Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Surface oxygen Vacancies on Reduced Co3O4(100): Superoxide Formation and Ultra-Low-Temperature CO Oxidation

MPG-Autoren
/persons/resource/persons213535

Liu,  Yun
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21907

Naschitzki,  Matthias
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21548

Gewinner,  Sandy
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21774

Kuhlenbeck,  Helmut
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Interface Science, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

anie.202103359.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liu, Y., Peng, Y., Naschitzki, M., Gewinner, S., Schöllkopf, W., Kuhlenbeck, H., et al. (2021). Surface oxygen Vacancies on Reduced Co3O4(100): Superoxide Formation and Ultra-Low-Temperature CO Oxidation. Angewandte Chemie International Edition, 60(30), 16514-16520. doi:10.1002/anie.202103359.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-7F27-F
Zusammenfassung
The activation of molecular oxygen is a fundamental step in almost all catalytic oxidation reactions.We have studied
this topic and the role of surface vacancies for Co3O4(100)
films with a synergistic combination of experimental and theoretical methods. We show that the as-prepared surface is Blayer terminated and that mild reduction produces oxygen single and double vacancies in this layer. Oxygen adsorption experiments clearly reveal different superoxide species below
room temperature. The superoxide desorbs below ca. 120 K from a vacancy-free surface and is not active for CO oxidation while superoxide on a surface with oxygen vacancies is stable
up to ca. 270 K and can oxidize CO already at the low temperature of 120 K. The vacancies are not refilled by oxygen
from the superoxide, which makes them suitable for long-term operation. Our joint experimental/theoretical effort highlights the relevance of surface vacancies in catalytic oxidation
reactions.