contain the
factor e±ikx up to second order, the parent Hamiltonian Hq con-
tains hopping terms between up to second-nearest-neighbor
unit cells.

Due to the special structure of Eq. (E8), we can in fact ob-
tain a more short-ranged parent Hamiltonian from the choice

ε(kx ) = 1 + a4 + b4 + 2a2b2 cos kx

a4 + b4 + 1
(E16)

proportional to
√

q(kx ), which is in turn proportional to the
denominator of r and s from Eq. (E13b). ε(kx ) is strictly
positive for all parameter values that lead to a well-defined
state. The factor 1/(a4 + b4 + 1) is a normalization ensuring
that the parent Hamiltonian matches Eq. (3) if the MPS is
given by the parametrization φpump of Eq. (15). We see that
the parent Hamiltonian Hε with Bloch representation

Hε (kx ) = 1

a4 + b4 + 1
[(1 − a4 − b4 − 2a2b2 cos kx )σ3

+ 2(b2 + a2 cos kx )σ1 + 2a2 sin kxσ2] (E17)

with respect to the original complex physical modes has
hopping only up to nearest-neighbor unit cells.

APPENDIX F: COLUMN COVARIANCE MATRIX OF
REAL-SPACE (d + 1)-DIMENSIONAL TNS FROM CHARGE
PUMPING OF d-DIMENSIONAL TNS WITH CONSERVED

PARTICLE NUMBER

In Sec. III C, we introduced the tensors Acol and Bcol

describing the real-space Chern PEPS restricted to a column
of sites on the A and B sublattices at positions {(x, y)}0�y�Ny−1.
Acol and Bcol are defined by the application of the inverse FT of
Eq. (22) to the physical and horizontal virtual legs of a column
of the hybrid Chern PEPS at positions {(x, k( j)

y )}0� j�Ny−1. In
this Appendix, using the representation of the SSH pumping
MPS as a GfTNS from Appendix E, we compute Acol and
Bcol explicitly in terms of their CMs. In order to demonstrate
the generality of the result, we will consider a general (d +
1)-dimensional TNS constructed from charge pumping of a
d-dimensional TNS, which is assumed to have a conserved
number of physical particles, and hence possess a U(1) sym-
metry of the form discussed in Appendix D.

Thus, let |ψd (t )〉 be the Gaussian fermionic TNS in d
spatial dimensions along a cyclic interpolation parametrized

by the time t ∈ (−π, π ]. With the same basis as in Eq. (B7),
we collect the physical and virtual mode operators for one unit
cell x ∈ Zd of |ψd (t )〉 into the mode vector

χx(t ) = (a1,x(t ), a2,x(t ), . . . , a f ,x(t ),

bL,1,x(t ), bL,2,x(t ), . . . , bR,1,x(t ), . . . ,

a†
1,x(t ), . . . , b†

L,1,x(t ), . . . , b†
R,1,x(t ), . . .)T (F1)

of length 2nmodes. The physical and virtual mode operators
now depend on the time t along the interpolation. As ex-
plained in Appendix B, the d-dimensional TNS is defined by
its Gaussian local fiducial state Qx(t )|�〉, which is character-
ized by its complex CM Gx(t ) of dimension 2nmodes.

We assume that the TNS has a conserved number of
particles, such that the local fiducial state Qx(t )|�〉 of |ψd (t )〉
has a U(1) symmetry of the form discussed in Appendix D.
This symmetry determines which physical and virtual modes
correspond to holes and particles: for each 1 � μ � nmodes,
an entry (ηx)μ = 1 or (ηx)μ = −1 in the vector ηx from
Eq. (D6) indicates that the mode μ has a particlelike or
holelike character, respectively. Note that ηx does not depend
on the time t , such that the holelike or particlelike character
of the modes remains unchanged along the interpolation.

We can now move to the hybrid (d + 1)-dimensional TNS,
which is defined by Eq. (20) of the main text. From Sec. III B
we recall that the local fiducial state (equivalent to the local
tensor) of the hybrid state at the position (x, k( j)

d+1) is given by
Qx(t ( j) )|�〉 containing the modes χx(t ( j) ) from Eq. (F1). In
particular, due to the tensor product in the (d + 1)st direction,
virtual fermions in this direction are not needed.

We can now easily write the CM of one column of the hy-
brid (d + 1)-dimensional TNS, given by the sites at positions
{(x, k( j)

d+1)}0� j�Nd+1−1. Indeed, due to the absence of virtual
legs in the direction d + 1, the contraction of the bonds in
this direction of the hybrid column amounts to a trivial tensor
product in the language of local tensors. In terms of fiducial
states, this corresponds to a direct sum of CMs. Hence, the
complex CM Ghybrid

x of the column {(x, k( j)
d+1)}0� j�Nd+1−1 of

the hybrid state is block diagonal:(
Ghybrid

x

)
μ,μ′;t ( j),t ( j′ ) = δ j, j′ (Gx(t ( j) ))μ,μ′ . (F2)

Here, Ghybrid
x is written in the basis {(χx)μ

(t ( j) )}1�μ�2nmodes,0� j�Nd+1−1 of all operators for the physical
and virtual modes in the first d directions in the column.

We now consider the (d + 1)-dimensional real-space state
restricted to a column {(x, xd+1)}0�xd+1�Nd+1−1, which is ob-
tained by applying the inverse FT F̃ in direction d + 1 to the
physical and virtual legs of the hybrid column. The complex
CM Gcol

x of this at position x is therefore given by

Gcol
x = F̃∗Ghybrid

x F̃T . (F3)

The inverse FT is the d-dimensional generalization of
Eq. (22),

F̃μ,μ′;xd+1,t ( j) = δμ,μ′√
Nd+1

ei(ηx )μxd+1t ( j)
(F4)

with 0 � j, xd+1 � Nd+1 − 1.

115134-24



FERMIONIC TENSOR NETWORKS FOR HIGHER-ORDER … PHYSICAL REVIEW B 101, 115134 (2020)

From Eqs. (F2), (F3), and (F4), Gcol
x becomes(

Gcol
x

)
μ,μ′;xd+1,x′

d+1

= 1

Nd+1

Nd+1−1∑
j=0

e−i[(ηx )μxd+1−(ηx )μ′ x′
d+1]t ( j)

(Gx(t ( j) ))μ,μ′ . (F5)

This expression can be further simplified due to the constraint
of Eq. (D8) imposed on Gx(t ( j) ) by its U(1) symmetry,
implying Gx(t ( j) )μ,μ′ = 0 unless (ηx)μ = (ηx)μ′ . Indeed, we
may thus define the matrix

G̃x(t ( j) )μ,μ′ ≡ Gx((ηx)μt ( j))μ,μ′ (F6)

that mixes elements of the complex CM of the d-dimensional
state at times t ( j) and −t ( j) according to whether the modes
μ and μ′ transform as particles or holes, respectively. The
2nmodes-dimensional blocks of the column CM Gcol

x are then
given by the FT of this matrix:

(
Gcol

x

)
xd+1,x′

d+1
=

Nd+1−1∑
j=0

e−i[xd+1−x′
d+1]t ( j)

Nd+1
G̃x(t ( j) ). (F7)

This expression is explicitly invariant under real-space trans-
lations xd+1 	→ xd+1 + 1 acting on both the physical modes
and the virtual modes in the first d directions. Hence, the
inverse FT of Eq. (F4) guarantees the translation invariance
of the column CM Gcol

x in the direction d + 1.
Finally, we want to investigate which form the global U(1)

symmetry related to particle-number conservation takes for
Gcol

x . This result will be used in Appendix G. The U(1) is
inherited from the invariance of each fiducial state Qx(t )|�〉
under the U(1) symmetry of Eq. (D3), which is independent
of t . From the expression of the latter in second quantization
[cf. Eq. (D4)], we see that the generator of the global U(1)
symmetry of the column state is

˝
Nd+1−1∑
xd+1=0

[
f∑

τ=0

ητ,xa†
τ,(x,xd+1 )aτ,(x,xd+1 )

+
∑

α

ξ∑
j=0

ηα, j,xb†
α, j,(x,xd+1 )bα, j,(x,xd+1 )

⎤
⎦
˛

= 0, (F8)

whose expectation value vanishes.

APPENDIX G: DISENTANGLED MODES IN
SINGLE-PARTICLE ES AT FIXED PARTICLE NUMBER

In this Appendix, we show that as stated in Eq. (25),
the maximal number of entangled modes compatible with
the U(1) symmetry of the SSH model MPS in the ES of the
Chern PEPS column state is given by max{3L, Ny}, where
L is the number of sites in the subsystem. We proceed by
deriving a lower bound on the number of disentangled modes
in the ES of a state with a conserved particle number (and
therefore an upper bound on the number of entangled modes).
We first consider a generic state in Appendix G 1, before
specializing to the fiducial state of a real-space column of the
(d + 1)-dimensional TNS in Appendix G 2.

1. Insulator with filling fraction q

We consider a noninteracting system of N fermionic
DOFs with creation and annihilation operators a†

j , a j for
j = 1, . . . , N . We define a bipartition of the system into the
subsystem A and its complement Ā, where the DOFs of A
are described by the first NA modes j = 1, . . . , NA. Let |ψ〉
be a pure state of this system with a conserved particle number
and filling fraction q, such that the total number of occupied
modes in |ψ〉 is qN . We denote by nλ=1

A the number of
entanglement levels with the value λ = 1 in the single-particle
ES of |ψ〉 restricted to A. We now want to show that this
number is bounded below by the filling fraction as

nλ=1
A � max{qN − (N − NA), 0}. (G1)

Proof. Let H =∑N
i, j=1 hi ja

†
i a j be a noninteracting flat-

band Hamiltonian whose ground state is |ψ〉, where h is a
Hermitian matrix of dimension N × N . The occupied modes
in |ψ〉 are given by the qN orthogonal eigenstates u(k) of h
with energy −1, i.e.,

N∑
j=1

hi ju
(k)
j = −u(k)

i , (G2)

where k = 1, . . . , qN .
With respect to the bipartition into A, Ā, each basis state

u(k) falls into exactly one of the following three categories
(assuming that the eigenstates are ordered accordingly):

(1) For k = 1, . . . , m1, the states satisfy u(k)
i = 0 for i =

NA + 1, . . . , N such that the corresponding occupied modes
are composed of DOFs of the subsystem A. According to The-
orem 1 of Ref. [69], each such state leads to an entanglement
level λ = 1 in the single-particle ES of |ψ〉 restricted to A.
Hence, m1 � nλ=1

A .
(2) For k = m1 + 1, . . . , m2, u(k)

i = 0 for i = 1, . . . , NA
such that the corresponding occupied modes are localized
in Ā.

(3) For k = m2 + 1, . . . , qN , u(k)
i �= 0 both for some i ∈

{1, . . . , NA} and some i ∈ {NA + 1, . . . , N} such that the
corresponding occupied modes are localized neither in A
nor in Ā.

The numbers m1, m2 are assumed to be maximal in the
sense that no linear combination of eigenstates of the category
(3) lies either purely in A or purely in Ā.

In the next paragraph, we will show that the number qN −
m1 of states from the categories (2) and (3) is no larger than
the number N − NA of DOFs in Ā. This proves the claim since
the number of states from the different categories can then be
estimated as

qN = m1 + (qN − m1) � nλ=1
A + (N − NA), (G3)

leading to Eq. (G1).
As a final step, we need to show that qN − m1 � N − NA.

This follows from the linear independence of the qN − m1

vectors {ũ(k)}k>m1 of dimension N − NA, where ũ(k)
i = u(k)

NA+i
for i = NA + 1, . . . , N is the restriction of the eigenvector to
the DOFs of Ā. Indeed, let us assume that we have a vanishing
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linear combination

0 =
qN∑

k=m1+1

μkũ(k) (G4)

with coefficients μk . The scalar product with ũ(l ) shows
that 0 = μl for l = m1 + 1, . . . , m2: indeed, the orthogonal-
ity of the u(k) implies

∑
i>NA

ũ(l )
i ũ(k)

i =∑i�1 u(l )
i u(k)

i = δkl .

Equation (G4) therefore implies 0 =∑qN
k>m2

μkũ(k) where the
sum runs only over category (3). Due to the maximality
of m1, m2 as defined above just below point (3), we then
have 0 =∑qN

k>m2
μku(k). Otherwise, this would be a linear

combination purely in A since the part in Ā vanishes by
assumption. We thus also get 0 = μl for l = m2 + 1, . . . , qN ,
proving that qN − m1 � N − NA.

2. Real-space column of (d + 1)-dimensional TNS

We now apply Eq. (G1) to the case where |ψ〉 is
the fiducial state of one real-space column of the (d +
1)-dimensional pumping TNS, whose CM is computed in
Eq. (F5). The column state has N = nmodesNd+1 degrees of
freedom, where Nd+1 is the number of sites in the direc-
tion d + 1 and nmodes the number of physical and virtual
particles per lattice site of the d-dimensional TNS. Below
we will show that in a suitable basis, the column state has
a conserved particle number qN = Nd+1nη− , where nη− is
the number of values −1 in the first nmodes entries of the
vector ηx from Eq. (D6). We consider the single-particle ES
of the column state with respect to the subsystem AL of
the first L sites 0 � xd+1 � L − 1 of the column, which
has NAL = Lnmodes DOFs. By Eq. (G1), the number nλ=1

AL
of

entanglement levels with the value λ = 1 in this spectrum is
lower bounded as

nλ=1
AL

� max{Nd+1nη− − (Nd+1 − L)nmodes, 0}. (G5)

We now show that with a suitable particle-hole transforma-
tion we can find a single-particle basis with respect to which
the column state has a conserved particle number Nd+1nη− . In
Eq. (F5) the state is expressed in a basis where the CM Gcol

x
has a nonvanishing off-diagonal block Q corresponding to
superconducting correlations, such that only the parity of the
particle number is conserved [cf. Eq. (A1)]. Below Eq. (F5)
we note that half the entries of Gcol

x vanish, namely, those with
(ηx)μ �= (ηx)μ′ . A new basis, in which the complex CM has
only a diagonal block R and hence a fixed particle number,
is created as follows: For those modes 1 � m � nmodes with
(ηx)m = −1, we exchange annihilation and creation operators
since the latter have (ηx)m+nmodes = 1. This is a particle-hole
transformation corresponding to the mapping

aτ,(x,xd+1 ) 	→ a†
τ,(x,xd+1 ) (G6)

for all physical modes with ητ,x = −1 while leaving modes
with ητ,x = 1 unchanged, and similarly for the virtual
modes.

The number of particles in the column state is given by the
expectation value from Eq. (F8) of the generator of its global
U(1) symmetry. Note that this is not the physical particle
number, but rather the number of particles in the system
composed of the physical legs and the virtual legs in the first d

spatial dimensions. Under the transformation of Eq. (G6), the
particle-number expectation value from Eq. (F8) transforms
as explained in Eq. (13). We thus find that in the new basis of
modes the particle number is Nd+1nη− as claimed above.

a. Chern PEPS

Let us apply these results to the Chern PEPS derived from
the SSH pumping MPS. For simplicity, we restrict ourselves
to a column Acol of A sites with nmodes = 3 DOFs per site
and ηA = 1 and ηL,A = ηR,A = −1 [cf. the discussion below
Eq. (13)]. Therefore, nη− = 2 and Eq. (G5) becomes

nλ=1
AL

� max{3L − Ny, 0}. (G7)

This shows that Eq. (25) gives the maximal number of entan-
gled modes compatible with the U(1) symmetry of the SSH
model MPS.

For the PEPS defined by the trivial cycle φtriv from Eq. (17),
the discussion above can be refined: since β = 0 throughout
the interpolation, all right virtual modes decouple from the
column tensor such that there trivially are Ny entanglement
levels |λ| = 1. Let us investigate if the U(1) symmetry causes
additional decoupled levels in the system of the coupled
physical and left virtual particles. This system has only two
DOFs per site, namely, the physical leg with ηA = 1 and the
left virtual leg with ηL,A = −1. In this case, Eq. (G5) gives a
trivial lower bound for the number of decoupled modes with
levels λ = 1:

nλ=1
AL

� max{2L − Ny, 0} = 0 for L � Ny/2. (G8)

Hence, the U(1) symmetry does not cause any additional
decoupled modes, and the number of entangled modes is given
by 2L as discussed in the main text.

b. Chiral hinge PEPS

The discussion for the three-dimensional chiral hinge
PEPS from Sec. IV C is analogous, where a column of sites
on the sublattice 1 has nmodes = 5 DOFs per site with η1 = 1
and ηL,1 = ηU,1 = ηR,1 = ηD,1 = −1. Therefore, nη− = 4 and
Eq. (G5) implies nλ=1

AL
� max{5L − Nz, 0}.

For the mirror-symmetric case with couplings α = αx =
αy and β = βx = βy, this bound can be refined. Indeed, by
defining the linear combinations bLD

±,1 = (bL,1 ± bD,1)/
√

2 and

bUR
±,1 = (bR,1 ± bR,1)/

√
2, the local fiducial state |Q[1]〉 from

Eq. (H1) below can be written as

|Q[1]〉 = [γ −
√

2βa†
1

(
bLD

−,1

)† −
√

2αa†
1

(
bUR

−,1

)†]|�〉. (G9)

Therefore, when considering only one column of sites on the
sublattice 1, two virtual fermionic modes decouple from the
local tensor on each site. Effectively, the remaining coupled
system therefore has only nmodes = 3 DOFs per site with
η1 = 1 and ηLD

−,1 = ηUR
−,1 = −1, such that the number of ad-

ditional disentangled modes due to the U(1) symmetry can be
estimated as above for the Chern PEPS. Hence, with the iden-
tification Ny 	→ Nz, the bound on the number of disentangled
modes is given by Eqs. (G7) and (G8) for the PEPSs derived
from φpump and φtriv, respectively.
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APPENDIX H: QUADRUPOLE PEPS AS GfTNS

In this Appendix we apply the formalism of GfTNSs
to the quadrupole model pumping PEPS of Eq. (29). In
Appendix H 1, we show how the state can be expressed as
a GfTNS. This allows us to compute its Bloch CM and a
Bloch parent Hamiltonian on the torus in Appendix H 2. These
sections are completely analogous to Appendix E for the SSH
pumping MPS. We therefore refer the reader to this Appendix
for a detailed explanation of each step. Finally, in Appendix
H 3 we discuss the ES of the PEPS when the parameters are
chosen such that the state represents the OAI dimerized phase
of the quadrupole model.

1. Expression as GfTNS

The quadrupole model pumping PEPS is defined in
Eq. (29) of the main text in the language of local tensors. Here,
we want to reexpress this state in the formalism of GfTNSs.
We recall that each unit cell consists of 2 × 2 lattice sites, and
that the PEPS has physical dimension 2 and bond dimension
2. This corresponds to f = 1 physical fermion per lattice
site and ξ = 1 virtual fermion per nearest-neighbor bond and
lattice site, represented in Fig. 6(b) by blue and red circles,
respectively.

As explained in Appendix B, the local PEPS tensors A[τ ]

on the four sublattices τ = 1, 2, 3, 4 from the main text cor-
respond to local fiducial states |Q[τ ]〉, whose basis coefficients
are given by the local tensors [see Eq. (B10)]. We write
aτ for the annihilation operator of the physical fermion and
bL,τ , bU,τ , bR,τ , bD,τ for the annihilation operators of the
left, up, right, down virtual fermions on the sublattice τ (we
dropped the unit-cell index due to the translation invariance).
Let |�〉 denote the vacuum annihilated by all these operators.
Applying Eq. (B10), we see that the local fiducial states
on the four sublattices derived from the local tensors of
Eq. (29) are

|Q[1]〉 = [γ − βxa†
1b†

L,1 − αya†
1b†

U,1 + αxa†
1b†

R,1

+βya†
1b†

D,1]|�〉, (H1a)

|Q[2]〉 = [γ − αxa†
2b†

L,2 + βya†
2b†

U,2 + βxa†
2b†

R,2

−αya†
2b†

D,2]|�〉, (H1b)

|Q[3]〉 = [γ + αxa†
3b†

L,3 + αya†
3b†

U,3 + βxa†
3b†

R,3

+βya†
3b†

D,3]|�〉, (H1c)

|Q[4]〉 = [γ + βxa†
4b†

L,4 + βya†
4b†

U,4 + αxa†
4b†

R,4

+αya†
4b†

D,4]|�〉. (H1d)

These fiducial states are of the form of Eq. (A11) with
only zero- and second-order terms in the creation opera-
tors. Hence, the fiducial states are Gaussian and can be

parametrized as in Eqs. (A10) and (B12) with antisymmetric
coefficient matrices

M1 = 1

2 × 21/4

⎛
⎜⎜⎜⎜⎜⎝

0 −bx −ay ax by

bx 0 0 0 0

ay 0 0 0 0

−ax 0 0 0 0

−by 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (H2a)

M2 = 1

2 × 21/4

⎛
⎜⎜⎜⎜⎜⎝

0 −ax by bx −ay

ax 0 0 0 0

−by 0 0 0 0

−bx 0 0 0 0

ay 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (H2b)

M3 = 1

2 × 21/4

⎛
⎜⎜⎜⎜⎜⎝

0 ax ay bx by

−ax 0 0 0 0

−ay 0 0 0 0

−bx 0 0 0 0

−by 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (H2c)

M4 = 1

2 × 21/4

⎛
⎜⎜⎜⎜⎜⎝

0 bx by ax ay

−bx 0 0 0 0

−by 0 0 0 0

−ax 0 0 0 0

−ay 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (H2d)

Here, we defined the quotients ax = αx/γ , ay = αy/γ ,
bx = βx/γ , and by = βy/γ of the parameters from Eq. (29).
We absorbed the remaining factor γ into the normalization
constant N in Eq. (A11).

We have thus successfully written the PEPS from Eq. (29)
as a GfTNS. Before proceeding, we choose the orientation of
the virtual bonds as follows: all horizontal bonds are oriented
from left to right and all vertical bonds are oriented from top
to bottom.

2. Bloch CM and parent Hamiltonian

Having expressed the quadrupole model pumping PEPS
as a GfTNS, we now want to use the formalism from
Appendix C to compute the Bloch CM and a Bloch parent
Hamiltonian for the state on a torus. We will compute the
Bloch CM by evaluating Eq. (C8), and from there obtain the
parent Hamiltonian via Eq. (C10).

a. CM of unit cell

The Majorana CM �Qx in Eq. (C8) refers to the fiducial
state of a unit cell, not that of a single site. We therefore need
to compute �Qx from the fiducial states for each individual
sublattice given in Eq. (H1). This is done by contracting the
four virtual bonds within one unit cell. In the language of
fiducial states, we project the tensor product |Q[1]〉 ⊗ |Q[2]〉 ⊗
|Q[3]〉 ⊗ |Q[4]〉 of the fiducial states for a unit cell on the
product of the maximally entangled states of the four virtual
bonds connecting the lattice sites within this unit cell. This is
analogous to the computation leading to Eq. (E13), and we
refer the reader to Appendix E 2 a for details. Here, we will
only state the result for the Majorana CM �Qx .
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FIG. 10. Unit cell of the quadrupole model pumping PEPS after
projection of the virtual fermions corresponding to the bonds within
the unit cell (marked by green ellipses) onto maximally entangled
states. This results in a fiducial state with four physical fermions
(blue circles) collected into the block p, four horizontal virtual
fermions in the block vh, and four virtual fermions in the block vv

(red circles for both). The order of the individual fermions within
these blocks is indicated by the labels next to each circle.

The fiducial state of one unit cell, after contraction of the
virtual bonds within the plaquette, describes four physical
fermions and two virtual fermions per direction left, up, right,
down (see Fig. 10). We collect the four physical, horizontal
virtual and vertical virtual fermions into blocks labeled p,
vh, and vv . The order of the individual fermions within these
blocks is indicated in Fig. 10. Since the Majorana CM �Qx

of the fiducial state of a unit cell is antisymmetric (see
Appendix A 1), we can then separate it into 8 × 8 blocks as

�Qx =

⎛
⎜⎝

Ap Bpvh Bpvv

−BT
pvh

Dvh Bvhvv

−BT
pvv

−BT
vhvv

Dvv

⎞
⎟⎠. (H3)

The blocks Ap, Dvh , and Dvv
describe the reduced fiducial

state of the physical, horizontal virtual and vertical virtual
subsystem, respectively. The off-diagonal blocks describe the

coupling between these three subsystems. Equation (H3) is a
generalization of Eq. (C6) with

A = Ap, (H4a)

B = (Bpvh Bpvv

)
, (H4b)

D =
(

Dvh Bvhvv

−BT
vhvv

Dvv

)
(H4c)

which we find useful since we want to treat horizontal and
vertical virtual fermions separately.

We are now ready to give the expression for the Majorana
CM �Qx of the fiducial state of a unit cell. For simplicity, we
set αx = αy ≡ α and βx = βy ≡ β from now on, correspond-
ing to parameters ax = ay ≡ a and bx = by ≡ b in Eq. (H2).
The diagonal blocks Ap, Dvh , and Dvv

of �Qx take the form

Z (2)(r, s, u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −r 0 −u 0 −s 0 0
r 0 −u 0 −s 0 0 0
0 u∗ 0 −r 0 0 0 −s
u∗ 0 r 0 0 0 −s 0
0 s∗ 0 0 0 −r 0 u
s∗ 0 0 0 r 0 u 0
0 0 0 s∗ 0 −u∗ 0 −r
0 0 s∗ 0 −u∗ 0 r 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(H5)

with parameters r ∈ R and s, u ∈ C. Specifically,

Ap = Z (2)(rp,−sp, sp), (H6a)

Dvh = Z (2)(rv, sv, sv ), (H6b)

Dvv
= Z (2)(rv,−sv, sv ) (H6c)

with parameters

rp = −
√

2(2a4 + b4 − 1)

4a2 + 2
√

2a4 + √
2(1 + b4)

, (H7a)

sp = 2b2

4a2 + 2
√

2a4 + √
2(1 + b4)

, (H7b)

rv = 2a2 + √
2(b4 + 1)

4a2 + 2
√

2a4 + √
2(1 + b4)

, (H7c)

sv =
√

2a2b2

4a2 + 2
√

2a4 + √
2(1 + b4)

, (H7d)

where the denominator stems from the matrix inversion in
the Schur complements used to evaluate the projection on the
virtual bonds within one unit cell. The off-diagonal blocks of
�Qx are

Bvhvv
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − rv 0 sv 0 −sv 0 0

rv − 1 0 sv 0 −sv 0 0 0

0 sv 0 0 0 1 − rv 0 −sv

sv 0 0 0 rv − 1 0 −sv 0

0 sv 0 rv − 1 0 0 0 sv

sv 0 1 − rv 0 0 0 sv 0

0 0 0 s 0 sv 0 1 − rv

0 0 sv 0 sv 0 rv − 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (H8a)
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Bpvh = a

21/4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 rp + 1 0 −sp 0 −sp 0 0
rp + 1 0 sp 0 sp 0 0 0

0 sp 0 0 0 rp + 1 0 sp

−sp 0 0 0 rp + 1 0 −sp 0
0 −sp 0 −rp − 1 0 0 0 sp

sp 0 −rp − 1 0 0 0 −sp 0
0 0 0 sp 0 −sp 0 rp + 1
0 0 −sp 0 sp 0 rp + 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (H8b)

Bpvv
= a

21/4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 rp + 1 0 sp 0 −sp 0 0
rp + 1 0 −sp 0 sp 0 0 0

0 sp 0 −rp − 1 0 0 0 sp

−sp 0 −rp − 1 0 0 0 −sp 0
0 −sp 0 0 0 −rp − 1 0 sp

sp 0 0 0 −rp − 1 0 −sp 0
0 0 0 sp 0 sp 0 rp + 1
0 0 −sp 0 −sp 0 rp + 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (H8c)

b. Bloch CM

We can now compute the Bloch CM �̃|ψ〉(k) of the physical
state on a torus by evaluating Eq. (C8). Here, the Majorana
CM of the local fiducial state of the unit cell with its blocks
A, B, and D is given in the previous subsection.

In the same basis as D, the Bloch CM �̃ω(k) of the total
virtual maximally entangled state of size 16 × 16 is

�̃ω(k) =
(

�̃ω,vh (k) 0
0 �̃ω,vv

(k)

)
, (H9a)

where the blocks �̃ω,vh (k) and �̃ω,vv
(k) refer to the horizontal

and vertical virtual fermions, respectively. Since the horizon-
tal fermions on the sublattice 1 couple only to the horizontal
fermions on sublattice 3 (and similarly for 2 and 4), the CM
�̃ω,vh (k) is given by a sum of two copies of the CM from
Eq. (C7) for an MPS with ξ = 1. Hence,

�̃ω,vh (k) =

⎛
⎜⎜⎝

0 0 −σ1e−ikx 0
0 0 0 −σ1e−ikx

σ1eikx 0 0 0
0 σ1eikx 0 0

⎞
⎟⎟⎠.

(H9b)
The expression for �̃ω,vv

(k) is analogous with kx → −ky

(where the negative sign indicates that the bonds are oriented
from top to bottom and hence point in the direction of nega-
tive y). Note that �̃ω,vh (k) = Z (2)(0, e−ikx , 0) and �̃ω,vv

(k) =
Z (2)(0, eiky , 0) are of the form of Eq. (H5).

For the quadrupole model pumping PEPS, the evaluation
of Eq. (C8) requires the inversion of the matrix D + �̃ω(k) of
size 16 × 16. This can be done analytically using the special
representation from Eq. (H5). Indeed, one can show that the
matrix Z (2) has the properties

Z (2)(r, s, u) + Z (2)(r′, s′, u′) = Z (2)(r + r′, s + s′, u + u′),

(H10a)

det[Z (2)(r, s, u)] = (r2 + ss∗ + uu∗)4, (H10b)

[Z (2)(r, s, u)]−1 = − Z (2)(r, s, u)

[det Z (2)(r, s, u)]1/4
.

(H10c)

Moreover, conjugation with the matrix Bvhvv
from

Eq. (H8a), which gives the off-diagonal block of D, returns
a matrix of the form of Eq. (H5),

Bvhvv
Z (2)(r, s, u)BT

vhvv
= Z (2)(r′, s′, u′), (H11)

where r′ = r[(1 − rv )2 − 2s2
v] + 2(1 − rv )svRe(s − u), s′ =

−s(1 − rv )2 + 2rsv (rv − 1) − 2s2
v[Re(u) + iIm(s)], and u′ =

u(1−rv )2+2rsv (rv−1)+2s2
v[Re(s)+iIm(u)]. Using these

identities, the inverse of D + �̃ω(k) can be evaluated
blockwise, and we compute the determinant in Eq. (C9)
as

q(k) = 28(1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky)4

(1 + 2
√

2a2 + 2a4 + b4)4
.

(H12)

This is strictly positive unless γ = 0 and |α| = |β|, such
that the PEPS is well defined everywhere except for these
parameter values.

Proceeding thus, we find that the Bloch Majorana CM
�̃|ψ〉(k) of the physical state is also of the form of Eq. (H5),

�̃|ψ〉 = Z (2)(r(k), s(k), u(k)), (H13a)

where the parameters are

r(k) = 1 − a4 − b4 − a2b2 cos kx − a2b2 cos ky

1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky
, (H13b)

s(k) = −√
2(b2 + a2e−ikx )

1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky
, (H13c)

u(k) =
√

2(b2 + a2eiky )

1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky
. (H13d)

In the denominator, we recognize the fourth root q(k)1/4

coming from the matrix inversion according to Eq. (H10c).

c. Parent Hamiltonian

We are now in a position to find a parent Hamiltonian
for the physical state on a torus, using Eq. (C10) and the
result for the Bloch Majorana CM �̃|ψ〉 from Eq. (H13). To
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get an intuitive understanding of the Hamiltonian, we find it
useful to express it in terms of the original fermionic modes
before the particle-hole transformation of Eq. (28). Their FT is
related to the FT of the new modes as âτ,k = aτ,k for τ = 1, 2
and âτ,k = a†

τ,−k for τ = 3, 4. With respect to the original
fermionic modes, Eq. (C10) is given by

Hε =
∑

k

ε(k)

× â†
τ,k

⎛
⎜⎝

r(k) 0 −s(k)∗ u(k)
0 r(k) −u(k)∗ −s(k)

−s(k) −u(k) −r(k) 0
u(k)∗ −s(k)∗ 0 −r(k)

⎞
⎟⎠

ττ ′

âτ ′,k,

(H14)

where a summation over τ, τ ′ is implied in the second line.
As discussed in Appendix H 2 c, the properties of the

parent Hamiltonian are determined by our choice of disper-
sion relation ε(k). By setting ε(k) = q(k), we would obtain
a gapped parent Hamiltonian with coupling between up to
fourth-nearest-neighbor unit cells. However, we can find a
more short-ranged parent Hamiltonian due to the special form
of the fiducial state CM using Eq. (H5). Indeed, by choosing
the dispersion function

ε(k) = 1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky

a4 + b4 + 1
(H15)

which is proportional to the denominator of r, s, and u
from Eq. (H13), we obtain a second-nearest-neighbor parent
Hamiltonian with Bloch representation

Hε (k) = 1

a4 + b4 + 1

× [(1 − a4 − b4 − a2b2 cos kx − a2b2 cos ky)σ3 ⊗ σ0

+
√

2(b2 + a2 cos kx )σ1 ⊗ σ0

+
√

2a2 sin kx(−σ2 ⊗ σ3)

+
√

2(b2 + a2 cos ky)(−σ2 ⊗ σ2)

+
√

2a2 sin ky(−σ2 ⊗ σ1)], (H16)

where σ0 is the identity matrix of dimension two.

3. ES in topological quadrupole phase

When b = 0, the system described by the PEPS of Eq. (H2)
splits into decoupled four-site plaquettes shifted from the

unit cell by one site in both directions, corresponding to the
OAI dimerized phase of the quadrupole model if a = 1. The
Majorana CM �Plaquette describing the physical state of one
such decoupled plaquette takes the form of Eq. (H5) with

r = 1 − a4

1 + a4
, (H17a)

u = s = −
√

2a2

1 + a4
. (H17b)

As an application, we will derive the ES contributions from
the edges and corners given in Eqs. (34a) and (34b), respec-
tively.

We begin with the four corners. The Majorana CM �corner,τ

for a single corner site on the sublattice τ is given by the cor-
responding block of dimension 2 on the diagonal of �Plaquette.
Specifically,

�corner,τ =
(

0 −r
r 0

)
(H18)

for τ = 1, 2, 3, 4. We now transform �corner,τ to the basis of
the original complex fermionic modes before the particle-hole
transformation of Eq. (28). Then, the CM of the corner site
has a vanishing off-diagonal block Q̂∗

corner,τ = 0 and a diag-
onal block R̂∗

corner,τ = ∓ i
2λcorner with λcorner = r, where the

negative and positive signs hold for the sublattices τ = 1, 2
and τ = 3, 4, respectively. Using the expression for r from
Eq. (H17a) and a = α/γ , we obtain the formula for the corner
ES level given in Eq. (34b) with one level per corner.

Similarly, the Majorana CM �edge,τ1,τ2 for two decoupled
edge sites on the sublattices τ1 and τ2 is given by a block of
dimension 4 of �Plaquette. Concretely,

�edge,τ1τ2 =

⎛
⎜⎝

0 −r 0 −s
r 0 −s 0
0 s 0 −r
s 0 r 0

⎞
⎟⎠ (H19)

for (τ1, τ2) ∈ {(3, 1), (4, 2), (4, 1), (2, 3)}. In the basis of the
original complex fermionic modes before the particle-hole
transformation of Eq. (28), �edge,τ1,τ2 takes the following
form: it has a vanishing off-diagonal block Q̂∗

edge,τ1τ2
= 0 and

a nonzero diagonal block R̂∗
edge,τ1τ2

with doubly degenerate
eigenvalues ± i

2λedge and

λedge =
√

r2 + s2 =
√

1 + a8

1 + a4
. (H20)

This corresponds to the formula given in Eq. (34a).
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