
Nested, but Separate: Isolating Unrelated Critical
Sections in Real-Time Nested Locking
James Robb
Reykjavik University, Iceland
me@jamesrobb.ca

Björn B. Brandenburg
Max Planck Institute for Software Systems, Kaiserslautern, Germany
bbb@mpi-sws.org

Abstract
Prior work has produced multiprocessor real-time locking protocols that ensure asymptotically
optimal bounds on priority inversion, that support fine-grained nesting of critical sections, or that
are independence-preserving under clustered scheduling. However, while several protocols manage
to come with two out of these three desirable features, no protocol to date accomplishes all three.
Motivated by this gap in capabilities, this paper introduces the Group Independence-Preserving
Protocol (GIPP), the first protocol to support fine-grained nested locking, guarantee a notion
of independence preservation for fine-grained nested locking, and ensure asymptotically optimal
priority-inversion bounds. As a stepping stone, this paper further presents the Clustered k-Exclusion
Independence-Preserving Protocol (CKIP), the first asymptotically optimal independence-preserving
k-exclusion lock for clustered scheduling. The GIPP and the CKIP rely on allocation inheritance
(a.k.a. migratory priority inheritance) as a key mechanism to accomplish independence preservation.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases multiprocessor real-time locking, nested locking, independence preservation,
suspension-oblivious analysis, priority inversion, asymptotically optimal blocking, RNLP, OMIP

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.6

Related Version Extended paper with full results https://www.mpi-sws.org/tr/2020-002.pdf.

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803111).

1 Introduction

From a practical point of view, any effective multiprocessor real-time locking protocol should
avoid some obvious pitfalls:
1. Non-conflicting accesses to different resources should not be needlessly serialized.
2. Tasks should not be delayed due to contention for resources they do not even access.
3. A real-time locking protocol should not make it impossible to provision latency-sensitive

tasks carefully designed to not require any shared resources (such as critical interrupt
handlers with stringent sub-millisecond deadlines).

4. Worst-case blocking should not be exponential.
It is not difficult to see how a protocol that fails to meet these requirements would result in
costly and inefficient over-provisioning. It may thus come as a surprise that no multiprocessor
real-time locking protocol in the published literature satisfies all four properties!

The reason, however, is all the more understandable: these innocuous-looking requirements
translate to well-known real-time locking protocol properties that are difficult to ensure
by themselves, let alone jointly in a single protocol. In particular, Requirement 3 rules
out any locking protocol that relies on the non-preemptive execution of critical sections, a

© James Robb and Björn B. Brandenburg;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:me@jamesrobb.ca
mailto:bbb@mpi-sws.org
https://doi.org/10.4230/LIPIcs.ECRTS.2020.6
https://www.mpi-sws.org/tr/2020-002.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Isolating Unrelated Critical Sections in Real-Time Nested Locking

trait of virtually all spin-lock protocols [8]. Requirement 1 implies that a protocol must
support fine-grained nested locking [3, 31, 32] – that is, tasks must be able to incrementally
lock additional resources while already holding some other shared resources – because the
alternative, namely coarse-grained group locking [4], serializes even trivially non-conflicting
requests for resources in the same group. Fine-grained nested real-time locking, however, is
a notoriously difficult problem [3, 8, 31], and easily gives rise to blocking bounds that are
exponential in the number of simultaneously acquired resources [8, 19, 31]. In fact, it is a
fundamental algorithmic challenge to ensure both Requirements 1 and Requirements 4 in a
single protocol. The only known protocol to surmount this challenge is Ward and Anderson’s
Real-Time Nested Locking Protocol (RNLP) [32, 33], and actually does so with asymptotically
optimal bounds on priority inversion blocking [10, 32].

The RNLP, in turn, does not satisfy Requirement 2. As we discuss in more detail in
Section 2, the RNLP relies on a token lock that regulates contention for shared resources, an
ingenious element of the RNLP’s design that ensures its asymptotic optimality. However,
in its configuration for suspension-based locking (under “suspension-oblivious analysis,” see
Section 2), this token lock becomes a global bottleneck that causes tasks to delay each other
even if they do not share any resources.

To satisfy Requirements 2 and 3, a locking protocol must temporally isolate tasks from
each other when they do not access the same resources, which is known as independence
preservation [6], a concept we discuss in detail in Section 2. The only protocol to date
to realize independence preservation for clustered scheduling is the O(m) Independence-
Preserving Protocol (OMIP) [6]. However, the OMIP as originally proposed fails to satisfy
Requirement 1 since it can realize nested locking only through group locks – and if the OMIP
is extended to permit fine-grained locking, it fails to satisfy Requirement 4 due to its FIFO
queuing structure, which gives rise to exponential worst-case blocking [31].

Seemingly, the satisfaction of one of the four requirements comes at the cost of another.
Is this a fundamental limitation? Is it perhaps impossible to satisfy all four requirements at
once? As we show in this paper, the answer to both questions is no – it is in fact possible
to combine fine-grained nesting, independence preservation, and asymptotically optimal
pi-blocking in a single protocol, which we demonstrate by constructing the first such protocol.

In related work, the Priority Inheritance Protocol (PIP) [16, 28, 30] provides inde-
pendence preservation, but only on uniprocessors or globally-scheduled systems, and the
multiprocessor variant [16, 37] does not support nested critical sections. The Flexible Mul-
tiprocessor Locking Protocol (FMLP) [4] likewise is independence-preserving only under
global scheduling, and only supports group locks [4, 37]. The Multiprocessor Bandwidth
Inheritance Protocol (MBWI) [18, 19] and the Multiprocessor Resource Sharing Protocol
(MrsP) [14] both allow for fine-grained nested locking. Unfortunately, they are subject to
the exponential blow-up in blocking times described by Takada and Sakamura [31]. Several
variants of the RNLP [32, 33] have been introduced in recent years to enable reader-writer
synchronization [34], to provide contention-sensitive pi-blocking bounds [23], and to reduce
implementation overheads in the locking protocol itself by means of a fast path [26] and
lock servers [25]. However, none of these variants removes the algorithmic bottleneck of a
single, shared token lock. For further discussion of the larger area of multiprocessor real-time
locking protocols, we refer the interested reader to a recent comprehensive survey [8].

The contributions of this paper are as follows. First, we examine what it means to be
independence-preserving in the presence of nested locking (Section 3), and the ensuing impli-
cations on asymptotic pi-blocking bounds (Section 3.1). Our main contribution is the Group
Independence-Preserving Protocol (GIPP), the first asymptotically optimal, independence-

J. Robb and B. B. Brandenburg 6:3

preserving, real-time fine-grained nested locking protocol for clustered scheduling under
suspension-oblivious analysis (Section 4). In other words, the GIPP is the first multiprocessor
real-time locking protocol that meets all of the desirable Requirements 1–4. To realize the
GIPP, we develop and analyze a novel Clustered k-Exclusion Independence-Preserving Proto-
col (CKIP), an asymptotically optimal independence-preserving k-exclusion lock for clustered
scheduling (Section 4.1). Lastly, we provide a fine-grained pi-blocking analysis of the GIPP
using a state-of-the-art blocking analysis method based on linear programming (Section 5),
and present an empirical evaluation that shows the GIPP to perform favorably in comparison
to both the OMIP and the RNLP across a wide range of workloads (Section 6).

2 Background and Definitions

We assume the sporadic task model with n tasks τ = {T1, . . . , Tn} scheduled on m identical
processors. Tasks are executed as a series of jobs, and we use Ji to denote a job of Ti. Each
Ti is characterized by a worst-case execution time (WCET) ei, a period pi (i.e., the minimum
arrival separation between jobs), and a relative deadline di. We assume implicit deadlines in
this work, i.e., di = pi, but the derived results do not depend on this constraint.

A job is said to be pending from the time it arrives until the time it completes. While a
job is pending, it can be in one of two states: a ready job can be scheduled on a processor,
whereas a suspended job cannot be scheduled. We assume that jobs do not self-suspend, and
that all suspensions are due to interactions with the locking protocol(s) of the system.

Shared Resources. Tasks compete for a set of q serially-reusable shared resources Γ =
{`1, . . . , `q}. Each task Ti accesses a possibly empty subset γi ⊆ Γ of the shared resources in
the system. A locking protocol arbitrates requests from tasks for the shared resources in Γ
such that no shared resource is held at the same time by two different tasks.

We say Ji requires a shared resource `a at the first instant access to `a is required for the
continued execution of Ji. Once Ji requires `a, it issues a request R to the locking protocol
to acquire `a. R is said to be unsatisfied from the time it is issued until Ji acquires `a, at
which point R is said to be satisfied. R becomes complete when Ji releases `a, which is also
when Ji no longer requires `a. Conversely, we say that R is incomplete from the time it is
issued until it is completed. While Ji waits to acquire `a, it is said to make progress if (one
of) the job(s) that prevent(s) Ji from acquiring `a is scheduled. Any method employed by a
locking protocol to ensure that a job makes progress is called a progress mechanism.

If a Ji issues a request R for a shared resource `a while holding no other shared resources,
then R is said to be an outermost request. Conversely, if Ji issues R for a shared resource
`b while holding `a, then R is said to be a nested request. We do not require that requests
are properly nested; it is possible for Ji to acquire `a, and then `b via a nested request, but
release `a before releasing `b, as seen in Figure 1.

We construct a strict (irreflexive) partial ordering � on Γ from the behavior of the tasks
in τ : let `a � `b iff there exists a task that requests `b while holding `a. It follows that we
do not permit workloads where `a � `b and `b � `a both hold (which precludes deadlock).

Consider Figure 1. Let t1 be the time that Ji issues an outermost request for a shared
resource `a, and t4 be the next point in time where both the outermost request is complete, and
Ji holds no other shared resources. We call the part of Ji’s execution in the time interval [t1, t4)
an outermost critical section. We define the critical section length to be the time required to
execute a critical section in the absence of any blocking, and use Li,a to denote the length of
Ji’s longest outermost critical section that begins with an outermost request for `a. Note

ECRTS 2020

6:4 Isolating Unrelated Critical Sections in Real-Time Nested Locking

t1
<latexit sha1_base64="0OaYIontm67T2LorNHwBlz31178=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwPkjZY=</latexit>

t2
<latexit sha1_base64="d04zkK/ml8T/jWPxf4r6CevJVK0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/fXlUY9j6MIZ3AOl+DBDTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwVojZc=</latexit>

t3
<latexit sha1_base64="OffZmfJP6ZILfHPabWSuuZh3V1Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lawR4LXjxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZn7j09cGxGrB5wm3I/oSIlQMIpWusdBfVCuuFV3AbJOvJxUIEdrUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophg0/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nXRqVa9erd1dVZqNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gAG7I2Y</latexit>

t4
<latexit sha1_base64="yI58nk41NOY2Inv3R20sXMbcNhI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt2GPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt3O/88S1EbF6xGnC/YiOlAgFo2ilBxzUBqWyW3EXIOvEy0kZcjQHpa/+MGZpxBUySY3peW6CfkY1Cib5rNhPDU8om9AR71mqaMSNny1OnZFLqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2hC81ZfXSbta8a4r1ftauVHP4yjAOVzAFXhwAw24gya0gMEInuEV3hzpvDjvzseydcPJZ87gD5zPHwhwjZk=</latexit>

nested request for `b
<latexit sha1_base64="GnZ0lt2aYvEEwXpDgqo7EJPSbgw=">AAACIHicbVDLSsNAFJ34rPFVdelmsBVclaSCdVlw47KCfUBTymRy0w6dTOLMRCihn+LGX3HjQhHd6dc4bSNo610dzoN77/ETzpR2nE9rZXVtfWOzsGVv7+zu7RcPDlsqTiWFJo15LDs+UcCZgKZmmkMnkUAin0PbH11N9fY9SMVicavHCfQiMhAsZJRoQ/WLNc+HARMZBaFBTmwBSkOAJdylBuEwlrjsAed9v2x7IIIfY79YcirObPAycHNQQvk0+sUPL4hpGpk45USpruskupcRqRnlMLG9VEFC6IgMoGugIBGoXjZ7cIJPDRPMjgljofGM/Z3ISKTUOPKNMyJ6qBa1Kfmf1k11eNnLmEhSDYLOF4UpxzrG07ZwwCRQzccGECqZuRXTIZGEmg6UbUpwF19eBq1qxT2vVG+qpfpFXkcBHaMTdIZcVEN1dI0aqIkoekBP6AW9Wo/Ws/Vmvc+tK1aeOUJ/xvr6BkFNo5Y=</latexit>

outermost critical section
<latexit sha1_base64="y4BprKY8pqDb6ytuBUkjouJKA3A=">AAACH3icbVDLSgMxFM3UVx1fVZdugkVwVWYqVJcFNy4r2Ad0hpJJb9vQTDIkGaEM/RM3/oobF4qIu/6NmbaCtl4IOZx7LveeEyWcaeN5M6ewsbm1vVPcdff2Dw6PSscnLS1TRaFJJZeqExENnAloGmY4dBIFJI44tKPxbd5vP4LSTIoHM0kgjMlQsAGjxFiqV6oFEQyZyCgIA2rqytR+sdQGU8WMlXGsgeZaNwDR/9H1SmWv4s0LrwN/CcpoWY1e6SvoS5rGdpxyonXX9xITZkTZHRymbpBqSAgdkyF0LRQkBh1mc39TfGGZPh5IZZ+wl+Xs74mMxFpP4sgqY2JGerWXk//1uqkZ3IQZE4l1Lehi0SDl2Eich4X7TFnzfGIBWeSB6YgoQm0G2rUh+KuW10GrWvGvKtX7arleW8ZRRGfoHF0iH12jOrpDDdREFD2hF/SG3p1n59X5cD4X0oKznDlFf8qZfQMJ7qQp</latexit>

outermost request for `a
<latexit sha1_base64="JaEsuKSJI4/Wkq+pgBSz8Mm+v1o=">AAACI3icbVDLSgNBEJz1GddX1KOXwUTwFHYjqHgKePEYwTwgG8LspDcZMjuzzswKYcm/ePFXvHhQghcP/ouTh6CJdemiupvuqjDhTBvP+3RWVtfWNzZzW+72zu7efv7gsK5lqijUqORSNUOigTMBNcMMh2aigMQhh0Y4uJn0G4+gNJPi3gwTaMekJ1jEKDFW6uSvgxB6TGQUhAE1cmVqSyy1wQoeUrA1kgoXA+C8Q4puAKL7M9vJF7ySNwVeJv6cFNAc1U5+HHQlTWO7TjnRuuV7iWlnRBlGOYzcINWQEDogPWhZKkgMup1NPY7wqVW602ciKQyeqr83MhJrPYxDOxkT09eLvYn4X6+VmuiqnTGRWOeCzg5FKcdG4klguMsUUMOHlhCqmP0V0z5RhNoMtGtD8BctL5N6ueSfl8p35ULlYh5HDh2jE3SGfHSJKugWVVENUfSEXtAbeneenVdn7HzMRlec+c4R+gPn6xsoPaUi</latexit>

{`a}
<latexit sha1_base64="/usD9uNJ9k4qNT5jea7AZXs8RCM=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFwMYygvnA3BH2NpNkyd7esbsnhCP/wsZCEVv/jZ3/xk1yhSY+GHi8N8PMvDARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNSjYJLbBpuBHYShTQKBbbD8e3Mbz+h0jyWD2aSYBDRoeQDzqix0qOf+ShEj/rTXrniVt05yCrxclKBHI1e+cvvxyyNUBomqNZdz01MkFFlOBM4LfmpxoSyMR1i11JJI9RBNr94Ss6s0ieDWNmShszV3xMZjbSeRKHtjKgZ6WVvJv7ndVMzuA4yLpPUoGSLRYNUEBOT2fukzxUyIyaWUKa4vZWwEVWUGRtSyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjCQ8Ayv8OZo58V5dz4WrQUnnzmGP3A+fwCsL5Dl</latexit>

{`a, `b}
<latexit sha1_base64="mET+POOcaf2adtf3qGrKIFzhVzI=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgQkpSBV24KLhxWcE+oAlhMr1ph04ezEzEEvIrblwo4tYfceffOE2z0NYDl3s4517mzvETzqSyrG+jsra+sblV3a7t7O7tH5iH9Z6MU0GhS2Mei4FPJHAWQVcxxWGQCCChz6HvT2/nfv8RhGRx9KBmCbghGUcsYJQoLXlm3ckc4Nwj57jovpN7ZsNqWgXwKrFL0kAlOp755YximoYQKcqJlEPbSpSbEaEY5ZDXnFRCQuiUjGGoaURCkG5W3J7jU62McBALXZHChfp7IyOhlLPQ15MhURO57M3F/7xhqoJrN2NRkiqI6OKhIOVYxXgeBB4xAVTxmSaECqZvxXRCBKFKx1XTIdjLX14lvVbTvmi27i8b7Zsyjio6RifoDNnoCrXRHeqgLqLoCT2jV/Rm5MaL8W58LEYrRrlzhP7A+PwBdraUDA==</latexit>

{`b}
<latexit sha1_base64="SMluhXk8f2+Qe67t3QJHUSncxd8=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgFe6ioIVFwMYygvnA3BH2NpNkyd7esbsnhCP/wsZCEVv/jZ3/xk1yhSY+GHi8N8PMvDARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNSjYJLbBpuBHYShTQKBbbD8e3Mbz+h0jyWD2aSYBDRoeQDzqix0qOf+ShEL/SnvXLFrbpzkFXi5aQCORq98pffj1kaoTRMUK27npuYIKPKcCZwWvJTjQllYzrErqWSRqiDbH7xlJxZpU8GsbIlDZmrvycyGmk9iULbGVEz0sveTPzP66ZmcB1kXCapQckWiwapICYms/dJnytkRkwsoUxxeythI6ooMzakkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAg4Rle4c3Rzovz7nwsWgtOPnMMf+B8/gCttZDm</latexit>

Figure 1 An outermost critical section spanning from time t1 until time t4. It begins with an
outermost request for `a at time t1, which completes at time t3. The nested request for `b begins at
time t2 and completes at time t4.

that Li,a ≤ t4− t1, as Ji can experience scheduling or blocking delays during the execution of
its outermost critical section. The maximal critical section length of Ji is Lmax

i = maxa Li,a
and the maximal critical section length among all tasks is Lmax = maxi Lmax

i .

Scheduling. We target clustered scheduling in this work. Under clustered scheduling, the
m processors in the system are grouped into disjoint subsets of size c called clusters. For
simplicity, we assume m = k · c where k ∈ Z+. Each task is statically assigned a home cluster,
denoted by C(Ti), which it will be scheduled in. The tasks in each cluster are scheduled by a
global scheduling algorithm applied to the processors in that cluster. Global and partitioned
scheduling are special cases of clustered scheduling where c = m and c = 1, respectively.

We assume the use of Job-Level Fixed Priority (JLFP) scheduling algorithms such as
Earliest-Deadline First (EDF) scheduling or Fixed-Priority (FP) Scheduling. The priorities
assigned to jobs are assumed to be unique in each cluster, with any ties broken in favor of
lower-indexed jobs. A job Ji has both an effective priority and a base priority. Ji’s base
priority, which is determined by the scheduling algorithm, never changes, but its effective
priority may change due to interactions with a locking protocol; the scheduler uses Ji’s
current effective priority when scheduling jobs. We let H(Ji, t) be a predicate that indicates
whether Ji is among the c highest effective-priority pending jobs at time t in its home cluster.

Priority Inversion. Intuitively, a priority inversion is said to occur when the execution of a
higher-priority job is delayed due to the execution of a lower-priority job [28, 30]. A typical
example of this occurs when a lower-priority job holds a shared resource that a higher-priority
job is requesting, and so the higher-priority job’s execution is delayed until the resource is
released. We refer to this type of blocking as priority inversion blocking (pi-blocking).

Under suspension-oblivious analysis (s-oblivious analysis) it is assumed that tasks never
self-suspend (even though they may), and any self-suspension is treated as execution
time. Conversely, suspension-aware analysis (s-aware analysis) explicitly accounts for self-
suspensions. These two methods of analysis yield different lower-bounds on the pi-blocking
incurred by a job due to requests for shared resources, which are Ω(m) and Ω(n), respec-
tively [10]. Locking protocols that ensureO(m) andO(n) per-job pi-blocking under s-oblivious
analysis and s-aware analysis, respectively, are said to be asymptotically optimal [10].

We focus on s-oblivious analysis in this work, and adapt the definition for s-oblivious
priority inversion under clustered scheduling from previous work [6].

I Definition 1. Ji incurs an s-oblivious priority inversion at time t iff Ji is not scheduled
and its priority is among the top c priorities of pending jobs in cluster C(Ti), i.e., if H(Ji, t).

J. Robb and B. B. Brandenburg 6:5

Let bi denote the maximum amount of s-oblivious pi-blocking that any job of Ti incurs.
When deriving asymptotic bounds on bi, we consider Lmax to be a constant (i.e., not a
function of m nor n). Following prior work [8, 10, 27, 28, 30], we consider pi-blocking to be
bounded only if no bi depends on any ei (the ei parameter is not considered to be a constant).

Independence Preservation. The high-level idea of independence preservation is that tasks
are isolated from “unrelated” critical sections. This can be easily pictured for locking
protocols that do not permit nested locking: if a task never requests a shared resource `a,
then it incurs no pi-blocking as a result of requests by other tasks for `a. This is of particular
importance when considering latency-sensitive tasks, defined as follows.

I Definition 2. A task Ti is said to be latency-sensitive if its slack, the difference between
its relative deadline and WCET, is less than the length of the longest critical section of some
other task, i.e., di − ei < Lmax.

If critical sections are permitted to execute non-preemptively, then a job of a latency-
sensitive task necessarily misses its deadline if its release coincides with a lower-priority
task executing non-preemptively for Lmax time units, thus providing clear motivation for
independence preservation. Prior work introduced the notion of independence preservation
[6] among tasks under the assumption that nested resource requests are never made. For
clarity, and to build upon it later, we restate the definition here.

I Definition 3. Let bi,a denote the maximum pi-blocking incurred by Ji due to requests for a
shared resource `a, and Ni,a be the number of times Ji requests `a. Under s-oblivious analysis,
a locking protocol is non-nested independence-preserving iff Ni,a = 0 implies bi,a = 0.

Priority Donation. The progress mechanism Replica-Request Priority Donation (RRPD) [35]
was introduced to realize the Replica-Request Priority Donation Global Locking Protocol
(R2DGLP) [35], a real-time k-exclusion lock for globally-scheduled systems. RRPD is a
modification of the earlier Job-Release Priority Donation (JRPD) progress mechanism [11];
RRPD has a job donate its priority upon requesting a resource, whereas donation happens
upon arrival (i.e., release) under JRPD. Unlike JRPD, which was designed for clustered
systems, RRPD relies on the ability to compare priorities among all jobs. Thus, RRPD
applies only to globally-scheduled systems, as analytically speaking, numeric priority values
are incomparable across clusters. This trade-off allows the R2DGLP to realize non-nested
independence preservation as jobs only donate their priority upon resource request. We
revisit RRPD further in Section 4, and the R2DGLP in Section 4.1.

Nested Locking Protocols. The way locking protocols support nesting can be divided
into two broad categories: coarse-grained locking and fine-grained locking. The FMLP [4]
is an example of a real-time locking protocol that employs coarse-grained nested locking.
Under the FMLP, resources are split into groups, and each group has a corresponding group
lock. A job that holds a group lock has mutually-exclusive access to all the resources in the
corresponding group; while simple, the loss in parallelism is clear.

In contrast to coarse-grained locking, fine-grained locking allows shared resources to be
acquired incrementally. For example, the RNLP [32] allows jobs to issue nested requests
for resources as they are needed, which provides more opportunities for parallelism when
compared to simple group locks. However, the increased potential for parallelism comes at
the cost of more complicated protocol rules and data structures when compared to group
locks, as group locks can be realized with simpler non-nested locking protocols.

ECRTS 2020

6:6 Isolating Unrelated Critical Sections in Real-Time Nested Locking

The RNLP [32] was a breakthrough in real-time nested locking, as it is the first, and to
date only, asymptotically optimal fine-grained nested locking protocol for multiprocessor
systems. It can be applied under clustered (and therefore global/partitioned) scheduling.
The RNLP is in fact a “meta protocol” in the sense that it defines the properties that a token
lock and a request satisfaction mechanism (RSM) must obey to realize an optimal nested
locking protocol. The token lock restricts the number of jobs that can hold resources at any
given time, and the RSM sequences requests of the token holders and ensures progress. The
behavior of a particular instantiation (i.e., a token lock/RSM combination) of the RNLP
is largely determined by the progress mechanisms that token lock and RSM employ. Ward
and Anderson demonstrate a number of possible instantiations of the RNLP [32]. When
instantiated for s-oblivious analysis, the token lock is configured to provide m tokens. We
examine the rules, requirements, and structure of the RNLP further in Section 4.

Summary. If shared resources that will be held at the same time are protected by a group
lock, then both the OMIP and R2DGLP can realize asymptotically optimal coarse-grained
nested locking under clustered and global scheduling, respectively, while still remaining
non-nested independence-preserving.

Non-nested independence preservation is not trivially realized with the RNLP in the
absence of nested locking. Fundamentally, the use of a token lock that arbitrates access to m
tokens (and thus restricts the number of resource-holding jobs to m) precludes non-nested
independence preservation; when all tokens in the system are held, a job must wait to
acquire a token, even if the resource it requires is never accessed by any other task. In
fact, to the best of our knowledge, prior work has not yet considered what it means to be
independence-preserving in the context of fine-grained nested locking.

3 Nested Independence Preservation

The notion of independence preservation introduced in Definition 3 does not directly apply to
nested locking, and there exists more than one way to generalize the notion in a conceptually
analogous way, depending on when exactly resources involved in nesting are considered to
be “related” (i.e., when they are considered “non-independent”). We consider two possible
definitions in the following that we consider to be the most natural ways of expressing the idea.

3.1 Outer-Lock Independence Preservation
The core idea behind outer-lock independence preservation is that there is an asymmetric,
transitive, and reflexive relation, which we call dependence, between a shared resource `a,
and shared resources acquired via nested requests (with respect to an outer request for `a).

More precisely, for a shared resource `a ∈ Γ, we say it depends on the set [`a]ol = {`x |
`a � `x}∪{`a}. Similarly, a task Ti depends on the set of shared resources Dol

i =
⋃
`a∈γi

[`a]ol.
Based on this precise notion of dependence, we define outer-lock independence preservation.

I Definition 4. Let bi,a denote the maximum pi-blocking incurred by Ji due to requests by
any task for a shared resource `a. Under s-oblivious analysis, a locking protocol is outer-lock
independence-preserving iff `a /∈ Dol

i implies bi,a = 0.

Outer-lock independence preservation as a notion for nested independence preservation
has a fundamental impact on the pi-blocking incurred by a job under s-oblivious analysis.
In fact, it turns out that for a large class of locking protocols (that arguably includes all
“reasonable” locking protocols), the per-request pi-blocking bound is necessarily non-optimal

J. Robb and B. B. Brandenburg 6:7

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

{`x}
<latexit sha1_base64="nvzBHdZBYaCMyHC7dnUR7NyNazY=">AAAB8XicbVBNS8NAEJ34WetX1YvgZbEInkpSBT0WvHisYD+wCWWznbZLN5uwuxFL6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzwkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7ZBqFFxiw3AjsJ0opFEosBWObqZ+6xGV5rG8N+MEg4gOJO9zRo2VHvzMRyG6T/6kWyq7FXcGsky8nJQhR71b+vJ7MUsjlIYJqnXHcxMTZFQZzgROin6qMaFsRAfYsVTSCHWQzS6ekDOr9Eg/VrakITP190RGI63HUWg7I2qGetGbiv95ndT0r4OMyyQ1KNl8UT8VxMRk+j7pcYXMiLEllClubyVsSBVlxoZUtCF4iy8vk2a14l1UqneX5dpxHkcBTuAUzsGDK6jBLdShAQwkPMMrvDnaeXHenY9564qTzxzBHzifP8RlkNg=</latexit>

{`x}
<latexit sha1_base64="nvzBHdZBYaCMyHC7dnUR7NyNazY=">AAAB8XicbVBNS8NAEJ34WetX1YvgZbEInkpSBT0WvHisYD+wCWWznbZLN5uwuxFL6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzwkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7ZBqFFxiw3AjsJ0opFEosBWObqZ+6xGV5rG8N+MEg4gOJO9zRo2VHvzMRyG6T/6kWyq7FXcGsky8nJQhR71b+vJ7MUsjlIYJqnXHcxMTZFQZzgROin6qMaFsRAfYsVTSCHWQzS6ekDOr9Eg/VrakITP190RGI63HUWg7I2qGetGbiv95ndT0r4OMyyQ1KNl8UT8VxMRk+j7pcYXMiLEllClubyVsSBVlxoZUtCF4iy8vk2a14l1UqneX5dpxHkcBTuAUzsGDK6jBLdShAQwkPMMrvDnaeXHenY9564qTzxzBHzifP8RlkNg=</latexit>

20151050 time

J1
<latexit sha1_base64="lwGkeVbv7sPXrF40NvqZtVAA4aQ=">AAAB4HicbVDLSgMxFL3xWeur6tJNsCiuykwVdFlwI64q2ge0pWTSTBuamQzJHaGU7t2IuFHwi/wF/8a0nU1bDwQO55xw77lBoqRFz/sla+sbm1vbuZ387t7+wWHh6LhudWq4qHGttGkGzAolY1FDiUo0EyNYFCjRCIZ3U7/xIoyVOn7GUSI6EevHMpScoZOeHrp+t1D0St4MdJX4GSlChmq38NPuaZ5GIkaumLUt30uwM2YGJVdikm+nViSMD1lfjGcLTui5k3o01Ma9GOlMXcixyNpRFLhkxHBgl72p+J/XSjG87YxlnKQoYj4fFKaKoqbTtrQnjeCoRo4wbqTbkPIBM4yju0neVfeXi66SernkX5XKj9fFykV2hBycwhlcgg83UIF7qEINOPThDT7hiwTklbyTj3l0jWR/TmAB5PsPr5KJBQ==</latexit>

J4
<latexit sha1_base64="hTJNCzffOiRjFEhrYy6m0ZzDgnU=">AAAB4HicbVBdSwJBFL1rX2ZfVo+9DEnRk+yaUI9CL9GTUauCisyOszo4u7PM3A1EfO8lopeCflF/oX/TqPuidmDgcM4Z7j03SKQw6Lq/Tm5jc2t7J79b2Ns/ODwqHp80jEo14z5TUulWQA2XIuY+CpS8lWhOo0DyZjC6m/nNF66NUPEzjhPejeggFqFgFK309NCr9oolt+zOQdaJl5ESZKj3ij+dvmJpxGNkkhrT9twEuxOqUTDJp4VOanhC2YgO+GS+4JRcWKlPQqXti5HM1aUcjYwZR4FNRhSHZtWbif957RTD2+5ExEmKPGaLQWEqCSoya0v6QnOGcmwJZVrYDQkbUk0Z2psUbHVvteg6aVTK3nW58lgt1S6zI+ThDM7hCjy4gRrcQx18YDCAN/iELydwXp1352MRzTnZn1NYgvP9B7QAiQg=</latexit>

J3
<latexit sha1_base64="BrCPgq+QtRCgCt6dHcvart/wATg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPiKewmgh4DXsRTRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81hMqzWP5aMYJ+hEdSB5yRo2VHu561V6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9arlyf1mqnWdx5OEETuECPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHwXeNXA==</latexit>

J2
<latexit sha1_base64="gH3BRA/DOhAarJPm8RxoZa29nio=">AAAB4HicbVDLSgMxFL3xWeur6tJNsCiuykwVdFlwI64q2ge0pWTSTBuayQzJHaGU7t2IuFHwi/wF/8a0nU1bDwQO55xw77lBoqRFz/sla+sbm1vbuZ387t7+wWHh6Lhu49RwUeOxik0zYFYoqUUNJSrRTIxgUaBEIxjeTf3GizBWxvoZR4noRKyvZSg5Qyc9PXTL3ULRK3kz0FXiZ6QIGardwk+7F/M0Ehq5Yta2fC/BzpgZlFyJSb6dWpEwPmR9MZ4tOKHnTurRMDbuaaQzdSHHImtHUeCSEcOBXfam4n9eK8XwtjOWOklRaD4fFKaKYkynbWlPGsFRjRxh3Ei3IeUDZhhHd5O8q+4vF10l9XLJvyqVH6+LlYvsCDk4hTO4BB9uoAL3UIUacOjDG3zCFwnIK3knH/PoGsn+nMACyPcfsQyJBg==</latexit> {`2}

<latexit sha1_base64="s8REXv8wUFpddlNPTUj8zJC/G+4=">AAAB8XicbVBNS8NAEJ3Ur1q/ql4EL4tF8FSSKuix4MVjBfuBTSib7bRdutmE3Y1QQv+FFw+KePXfePPfuG1z0NYHA4/3ZpiZFyaCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdUKqUXCJTcONwE6ikEahwHY4vp357SdUmsfywUwSDCI6lHzAGTVWevQzH4Xo1fxpr1xxq+4cZJV4OalAjkav/OX3Y5ZGKA0TVOuu5yYmyKgynAmclvxUY0LZmA6xa6mkEeogm188JedW6ZNBrGxJQ+bq74mMRlpPotB2RtSM9LI3E//zuqkZ3AQZl0lqULLFokEqiInJ7H3S5wqZERNLKFPc3krYiCrKjA2pZEPwll9eJa1a1bus1u6vKvWTPI4inMIZXIAH11CHO2hAExhIeIZXeHO08+K8Ox+L1oKTzxzDHzifP1nBkJI=</latexit>

{`3}
<latexit sha1_base64="dOpGURO4yskru0UsVr4Hn89m0dI=">AAAB8XicbVBNS8NAEJ34WetX1YvgZbEInkrSCnosePFYwX5gE8pmO22XbjZhdyOU0H/hxYMiXv033vw3btsctPXBwOO9GWbmhYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOiHVKLjEpuFGYCdRSKNQYDsc38789hMqzWP5YCYJBhEdSj7gjBorPfqZj0L0av60Vyq7FXcOskq8nJQhR6NX+vL7MUsjlIYJqnXXcxMTZFQZzgROi36qMaFsTIfYtVTSCHWQzS+ekgur9MkgVrakIXP190RGI60nUWg7I2pGetmbif953dQMboKMyyQ1KNli0SAVxMRk9j7pc4XMiIkllClubyVsRBVlxoZUtCF4yy+vkla14tUq1furcv00j6MAZ3AOl+DBNdThDhrQBAYSnuEV3hztvDjvzseidc3JZ07gD5zPH1tHkJM=</latexit>

{`4}
<latexit sha1_base64="TpYCfNBdaEkkIZ9+5275IfKb0M4=">AAAB8XicbVBNS8NAEJ34WetX1YvgZbEInkpSC3osePFYwX5gE8pmO22XbjZhdyOU0H/hxYMiXv033vw3btsctPXBwOO9GWbmhYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOiHVKLjEpuFGYCdRSKNQYDsc38789hMqzWP5YCYJBhEdSj7gjBorPfqZj0L0av60Vyq7FXcOskq8nJQhR6NX+vL7MUsjlIYJqnXXcxMTZFQZzgROi36qMaFsTIfYtVTSCHWQzS+ekgur9MkgVrakIXP190RGI60nUWg7I2pGetmbif953dQMboKMyyQ1KNli0SAVxMRk9j7pc4XMiIkllClubyVsRBVlxoZUtCF4yy+vkla14l1Vqve1cv00j6MAZ3AOl+DBNdThDhrQBAYSnuEV3hztvDjvzseidc3JZ07gD5zPH1zNkJQ=</latexit>

{`1}
<latexit sha1_base64="DDSfxJRkHDWAtmesAVmS4CGZOWM=">AAAB8XicbVBNS8NAEJ3Ur1q/ql4EL4tF8FSSKuix4MVjBfuBTSib7bRdutmE3Y1QQv+FFw+KePXfePPfuG1z0NYHA4/3ZpiZFyaCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdUKqUXCJTcONwE6ikEahwHY4vp357SdUmsfywUwSDCI6lHzAGTVWevQzH4Xoef60V664VXcOskq8nFQgR6NX/vL7MUsjlIYJqnXXcxMTZFQZzgROS36qMaFsTIfYtVTSCHWQzS+eknOr9MkgVrakIXP190RGI60nUWg7I2pGetmbif953dQMboKMyyQ1KNli0SAVxMRk9j7pc4XMiIkllClubyVsRBVlxoZUsiF4yy+vklat6l1Wa/dXlfpJHkcRTuEMLsCDa6jDHTSgCQwkPMMrvDnaeXHenY9Fa8HJZ47hD5zPH1g7kJE=</latexit>

{`3, `4}
<latexit sha1_base64="sgaePrAcipYU++whmlRyaZbdnuY=">AAAB+3icbVDLSsNAFJ3UV62vWDeCm8EiuJCStAVdFty4rGAf0IQwmd60QycPZiZiCf0VNy4UceuPuPNvnKZZaOuByz2ccy9z5/gJZ1JZ1rdR2tjc2t4p71b29g8Oj8zjak/GqaDQpTGPxcAnEjiLoKuY4jBIBJDQ59D3p7cLv/8IQrI4elCzBNyQjCMWMEqUljyz6mQOcO41r3DeW87cM2tW3cqB14ldkBoq0PHML2cU0zSESFFOpBzaVqLcjAjFKId5xUklJIROyRiGmkYkBOlm+e1zfKGVEQ5ioStSOFd/b2QklHIW+noyJGoiV72F+J83TFVw42YsSlIFEV0+FKQcqxgvgsAjJoAqPtOEUMH0rZhOiCBU6bgqOgR79cvrpNeo2816475Va58WcZTRGTpHl8hG16iN7lAHdRFFT+gZvaI3Y268GO/Gx3K0ZBQ7J+gPjM8f3juTjA==</latexit>

{`2, `3}
<latexit sha1_base64="sXmNb8WVzzZ/BOYRTwBpvieSmZc=">AAAB+3icbVDLSsNAFL3xWesr1o3gZrAILqQkraDLghuXFewDmhAm00k7dPJgZiKWkF9x40IRt/6IO//GaZqFth643MM59zJ3jp9wJpVlfRtr6xubW9uVneru3v7BoXlU68k4FYR2ScxjMfCxpJxFtKuY4nSQCIpDn9O+P72d+/1HKiSLowc1S6gb4nHEAkaw0pJn1pzMoZx7zUtU9JaTe2bdalgF0CqxS1KHEh3P/HJGMUlDGinCsZRD20qUm2GhGOE0rzqppAkmUzymQ00jHFLpZsXtOTrXyggFsdAVKVSovzcyHEo5C309GWI1kcveXPzPG6YquHEzFiWpohFZPBSkHKkYzYNAIyYoUXymCSaC6VsRmWCBidJxVXUI9vKXV0mv2bBbjeb9Vb19UsZRgVM4gwuw4RracAcd6AKBJ3iGV3gzcuPFeDc+FqNrRrlzDH9gfP4A2yeTig==</latexit>

{`1, `2}
<latexit sha1_base64="sfF/tEbw7tKhhgrP6OpEBs2RwWs=">AAAB+3icbVDLSsNAFL2pr1pfsW4EN4NFcCElqYIuC25cVrAPaEKYTCft0MmDmYlYQn7FjQtF3Poj7vwbp2kW2nrgcg/n3MvcOX7CmVSW9W1U1tY3Nreq27Wd3b39A/Ow3pNxKgjtkpjHYuBjSTmLaFcxxekgERSHPqd9f3o79/uPVEgWRw9qllA3xOOIBYxgpSXPrDuZQzn37AtU9JaTe2bDaloF0CqxS9KAEh3P/HJGMUlDGinCsZRD20qUm2GhGOE0rzmppAkmUzymQ00jHFLpZsXtOTrTyggFsdAVKVSovzcyHEo5C309GWI1kcveXPzPG6YquHEzFiWpohFZPBSkHKkYzYNAIyYoUXymCSaC6VsRmWCBidJx1XQI9vKXV0mv1bQvm637q0b7uIyjCidwCudgwzW04Q460AUCT/AMr/Bm5MaL8W58LEYrRrlzBH9gfP4A2BOTiA==</latexit>

PI

Figure 2 One possible G-FP schedule of τol(4) on m = 2 processors. The jobs are in ascending
priority from top to bottom (i.e., J2 has the lowest priority, and J1 has the highest priority).

under rate monotonic (RM), deadline monotonic (DM), or EDF scheduling (and s-oblivious
analysis). Our proof of the non-optimality of outer-lock independence-preserving locking
protocols requires the following seemingly obvious property.

I Definition 5. Let Γ′ ⊆ Γ denote the set of shared resources currently held by all tasks in
the system. A locking protocol is non-procrastinating if any request for a shared resource (by
one of the c highest-priority pending jobs in each cluster) is satisfied immediately if |Γ′| = 0.

We are not aware of any real-time locking protocol in the literature that does not satisfy
a request R for a shared resource by one of the c highest-priority pending jobs when |Γ′| = 0.
If we assume non-clairvoyance, and that tasks are sporadic (i.e., we cannot predict future job
arrivals), then delaying the satisfaction of R is tantamount to willingly wasting CPU time;
this is in direct contradiction to one of the most important goals of an effective real-time
locking protocol. Non-procrastination is also a fairly weak property as it does not impose
restrictions on how to arbitrate access to resources once contention is present.

We use a parameterized task set to lower-bound pi-blocking under RM, DM, and EDF.

I Definition 6. Let τol(n) = {T1, . . . , Tn} be a task set of n tasks that share n resources
{`1, . . . , `n}, where n ≥ m ≥ 2, with the following properties: (i) `1 � `2 � . . . � `n−1 � `n;
(ii) ∀1≤i≤n ei = 4; (iii) ∀1≤i≤n pi = di = ei ·n · i; (iv) ∀1≤i<n jobs of Ti require {`i} during
the first two units of their execution, and then {`i, `i+1} during the last two units of their
execution; (v) jobs of Tn require {`n} throughout the four units of their execution.

I Theorem 7. There exists an arrival sequence of τol(n) such that maxTi∈τol(n) bi = Ω(n)
under s-oblivious analysis for any suspension-based incremental locking protocol that is non-
procrastinating and outer-lock independence-preserving, when scheduled under RM, DM, or
EDF scheduling (with respect to each cluster).

Proof. Let ai,1 denote the first arrival of Ti. Consider the arrival sequence of τol(n) where
ai,1 = i− 2 for 2 ≤ i ≤ n and a1,1 = n− 1. An example of τol(4) with this arrival sequence
is depicted in Figure 2. At time t = 0, J2 requests and acquires `2, as we assume the use of
a non-procrastinating locking protocol. At time t = 1, a request for `3 is made by J3. If J3
does not acquire `3 (and is therefore not scheduled) at t = 1, then the blocking that results
from delaying J3’s request would result in a violation of outer-lock independence preservation

ECRTS 2020

6:8 Isolating Unrelated Critical Sections in Real-Time Nested Locking

as we would then have b3,2 > 0 despite `2 /∈ Dol
3 . The same argument analogously applies to

all jobs released up until t = n− 1 when J1 arrives and issues a request R1 for `1. There are
then two cases to consider: R1 is satisfied immediately, or it is satisfied at a later time.

In the first case R1 is satisfied immediately and J1 issues a nested request R2 for `2 at time
t = n+ 1. The maximum number of units of execution completed for jobs J2, . . . , Jn up to
t = n+1 is (n−1)·2+1 = 2n−1 for anym ≥ 2. This is because jobs J2, . . . , Jn−1 can execute
for at most 2 units of time before suspending due to a nested request for an already held
resource, and because Jn can execute for at most 3 units of time until R2 is issued. Therefore,
at the time R2 is issued, there are (

∑n
i=2 ei)− (2n− 1) = (n− 1) · 4− (2n− 1) = 2n− 3 units

of execution left before jobs J2, . . . , Jn complete and `2 becomes available for acquisition
by J1. Furthermore, as jobs J2, . . . , Jn−1 are all waiting for the job with the next-highest
index to release a resource, their executions are serialized. Thus J1 incurs at the very least
2n− 3 = Ω(n) time units of s-oblivious pi-blocking while waiting to acquire `2.

In the second case, we assume R1 is satisfied at time t = n− 1 + ε where ε > 0 (i.e., not
immediately). Then, J1 would begin to incur s-oblivious pi-blocking at t = n− 1, as it is the
highest-priority job and not scheduled. This situation cannot result in a reduction of the
s-oblivious pi-blocking that J1 incurs in the first case because (i) J1 is the highest-priority job
by construction, and (ii) that the serialization of executions described in the first case enforces
a minimum of 2n − 3 units of execution before `2 is released. Therefore, the asymptotic
lower-bound in the first case applies, as Ji still incurs a minimum of 2n− 3 = Ω(n) units of
s-oblivious pi-blocking while waiting to acquire `2. J

To conclude, under a standard set of assumptions and commonly used scheduling al-
gorithms, any outer-lock independence-preserving protocol is necessarily non-optimal with
respect to s-oblivious pi-blocking. In the rest of this paper, we focus on an alternative defini-
tion for nested independence preservation, which we call group independence preservation.

3.2 Group Independence Preservation
With group independence preservation, the relationships that exist among shared resources
and tasks are defined by relaxing when resources are considered to be non-independent.

Let ◦ be a symmetric relation on the set of shared resources Γ. For any `a ∈ Γ, let `a ◦ `a,
and for any `b, `c ∈ Γ let `b ◦ `c if `b � `c or `c � `b. The transitive closure of ◦ forms an
equivalence relation on the resources in Γ, which we denote with ∼. Then the equivalence
class g(`a) = {`x ∈ Γ | `a ∼ `x} is the set of resources that `a is associated with.

We refer to these equivalence classes as groups, and let G = {g1, . . . , gr} be the set of
resource groups in the system. From the definition of a group, it naturally follows that the
groups in G are disjoint, and that their union yields Γ. This definition of groups matches
the notion of resource groups used in the FMLP [4]. Based on this notion of resource groups,
we say that a task Ti is associated with the shared resources Di =

⋃
`a∈γi

g(`a).

I Definition 8. Let bi,a denote the pi-blocking incurred by Ji due to requests by any task
for a shared resource `a. Under s-oblivious analysis, a locking protocol is group independence-
preserving iff `a /∈ Di implies bi,a = 0.

Stated differently, group independence is preserved if the overall s-oblivious pi-blocking
bi =

∑
a bi,a of each task does not depend on resources that the task is not associated with.

4 The Group Independence-Preserving Protocol

We show that group independence-preserving protocols do not necessarily suffer from the
Ω(n) s-oblivious pi-blocking bound seen with outer-lock independence preservation. We

J. Robb and B. B. Brandenburg 6:9

· · ·<latexit sha1_base64="9pGPaDabNijkWLtd2pluvCo4p5o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AK+ljzM=</latexit> Ji
<latexit sha1_base64="MmvoA4FO3L6wAPlXxxL4sjAhO2k=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSw12P90plt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK955pXp/Ua5d53EU4BhO4Aw8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w8byo2u</latexit>

· · ·<latexit sha1_base64="9pGPaDabNijkWLtd2pluvCo4p5o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AK+ljzM=</latexit> Jk
<latexit sha1_base64="T3OCuD3IBu5qsErba92bvHbZzJA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4q2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqEccJ9yM6UCIUjKKVHu56o16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezUyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTpFG0I3uLLy6RZrXjnler9Rbl2ncdRgGM4gTPw4BJqcAt1aACDATzDK7w50nlx3p2PeeuKk88cwR84nz8e0o2w</latexit>

RQa
<latexit sha1_base64="QkfH8UFXXoyCBLb/pMlKDhbttBA=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtBT0WvXhsxX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwy6aE1xMNyxa26C6B14uWkAjmaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ8ubp2jC6uMUBgpW9Kghfp7IsVC65kIbKfAZqJXvUz8z+snJrzxUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT8mG4K2+vE46tap3Va216pXGbR5HEc7gHC7Bg2towD00oQ0EJvAMr/DmCOfFeXc+lq0FJ585hT9wPn8AvHqOCQ==</latexit>

RQq
<latexit sha1_base64="zfUAXzUTU+soyiIkacRfRcIH5/o=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh6LXjy2Yj+gXUo2zbahSXZNskJZ+he8eFDEq3/Im//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpv5nSeqNIvkg5nG1Bd4JFnICDaZdN8cPA7KFbfqzoFWiZeTCuRoDMpf/WFEEkGlIRxr3fPc2PgpVoYRTmelfqJpjMkEj2jPUokF1X46v3WGzqwyRGGkbEmD5urviRQLracisJ0Cm7Fe9jLxP6+XmPDaT5mME0MlWSwKE45MhLLH0ZApSgyfWoKJYvZWRMZYYWJsPCUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS0gMIZneIU3RzgvzrvzsWgtOPnMMfyB8/kD1LqOGQ==</latexit>

...
<latexit sha1_base64="hx9vrypjtBJpcEsh1w05CZs9G34=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtGpV/6Jau7+s1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB8y9j0Y=</latexit>

Token Lock
<latexit sha1_base64="gbELSwyJCbfz6q6EbVkRYiFwfhI=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXAxsIiQr4wOcLeZpIs2ds9dveEEPIvbCwUsfXf2Plv3CRXaOKDgcd7M8zMixLBjfX9by+3sbm1vZPfLeztHxweFY9PmkalmmGDKaF0O6IGBZfYsNwKbCcaaRwJbEXj27nfekJtuJJ1O0kwjOlQ8gFn1Drpsa7GKMm9YuNeseSX/QXIOgkyUoIMtV7xq9tXLI1RWiaoMZ3AT2w4pdpyJnBW6KYGE8rGdIgdRyWN0YTTxcUzcuGUPhko7UpaslB/T0xpbMwkjlxnTO3IrHpz8T+vk9rBTTjlMkktSrZcNEgFsYrM3yd9rpFZMXGEMs3drYSNqKbMupAKLoRg9eV10qyUg6ty5aFSqvpZHHk4g3O4hACuoQp3UIMGMJDwDK/w5hnvxXv3PpatOS+bOYU/8D5/ABZ8kHg=</latexit>

requests
for `a

<latexit sha1_base64="4WoRcMiXXMfsk7lZHlj8Muq2A3Q=">AAACHXicbVDLSsNAFJ34rPFVdelmsBVclaSKuiy4cVnBPqAJZTK9aYdOJnFmIpTQH3Hjr7hxoYgLN+LfOE0raOtdHc6De+8JEs6Udpwva2l5ZXVtvbBhb25t7+wW9/abKk4lhQaNeSzbAVHAmYCGZppDO5FAooBDKxheTfTWPUjFYnGrRwn4EekLFjJKtKG6xTMvgD4TGQWhQY5tCXcpKK2w5+EwlrjsAeddUrY9EL0fV7dYcipOPngRuDNQQrOpd4sfXi+maWTilBOlOq6TaD8jUjPKYWx7qYKE0CHpQ8dAQSJQfpZ/N8bHhunlx4Sx0DhnfycyEik1igLjjIgeqHltQv6ndVIdXvoZE0mqQdDpojDlWMd4UhXuMQlU85EBhEpmbsV0QCShpgNlmxLc+ZcXQbNacU8r1ZtqqXY+q6OADtEROkEuukA1dI3qqIEoekBP6AW9Wo/Ws/VmvU+tS9Ysc4D+jPX5DYQSoh8=</latexit>

requests
for `q

<latexit sha1_base64="a/OjfD/b0D/wYYC6ODqPlE+LHjM=">AAACHXicbVDLSsNAFJ3UV42vqks3g63gqiRV1GXBjcsK9gFNKZPpTTt0MklnJkIJ/RE3/oobF4q4cCP+jdM2grbe1eE8uPceP+ZMacf5snIrq2vrG/lNe2t7Z3evsH/QUFEiKdRpxCPZ8okCzgTUNdMcWrEEEvocmv7weqo370EqFok7PY6hE5K+YAGjRBuqWzj3fOgzkVIQGuTEljBKQGmFPQ8HkcQlDzjvjkq2B6L34+oWik7ZmQ1eBm4GiiibWrfw4fUimoQmTjlRqu06se6kRGpGOUxsL1EQEzokfWgbKEgIqpPOvpvgE8P0ZscEkdB4xv5OpCRUahz6xhkSPVCL2pT8T2snOrjqpEzEiQZB54uChGMd4WlVuMckUM3HBhAqmbkV0wGRhJoOlG1KcBdfXgaNStk9K1duK8XqRVZHHh2hY3SKXHSJqugG1VAdUfSAntALerUerWfrzXqfW3NWljlEf8b6/AadMqIv</latexit>

requests
for resources

<latexit sha1_base64="1DMAXcU5oGq1aI+tgOpBQoT8o6U=">AAACHnicbVDLSsNAFJ34rPFVdelmsAiuSlLxsSy4cVnBPqAJZTK5aYdOJnFmIpTQL3Hjr7hxoYjgSv/GaVpBW+/qcB7ce0+Qcqa043xZS8srq2vrpQ17c2t7Z7e8t99SSSYpNGnCE9kJiALOBDQ10xw6qQQSBxzawfBqorfvQSqWiFs9SsGPSV+wiFGiDdUrn3kB9JnIKQgNcmxLuMtAaYU9D0eJxBKmq5TtgQh/bL1yxak6xeBF4M5ABc2m0St/eGFCs9jEKSdKdV0n1X5OpGaUw9j2MgUpoUPSh66BgsSg/Lx4b4yPDRMW10SJ0LhgfydyEis1igPjjIkeqHltQv6ndTMdXfo5E2mmQdDpoijjWCd40hUOmQSq+cgAQiUzt2I6IJJQ04GyTQnu/MuLoFWruqfV2k2tUj+f1VFCh+gInSAXXaA6ukYN1EQUPaAn9IJerUfr2Xqz3qfWJWuWOUB/xvr8BqeHo2M=</latexit>

head of RQa holds `a
<latexit sha1_base64="KumCEKokJAoUTkuoMFFVy5GR7Jo=">AAACBnicbVDLSsNAFJ34rPUVdSnCYCu4KkkFdVlw47IV+4A2lMnkph06yYSZiVBCV278FTcuFHHrN7jzb5y2WWjrgQtnzrmXuff4CWdKO863tbK6tr6xWdgqbu/s7u3bB4ctJVJJoUkFF7LjEwWcxdDUTHPoJBJI5HNo+6Obqd9+AKmYiO/1OAEvIoOYhYwSbaS+fTIEEmAR4vJdo0/KeCh4oHC5B5ybZ98uORVnBrxM3JyUUI563/7qBYKmEcSacqJU13US7WVEakY5TIq9VEFC6IgMoGtoTCJQXjY7Y4LPjBLgUEhTscYz9fdERiKlxpFvOiOih2rRm4r/ed1Uh9dexuIk1RDT+UdhyrEWeJoJDpgEqvnYEEIlM7tiOiSSUG2SK5oQ3MWTl0mrWnEvKtVGtVS7zOMooGN0is6Ri65QDd2iOmoiih7RM3pFb9aT9WK9Wx/z1hUrnzlCf2B9/gBOn5cQ</latexit>

Figure 3 Under the RNLP, a job Ji that requests a resource `a first competes for a token. Once
Ji acquires a token, a timestamp ts(Ji) is recorded, and the request is enqueued into the priority
queue RQa ordered by the token-acquisition timestamps. The job of the request that occupies the
head of a queue holds the corresponding shared resource.

demonstrate this through the construction of group independence-preserving fine-grained
nested locking protocol that is asymptotically optimal under s-oblivious analysis: the Group
Independence-Preserving Protocol (GIPP). We review the necessary background of the RNLP
and RRPD in this section required to realize the GIPP, and then give a high-level overview
of the GIPP before constructing its components in subsequent sections.

RNLP. As a brief reminder, an instantiation of the RNLP consists of a token lock and
an RSM. We speak in the context of a job Ji that requires a shared resource `a ∈ Γ when
reviewing the following rules. Under the rules of the RNLP [32, Section 3], Ji first competes
for a token λ in the token lock before it can actually issue a request for `a. Once Ji acquires
λ, a timestamp ts(Ji)1 of the current time is recorded. Conceptually, Ji now enters the RSM,
and is placed in a priority queue RQa ordered by increasing timestamp2; such a priority
queue exists for each shared resource in Γ. Ji waits until it becomes the head of RQa, and
then it holds `a unless a job Jk holds a shared resource `b s.t. `b � `a ∧ ts(Jk) < ts(Ji).
Once Ji completes its request for `a it is dequeued from RQa and the new head of RQa (if
any) acquires `a subject to the previous constraints. As requests need not be properly nested,
Ji may continue to compete for shared resources in the RSM. Once Ji has completed its
outermost critical section, it releases λ. This queuing structure is depicted in Figure 3.

The RNLP specifies properties [32] that a token lock and RSM must have to realize a
valid instantiation of the RNLP. Of the following properties, T1 and T2 apply to the token
lock, and R1 applies to the RSM.

T1 There are at most c token-holding jobs per cluster at any time (and thus m system-wide).
T2 If a job is pi-blocked waiting for a token, then it makes progress (i.e., the token holder is

scheduled).
R1 If a job is pi-blocked by the RSM, then the job makes progress.

Finally, we restate one of the RNLP’s theorems, as we use it to prove properties of the
GIPP later in this work. We refer to the original RNLP paper for its proof [32].

I Theorem 9 ([32, Theorem 1], paraphrased). The maximum amount of pi-blocking in the
RSM, when waiting is realized by suspending, is (m− 1) · Lmax.

1 The timestamps are assumed to be unique, and thus there is a total order on them.
2 For clarity, the head of a queue RQa is the request with the oldest (i.e., earliest) timestamp.

ECRTS 2020

6:10 Isolating Unrelated Critical Sections in Real-Time Nested Locking

Ji’s first requires
a replica of `a

<latexit sha1_base64="ZklAw44phkm0EHtfa54XOOj+dSY=">AAACNHicbVDLSsNAFJ34Nr6qLt0MtqKrktSFLotuRDcKtgpNCTfTmzo4mcSZiVBCP8qNH+JGBBeKuPUbnD4EXwcGzpx7D/feE2WCa+N5T87E5NT0zOzcvLuwuLS8Ulpda+o0VwwbLBWpuoxAo+ASG4YbgZeZQkgigRfR9eGgfnGLSvNUnptehu0EupLHnIGxUlg6CSLsclkwlAZV360ch7yyrWnMlTZU4U3OFWoaBBTsz27EgKYxrQQoRAgVN0DZ+TKHpbJX9Yagf4k/JmUyxmlYegg6KcsTa2cCtG75XmbaBSjDmcC+G+QaM2DX0MWWpRIS1O1ieHSfblmlQ+NU2ScNHarfHQUkWveSyHYmYK7079pA/K/Wyk283y64zHKDko0GxbmgJqWDBGnHJsKM6FkCTHG7K2VXoIDZDLRrQ/B/n/yXNGtVf7daO6uV6wfjOObIBtkkO8Qne6ROjsgpaRBG7sgjeSGvzr3z7Lw576PWCWfsWSc/4Hx8Av0jqnA=</latexit>

Ji’s request
completed

<latexit sha1_base64="tUqduyXST8EFEkssR4L5PwMObfk=">AAACIXicbVBNTwIxFOziF65fqEcvjWD0RHbxIEeiF+MJE0ESlpBu9wEN3e7adk3Ihr/ixb/ixYPGcDP+GQusiYKTNJnMzMvrGz/mTGnH+bRyK6tr6xv5TXtre2d3r7B/0FRRIik0aMQj2fKJAs4ENDTTHFqxBBL6HO794dXUv38EqVgk7vQohk5I+oL1GCXaSN1C1fOhz0RKQWiQY7t002WlU4UlPCSgNPY8TKMw5qAhsD0QwU+yWyg6ZWcGvEzcjBRRhnq3MPGCiCahGaecKNV2nVh3UiI1oxzGtpcoiAkdkj60DRUkBNVJZxeO8YlRAtyLpHlC45n6eyIloVKj0DfJkOiBWvSm4n9eO9G9aidlIk40CDpf1Es41hGe1oUDJoFqPjKEUMnMXzEdEEmo6UDZpgR38eRl0qyU3fNy5bZSrF1mdeTRETpGZ8hFF6iGrlEdNRBFT+gFvaF369l6tT6syTyas7KZQ/QH1tc3X6qjqQ==</latexit>

Ji issues request
for replica

<latexit sha1_base64="NYSSQe4Au5PRg3HKvTvuODjg5pA=">AAACKHicbVDLTsMwEHTKq4RXgCMXixaJU5WUA9yo4II4FYk+pKaqHHfTWnWcYDtIVdTP4cKvcEEIhHrlS3AfSNAyF49nd7S7EyScKe26Yyu3srq2vpHftLe2d3b3nP2DuopTSaFGYx7LZkAUcCagppnm0EwkkCjg0AgG15N64xGkYrG418ME2hHpCRYySrSROs6lH0CPiYyC0CBHdvG2w4qYKZWCwhIezKOx7+MwluZrNqLE9kF0fwwdp+CW3CnwMvHmpIDmqHacN78b0zQydsqJUi3PTXQ7I1IzymFk+6mChNAB6UHLUEEiUO1seugInxilO90ljIXGU/W3IyORUsMoMJ0R0X21WJuI/9VaqQ4v2hkTSapB0NmgMOVYx3iSGu4yCVTzoSGESmZ2xbRPJKEmA2WbELzFk5dJvVzyzkrlu3KhcjWPI4+O0DE6RR46RxV0g6qohih6Qi/oHX1Yz9ar9WmNZ605a+45RH9gfX0DECemmw==</latexit>

Ji’s request
satisfied

<latexit sha1_base64="Jh+TMJYiiEO0T3C8MFiMc/7glO4=">AAACIXicbVDLSgMxFM3UVx1fVZdugq3oqszUhV0W3YirCrYWOqVkMnfa0ExmTDJCGforbvwVNy4U6U78GdOHoK0HAodzzuXmHj/hTGnH+bRyK6tr6xv5TXtre2d3r7B/0FRxKik0aMxj2fKJAs4ENDTTHFqJBBL5HO79wdXEv38EqVgs7vQwgU5EeoKFjBJtpG6h6vnQYyKjIDTIkV266bLSqcISHlJQGnseViaqQgaB7YEIfpLdQtEpO1PgZeLOSRHNUe8Wxl4Q0zQy45QTpdquk+hORqRmlMPI9lIFCaED0oO2oYJEoDrZ9MIRPjFKgMNYmic0nqq/JzISKTWMfJOMiO6rRW8i/ue1Ux1WOxkTSapB0NmiMOVYx3hSFw6YBKr50BBCJTN/xbRPJKGmA2WbEtzFk5dJs1J2z8uV20qxdjmvI4+O0DE6Qy66QDV0jeqogSh6Qi/oDb1bz9ar9WGNZ9GcNZ85RH9gfX0DXkejqA==</latexit>

t1
<latexit sha1_base64="0OaYIontm67T2LorNHwBlz31178=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwPkjZY=</latexit>

t2
<latexit sha1_base64="d04zkK/ml8T/jWPxf4r6CevJVK0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/fXlUY9j6MIZ3AOl+DBDTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwVojZc=</latexit>

t3
<latexit sha1_base64="OffZmfJP6ZILfHPabWSuuZh3V1Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lawR4LXjxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZn7j09cGxGrB5wm3I/oSIlQMIpWusdBfVCuuFV3AbJOvJxUIEdrUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophg0/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nXRqVa9erd1dVZqNPI4inME5XIIH19CEW2hBGxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gAG7I2Y</latexit>

t4
<latexit sha1_base64="yI58nk41NOY2Inv3R20sXMbcNhI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt2GPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt3O/88S1EbF6xGnC/YiOlAgFo2ilBxzUBqWyW3EXIOvEy0kZcjQHpa/+MGZpxBUySY3peW6CfkY1Cib5rNhPDU8om9AR71mqaMSNny1OnZFLqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2hC81ZfXSbta8a4r1ftauVHP4yjAOVzAFXhwAw24gya0gMEInuEV3hzpvDjvzseydcPJZ87gD5zPHwhwjZk=</latexit>

suspended due to
priority donation

<latexit sha1_base64="Jb8uFilZFVZqXniXWWurcN6DDzE=">AAACKnicbZBLSwMxFIUz9VXHV9Wlm2ARXJWZCuqy4sZlBfuATimZzG0bmkmGJCOUob/HjX/FTRdKcesPMW1H0NYDgcO59xDuFyacaeN5M6ewsbm1vVPcdff2Dw6PSscnTS1TRaFBJZeqHRINnAloGGY4tBMFJA45tMLR/XzeegalmRRPZpxANyYDwfqMEmOjXukuCGHAREZBGFATV6c6ARFBhKMUsJE4CHCimFTMjHEkxaLmBnblp9Irlb2KtxBeN35uyihXvVeaBpGkaWzrlBOtO76XmG5GlGGUw8QNUg0JoSMygI61gsSgu9ni1Am+sEmE+1LZJwxepL8bGYm1Hseh3YyJGerV2Tz8b9ZJTf+2mzGRpAYEXX7UT/kcwZwbjpgCariFwAi1NBjFdEgUoZaBdi0Ef/XkddOsVvyrSvWxWq5d5ziK6Aydo0vkoxtUQw+ojhqIohf0ht7Rh/PqTJ2Z87lcLTh55xT9kfP1DSYNqEc=</latexit>

suspended due to
competing requests

<latexit sha1_base64="G6qCvbUgnpKoRO14A0KbTnkvQ9U=">AAACK3icbVDJSgNBFOxxjeM26tFLYxA8hZkI6jHoxWMEs0AmhJ6el6RJT8/YixCG/I8Xf8WDHlzw6n/YWQRNLGgoql7x+lWUcaa07787S8srq2vrhQ13c2t7Z9fb26+r1EgKNZryVDYjooAzATXNNIdmJoEkEYdGNLga+417kIql4lYPM2gnpCdYl1GirdTxLsMIekzkFIQGOXKVURmIGGIcG8A6xWGIaZpkoJnoYQl3BpRWbmhnfjIdr+iX/AnwIglmpIhmqHa85zBOqUlsnHKiVCvwM93OidSMchi5oVGQETogPWhZKkgCqp1Pbh3hY6vEuJtK+4TGE/V3IieJUsMkspMJ0X01743F/7yW0d2Lds5EZjQIOl3UNXzcwbg4HDMJVPOhJYRKZv+KaZ9IQm0HyrUlBPMnL5J6uRSclso35WLlbFZHAR2iI3SCAnSOKugaVVENUfSAntArenMenRfnw/mcji45s8wB+gPn6xv6/6i1</latexit>

critical section
<latexit sha1_base64="xJTbnGo5CXOceg5cAy983HXnFrU=">AAACFXicbVDLSsNAFJ3UV42vqEs3g0VwISWpoC4LblxWsA9oQ5lMbtuhk0mYmQgl9Cfc+CtuXCjiVnDn3zhpI2jrhQuH8+ByT5BwprTrflmlldW19Y3ypr21vbO75+wftFScSgpNGvNYdgKigDMBTc00h04igUQBh3Ywvs719j1IxWJxpycJ+BEZCjZglGhD9Z2zXgBDJjIKQoOc2lQybUSOFdDcYfdAhD9q36m4VXc2eBl4BaigYhp957MXxjSNTJxyolTXcxPtZ0SaGxymdi9VkBA6JkPoGihIBMrPZl9N8YlhQjyIpVmh8Yz9nchIpNQkCowzInqkFrWc/E/rpnpw5WdMJKkGQeeHBinHOsZ5RThk0jzPJwaQeR+Yjogk1HSgbFOCt/jyMmjVqt55tXZbq9QvijrK6Agdo1PkoUtURzeogZqIogf0hF7Qq/VoPVtv1vvcWrKKzCH6M9bHN6Orn7M=</latexit>

request incomplete
<latexit sha1_base64="5OyRtTQCZv8O2Kej4bDzR9fmTXg=">AAACF3icbVDLSsNAFJ3UV42vqEs3g0VwVZIK6rLgxmUF+4AmlMnkth06mcSZiVBC/8KNv+LGhSJudeffOG0jaOuBgcM593DnnjDlTGnX/bJKK6tr6xvlTXtre2d3z9k/aKkkkxSaNOGJ7IREAWcCmpppDp1UAolDDu1wdDX12/cgFUvErR6nEMRkIFifUaKN1HOqfggDJnIKQoOc2BLuMlAaM0GTOOWgwfZBRD9+z6m4VXcGvEy8glRQgUbP+fSjhGaxiVNOlOp6bqqDnEjNKIeJ7WcKUkJHZABdQwWJQQX57K4JPjFKhPuJNE9oPFN/J3ISKzWOQzMZEz1Ui95U/M/rZrp/GeRMpJkGQeeL+hnHOsHTknDEJFDNx4YQKpn5K6ZDIgk1HSjblOAtnrxMWrWqd1at3dQq9fOijjI6QsfoFHnoAtXRNWqgJqLoAT2hF/RqPVrP1pv1Ph8tWUXmEP2B9fENjx2gwA==</latexit>

Ji requires a replica of `a
<latexit sha1_base64="CkMWYMeXIuMiDx3XKAK35q8igWo=">AAACKXicbVBNS8NAFNz4WeNX1aOXxVbwVJIK6rHgRTxVsCo0JbxsX+riZhN3N0IJ/Tte/CteFBT16h9xWyto68DCMPOGfW+iTHBtPO/dmZmdm19YLC25yyura+vljc0LneaKYYulIlVXEWgUXGLLcCPwKlMISSTwMro5HvqXd6g0T+W56WfYSaAnecwZGCuF5UYQYY/LgqE0qAZu9TTkVarwNucKNQVL7RoMaBrTaoBChFB1A5Tdn0RYrng1bwQ6TfwxqZAxmmH5OeimLE9snAnQuu17mekUoAxnAgdukGvMgN1AD9uWSkhQd4rRpQO6a5UujVNlnzR0pP5OFJBo3U8iO5mAudaT3lD8z2vnJj7qFFxmuUHJvj+Kc0FNSoe10a6tgxnRtwSY4nZXyq5BAbMdaNeW4E+ePE0u6jV/v1Y/q1caB+M6SmSb7JA94pND0iAnpElahJF78kheyKvz4Dw5b87H9+iMM85skT9wPr8AraWmPA==</latexit>

Figure 4 Life-cycle of a request under RRPD for a replica of a shared resource `a (adapted
from [35]).

RRPD. Under the rules of RRPD [35, Section 3], a job donates its priority upon requesting
a resource, and as such only becomes a priority donor at most once per outermost critical
section. Thus if a job does not request a resource, it never donates its priority to jobs
requesting said resource. We speak in the context of a job Ji that requires a shared resource
`a ∈ Γ when reviewing the following rules. Furthermore, we discuss RRPD in the context
of a single cluster despite it having been designed for globally-scheduled systems, as we
assume throughout this paper that clusters function independently with respect to RRPD.
We refer the reader to Figure 4 for a visual depiction of the life-cycle of an RRPD request,
and the terminology used. Let R(`a, t) denote the (possibly empty) set of the c highest
effective-priority jobs that require `a at time t. If Ji requires `a and Ji ∈ R(`a, t) then Ji
may issue a request for `a, unless it becomes a priority donor first. Ji becomes the priority
donor of a job Jd at time t1 (see Figure 4) if (i) Ji ∈ R(`a, t), (ii) there are c jobs with an
incomplete request for `a, and (iii) Jd is the lowest-effective priority job with an incomplete
request for `a; while Ji donates its priority to Jd in the interval [t2, t4) it is suspended and
assumed to have no effective-priority. Should Ji be displaced from R(`a, t) while donating its
priority to Jd by a job Jk, then Ji ceases to be a priority donor and Jk becomes Jd’s priority
donor. Finally, if Ji is Jd’s priority donor when Jd completes its outermost critical section,
then Ji ceases to be a priority donor.

We now restate two of the RRPD’s lemmas as we use them later when constructing the
components required to realize the GIPP. Their proofs are available in the original work [35].

I Lemma 10 ([35, Lemma 2 (adapted for clustered scheduling)]). There are at most c jobs
per cluster with an incomplete request for a replica of a shared resource `a at any time.

I Lemma 11 ([35, Lemma 4]). Under RRPD, if a job Ji that requires a replica of `a is
pi-blocked waiting for a replica of `a it either has an incomplete request for a replica of `a or
it is a priority donor.

GIPP. At a very high level, the GIPP works as follows. For each group, we instantiate
a separate instance of the RNLP. Crucially, the choice of token lock and RSM used to
instantiate each instance of the RNLP must not violate group independence preservation,
that is, any progress mechanisms employed must lend themselves to group independence
preservation. Progress mechanisms like priority boosting that rely on elevating a job’s priority
can cause jobs that never request shared resources to incur release-blocking, which precludes
the property of group independence preservation; this is highly undesirable in the presence
of latency-sensitive tasks [6]. Furthermore, progress mechanisms that rely on the ability
to directly compare priorities across clusters can result in unbounded pi-blocking (i.e., the

J. Robb and B. B. Brandenburg 6:11

blocking depends on some other task’s WCET) [6]. The challenges to realizing the GIPP
are then to (i) construct an appropriate token lock and RSM, (ii) prove the token lock and
RSM satisfy the required properties of the RNLP, (iii) prove the optimality of the GIPP
under s-oblivious analysis, and (iv) prove that the GIPP is group independence-preserving.

We construct the token lock in Section 4.1, and the RSM in Section 4.2. We then show
how to use these two components to realize the GIPP in Section 4.3.

4.1 An Independence-Preserving k-Exclusion Locking Protocol
To realize the GIPP we use a single token lock that is common to all the instantiations of the
RNLP. If there are r groups (and therefore r instances of the RNLP), then a token lock that
arbitrates access to r distinct token types, where each token type has m replicas, will suffice.
However, as stated earlier, any such token lock must lend itself to independence preservation.
To the best our knowledge, no such k-exclusion locking protocol (i.e., token lock) exists
for clustered scheduling. To realize such a token lock, we generalize the R2DGLP [35],
which satisfies the requirements just described, with the exception that it was designed for
globally-scheduled systems. Ward et al. use the term replica instead of token when discussing
shared resources in the context of RRPD and R2DGLP; we use the terms interchangeably.

As discussed in Section 2, the R2DGLP uses RRPD as a progress mechanism. Thus,
to generalize the R2DGLP to clustered scheduling, the requirement that priorities across
all jobs are comparable must be lifted. Additionally, RRPD alone is not enough to ensure
progress [35], which means that replica-holders (i.e., token holders) are not guaranteed to
be scheduled without the aid of an additional progress mechanism. The R2DGLP solves
this with priority inheritance, as the protocol targets globally-scheduled systems. However,
the R2DGLP does not strictly mandate the use of priority inheritance, instead, any locking
protocol that utilizes RRPD must satisfy the following property [35, Section 3].

P1 A job Ji with an incomplete replica request makes progress (i.e., either Ji is scheduled
itself or the replica-holding job that Ji is waiting for is scheduled) if Ji has sufficient
priority to be scheduled in C(Ti).

We introduce the Clustered k-Exclusion Independence-Preserving Protocol (CKIP) as
a generalization of R2DGLP that is non-nested independence preserving, asymptotically
optimal under s-oblivious analysis, and employable under clustered scheduling. The CKIP is
realized by having tasks compete amongst each other in their home clusters under the rules of
RRPD, but not across clusters. This is possible as priorities can be directly compared within
each cluster. However, this means that priority inheritance can no longer be used to ensure
that replica holders make progress. To this end, we employ allocation inheritance [21, 22, 20]
(sometimes referred to as migratory priority inheritance [6, 12]), an independence-preserving
progress mechanism that works across clusters, and which is also used in the OMIP [6]. We
define allocation inheritance in the context of the CKIP and GIPP as follows.

I Definition 12 (allocation inheritance). Let Ji be a job that holds a replica of a shared
resource `a that has k ≥ 1 replicas, and Wi be the set of jobs across all clusters waiting to a
acquire a replica of `a. Under allocation inheritance (AI), if Ji is not scheduled and there
exists a job Jk ∈ Wi ∪ {Ji} that has sufficient priority to be scheduled in C(Tk), then Ji
migrates to C(Tk) (if necessary) and runs with Jk’s priority. While Ji executes in C(Tk) with
Jk’s priority, we call Jk an allocation donor. Once Ji releases `a, it migrates back to C(Ti)
(if necessary) and resumes execution when it has sufficient priority. Finally, Ji’s allocation
donor (if any) ceases to be an allocation donor when Ji releases `a.

ECRTS 2020

6:12 Isolating Unrelated Critical Sections in Real-Time Nested Locking

k replicas
<latexit sha1_base64="a4/mPD1TulvygSAUwCyFuCoSRJI=">AAAB83icbVA9SwNBEJ2LXzF+RS1tFhPBKtzFQsuAjXYRzAckR9jbzCVL9vaO3T0hHPkbNhaK2Ppn7Pw3bpIrNPHBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNMbud+5wmV5rF8NNME/YiOJA85o8ZK/eqkShTaRYzqQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLmGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJPAAy5AqZEVNLKFPc3krYmCrKjI2pZEPwVl9eJ+16zbuq1R/qlcZ9HkcRzuAcLsGDa2jAHTShBQwSeIZXeHNS58V5dz6WrQUnnzmFP3A+fwAnKJEh</latexit>

dm/ke requests
<latexit sha1_base64="d608+ZTowMXf+C/756MoajfbCNk=">AAACEnicbVA9SwNBEN3zM8avqKXNYiJoE+9ioWXARrsI5gNyR9jbzCVL9j7cnRNCyG+w8a/YWChia2Xnv3GTXKGJDwYe780wM89PpNBo29/W0vLK6tp6biO/ubW9s1vY22/oOFUc6jyWsWr5TIMUEdRRoIRWooCFvoSmP7ia+M0HUFrE0R0OE/BC1otEIDhDI3UKpyVXQoCu5CAkDekZHVBXiV4fXTWRSlTBfQoadadQtMv2FHSROBkpkgy1TuHL7cY8DSFCLpnWbcdO0BsxhYJLGOfdVEPC+ID1oG1oxELQ3mj60pgeG6VLg1iZipBO1d8TIxZqPQx90xky7Ot5byL+57VTDC69kYiSFCHis0VBKinGdJIP7QoFHOXQEMaVMLdS3meKcTQp5k0IzvzLi6RRKTvn5cptpVi9yeLIkUNyRE6IQy5IlVyTGqkTTh7JM3klb9aT9WK9Wx+z1iUrmzkgf2B9/gDqYp0K</latexit>

Jx
<latexit sha1_base64="xrmdxHGoZrf2Jn3YkGslJpCkCik=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BL+oponlAsoTZySQZMju7zPSKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdDX1m49cGxGpBxzH3A/pQIm+YBStdH/bfeoWS27ZnYEsEy8jJchQ6xa/Or2IJSFXyCQ1pu25Mfop1SiY5JNCJzE8pmxEB7xtqaIhN346O3VCTqzSI/1I21JIZurviZSGxozDwHaGFIdm0ZuK/3ntBPuXfipUnCBXbL6on0iCEZn+TXpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSqJS9s3Ll7rxUvcniyMMRHMMpeHABVbiGGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPNKGNxA==</latexit>

. . .
<latexit sha1_base64="cMXENXdfyRVfP+E2+sKQ9Ti7eGY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPBi8cK9gPaWDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHoZua3n5g2XMl7HKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1u8tK/SGPowgncArn4MMV1OEWGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AMXZj1g=</latexit>

of queue(s) holds replica(s)
<latexit sha1_base64="Okho+y0O7LfRidy0YNg3HcpY3EQ=">AAACBXicbVA9SwNBEN2LXzF+nVpqsRiE2IS7WGgZsNEugvmA5Ah7e3PJkr3bc3dPCEcaG/+KjYUitv4HO/+Nm+QKTXww8Hhvhpl5fsKZ0o7zbRVWVtfWN4qbpa3tnd09e/+gpUQqKTSp4EJ2fKKAsxiammkOnUQCiXwObX90NfXbDyAVE/GdHifgRWQQs5BRoo3Ut49FiO9TSKGizvBQ8EBhCWYxJUbo22Wn6syAl4mbkzLK0ejbX71A0DSCWFNOlOq6TqK9jEjNKIdJqZcqSAgdkQF0DY1JBMrLZl9M8KlRAhwKaSrWeKb+nshIpNQ48k1nRPRQLXpT8T+vm+rw0stYnKQaYjpfFKYca4GnkeCASaCajw0hVDJzK6ZDIgnVJriSCcFdfHmZtGpV97xau62V6zd5HEV0hE5QBbnoAtXRNWqgJqLoET2jV/RmPVkv1rv1MW8tWPnMIfoD6/MHDNaXqA==</latexit>

Ji
<latexit sha1_base64="fzvkvF61AJA83b8vhw53I8YcLGw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjwop4q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj66nfekKleSwfzThBP6IDyUPOqLHSw12P90plt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK955pXp/Ua7d5nEU4BhO4Aw8uIQa3EAdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w8d5Y21</latexit>

. . .
<latexit sha1_base64="cMXENXdfyRVfP+E2+sKQ9Ti7eGY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPBi8cK9gPaWDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHoZua3n5g2XMl7HKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1u8tK/SGPowgncArn4MMV1OEWGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AMXZj1g=</latexit>

Cm/c
<latexit sha1_base64="Uc38+0g5ccT4ICl1lp78QavPbDk=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSJ4qrtV0GOhF71VsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vf3tr6xubWdmGnuLu3f3BYOjpumSTVhDZJwhPdibChnEnatMxy2lGaYhFx2o7G9ZnffqLasEQ+2omiocBDyWJGsHVSu97PxCWZ9ktlv+LPgVZJkJMy5Gj0S1+9QUJSQaUlHBvTDXxlwwxrywin02IvNVRhMsZD2nVUYkFNmM3PnaJzpwxQnGhX0qK5+nsiw8KYiYhcp8B2ZJa9mfif101tfBtmTKrUUkkWi+KUI5ug2e9owDQllk8cwUQzdysiI6wxsS6hogshWH55lbSqleCqUn24Ltfu8zgKcApncAEB3EAN7qABTSAwhmd4hTdPeS/eu/exaF3z8pkT+APv8wcIyI9k</latexit>

C1<latexit sha1_base64="lQbxbN7Jg4F30pEOxjSvOIHPg+E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FjoRW8V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoNxfea3n1BpHstHM0nQj+hQ8pAzaqz0UO97/VLZrbhzkFXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgtNhLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtO0YbgLb+8SlrVindZqd5flWt3eRwFOIUzuAAPrqEGt9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QO+TI12</latexit>

max c requests
<latexit sha1_base64="FSG/Twh5nK0kaqnWJM+ctvJg8HU=">AAAB+XicbVA9TwJBEN3DL8SvU0ubjWBiRe6w0JJoY4mJgAlcyN4yBxt2987dPSK58E9sLDTG1n9i579xgSsUfMkkL+/NZGZemHCmjed9O4W19Y3NreJ2aWd3b//APTxq6ThVFJo05rF6CIkGziQ0DTMcHhIFRIQc2uHoZua3x6A0i+W9mSQQCDKQLGKUGCv1XFeQJ1yhFazgMQVtdM8te1VvDrxK/JyUUY5Gz/3q9mOaCpCGcqJ1x/cSE2REGUY5TEvdVENC6IgMoGOpJAJ0kM0vn+Izq/RxFCtb0uC5+nsiI0LriQhtpyBmqJe9mfif10lNdBVkTCapAUkXi6KUYxPjWQy4zxRQwyeWEKqYvRXTIVGEGhtWyYbgL7+8Slq1qn9Rrd3VyvXrPI4iOkGn6Bz56BLV0S1qoCaiaIye0St6czLnxXl3PhatBSefOUZ/4Hz+AJTnkvo=</latexit>

max c requests
<latexit sha1_base64="FSG/Twh5nK0kaqnWJM+ctvJg8HU=">AAAB+XicbVA9TwJBEN3DL8SvU0ubjWBiRe6w0JJoY4mJgAlcyN4yBxt2987dPSK58E9sLDTG1n9i579xgSsUfMkkL+/NZGZemHCmjed9O4W19Y3NreJ2aWd3b//APTxq6ThVFJo05rF6CIkGziQ0DTMcHhIFRIQc2uHoZua3x6A0i+W9mSQQCDKQLGKUGCv1XFeQJ1yhFazgMQVtdM8te1VvDrxK/JyUUY5Gz/3q9mOaCpCGcqJ1x/cSE2REGUY5TEvdVENC6IgMoGOpJAJ0kM0vn+Izq/RxFCtb0uC5+nsiI0LriQhtpyBmqJe9mfif10lNdBVkTCapAUkXi6KUYxPjWQy4zxRQwyeWEKqYvRXTIVGEGhtWyYbgL7+8Slq1qn9Rrd3VyvXrPI4iOkGn6Bz56BLV0S1qoCaiaIye0St6czLnxXl3PhatBSefOUZ/4Hz+AJTnkvo=</latexit> ...<latexit sha1_base64="Yd6TvPrxj3MF7YPnrGOx4oLTnhE=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGC/YA2ls1m067dZMPupFBK/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03jco04w2mpNLtgBouRcIbKFDydqo5jQPJW8Hwdua3RlwboZIHHKfcj2k/EZFgFK3U7I5ChaZXKrsVdw6ySryclCFHvVf66oaKZTFPkElqTMdzU/QnVKNgkk+L3czwlLIh7fOOpQmNufEn82un5NwqIYmUtpUgmau/JyY0NmYcB7Yzpjgwy95M/M/rZBjd+BORpBnyhC0WRZkkqMjsdRIKzRnKsSWUaWFvJWxANWVoAyraELzll1dJs1rxLivV+6ty7TGPowCncAYX4ME11OAO6tAABk/wDK/w5ijnxXl3Phata04+cwJ/4Hz+ANUpj2I=</latexit>

head
<latexit sha1_base64="7iK29fAUL/c9MsPvvTBVaNnNr2I=">AAAB63icbVBNS8NAEN3Ur1q/qh69LBbBU0nqQY8FL3qrYD+gDWWzmTRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmBSln2rjut1PZ2Nza3qnu1vb2Dw6P6scnPZ1kikKXJjxRg4Bo4ExC1zDDYZAqICLg0A+mt4XffwKlWSIfzSwFX5CJZBGjxBRSDCQc1xtu010ArxOvJA1UojOuf43ChGYCpKGcaD303NT4OVGGUQ7z2ijTkBI6JRMYWiqJAO3ni1vn+MIqIY4SZUsavFB/T+REaD0Tge0UxMR61SvE/7xhZqIbP2cyzQxIulwUZRybBBeP45ApoIbPLCFUMXsrpjFRhBobT82G4K2+vE56raZ31Ww9tBrt+zKOKjpD5+gSeegatdEd6qAuoihGz+gVvTnCeXHenY9la8UpZ07RHzifPwWsjj0=</latexit>

Figure 5 Queuing structure of the CKIP, which has been adapted from the R2DGLP [35]. At
any time, each of the m/c clusters has at most c incomplete requests for a replica of a given shared
resource. Requests are enqueued into the replica queue with the least number of requests in it.

Now armed with an independence-preserving progress mechanism [6],3 we can construct
the CKIP by adapting the rules that define the R2DGLP [35, Section 4]. The rules and
structure of the CKIP differ enough from the R2DGLP that its rules do not directly apply.
Therefore, we present the modified rules and structure in full below.

Structure. Tasks compete for a set of q shared resources Γ = {`1, . . . , `q} where each
resource `a has k ≥ 1 replicas. Nested requests are not permitted. Each of the k replicas has
an associated FIFO queue of size dm/ke that jobs are placed in when requesting a replica;
we use KQa to refer to any one of the queues for `a. The queuing structure of the CKIP
closely resembles the R2DGLP and is depicted in Figure 5. The following rules for CKIP
focus on a single replicated resource `a ∈ Γ, though they directly apply to all resources in Γ.

K1 Jobs issue requests subject to the rules of RRPD. When Ji requests `a, it is enqueued
into a KQa with the fewest number of jobs in it, and suspends while it waits.

K2 Ji’s request for `a is satisfied when it becomes the head of KQa, and thus becomes ready.
K3 While Ji is the head of KQa, it benefits from AI, but only with respect to the other jobs

in the same KQa as Ji (i.e., Wi is comprised of the jobs in KQa that Ji is the head of).
K4 When Ji’s request for `a is completed, it is dequeued from KQa and the new head (if

any) acquires the replica. If Ji had benefited from AI, it returns to its home cluster and
assumes its former (possibly donated) priority. If Ji has a priority donor due to RRPD
in C(Ti), the donor may now issue a request subject to the rules of RRPD.

I Lemma 13. Rule K3 ensures property P1.

Proof. If Ji in KQa has sufficient priority to be scheduled in C(Ti), then under AI, the head
of KQa can migrate to C(Ti) and execute with Ji’s priority (if necessary). Therefore, the
replica-holder is scheduled and Ji makes progress. J

I Lemma 14. A job Ji that incurs pi-blocking while acting as a priority donor under the
rules of RRPD makes progress.

3 One might wonder whether the CKIP and hence the GIPP could also be realized with a progress
mechanism that does not result in inter-cluster migrations. Unfortunately, that is not the case: it is
generally impossible for a protocol to ensure bounded pi-blocking, be independence-preserving, and
avoid inter-cluster migrations at the same time even in the non-nested case [6].

J. Robb and B. B. Brandenburg 6:13

Proof. Let Jx be the job that Ji donates its priority to. Then Jx has an incomplete request
for a replica of a shared resource `a that both jobs require. Because Ji has sufficient priority
to be scheduled in C(Ti) – otherwise it would not incur s-oblivious pi-blocking – Jx does
as well, as C(Ti) = C(Tx) and since Jx receives its effective priority from Ji. Therefore, Jx
makes progress by Lemma 13, which means Ji does as well. J

I Lemma 15. The CKIP ensures property T1 with respect to each replicated resource.

Proof. RRPD is orchestrated on a per-cluster basis under the CKIP, and so we can reason
about each cluster individually as if it were a lone globally-scheduled system with c processors.
Then, by Lemma 10 there are at most c incomplete requests for a given replicated resource
per cluster, and therefore at most m across a clustered system as m

c · c = m. J

I Lemma 16. The CKIP ensures property T2.

Proof. By Lemma 11, a job Ji that requires a replica of a shared resource `a has an incomplete
request, or is a priority donor. By Lemma 14, Ji makes progress while acting as a priority
donor, and by Lemma 13, Ji makes progress while it has an incomplete request. Thus, Ji
makes progress if it incurs pi-blocking while waiting for a token (i.e., replica of `a). J

I Theorem 17. Ji incurs at most (2 dm/ke − 1) · Lmax s-oblivious pi-blocking while waiting
to acquire a replica of a shared resource `a.

We refer the reader to an online appendix [29] for the proof of Theorem 17 that establishes
the CKIP’s optimal O(m/k) bound on pi-blocking under s-oblivious analysis, as it follows
analogously to the proof of the optimality of the R2DGLP [35, Section 4].

I Theorem 18. The CKIP is non-nested independence-preserving under any JFLP scheduler.

Proof. Under the CKIP, requests for replicas of shared resources are arbitrated under the
rules of RRPD in each cluster. The rules of RRPD are such that jobs do not incur pi-blocking
for resources they do not access [35]. Thus, any pi-blocking Ji incurs due to requests for
a resource `a /∈ γi would need to be the result of the use of AI as a cross-cluster progress
mechanism. However, any job that benefits from AI only executes with the priority of another
job currently waiting on a replica of the same resource, which precludes Ji from incurring
pi-blocking due to jobs inheriting allocations [6]. Thus, if Ni,a = 0 then bi,a = 0. J

4.2 An Independence-Preserving RSM
The GIPP requires that its RSM lends itself to independence preservation, and no such
suitable RSM for clustered scheduling has been proposed in prior work. Thus, we introduce
the Allocation Inheritance Resource Satisfaction Mechanism (AI-RSM). The AI-RSM applies
to clustered scheduling, and utilizes AI to ensure progress among jobs competing for shared
resources. Let ts(Ji) be the time that Ji acquired its token (and therefore entered the RSM),
and let sr(Ji, t) be the set of resources Ji holds at time t. Finally, we let Ai,a,t = {Jk |
ts(Jk) < ts(Ji) ∧ (`a ∈ sr(Jk, t) ∨ ∃`b ∈ sr(Jk, t) s.t. `b � `a)} denote the set of jobs that
can prevent Ji from acquiring `a at time t, which follows from the rules of the RNLP.

A1 When the AI-RSM prevents Ji from acquiring a shared resource `a at time t, Ji donates
its allocation to the job in Ai,a,t with the earliest timestamp under the rules of AI.

ECRTS 2020

6:14 Isolating Unrelated Critical Sections in Real-Time Nested Locking

Ji
<latexit sha1_base64="MmvoA4FO3L6wAPlXxxL4sjAhO2k=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSw12P90plt+LOQJaJl5My5Kj3Sl/dfszSCKVhgmrd8dzE+BlVhjOBk2I31ZhQNqID7FgqaYTaz2anTsipVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/jyMmlWK955pXp/Ua5d53EU4BhO4Aw8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w8byo2u</latexit>

Jk
<latexit sha1_base64="T3OCuD3IBu5qsErba92bvHbZzJA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4q2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqEccJ9yM6UCIUjKKVHu56o16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezUyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTpFG0I3uLLy6RZrXjnler9Rbl2ncdRgGM4gTPw4BJqcAt1aACDATzDK7w50nlx3p2PeeuKk88cwR84nz8e0o2w</latexit>

...<latexit sha1_base64="hx9vrypjtBJpcEsh1w05CZs9G34=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtGpV/6Jau7+s1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB8y9j0Y=</latexit>

RQk1
<latexit sha1_base64="hw2mIreRfoJx4SONmy8S3LKnX4s=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rEV+wFtCJvttF262cTdjVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJoJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqhFSj4BKbhhuBnUQhjUKB7XB8O/PbT6g0j+WDmSToR3Qo+YAzaqzUuW8E2TjwpkGp7FbcOcgq8XJShhz1oPTV68csjVAaJqjWXc9NjJ9RZTgTOC32Uo0JZWM6xK6lkkao/Wx+75ScW6VPBrGyJQ2Zq78nMhppPYlC2xlRM9LL3kz8z+umZnDjZ1wmqUHJFosGqSAmJrPnSZ8rZEZMLKFMcXsrYSOqKDM2oqINwVt+eZW0qhXvslJtXJVr1TyOApzCGVyAB9dQgzuoQxMYCHiGV3hzHp0X5935WLSuOfnMCfyB8/kDtPePsw==</latexit>

Jx
<latexit sha1_base64="0VSt6i5NGuQQdi4+CgQPd37qG8g=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL+IponlAsoTZySQZMju7zPSKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdD31m49cGxGpBxzH3A/pQIm+YBStdH/bfeoWS27ZnYEsEy8jJchQ6xa/Or2IJSFXyCQ1pu25Mfop1SiY5JNCJzE8pmxEB7xtqaIhN346O3VCTqzSI/1I21JIZurviZSGxozDwHaGFIdm0ZuK/3ntBPuXfipUnCBXbL6on0iCEZn+TXpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSqJS9s3Ll7rxUvcriyMMRHMMpeHABVbiBGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPMoaNvQ==</latexit>

Jy
<latexit sha1_base64="joj0SkswKal18CJVIzLWx8RvDEk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0Ip4q2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqEccJ9yM6UCIUjKKVHu56416p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezUyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTpFG0I3uLLy6RZrXjnler9Rbl2ncdRgGM4gTPw4BJqcAt1aACDATzDK7w50nlx3p2PeeuKk88cwR84nz80Co2+</latexit>

...<latexit sha1_base64="hx9vrypjtBJpcEsh1w05CZs9G34=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtGpV/6Jau7+s1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB8y9j0Y=</latexit>

RQ1
<latexit sha1_base64="un8Q/mQjo+LwTdVBrLfoMkqkJeA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF4+t2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzQHbX0w8Hhvhpl5QcyZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdpf5vSeqNIvko5nH1Bd4IlnICDaZ9NAeeaNqza27OdA68QpSgwKtUfVrOI5IIqg0hGOtB54bGz/FyjDC6aIyTDSNMZnhCR1YKrGg2k/zWxfowipjFEbKljQoV39PpFhoPReB7RTYTPWql4n/eYPEhLd+ymScGCrJclGYcGQilD2OxkxRYvjcEkwUs7ciMsUKE2PjqdgQvNWX10m3Ufeu6o32da3ZKOIowxmcwyV4cANNuIcWdIDAFJ7hFd4c4bw4787HsrXkFDOn8AfO5w9u6o3J</latexit>

RQq�kr
<latexit sha1_base64="k3jhX17Y89vqiNAcArcxhNHJkGI=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4sexWQY8FLx5bsR/YLks2zbah2WRNskJZ+i+8eFDEq//Gm//GtN2Dtj4YeLw3w8y8MOFMG9f9dlZW19Y3Ngtbxe2d3b390sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc3Uz99hNVmklxb8YJ9WM8ECxiBBsrPdw1guzxfBSoSVAquxV3BrRMvJyUIUc9KH31+pKkMRWGcKx113MT42dYGUY4nRR7qaYJJiM8oF1LBY6p9rPZxRN0apU+iqSyJQyaqb8nMhxrPY5D2xljM9SL3lT8z+umJrr2MyaS1FBB5ouilCMj0fR91GeKEsPHlmCimL0VkSFWmBgbUtGG4C2+vExa1Yp3Uak2Lsu1ah5HAY7hBM7AgyuowS3UoQkEBDzDK7w52nlx3p2PeeuKk88cwR84nz9XG5Cm</latexit>

RQq
<latexit sha1_base64="de+qNT21ytnzP0TmG/6gQ6I4Cko=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtgh4LXjy2Yj+gXUo2zbax2WRNskJZ+h+8eFDEq//Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeY3GR+54kqzaS4N9OY+hEeCRYygo2V2nfNQfo4G5QrbtWdA60SLycVyNEYlL/6Q0mSiApDONa657mx8VOsDCOczkr9RNMYkwke0Z6lAkdU++n82hk6s8oQhVLZEgbN1d8TKY60nkaB7YywGetlLxP/83qJCa/9lIk4MVSQxaIw4chIlL2OhkxRYvjUEkwUs7ciMsYKE2MDKtkQvOWXV0m7VvUuqrXmZaVey+Mowgmcwjl4cAV1uIUGtIDAAzzDK7w50nlx3p2PRWvByWeO4Q+czx+VKY8V</latexit>

�r token holders
<latexit sha1_base64="/JEr9Zz8Ejg92i67vCE4jdngNWw=">AAACAnicbVDLSsNAFL3xWesr6krcDLaCq5JUUJcFNy4r2Ae0IUwmk3boZBJmJkIJxY2/4saFIm79Cnf+jdM2C209MHA4517unBOknCntON/Wyura+sZmaau8vbO7t28fHLZVkklCWyThiewGWFHOBG1ppjntppLiOOC0E4xupn7ngUrFEnGvxyn1YjwQLGIEayP59nG1z810iH1ZRToZUYGGCQ/Nhm9XnJozA1ombkEqUKDp21/9MCFZTIUmHCvVc51UezmWmhFOJ+V+pmiKyQgPaM9QgWOqvHwWYYLOjBKiKJHmCY1m6u+NHMdKjePATMZYD9WiNxX/83qZjq69nIk001SQ+aEo4yYrmvaBQiYp0XxsCCaSmb8iMsQSE206KJsS3MXIy6Rdr7kXtfpdvdK4LOoowQmcwjm4cAUNuIUmtIDAIzzDK7xZT9aL9W59zEdXrGLnCP7A+vwBaNmWww==</latexit>

RNLP queues for g1
<latexit sha1_base64="bJx5xn6z276xss/0QKatrFQf9Sg=">AAAB/nicbVDLSsNAFJ34rPUVFVduBlvBVUniQpcFNy5EqtgHtCFMpjft0MnDeQglFPwVNy4Ucet3uPNvTNMstPWsDufcyz33+AlnUlnWt7G0vLK6tl7aKG9ube/smnv7LRlrQaFJYx6Ljk8kcBZBUzHFoZMIIKHPoe2PLqd++xGEZHF0r8YJuCEZRCxglKhM8szDu5vrBn7QoEHiIBa4OvDsqmdWrJqVAy8SuyAVVKDhmV+9fkx1CJGinEjZta1EuSkRilEOk3JPS0gIHZEBdDMakRCkm+bxJ/gkU/r58SCOFM7V3xspCaUch342GRI1lPPeVPzP62oVXLgpixKtIKKzQ4HmWMV42gXuMwFU8XFGCBUsy4rpkAhCVdZYOSvBnn95kbScmn1Wc26dSt0p6iihI3SMTpGNzlEdXaEGaiKKUvSMXtGb8WS8GO/Gx2x0ySh2DtAfGJ8/AVaUKQ==</latexit>

RNLP queues for gr
<latexit sha1_base64="lVLC5hbJJvgB1r80ZtcZhy0kKdw=">AAAB/nicbVDLSsNAFJ34rPUVFVduBlvBVUniQpcFNy5EqtgHtCFMpjft0MnDeQglFPwVNy4Ucet3uPNvTNMstPWsDufcyz33+AlnUlnWt7G0vLK6tl7aKG9ube/smnv7LRlrQaFJYx6Ljk8kcBZBUzHFoZMIIKHPoe2PLqd++xGEZHF0r8YJuCEZRCxglKhM8szDu5vrBn7QoEHiIBa4OvBE1TMrVs3KgReJXZAKKtDwzK9eP6Y6hEhRTqTs2lai3JQIxSiHSbmnJSSEjsgAuhmNSAjSTfP4E3ySKf38eBBHCufq742UhFKOQz+bDIkaynlvKv7ndbUKLtyURYlWENHZoUBzrGI87QL3mQCq+DgjhAqWZcV0SAShKmusnJVgz7+8SFpOzT6rObdOpe4UdZTQETpGp8hG56iOrlADNRFFKXpGr+jNeDJejHfjYza6ZBQ7B+gPjM8fZBuUag==</latexit>

...
<latexit sha1_base64="tIFz5ziTY6jnJh/DtTMJa+Yg6Is=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48VbCu0oWw2m3btJht2J4USCv4ELx4U8er/8ea/cftx0NYHA4/3ZpiZF6RSGHTdb6ewtr6xuVXcLu3s7u0flA+PWkZlmvEmU1Lph4AaLkXCmyhQ8odUcxoHkreD4c3Ub4+4NkIl9zhOuR/TfiIiwShaqdUdhQpNr1xxq+4MZJV4C1KBBRq98lc3VCyLeYJMUmM6npuin1ONgkk+KXUzw1PKhrTPO5YmNObGz2fXTsiZVUISKW0rQTJTf0/kNDZmHAe2M6Y4MMveVPzP62QYXfu5SNIMecLmi6JMElRk+joJheYM5dgSyrSwtxI2oJoytAGVbAje8surpFWrehfV2t1lpV5/msdRhBM4hXPw4ArqcAsNaAKDR3iGV3hzlPPivDsf89aCs4jwGP7A+fwB8iOPxA==</latexit>

CKIP
<latexit sha1_base64="R6xB6d9Oyj2Tr9MvLM+/xibuBOk=">AAAB63icbVDLSgMxFL3xWeur6tJNsAiuykxd6LLQjeKmgn1AO0gmzbShSWZIMkIZ+gtuXCji1h9y59+YaWehrQcCh3POJfeeMBHcWM/7RmvrG5tb26Wd8u7e/sFh5ei4Y+JUU9amsYh1LySGCa5Y23IrWC/RjMhQsG44aeZ+94lpw2P1YKcJCyQZKR5xSmwuNe9uW4+Vqlfz5sCrxC9IFQq4/NdgGNNUMmWpIMb0fS+xQUa05VSwWXmQGpYQOiEj1ndUEclMkM13neFzpwxxFGv3lMVz9fdERqQxUxm6pCR2bJa9XPzP66c2ug4yrpLUMkUXH0WpwDbG+eF4yDWjVkwdIVRztyumY6IJta6esivBXz55lXTqNf+yVr+vVxteUUcJTuEMLsCHK2jADbSgDRTG8Ayv8IYkekHv6GMRXUPFzAn8Afr8AVsxjbk=</latexit>

�1 token holders
<latexit sha1_base64="0e7+PNQig6IAlKp0wSTkoUSsmnQ=">AAACAnicbVDLSsNAFL3xWesr6krcDLaCq5JUUJcFNy4r2Ae0IUwmk3boZBJmJkIJxY2/4saFIm79Cnf+jdM2C209MHA4517unBOknCntON/Wyura+sZmaau8vbO7t28fHLZVkklCWyThiewGWFHOBG1ppjntppLiOOC0E4xupn7ngUrFEnGvxyn1YjwQLGIEayP59nG1z810iH23inQyogINEx6aDd+uODVnBrRM3IJUoEDTt7/6YUKymApNOFaq5zqp9nIsNSOcTsr9TNEUkxEe0J6hAsdUefkswgSdGSVEUSLNExrN1N8bOY6VGseBmYyxHqpFbyr+5/UyHV17ORNppqkg80NRxk1WNO0DhUxSovnYEEwkM39FZIglJtp0UDYluIuRl0m7XnMvavW7eqVxWdRRghM4hXNw4QoacAtNaAGBR3iGV3iznqwX6936mI+uWMXOEfyB9fkDAoaWgg==</latexit>

requests
for resources

<latexit sha1_base64="1DMAXcU5oGq1aI+tgOpBQoT8o6U=">AAACHnicbVDLSsNAFJ34rPFVdelmsAiuSlLxsSy4cVnBPqAJZTK5aYdOJnFmIpTQL3Hjr7hxoYjgSv/GaVpBW+/qcB7ce0+Qcqa043xZS8srq2vrpQ17c2t7Z7e8t99SSSYpNGnCE9kJiALOBDQ10xw6qQQSBxzawfBqorfvQSqWiFs9SsGPSV+wiFGiDdUrn3kB9JnIKQgNcmxLuMtAaYU9D0eJxBKmq5TtgQh/bL1yxak6xeBF4M5ABc2m0St/eGFCs9jEKSdKdV0n1X5OpGaUw9j2MgUpoUPSh66BgsSg/Lx4b4yPDRMW10SJ0LhgfydyEis1igPjjIkeqHltQv6ndTMdXfo5E2mmQdDpoijjWCd40hUOmQSq+cgAQiUzt2I6IJJQ04GyTQnu/MuLoFWruqfV2k2tUj+f1VFCh+gInSAXXaA6ukYN1EQUPaAn9IJerUfr2Xqz3qfWJWuWOUB/xvr8BqeHo2M=</latexit>

Figure 6 Queuing structure of the GIPP. A request for a token of a group is first arbitrated by
the CKIP before the request is passed to the group’s corresponding instance of the RNLP.

I Lemma 19. The AI-RSM ensures property R1 under clustered scheduling when waiting is
realized by suspending.

Proof. Let Ji be a job that is pi-blocked by the RSM at time t while it waits to acquire
a shared resource `a. Then, there must exist some job Jk ∈ Ai,a,t that prevents Ji from
acquiring `a by the rules of the RNLP. By Rule A1, the job Jk ∈ Ai,a,t with the earliest
timestamp is eligible to inherit Ji’s priority in Ji’s home cluster. Since Ji incurs s-oblivious
pi-blocking, it has one of the c highest priorities in its cluster, and hence the inherited priority
enables Jk to be scheduled in Ji’s home cluster. Thus, at least one job preventing Ji from
acquiring `a is scheduled and Ji therefore makes progress. J

We now have a group independence-preserving token lock, and an RSM with an indepen-
dence-preserving progress mechanism. We use these components to realize the GIPP.

4.3 Structure and Analysis of The GIPP
We next define the structure of the GIPP and then establish its asymptotic optimality with
respect to s-oblivious pi-blocking, and that it is group independence-preserving.

There are m tokens for each group gx ⊆ Γ; a token for gx is denoted with λx. A single
instance of the CKIP arbitrates access to the set Λ = {λ1, . . . , λr} of replicated tokens,
and an instance of the RNLP with the AI-RSM is instantiated for each group. The CKIP
instance serves as a common token lock among all the instances of the RNLP. To execute an
outermost critical section under the GIPP for resources in gx a job must (i) compete for and
acquire a token λx under the CKIP, (ii) compete in gx’s instance of the AI-RSM under the
rules of the RNLP [32, Section 3], and (iii) release λx upon completing its outermost critical
section and exiting the AI-RSM. The queuing structure of the GIPP is depicted in Figure 6.

I Theorem 20. The maximum amount of s-oblivious pi-blocking incurred per outermost
request under the GIPP is (2m− 1) · Lmax = O(m) under any JLFP scheduler.

Proof. The CKIP satisfies property T1 by Lemma 15, and the AI-RSM satisfies property
R1 by Lemma 19. Therefore, the maximum amount of s-oblivious pi-blocking a job incurs
while in the AI-RSM is LRSM = (m− 1) · Lmax by Theorem 9, as the corresponding RNLP
proof generalizes to any protocol that satisfies these two properties.

Under the rules of the RNLP, a job holds a token for the entire duration it is in the
RSM, and releases its token after completing its outermost critical section. The RNLP

J. Robb and B. B. Brandenburg 6:15

proof of Theorem 9 establishes that a job is pi-blocked for at most m− 1 outermost critical
sections while in any RSM. Thus, after a job completes its outermost critical section, the
maximum amount of time the job holds a token is Ltoken = m · Lmax. By Theorem 17, a
job waiting to acquire a token under the CKIP incurs at most (2 dm/ke − 1) · Ltoken units of
s-oblivious pi-blocking. Under the GIPP, there are m tokens for each group (i.e., k = m), so
the pi-blocking incurred while waiting for a token simplifies to Ltoken as (2 dm/me − 1) = 1.
The total s-oblivious pi-blocking a job occurs per outermost request is then the sum of the
pi-blocking incurred while waiting to acquire a token and while competing in the AI-RSM,
which is Ltoken + LRSM = m · Lmax + (m− 1) · Lmax = (2m− 1) · Lmax. J

I Theorem 21. The GIPP is group independence-preserving under any JLFP scheduler.

Proof. By the structure of the GIPP, a job interacts with the CKIP for the entire duration
it interacts with the GIPP. Under the CKIP, nested requests are not permitted, so each
shared resource (e.g., token type) forms its own group. When each group consists of a single
resource, the definition of group independence preservation trivially reduces to non-nested
independence preservation. Thus, it follows that the CKIP is group independence-preserving.

To prove the claim, it hence suffices to show that the GIPP remains group independence-
preserving while token holders compete for shared resources in the AI-RSM. We prove this
by contradiction: suppose a job Ji that does not request a token λx for a group gx incurs
pi-blocking due to a request for λx by a job Jk. Under the AI-RSM, Jk’s effective priority is
raised to that of another job competing for resources in gx. Thus, if Jk’s effective priority
in C(Ti) is greater than Ji’s, there must be another job Jh in C(Ti) that requires resources
in gx and has a higher base priority than Ji. As this argument applies to any such job Jk,
and since AI establishes a one-to-one relationship among donors and recipients (i.e., donor
priorities are not “duplicated”), it follows there are at least c higher-base-priority jobs in
C(Ti), and hence Ji does not incur pi-blocking according to Definition 1. Contradiction. J

It is worth noting that, in special cases, the GIPP emulates the behavior of the RNLP and
the OMIP, respectively. When there is just a single group (i.e., r = 1), the GIPP effectively
reduces to the RNLP in the sense that there is a single, global token lock. Conversely, when
r = |Γ|, the GIPP behaves like the OMIP. These cases are examined further in Section 6.

5 Fine-Grained Pi-Blocking Analysis

We next introduce a fine-grained, non-asymptotic pi-blocking analysis for the GIPP, which we
formulate as a Linear Programming (LP) problem as in prior work [7, 6, 36]. The asymptotic
bound presented in Section 4.3 is coarse-grained as it does not reflect the exact resources
each task requests, individual critical section lengths, nor the frequency of critical sections.
The following analysis is fine-grained in the sense that it considers these workload-specific
aspects to obtain a less pessimistic, but still safe upper-bound on s-oblivious pi-blocking.

In the following, we let Ti denote the task under analysis and let Ji denote an arbitrary
job of Ti. For each other task Tx, we let θix denote a bound on the maximum number of jobs
of Tx that overlap with Ji (i.e., that are pending while Ji is pending). Let ri and rx be the
maximum response times of Ti and Tx, respectively. Then θix =

⌈
ri+rx

px

⌉
[5, 7].

We denote Tx’s yth outermost critical section as Ox,y, its length as LOx,y, the set of
resources it accesses as Sx,y, and define Ox(g) , {Ox,y | Sx,y ⊆ g }. Note that the index y is
used only for enumeration purposes and does not imply an order; each job of Tx may execute
its outermost critical sections in any order. For each task Tx 6= Ti, each outermost request

ECRTS 2020

6:16 Isolating Unrelated Critical Sections in Real-Time Nested Locking

Ox,y, and v ∈ {1, . . . , θix}, we introduce two real-valued variables XT
x,y,v and XR

x,y,v, each
with domain [0, 1]. These variables are called blocking fractions [7] and serve to encode the
portion of Tx’s vth overlapping instance of Ox,y that contributes to the pi-blocking that Ji
incurs. We use XT

x,a,v and XR
x,a,v to respectively encode the token and RSM blocking that Ji

incurs, where token blocking refers to the time spent waiting to acquire a token, and RSM
blocking refers to time spent waiting for a resource within the AI-RSM.

With these definitions in place, the pi-blocking incurred by Ji can be stated as

bi =
∑
Tx 6=Ti

∑
Ox,y

θi
x∑

v=1
(XT

x,y,v +XR
x,y,v) · LOx,y. (1)

By interpreting Equation (1) as the objective function of an LP maximization problem,
we obtain an upper bound bi on the maximum pi-blocking incurred by any Ji [7, 6, 36]. To
avoid excessive pessimism, we introduce in the following LP constraints that reflect both the
invariants of the GIPP and properties of the specific task set under analysis.

To start, we prevent any blocking critical section from being counted twice.

I Constraint 22. ∀Tx 6= Ti : ∀Ox,y : ∀v : XT
x,y,v +XR

x,y,v ≤ 1

Proof. A single critical section of Tx cannot cause Ji to experience token blocking and RSM
blocking simultaneously: to wait for a resource within the AI-RSM, Ji must already hold a
token, but while Ji competes for a token it cannot yet interact with the RSM. Thus, the
combined token and RSM blocking induced by one of Tx’s critical sections cannot exceed the
length of the critical section (i.e., the blocking fractions sum to at most one). J

Next, we bound the maximum amount of token blocking that Ji incurs. In preparation,
let τk be the set of tasks assigned to cluster Ck, and τ ′k = τk \ {Ti}. Furthermore, φi,g ,
|{Oi,y | Si,y ∩ g 6= ∅}| denotes the number of times Ji issues an outermost request for a
resource in g, and βk,g ,

∣∣∣{Tx ∣∣∣ Tx ∈ τk ∧⋃Ox,y
Sx,y ∩ g 6= ∅

}∣∣∣ is the number of tasks in
Ck that request a resource in g. Based on these definitions, we state a bound on the number
of times that Ji must wait for a token. In Equation (2), let k denote the index of C(Ti).

Wi,g ,

{
0 βk,g ≤ c
min(φi,g, φ′i,g) otherwise

where φ′i,g ,

 ∑
Tx∈τ ′

k

(φx,g · θix)

− c+ 1 (2)

I Lemma 23. Wi,g upper-bounds the number of times Ji must wait for a token of group g.

Proof. By case analysis. Let k denote the index of C(Ti). First, if βk,g ≤ c, then there are
at most c tasks in C(Ti) that ever require a token for group g (including Ti). There are never
more than c token holders per cluster under the CKIP, which effectively reserves c tokens for
each cluster. Thus, whenever Ji requires a token for group g, one is always available, and Ji
never needs to wait for a token: Wi,g = 0 if βk,g ≤ c.

Otherwise, if βk,g > c, then Ji requires a token no more than φi,g times, and hence clearly
Wi,g ≤ φi,g. To obtain Wi,g ≤ φ′i,g, consider the number of times that other tasks require a
token while Ji is pending, which is bounded by

∑
Tx∈τ ′

k
(φx,g · θix). Since Ji must wait for a

token only if all c tokens are currently held by other tasks, the worst case occurs when c− 1
tokens are held “indefinitely” (i.e., if they remain unavailable throughout the interval during
which Ji is pending) and the remaining φ′i,g =

(∑
Tx∈τ ′

k
(φx,g · θix)

)
− c+ 1 requests must all

share a single token, and thus Wi,g ≤ φ′i,g. J

J. Robb and B. B. Brandenburg 6:17

We further restrict under which conditions Ji incurs token blocking at all.

I Lemma 24. Ji incurs token blocking (i.e., it incurs pi-blocking while waiting to acquire a
token for a group g) only if it is a priority donor under the rules of the RRPD.

Proof. Recall that GIPP allocates group tokens using the CKIP, and that the CKIP employs
RRPD. As there are k = m tokens per group (i.e., replicas per token type), the CKIP’s
per-replica FIFO queues have length

⌈
m
k

⌉
= 1. Since by Rule K2 the head of each per-replica

FIFO queue holds the replica (i.e., a token), and jobs enter a queue immediately when they
issue a request (Rule K1), it follows that Ji can be waiting for a token only before it issues its
request for a token, that is, while it serves as a priority donor under the rules of the RRPD in
the time span between requiring a token and actually issuing a request (recall Figure 4). J

Lemmas 23 and 24 allow us to establish a constraint on token blocking due to each task.

I Constraint 25. ∀g ∈ G : ∀Tx 6= Ti :
∑

Ox,y∈Ox(g)

θi
x∑

v=1
XT
x,y,v ≤Wi,g

Proof. Suppose not. Then there exists a task Tx that token-blocks Ji with more than Wi,g

outermost critical sections (w.r.t. some group g). If Wi,g = 0, then by Lemma 23 Ji must
never wait to acquire a token for group g, which immediately yields a contradiction. Hence
assume Wi,g > 0. As Ji waits for a token for g at most Wi,g times (Lemma 23), this implies
that there exists an outermost critical section Oi,z executed by Ji such that Ji is delayed,
while waiting to acquire a token for g in preparation of Oi,z, by at least two outermost
critical sections of Tx. By Lemma 24, Ji is a priority donor while it incurs token blocking.
According to the rules of the RRPD (recall Section 2), Ji becomes a priority donor at most
once per request, and only for a single other request: either immediately when Ji requires a
token to commence Oi,z, or not at all. It follows that Tx must pi-block Ji with two distinct
outermost critical sections while Ji continuously serves as the priority donor of some job Jl.
Since under the rules of the RRPD Ji ceases to be a priority donor as soon as Jl finishes its
outermost critical section (i.e., when Jl releases its token), Jl cannot be a job of Tx. Hence
there remains only one other way for an outermost critical section of Tx to delay Ji, namely
by delaying one or more requests of Jl within the RSM, which transitively causes Ji to incur
pi-blocking. Consider the later of Tx’s two outermost critical sections that cause Ji to incur
pi-blocking while donating its priority to Jl. Since it is the second outermost critical section
of Tx in this interval, Tx necessarily must have acquired a token for group g strictly after the
beginning of the interval, when Jl was already holding its token. However, the RSM satisfies
resource requests strictly in order of increasing token-acquisition timestamps, and thus Tx’s
second outermost critical section cannot delay Jl. Contradiction. J

We similarly bound the aggregate token blocking across all tasks in each cluster.

I Constraint 26. ∀g ∈ G : ∀k ∈ {1, . . . , mc } :
∑

Tx∈τ ′
k

∑
Ox,y∈Ox(g)

θi
x∑

v=1
XT
x,y,v ≤Wi,g ·min(c, βk,g)

Proof. Again the case of Wi,g = 0 is trivial; hence assume Wi,g > 0 and suppose the
invariant does not hold. Then analogously to the proof of Constraint 25, there exists a
contiguous interval [t1, t2) and a cluster Ck such that both (i) Ji serves as the priority donor
of some job Jl throughout [t1, t2), and (ii) Ji incurs pi-blocking during [t1, t2) due to at least

ECRTS 2020

6:18 Isolating Unrelated Critical Sections in Real-Time Nested Locking

min(c, βk,g) + 1 outermost critical sections executed by tasks in τk. Also analogously to the
proof of Constraint 25, no task delays Ji with more than one outermost critical section during
[t1, t2). Because the RSM satisfies requests strictly in order of increasing token-acquisition
timestamps, any job that delays Jl within the RSM (and hence transitively causes Ji to incur
token blocking) must have acquired its token for group g before Jl did so, and hence no later
than at time t1. Furthermore, any such job necessarily releases its token only some time
after t1. At time t1 there hence exist at least min(c, βk,g) + 1 token-holding jobs in cluster
Ck. However, the CKIP ensures that no more than c jobs in Ck hold a token at any time,
and by definition at most βk,g tasks in τk require a token for group g. Contradiction. J

This concludes the constraints on token blocking. We next constrain RSM blocking, that
is, the pi-blocking incurred by Ji while it holds a token and waits for individual resources.
First, we observe on a per-cluster basis that RSM blocking across all tasks is limited by the
number of resource requests that Ji issues because the RSM serves jobs in timestamp order.

I Constraint 27. ∀g ∈ G : ∀k ∈ {1, . . . , mc } :

∑
Tx∈τ ′

k

∑
Ox,y∈Ox(g)

θi
x∑

v=1
XR
x,y,v ≤

{
φi,g ·min(c, βk,g) Ti /∈ τk
φi,g ·min(c− 1, βk,g − 1) otherwise

Proof. If φi,g = 0, then Ji does not access resources in group g and the invariant is trivial.
Hence, suppose the invariant does not hold. First consider the case Ti /∈ τk: then there
exists an interval [t1, t2) during which Ji holds a token for group g such that Ji incurs RSM
blocking due to more than min(c, βk,g) outermost critical sections executed by jobs in Ck.
Analogously to the proof of Constraint 26, it follows that more than min(c, βk,g) jobs must
hold a token for group g at time t1, which is impossible. In the second case, if Ti ∈ τk, then
Ji necessarily holds one of the c available tokens (otherwise it could not interact with the
RSM), so that there are only c− 1 tokens available to other tasks, and only βk,g − 1 other
tasks in τk that are also accessing resources in group g. J

Next we constrain RSM blocking in a more detailed fashion by considering which critical
sections actually conflict within the RSM. The resulting constraint is essential to realizing
the benefits of the increased parallelism in nested locking protocols (relative to coarse-grained
group-locking) at analysis time, and not just at runtime. To this end, we require some further
terminology. First, we say that a set of resources s is possibly conflicting with another set
of resources s′ if either (i) s ∩ s′ 6= ∅ or (ii) ∃`b ∈ s, `a ∈ s′ such that `a � `b. Second,
we define Fi(s) , |{Oi,y | Si,y possibly conflicts with s}| to count the number of outermost
critical sections of Ti in which it needs resources that the RSM may have to withhold due
to other jobs holding resources in s. Finally, we let Si(g) , {Sx,y | Tx 6= Ti ∧ Sx,y ∩ g 6= ∅}
denote the set of all combinations of resources in group g acquired by other tasks. Based on
these definitions, we constrain RSM blocking as follows.

I Constraint 28. ∀g ∈ G : ∀s ∈ Si(g) : ∀k ∈ {1, . . . , mc } :

∑
Tx∈τ ′

k

∑
Ox,y s.t.
Sx,y⊆s

θi
x∑

v=1
XR
x,y,v ≤

{
Fi(s) ·min(c, βk,g) Ti /∈ τk
Fi(s) ·min(c− 1, βk,g − 1) otherwise

Proof. Consider any group g, set of resources s ∈ Si(g), and cluster Ck. For Ji to incur
RSM blocking when issuing a request for some resource `b ∈ g, there must exist a job Jx with

J. Robb and B. B. Brandenburg 6:19

an earlier token-acquisition time that either already holds `b, or that holds a resource `a ∈ g
such that `a � `b. In other words, Ji incurs RSM blocking only if {`b} is possibly conflicting
with the set of resources already held by jobs with earlier timestamps. Recall that Fi(s)
counts the number of outermost critical sections of Ti accessing resources that are possibly
conflicting with s. It follows that Ji executes at most Fi(s) outermost critical sections that
may encounter RSM blocking due to outermost critical sections of tasks in τ ′k that access s
or a subset of s (i.e., the requests represented on the left-hand side of the constraint). As in
the proof of Constraint 27, it is easy to show that no more than min(c, βk,g) (respectively,
min(c− 1, βk,g − 1)) outermost critical sections can cause RSM blocking per each outermost
critical section of Ji if Ti /∈ τk (respectively, Ti ∈ τk). The bound follows. J

6 Schedulability Experiments

We compared the GIPP against the OMIP and the RNLP as (i) they are both asymptot-
ically optimal with respect to s-oblivious pi-blocking, (ii) the OMIP [6] is the only prior
independence-preserving locking protocol for clustered scheduling, and (iii) the RNLP [32]
is the only prior fine-grained nested locking protocol that ensures asymptotically optimal
pi-blocking bounds under clustered scheduling.

To conduct meaningful experiments, one requires a fine-grained (i.e., non-asymptotic)
pi-blocking analysis. The OMIP has such analysis, which is also formulated as an LP [6],
which we use in these experiments. However, for the RNLP, there are surprisingly no fine-
grained bounds available in prior work. We therefore had to adapt our analysis of the GIPP
(Section 5) to the RNLP. To this end, we created an instantiation of the RNLP called the
CA-RNLP that uses the the CKIP as its token lock and AI-RSM as its RSM. As the RNLP
and hence the CA-RNLP uses only a single, global token lock, our analysis in Section 5 is
applicable to the CA-RNLP if one presumes that all resources are part of a single group.

We generated task sets with Emberson et al.’s method [17] via the SchedCAT [9] library and
considered all combinations of the following parameter choices. Each task set consisted of n ∈
{2.0m, 3.0m} tasks with total utilization U ∈ {0.4m, 0.6m} to be scheduled on m ∈ {4, 8, 16}
processors under partitioned EDF scheduling (c = 1). There were nnl ∈ {0.0m, 0.5m, 1.0m}
latency-sensitive tasks in the task set, and n− nnl non-latency-sensitive (i.e., regular) tasks.
Periods were drawn uniformly at random from the set {1ms, 2ms, 4ms, 5ms, 8ms} for latency-
sensitive tasks, and from the set {10ms, 20ms, 25ms, 40ms, 50ms, 100ms, 125ms, 200ms,
250ms, 500ms, 1000ms} for regular tasks; the specific period values were inspired by Kramer
et al.’s work on producing real-world automotive benchmarks [24]. Latency-sensitive tasks
shared three resources in a single group, and each issues one or two outermost requests for
resources in their group at random. The regular tasks shared twelve resources split into
equally sized groups of gsize = {1, 2, 3, 4} resources. Each regular task accessed just one
group, and issued from {1, . . . , Nmax} outermost requests for resources in that group at
random, where Nmax ∈ {1, 2, 3}. The outermost critical section lengths of latency-sensitive
tasks were drawn uniformly at random from [1µs, 15µs], and from [1µs,mcsl] for regular
tasks, where mcsl was varied across [5µs, 1000µs] in increments of 5µs.

Each resource group was of one of two types gtype ∈ {wide, deep}. More precisely, we say
a shared resource `b ∈ Γ is a top-level resource if @`a ∈ Γ s.t. `a � `b, and consider a group to
be wide if at least half of its resources are top-level, and deep otherwise. Tasks were assigned a
minimal set of requests to form the desired groups; afterwards tasks were assigned outermost
requests for resources in their corresponding group at random until each made Nmax requests
(per job); each outermost request contained a nested request with probability 0.5.

ECRTS 2020

6:20 Isolating Unrelated Critical Sections in Real-Time Nested Locking

200 400 600 800 1000
maximum critical section length (in s) of non-latency-sensitive tasks

0.0

0.2

0.4

0.6

0.8

1.0
fra

ct
io

n
of

 sc
he

du
la

bl
e

ta
sk

 se
ts

m = 8 U = 4.80 n = 24 nls = 4 gsize = 3 gtype = W Nmax = 1

GIPP
OMIP
CA-RNLP

Figure 7 The presence of latency-sensitive
tasks dominates schedulability.

200 400 600 800 1000
maximum critical section length (in s) of non-latency-sensitive tasks

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 sc

he
du

la
bl

e
ta

sk
 se

ts

m = 4 U = 2.40 n = 12 nls = 0 gsize = 1 Nmax = 3

GIPP
OMIP
CA-RNLP

Figure 8 Token contention dominates schedu-
lability.

200 400 600 800 1000
maximum critical section length (in s) of non-latency-sensitive tasks

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 sc

he
du

la
bl

e
ta

sk
 se

ts

m = 8 U = 4.80 n = 24 nls = 0 gsize = 4 gtype = D Nmax = 3

GIPP
OMIP
CA-RNLP

Figure 9 High contention among few groups
dominates schedulability.

200 400 600 800 1000
maximum critical section length (in s) of non-latency-sensitive tasks

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 sc

he
du

la
bl

e
ta

sk
 se

ts

m = 4 U = 2.80 n = 4 nls = 0 gsize = 4 gtype = W Nmax = 10
GIPP
OMIP
CA-RNLP

Figure 10 A single group lock limits schedu-
lability for certain asymmetric access patterns.

There are 864 combinations of the varied parameters (n, nnl, U,m,Nmax, gsize, gtype).
Some combinations are duplicate in effect (i.e., wide and deep groups of size one are the
same), or not possible to generate. After removing such combinations from consideration,
there remain 522 combinations. For each combination, we generated 1000 task sets per mcsl
value (i.e., per point on the x-axis), and then tested each task set for schedulability under
the GIPP, OMIP, and the CA-RNLP. Figures 7 to 9 show three select scenarios out of the
522 combinations; all graphs are provided in an online appendix [29]. (Figure 10 further
shows a hand-crafted example to highlight a specific behavior as discussed below.)

In our large-scale experiments, both the GIPP and the OMIP retained a high level of
schedulability for most parameter configurations. In most cases, the CA-RNLP provided
a substantially lower level of schedulability than the GIPP or the OMIP. We now outline
some key observations drawn from the large-scale schedulability experiments. As our first
observation, we notice that the GIPP performs noticeably better than the OMIP and the
CA-RNLP in most of our experiments, and never worse. In corner cases, the performance of
the GIPP approaches that of the OMIP when gsize = 1, and the CA-RNLP when gsize = |Γ|
(i.e., the total number of resources). As a result, the GIPP never performs worse than
the better-performing of the two baselines. This is apparent in Figure 7 and Figure 8.
Our second observation is that the isolation of latency-sensitive tasks greatly impacts
schedulability. When latency-sensitive tasks must compete with regular tasks for the same set
of tokens, schedulability quickly drops under the CA-RNLP as mcsl increases (see Figure 7).
As our third observation, we note that even in the absence of latency-sensitive tasks,
schedulability is greatly affected by the use of a single, global token lock (i.e., if tokens
are not group-specific). As mcsl increases, schedulability under the CA-RNLP drops at a
roughly linear rate in Figure 8, whereas task sets remain schedulable for the entire range of

J. Robb and B. B. Brandenburg 6:21

mcsl under the GIPP and the OMIP. This demonstrates that a single token lock ultimately
becomes a bottleneck for otherwise schedulable task sets. As a fourth observation, the
benefits of (group) independence preservation diminish under high contention for all resources.
This is shown in Figure 9, where roughly the same pattern of schedulability is seen under all
three protocols. In contrast, the benefits of independence preservation are more clearly seen
when there is a greater degree of isolation as in Figure 8.

This concludes our discussion of the large-scale schedulability study. As the workload
generator with the chosen set of parameters did not generate a sufficient number of task
sets that hit weak points of the OMIP, we further set up an experiment with a hand-crafted
task set; the result is shown in Figure 10. The four tasks of the task set share a single
wide group of size four. Three of the tasks access only top-level resources, while the fourth
task makes the necessary requests to form the group. The rules and structure of the GIPP
and the CA-RNLP allow for top-level resources to be acquired independently, which is not
possible with the OMIP’s group locks. Thus, as a final and fifth observation, we note that
fine-grained nested locking offers a noticeable increase in schedulability when compared to
group locks for heavily asymmetric resource access patterns.

7 Conclusion

We have examined the concept of independence preservation in the context of fine-grained
nested locking. On the one hand, outer-lock independence preservation yields non-optimal
bounds on s-oblivious pi-blocking. On the other hand, group independence preservation can
be realized with asymptotically optimal pi-blocking bounds (under s-oblivious analysis), as
demonstrated with the GIPP. To obtain the GIPP, we constructed the CKIP as a building
block, which is noteworthy in itself as it is the first asymptotically optimal, non-nested
independence-preserving, k-exclusion lock for clustered scheduling. Finally, we demonstrated
with empirical experiments using a fined-grained pi-blocking analysis of the GIPP that it
avoids the bottleneck imposed by the RNLP’s single token lock (or group locks under the
OMIP), thereby allowing latency-sensitive tasks to be accommodated.

In future work, it would be interesting to extend the GIPP to semi-partitioned schedul-
ing [1, 2, 13]. It will also be necessary to study the real-world overheads (e.g., cache misses,
TLB flushes, inter-processor interrupts, etc.), which the GIPP is particularly exposed to due
to its use of allocation inheritance, in a practical system such as LITMUSRT [5, 15].

References
1 James H. Anderson, Vasile Bud, and UmaMaheswari C. Devi. An EDF-based scheduling

algorithm for multiprocessor soft real-time systems. In 17th Euromicro Conference on Real-
Time Systems (ECRTS’05), 2005. doi:10.1109/ECRTS.2005.6.

2 Andrea Bastoni, Björn B. Brandenburg, and James H. Anderson. Is Semi-Partitioned Schedul-
ing Practical? In 23rd Euromicro Conference on Real-Time Systems (ECRTS’11), 2011.
doi:10.1109/ECRTS.2011.20.

3 Alessandro Biondi, Björn B. Brandenburg, and Alexander Wieder. A Blocking Bound for
Nested FIFO Spin Locks. In 38th Real-Time Systems Symposium (RTSS’17), 2017. doi:
10.1109/RTSS.2016.036.

4 Aaron Block, Hennadiy Leontyev, Björn B. Brandenburg, and James H Anderson. A Flexible
Real-Time Locking Protocol for Multiprocessors. In 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA’07). IEEE, 2007.
doi:10.1109/RTCSA.2007.8.

5 Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Systems.
PhD thesis, University of North Carolina at Chapel Hill, 2011.

ECRTS 2020

https://doi.org/10.1109/ECRTS.2005.6
https://doi.org/10.1109/ECRTS.2011.20
https://doi.org/10.1109/RTSS.2016.036
https://doi.org/10.1109/RTSS.2016.036
https://doi.org/10.1109/RTCSA.2007.8

6:22 Isolating Unrelated Critical Sections in Real-Time Nested Locking

6 Björn B. Brandenburg. A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-
Sensitive Real-Time Applications. In 25th Euromicro Conference on Real-Time Systems
(ECRTS’13), 2013. doi:10.1109/ECRTS.2013.38.

7 Björn B. Brandenburg. Improved Analysis and Evaluation of Real-Time Semaphore Protocols
for P-FP Scheduling. In 19th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’13), 2013. doi:10.1109/RTAS.2013.6531087.

8 Björn B. Brandenburg. Multiprocessor Real-Time Locking Protocols: A Systematic Review.
arXiv:1909.09600 [cs], 2019. arXiv:1909.09600.

9 Björn B. Brandenburg. SchedCAT: The schedulability test collection and toolkit, January
2020. URL: https://github.com/brandenburg/schedcat.

10 Björn B. Brandenburg and James H. Anderson. Optimality Results for Multiprocessor
Real-Time Locking. In 31st IEEE Real-Time Systems Symposium (RTSS’10). IEEE, 2010.
doi:10.1109/RTSS.2010.17.

11 Björn B. Brandenburg and James H. Anderson. Real-Time Resource-Sharing under Clus-
tered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks. In 9th ACM International
Conference on Embedded Software (EMSOFT’11), 2011. doi:10.1145/2038642.2038655.

12 Björn B. Brandenburg and Andrea Bastoni. The Case for Migratory Priority Inheritance in
Linux: Bounded Priority Inversions on Multiprocessors. In 14th Real Time Linux Workshop
(RTLWS’12), 2012.

13 Björn B. Brandenburg and Mahircan Gul. Global Scheduling Not Required: Simple, Near-
Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations. In 37th
IEEE Real-Time Systems Symposium (RTSS’16). IEEE, 2016. doi:10.1109/RTSS.2016.019.

14 Alan Burns and Andy J. Wellings. A Schedulability Compatible Multiprocessor Resource
Sharing Protocol - MrsP. In 25th Euromicro Conference on Real-Time Systems (ECRTS’13),
2013. doi:10.1109/ECRTS.2013.37.

15 John M. Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C. Devi, and James H.
Anderson. LITMUSRT : A Testbed for Empirically Comparing Real-Time Multiprocessor
Schedulers. In 27th IEEE Real-Time Systems Symposium (RTSS’06), 2006. doi:10.1109/
RTSS.2006.27.

16 Arvind Easwaran and Björn Andersson. Resource Sharing in Global Fixed-Priority Preemptive
Multiprocessor Scheduling. In 30th IEEE Real-Time Systems Symposium (RTSS’09), 2009.
doi:10.1109/RTSS.2009.37.

17 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the Synthesis of Multi-
processor Tasksets. In Proceedings of the 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-Time Systems (WATERS’10), 2010.

18 Dario Faggioli, Giuseppe Lipari, and Tommaso Cucinotta. The Multiprocessor Bandwidth
Inheritance Protocol. In 22nd Euromicro Conference on Real-Time Systems (ECRTS’10),
2010. doi:10.1109/ECRTS.2010.19.

19 Dario Faggioli, Giuseppe Lipari, and Tommaso Cucinotta. Analysis and Implementation of
the Multiprocessor Bandwidth Inheritance Protocol. Real-Time Systems, 48(6):789–825, 2012.
doi:10.1007/s11241-012-9162-0.

20 Philip Holman. On the Implementation of Pfair-Scheduled Multiprocessor Systems. PhD thesis,
University of North Carolina at Chapel Hill, 2004.

21 Philip Holman and James H. Anderson. Object sharing in Pfair-Scheduled Multiprocessor
Systems. In 14th Euromicro Conference on Real-Time Systems (ECRTS’02), 2002. doi:
10.1109/EMRTS.2002.1019191.

22 Philip Holman and James H. Anderson. Locking Under Pfair Scheduling. ACM Transactions
on Computer Systems, 24(2):140–174, 2006. doi:10.1145/1132026.1132028.

23 Catherine E. Jarrett, Bryan C. Ward, and James H. Anderson. A Contention-Sensitive
Fine-Grained Locking Protocol for Multiprocessor Real-Time Systems. In 23rd International
Conference on Real Time and Networks Systems (RTNS’15), 2015. doi:10.1145/2834848.
2834874.

https://doi.org/10.1109/ECRTS.2013.38
https://doi.org/10.1109/RTAS.2013.6531087
http://arxiv.org/abs/1909.09600
https://github.com/brandenburg/schedcat
https://doi.org/10.1109/RTSS.2010.17
https://doi.org/10.1145/2038642.2038655
https://doi.org/10.1109/RTSS.2016.019
https://doi.org/10.1109/ECRTS.2013.37
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.1109/RTSS.2009.37
https://doi.org/10.1109/ECRTS.2010.19
https://doi.org/10.1007/s11241-012-9162-0
https://doi.org/10.1109/EMRTS.2002.1019191
https://doi.org/10.1109/EMRTS.2002.1019191
https://doi.org/10.1145/1132026.1132028
https://doi.org/10.1145/2834848.2834874
https://doi.org/10.1145/2834848.2834874

J. Robb and B. B. Brandenburg 6:23

24 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real World Automotive Benchmarks for
Free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-Time Systems (WATERS’15), 2015.

25 Catherine E. Nemitz, Tanya Amert, and James H. Anderson. Using Lock Servers to Scale
Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts. In Sebastian Altmeyer,
editor, 30th Euromicro Conference on Real-Time Systems (ECRTS’18), 2018. doi:10.4230/
LIPIcs.ECRTS.2018.25.

26 Catherine E. Nemitz, Tanya Amert, and James H. Anderson. Real-time Multiprocessor
Locks with Nesting: Optimizing the Common Case. Real-Time Systems, 55(2):296–348, 2019.
doi:10.1007/s11241-019-09328-w.

27 R. Rajkumar. Real-Time Synchronization Protocols for Shared Memory Multiprocessors. In
10th International Conference on Distributed Computing Systems (ICDCS’90), 1990. doi:
10.1109/ICDCS.1990.89257.

28 Ragunathan Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance
Approach. Kluwer Academic Publishers, USA, 1991.

29 James Robb and Björn B. Brandenburg. Nested, but Separate: Isolating Unrelated Critical
Sections in Real-Time Nested Locking (extended version). Technical Report MPI-SWS-2020-
002, Max Planck Insitute for Software Systems, 2020. URL: https://www.mpi-sws.org/tr/
2020-002.pdf.

30 Liu Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Transactions on Computers, 39(9):1175–1185,
1990. doi:10.1109/12.57058.

31 Hiroaki Takada and Ken Sakamura. Real-time Scalability of Nested Spin Locks. In 2nd IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA’95), 1995. doi:10.1109/rtcsa.1995.528766.

32 Bryan C. Ward and James H. Anderson. Supporting Nested Locking in Multiprocessor
Real-Time Systems. In 24th Euromicro Conference on Real-Time Systems (ECRTS’12), 2012.
doi:10.1109/ECRTS.2012.17.

33 Bryan C. Ward and James H. Anderson. Fine-Grained Multiprocessor Real-Time Locking with
Improved Blocking. In 21st International Conference on Real Time and Networks Systems
(RTNS’13), 2013. doi:10.1145/2516821.2516843.

34 Bryan C. Ward and James H. Anderson. Multi-Resource Real-Time Reader/Writer Locks for
Multiprocessors. In 28th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’14), 2014. doi:10.1109/IPDPS.2014.29.

35 Bryan C. Ward, Glenn A. Elliott, and James H. Anderson. Replica-Request Priority Donation:
A Real-Time Progress Mechanism for Global Locking Protocols. In 18th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, 2012. doi:
10.1109/RTCSA.2012.26.

36 Alexander Wieder and Björn B. Brandenburg. On Spin Locks in AUTOSAR: Blocking Analysis
of FIFO, Unordered, and Priority-Ordered Spin Locks. In 34th IEEE Real-Time Systems
Symposium (RTSS’13), 2013. doi:10.1109/RTSS.2013.13.

37 Maolin Yang, Alexander Wieder, and Björn B. Brandenburg. Global Real-Time Semaphore
Protocols: A Survey, Unified Analysis, and Comparison. In 36th IEEE Real-Time Systems
Symposium (RTSS’15), 2015. doi:10.1109/RTSS.2015.8.

ECRTS 2020

https://doi.org/10.4230/LIPIcs.ECRTS.2018.25
https://doi.org/10.4230/LIPIcs.ECRTS.2018.25
https://doi.org/10.1007/s11241-019-09328-w
https://doi.org/10.1109/ICDCS.1990.89257
https://doi.org/10.1109/ICDCS.1990.89257
https://www.mpi-sws.org/tr/2020-002.pdf
https://www.mpi-sws.org/tr/2020-002.pdf
https://doi.org/10.1109/12.57058
https://doi.org/10.1109/rtcsa.1995.528766
https://doi.org/10.1109/ECRTS.2012.17
https://doi.org/10.1145/2516821.2516843
https://doi.org/10.1109/IPDPS.2014.29
https://doi.org/10.1109/RTCSA.2012.26
https://doi.org/10.1109/RTCSA.2012.26
https://doi.org/10.1109/RTSS.2013.13
https://doi.org/10.1109/RTSS.2015.8

	Introduction
	Background and Definitions
	Nested Independence Preservation
	Outer-Lock Independence Preservation
	Group Independence Preservation

	The Group Independence-Preserving Protocol
	An Independence-Preserving k-Exclusion Locking Protocol
	An Independence-Preserving RSM
	Structure and Analysis of The GIPP

	Fine-Grained Pi-Blocking Analysis
	Schedulability Experiments
	Conclusion

