日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Upgrading poly(styrene-co-divinylbenzene) beads : incorporation of organomodified metal-free semiconductor graphitic carbon nitride through suspension photopolymerization to generate photoactive resins

MPS-Authors
/persons/resource/persons260851

Esen,  Cansu       
Baris Kumru, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons203084

Kumru,  Baris
Baris Kumru, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Article.pdf
(出版社版), 5MB

付随資料 (公開)
There is no public supplementary material available
引用

Esen, C., Antonietti, M., & Kumru, B. (2021). Upgrading poly(styrene-co-divinylbenzene) beads: incorporation of organomodified metal-free semiconductor graphitic carbon nitride through suspension photopolymerization to generate photoactive resins. Journal of Applied Polymer Science, 138(35):. doi:10.1002/app.50879.


引用: https://hdl.handle.net/21.11116/0000-0008-84F9-A
要旨
The inclusion of the metal free semiconductor graphitic carbon nitride (g-CN) into polymer systems brings a variety of new options, for instance as a heterogeneous photoredox polymer initiator. In this context, we present here the decoration of the inner surface of poly(styrene-co-divinylbenzene) beads with organomodified g-CN via one pot suspension photopolymerization. The resulting beads are varied by changing reaction parameters, such as, crosslinking ratio, presence of porogens, and mechanical agitation. The photocatalytic activity of so-formed beads was tested by aqueous rhodamine B dye photodegradation experiments. Additionally, dye adsorption/desorption properties were examined in aqueous as well as in organic solvents. Photoinduced surface modification with vinylsulfonic acid and 4-vinyl pyridine is introduced. Overall, metal-free semiconductor g-CN donates photoactivity to polymer networks that can be employed for dye photodegradation and acid–base catalyst transformation through facile photoinduced surface modifications.