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Analogues of cyclic insertion type identities

for multiple zeta star values

Steven Charlton

Abstract. We prove an identity for multiple zeta star values, which generalises some identities due to

Imatomi, Tanaka, Tasaka and Wakabayashi. This identity gives an analogue of cyclic insertion type

identities, for multiple zeta star values, and connects the block decomposition with Zhao’s generalised 2-1

formula.

1. Introduction

Multiple zeta values (MZV’s), and multiple zeta star values (MZSV’s) are defined by the following
series respectively

ζ(s1, . . . , sr) :=
∑

0<n1<n2<···<nr

1

ns1
1 · · ·nsr

r
,

ζ⋆(s1, . . . , sr) :=
∑

0<n1≤n2≤···≤nr

1

ns1
1 · · ·nsr

r
.

In each case r is called the depth, and s1 + · · · + sr is called the weight. We make use of the
shorthand ‘wt’ for the weight of the MZV’s appearing in an identity, and write {s}n to mean s

repeated n times.

In [8], the following identities for multiple zeta star values are conjectured

Conjecture 1.1 (Conjectures 4.1 and 4.3, [8]). For any integers a0, . . . , a2n ≥ 0 , we have

∑

permute a0, . . . , a2n

ζ⋆({2}a0+1, 1, {2}a1, 3, {2}a2, . . . , 1, {2}a2n−1, 3, {2}a2n)
?
∈ Qπwt

∑

permute a1, . . . , a2n

ζ⋆(1, {2}a1, 3, {2}a2, . . . , 1, {2}a2n−1, 3, {2}a2n)
?
∈ Qπwt ,

Notice the blocks of 2 all have lengths ai, except for the initial one; it has length a0 +1 in the first

identity and length 0 in the second identity.

These identities are similar in structure to the cyclic insertion conjecture of [1], on classical
MZV’s, and should perhaps be regarded as an analogue. The cyclic insertion conjecture states

Conjecture 1.2 (Conjecture 1, [1]). For any integers a0, . . . , a2n ≥ 0 , we have

∑

cycle a0, . . . , a2n

ζ({2}a0 , 1, {2}a1, 3, {2}a2, . . . , 1, {2}a2n−1, 3, {2}a2n)
?
=

πwt

(wt + 1)!
.

In [4], a symmetrised version of Conjecture 1.2 was proven by the author, up to a rational,
using the motivic MZV framework of Brown [2, 3]. This symmetrised result was generalised to a
wider class of MZV’s using the alternating block decomposition of iterated integrals [5], along with
conjectural cyclic version, since proven exactly by Hirose and Sato.

Zhao’s generalised 2-1 formula, Theorem 1.4 in [9], gives an expression for an arbitrary MZSV as
a sum of alternating MZV’s, with arguments from a certain indexing set Π(s(1)). As a consequence,
Zhao gives a concise proof of Conjecture 1.1. The goal of this paper is generalise Zhao’s proof of
Conjecture 1.2, by connecting s(1) with the ‘block decomposition’ of the multiple zeta value ζ(s).
This allows us to give analogues of other MZV cyclic insertion identities in the MZSV case.
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2 STEVEN CHARLTON

Before stating the main result, we must first recall the construction of the block decomposition
from [5]. Any word in {0, 1}× can be written as a concatenation of some number of ‘alternating
words’ 0, 1, 01, 10, 010, 101, 0101, 1010, . . .. By deconcatenating w at a repeated letter, one obtains
the (unique) decomposition of w into the minimal possible number of such words. Moreover, by
assuming w starts with 0, the lengths of the alternating words uniquely determine w since the
concatenation occurs at a repeated letter.

Definition 1.3 (Block decomposition, [5]). For w ∈ {0, 1}×, starting with a 0, write w as a
concatenation of the fewest alternating words w1, . . . , wn, with lengths ℓ1, . . . , ℓn respectively. The
block decomposition of w is

bl(w) := (ℓ1, . . . , ℓn) .

Example 1.4. For w = 01100101010010101, we have

bl(w) = bl( 01︸︷︷︸
2

| 10︸︷︷︸
2

| 0101010︸ ︷︷ ︸
7

| 010101︸ ︷︷ ︸
6

) = (2, 2, 7, 6) .

From the lengths (2, 2, 7, 6) we recover a unique word starting with 0, by writing

bl−1(2, 2, 7, 6) = 0 1 | 1

repeat

0 | 0

repeat

10101 0 | 0

repeat

10101 = w

We can now state the main result of this paper.

Theorem 1.5. For integers ℓi > 1, the following identity on MZSV’s holds

∑

σ∈Sn

ζ⋆(bl−1(2 ◦ ℓσ(1), . . . , ℓσ(n))) =
∑

r∈Partodd(n)

2#r
∏

i

(#ri − 1)!
∏

i

ζ̃

(∑

j∈ri

ℓj

)
.

Here Partodd(n) is the set of partitions of { 1, . . . , n } into odd-sized parts. Moreover

ζ⋆(0 10k1−1 · · · 10kd−1 1) := ζ⋆(k1, . . . , kd) ,

as in the iterated integral representation of an MZV, although this also includes the bounds of

integration. Finally, ζ̃ and ◦ are defined by

ζ̃(n) =

{
ζ(n) n odd
1
2ζ

⋆({2}n/2) n even,
and ◦ =

{
, n ≡

∑
ℓi (mod 2)

+ n 6≡
∑
ℓi (mod 2) .

In particular, the sum is always a polynomial in Riemann zeta values, since ζ⋆({2}n) ∈ Qπ2n.

In the case all ℓi even, we recover the identities in Conjecture 1.1, and can give explicit terms
in the right hand side in various cases.

Example 1.6. If (ℓ1, ℓ2, ℓ3) = (2a + 2, 2a + 2, 2a + 2), we are in the case n = 3, and ◦ = “+”.
Then

ζ⋆(bl−1(2 + 2a+ 2, 2b+ 2, 2c+ 2)) = ζ⋆({2}a+1, 1, {2}b, 3, {2}c) .

The theorem tell us that we need to sum over r ∈ Partodd(3) = { 1 | 2 | 3 , 123 }, and so we obtain

= 23(1− 1)!3 · 1
2ζ

⋆({2}a+1) · 1
2ζ

⋆({2}b+1) · 1
2ζ

⋆({2}c+1) +  r = {1 | 2 | 3}

+ 21(3− 1)! · 1
2ζ

⋆({2}a+b+c+3)  r = {123}

which simplifies to

= ζ⋆({2}a+1)ζ⋆({2}b+1)ζ⋆({2}c+1) + 2ζ⋆({2}a+b+c+3) .

This gives the identity
∑

permute a, b, c

ζ⋆({2}a+1, 1, {2}b, 3, {2}c)

= ζ⋆({2}a+1)ζ⋆({2}b+1)ζ⋆({2}c+1) + 2ζ⋆({2}a+b+c+3) ∈ Qπwt ,

as in case 1 of Conjecture 1.1.

If (ℓ1, . . . , ℓ4) = (2a+ 2, 2b+ 2, 2c+ 2, 2d+ 2), we are in the case n = 4, and ◦ = “ , ”. Then

ζ⋆(bl−1(2, 2a+ 2, 2b+ 2, 2c+ 2, 2d+ 2)) = ζ⋆(1, {2}a, 3, {2}b, 1, {2}c, 3, {2}d) .
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We sum over r ∈ Partodd(4) = { 1 | 234, 2 | 134, 3 | 124, 4 | 234, 1 | 2 | 3 | 4 }, and obtain
∑

permute a, b, c, d

ζ⋆(1, {2}a, 3, {2}b, 1, {2}c, 3, {2}d)

= 2
(
ζ({2}a+b+c+3)ζ⋆({2}d+1) + ζ({2}a+b+d+3)ζ⋆({2}c+1) +

+ ζ({2}a+c+d+3)ζ⋆({2}b+1) + ζ({2}b+c+d+3)ζ⋆({2}a+1)
)
+

+ ζ⋆({2}a+1)ζ⋆({2}b+1)ζ⋆({2}c+1)ζ⋆({2}d+1) ∈ Qπwt ,

as in case 2 of Conjecture 1.1.

Example 1.7 (Hoffman’s identity). For integers a, b, c ≥ 0, Hoffman’s identity on MZV’s (gener-
alised and proven up to Q in [5], and proven exactly in [6]) states

ζ({2}a, 3, {2}b, 3, {2}c)− ζ({2}b, 3, {2}c, 1, 2, {2}a) + ζ({2}c, 1, 2, {2}a, 1, 2, {2}b)

= −ζ({2}a+b+c+3) .

It arises from the block decomposition (ℓ1, ℓ2, ℓ3) = (2a+3, 2b+3, 2c+2) of the first MZV above.

We can apply Theorem 1.5 to (ℓ1, ℓ2, ℓ3) = (2a + 3, 2b + 3, 2c + 2) to obtain an analogue on
MZSV’s. We are in the case ◦ = “+” , and we obtain the following combination of MZSV’s.

ζ⋆({2}a+1, 3, {2}b, 3, {2}c) + ζ⋆({2}b+1, 3, {2}a, 3, {2}c) +

+ ζ⋆({2}b+1, 3, {2}c, 1, 2, {2}a) + ζ⋆({2}a+1, 3, {2}c, 1, 2, {2}b) +

+ ζ⋆({2}c+1, 1, 2, {2}a, 1, 2, {2}b) + ζ⋆({2}c+1, 1, 2, {2}b, 1, 2, {2}a)

The theorem tell us that we need to sum over r ∈ Partodd(3) = { 1 | 2 | 3 , 123 }, and so we obtain

= 23(1− 1)!3ζ(2a+ 3)ζ(2b+ 3) · 1
2ζ

⋆({2}c+1) +  r = {1 | 2 | 3}

+ 21(3− 1)! · 1
2ζ

⋆({2}a+b+c+4)  r = {123}

which simplifies to

= 4ζ(2a+ 3)ζ(2b+ 3)ζ⋆({2}c+1) + 2ζ⋆({2}a+b+c+4)

Similar identities can be given for a wide range of initial block lengths, allowing one to produce
identities for many MZSV’s with indices 1, 2, 3. For example

Example 1.8. Starting with ζ⋆(1, 3, 3, {2}m), one reads off the block decomposition

bl−1(0; 1 100 100 (10)m; 1) = (2, 2, 3, 2m+ 2) .

By taking (ℓ1, ℓ2, ℓ3) = (2, 3, 2m+2), we are in the case ◦ = “ , ” as
∑
ℓi ≡ 3 (mod 2). The theorem

gives us the following identity containing ζ⋆(1, 3, 3, {2}m):

ζ⋆(1, 3, 3, {2}m) + ζ⋆(1, 2, 1, {2}m, 3) + ζ⋆(1, {2}m, 3, 3)+

ζ⋆(1, 2, 1, 3, {2}m) + ζ⋆(1, 3, {2}m, 1, 2) + ζ⋆(1, {2}m, 3, 1, 2)

= 2ζ(2)ζ(3)ζ⋆({2}m+1) + 4ζ(2m+ 7) .

Acknowledgements. This work was completed during the trimester program “Periods in Number
Theory, Algebraic Geometry and Physics” at the Hausdorff Institute for Mathematics, concurrent
with the author’s stay at the Max Planck Institute for Mathematics. It was motivated by observa-
tions made during the author’s stay at the MZV research centre, Kyushu university. I am grateful
all three institutes for their hospitality and excellent working conditions.

I am also grateful to Nobuo Sato for helpful discussions during the trimester, and for directing
me to Zhao’s generalised 2-1 identity which plays a key role in the proof.

2. Proof of the theorem

Much of the proof relies on Zhao’s generalisation of the 2-1 formula, proven in [9]. The key step is
to relate the block decomposition to Zhao’s s(1), with the following lemma.
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Warning: Since I use the opposite contention for MZV’s, the version of s(1) used here is the reverse
of the one obtained from Zhao’s definition. These changes are incorporated into the proofs.

Lemma 2.1. For ◦ = “ , ” or “+ ”, let L = (2◦ℓ1, . . . , ℓn) be a block decomposition with all ℓi > 1,
and corresponding MZV arguments s = (s1, . . . , sn′). Then Zhao’s s(1) associated to s is given by

s(1) = (ℓ̃1, . . . , ℓ̃i)

where

ℓ̃i =

{
ℓi if ℓi odd

ℓi if ℓi even

Proof. Since block notation, and arguments strings are in 1 ↔ 1 correspondence (and block de-
compositions with ℓi > 1 correspond to si ∈ { 1, 2, 3 }, with no 1, 1), we can build up the block
decomposition, and s(i) term-by-term, and see they match as claimed above.

Suppose that both s(2) = (t̃1, . . . , t̃k) and L = (t1, . . . , tk) have been constructed for ζ(s1, . . . , sn),
and that they agree as claimed. Then for ζ(s1, . . . , sn, sn+1) we obtain by Zhao’s inductive defini-
tion

s(1) =





(t̃1, . . . , t̃k) · (1) = (t̃1, . . . , t̃k, 1) sn+1 = 1

(t̃1, . . . , t̃k)⊕ (2) = (t̃1, . . . , t̃k−1, t̃k ⊕ 2) sn+1 = 2

(t̃1, . . . , t̃k)⊕ (1, 2) = (t̃1, . . . , t̃k−1, t̃k ⊕ 1, 2) sn+1 = 3

If tk is even, then t̃k = tk, so we have t̃k ⊕ 2 = tk ⊕ 2 = tk + 2 = t̃k + 2, and t̃k ⊕ 1 = tk ⊕ 1 =

tk + 1 = t̃k + 1. If tk is odd, then t̃k = tk, so we have t̃k ⊕ 2 = tk ⊕ 2 = tk + 2 = t̃k + 2, and

t̃k ⊕ 1 = tk ⊕ 1 = tk + 1 = t̃k + 1.
So

s(1) =





(t̃1, . . . , t̃k, 1) sn+1 = 1

(t̃1, . . . , t̃k−1, t̃k + 2 sn+1 = 2

(t̃1, . . . , t̃k−1, t̃k + 1, 2̃) sn+1 = 3

Now consider the corresponding construction on L. If sn = 1, then the integral word is

· · · 0 1 ; 1 = · · · 01 | 1 ↔ L = (. . . , ℓn−1, 1) .

We cannot have sn+1 = 1, so we have either

sn+1 = 2  · · · 01 10 ; 1 = · · · 01 | 101

⇒ L = (. . . , ℓn−1, 3) = (. . . , ℓn−1, ℓn + 2) .

Or we have

sn+1 = 3  · · · 01 100 ; 1 = · · · 01 | 10 | 01

⇒ L = (. . . , ℓn−1, 2, 2) = (. . . , ℓn−1, ℓn + 1, 2) .

If sn ≥ 2, then the integral word is

. . . 10; 1 = . . . 101 ↔ L = (. . . , ℓn)

We may have sn+1 = 1, 2, 3, so we obtain

sn+1 = 1  . . . 10 1 ; 1 = 101 | 1 ⇒ L = (. . . , ℓn, 1)

sn+1 = 2  . . . 10 10 ; 1 = 10101 ⇒ L = (. . . , ℓn + 2)

sn+1 = 3  . . . 10 100 ; 1 = 1010 | 01 ⇒ L = (. . . , ℓn + 1, 2) .

We see that after inserting the new argument sn+1, we still have matching between s(1) and L.
To complete the proof, we must check the base case holds. If we start with ζ(1) then

s(1) = (1) and ζ(1) = I(0; 1; 1) ⇒ L = (2, 1)

If we start with ζ(s1 > 1), then

s(1) = ({1}s1−2, 2̃) and ζ(s1) = I(0; 10s1−1; 1) = I(010 | (0 |)s1−3 . . . | 01)

⇒ L = (2 + 1, {1}s1−3, 2) .

In both cases, L = (2 ◦ ℓ1, . . . , ℓn) matches with s(1) as claimed, and the lemma is proven. �
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Lemma 2.2 (Zhao). For any arguments s, we have

ζ⋆(s) = ε(s)
∑

p∈Π(s(1))

2#pζ(p) ,

where Π(s1, . . . , sℓ) is the set of all indices of the form (s1 ◦ · · ·◦sℓ), where ◦ is either “ , ” or “⊕ ”,

and ε(s) = 1 if s1 = 1, ε(s) = −1 if s1 ≥ 2.

Proof. Apply Theorem 1.4 of Zhao [9], and pass to the limit n → ∞ using Lemma 4.5 of Zhao
[9]. �

Proposition 2.3. Let s = (s1, . . . , sn) be given, and assume Sn acts on the indices 1, . . . , n in the

standard way. Then

∑

σ∈Sn

∑

p∈Π(σ·s)

2#pζ(p) =
∑

q∈Part(n)

2#q
∏

i

(#qi)!ζsym

(⊕

j∈q1

sj , . . . ,
⊕

j∈qt

sj

)
,

0 where ζsym(a1, . . . , at) :=
∑

τ∈Std
ζ(aτ(1), . . . , aτ(t)) symmetrises the arguments of the MZV.

That is, one can move the Sn action from L to the arguments of the zeta, at the expense of

some coefficients.

Proof. Firstly, observe that p ∈ Π(σ ·s) means p = sσ(1)◦· · ·◦sσ(n), where each ◦ is , or ⊕. But this
is equivalent to p = σ ·(s1 ◦· · ·◦sn), under the induced Sn action, and (s1 ◦· · ·◦sn) ∈ Π(s1, . . . , sn).
So we can write

=
∑

σ∈Sn

∑

p∈Π(s)

2#pζ(σ · p) .

Warning: σ acts on the elements si inside p = (s1 ◦ · · · ◦ sn), and not on the comma separated
blocks. So ζ(σ ·p) is not simply ζsym(p). We need to do further manipulation to obtain the desired
form.

An element p ∈ Π(s) is of the form s1 ◦ · · · ◦ sn for some choices ◦ = , or ⊕. That is

p = (s1 ⊕ · · · ⊕ si1 , si1+1 ⊕ · · · ⊕ si2 , . . . , sit−1+1 ⊕ · · · ⊕ s it︸︷︷︸
=n

) , and

σ · p = (sσ(1) ⊕ · · · ⊕ sσ(i1), sσ(i1+1) ⊕ · · · ⊕ sσ(i2), . . . , sσ(it−1+1) ⊕ · · · ⊕ sσ(it)︸ ︷︷ ︸
it=n

) .

We can therefore define a surjective map

φ : (Π(p), Sn) → Part∗(n)

(p, σ) 7→ [{ σ(1), . . . , σ(i1) } , { σ(i1 + 1), . . . , σ(i2) } , . . . , { σ(it−1 + 1), . . . , σ(it) }]

where i1, . . . , it are given by the expression for σ · p above. Here Part∗(n) is the set-partitions of
{1, . . . , n}, where the order of the elements of the parts is not important, but the order of the parts
themselves is. That is [{ a, b } , { c }] = [{ b, a } , { c }], but these are different from [{ c } , { a, b }].

If q = φ(p, σ) = [q1, . . . , qt], then ζ(σ · p) = ζ(
⊕

j∈q1
sj, . . . ,

⊕
j∈qt

sj), and #q = #p. Notice

that #φ−1(q) = #q1! · · ·#qt!, since any permutation which respects the parts of p maps to the
same q. So we can write that the desired sum is

=
∑

q∈Part∗(n)

2#q

(
∏

i

#qi!

)
ζ

(⊕

j∈q1

sj , . . . ,
⊕

j∈qt

sj

)
.

Finally, we have a surjective map

ψ : Part∗(n) → Part(n)

[q1, . . . , qt] 7→ { q1, . . . , qt } ,

with ψ−1({ q1, . . . , qt }) =
{
[qσ(1), . . . , qσ(t)]

∣∣ σ ∈ St

}
.

So the sum can be written

=
∑

q∈Part(n)

2#q#q1! · · ·#qt!
∑

σ∈St

ζ

( ⊕

j∈qσ(1)

sj, . . . ,
⊕

j∈qσ(t)

sj

)

︸ ︷︷ ︸
=:ζsym

.
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This completes the proof. �

Using the symmetric sum formula [7] (or rather Zhao’s generalisation to alternating MZV’s in
Lemma 5.1 of [9]), one can evaluate the RHS above. We obtain the following

Proposition 2.4. The following evaluation holds

∑

q∈Part(n)

2#q

( #q∏

i=1

#qi!

)
ζsym

(⊕

j∈q1

sj , . . . ,
⊕

j∈qt

sj

)
=

∑

r∈Partodd(n)

2#r

#r∏

i=1

(#ri − 1)!

#r∏

i=1

ζ

(⊕

j∈ri

sj

)

Proof. Firstly, we must apply the symmetric sum theorem to evaluate the left hand side. It gives

=
∑

q∈Part(n)

2#q

( #q∏

i=1

#qi!

) ∑

t∈Part(#q)

(−1)#q−#t

( #t∏

j=1

(#tj − 1)!

) #t∏

j=1

ζ

(⊕

α∈tj

⊕

β∈qα

sβ

)
.

As the parts qα are disjoint, the ζ argument
⊕

α∈tj

⊕

β∈qα

sβ

can be written as ⊕

α∈rj

sα .

for some partition j ∈ Part(n). This partition is obtained from (q, t) by ‘flattening’ in the following
sense

f(q, t) =r = {r1, . . . , r#t}, where

ri =
⋃

j∈ti

qj .

For example

(q = { q1 = { 1, 2, 4 } , q2 = { 3, 5 } , q3 = { 6, 8 } , q4 = { 7 } } , t = { { 1, 3, 4 } , { 2 } })

7→ { q1 ∪ q3 ∪ q4, q2 } = { { 1, 2, 4, 6, 7, 8 } , { 3, 5 } } .

So we may formally write the sum as

∑

r∈Part(n)

∑

(q,t)∈f−1(r)

2#q(−1)#q−#t

( #q∏

i=1

#qi!

)( #t∏

j=1

(#tj − 1)!

) #r∏

k=1

ζ

( ⊕

α∈rk

sα

)
.

We thus need to evaluate the coefficient

cr :=
∑

(q,t)∈f−1(r)

2#q(−1)#q−#t

( #q∏

i=1

#qi!

)( #t∏

j=1

(#tj − 1)!

)
.

We want to show two things: firstly that if the partition r has any even size parts, then the
coefficient is 0. Secondly if the partition only has odd size parts, the coefficient is as indicated in
the statement of the proposition.

Firstly, we can describe f−1(r) more explicitly, as follows. The elements q which flatten to r are

obtained as q =
∐#r

i=j Tj , where Tj is any partition of rj . This choice of partitions T1, . . . ,T#r

determines t, since rj =
⋃
Tj . For example

r = { { 1, 3, 4, 5, 7 } , { 2, 6, 8 } }

f−1 contains
−−−−−−−−→ {{ 1, 4 | 3 | 5, 7 }︸ ︷︷ ︸

T1

, { 2, 6 | 8 }︸ ︷︷ ︸
T2

} = { { 1, 4 } , { 2, 6 } , { 3 } , { 5, 7 } , { 8 } }

and t = { { 1, 3, 4 } , { 2, 5 } }.
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Under this construction we have

#t = #r , #ti = #Ti , #q =

#r∑

i=1

#Ti

qj = Tk,l , some k, l, so that

#q∏

j=1

#qj ! =

#r∏

k=1

#Tk∏

l=1

#Tk,l!

Thus

cr = (−1)#r
∑

T1∈Part(#r1)

· · ·
∑

T#r∈Part(#r#r)

(−2)
∑

i
#Ti ·

#r∏

k=1

#Tk∏

l=1

#Tk,l! ·

#r∏

j=1

(#Tj − 1)! .

This sum can now be factored into a product of the following form

cr = (−1)#r

#r∏

i=1

g(#ri) ,

where

g(i) :=
∑

w∈Part(i)

(−2)#w

#w∏

l=1

#wl! · (#w − 1)! .

I claim that g can be evaluated as follows

g(i) =

{
−2(i− 1)! i odd

0 i even.

If this claim does hold, then

cr =

{
0 some #ri even

(−1)#r
∏#r

i=1(−2)(#ri − 1)! all #ri odd

=

{
0 some #ri even

2#r
∏#r

i=1(#ri − 1)! all #ri odd.

So the proposition will follow. �

For the proof to be complete, we need to show the following claim.

Claim 2.5. Let

g(n) :=
∑

w∈Part(n)

(−2)#w

#w∏

l=1

#wl! · (#w − 1)! ,

then

g(n) =

{
−2(n− 1)! n odd

0 n even.

Proof. We show the generalised identity

1

n!
g(n, x) = −

1

n
+

1

n
(1 + x)n ,

where

g(n, x) :=
∑

w∈Part(n)

x#w

#w∏

l=1

#wl! · (#w − 1)!

Hence for x = −2, we obtain

g(n,−2) = −(n− 1)! + (n− 1)!(−1)n =

{
−2(n− 1)! n odd

0 n even,

as claimed.
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To show the generalised identity, we can first show that the derivatives agree. Then integrating
gives

1

n!
g(n, x) = c+

1

n
(1 + x)n ,

for some constant c. One sees that c = − 1
n by setting x = 0; the left hand side is 0 and the right

hand side is c+ 1
n , which proves the claim.

To see the derivatives agree, we must show

1

n!
g′(n, x) = (1 + x)n−1 equivalently,

g′(n, x) = n!(1 + x)n−1 . (1)

Term-by-term differentiation of g(n, x) gives

g′(n, x) =
∑

w∈Part(n)

x#w−1

#w∏

l=1

#wl! ·#w! .

The coefficient of xi−1 on the right hand side of Equation 1 is

n!

(
n− 1

i− 1

)
.

The coefficient of xi−1 on the left hand side is

∑

w∈Part(n)
#w=i

#w∏

l=1

wl! ·#w!︸︷︷︸
i!

These two expressions give two different ways to count the number of ordered partitions of [1, . . . , n]
into i non-empty ordered parts, and hence are equal. Here an ordered partition with ordered parts
means that [[1, 2], [3]], [[2, 1], [3]], [[3], [1, 2]] and [[3], [2, 1]] are all counted as distinct. For simplicity,
refer to such a partition as an ordered/ordered partition.

We can form an ordered/ordered partition of [1, . . . , n] into i parts by first taking any permu-
tation of [1, . . . , n], then inserting i − 1 bars into any choice of the n − 1 gaps, breaking the i
non-empty parts.

[1, . . . , 8]
permute

−−−−−−−→ [4,
↑

5, 2, 3,
↑

7, 6,
↑

1, 8]

insert bars
−−−−−−−→ [[4], [5, 2, 3], [7, 6], [1, 8]] .

There are n! permutations, and
(
n−1
i−1

)
ways of choosing i−1 positions from the n−1 gaps. This

gives the right hand side.
Alternatively, we can form an ordered/ordered partition of [1, . . . , n] by taking a set-partition

of { 1, . . . , n } into i parts, then reordering the i parts arbitrarily, as well as arbitrarily reordering
the elements of each part. Every such ordered/ordered partition of [1, . . . , n] arises in this way, for
some unique w, as forgetting about both orderings gives a surjection onto Part(n).

w ∈ Part(n) −−−−−−−−−→ { { 1, 8 } , { 2, 3, 5 } , { 4 } , { 6, 7 } }

permute parts
−−−−−−−−−→
and elements

[[4], [5, 2, 3], [7, 6], [1, 8]]

Letw ∈ Part(n) be a (set-)partition of { 1, . . . , n } into i parts, with sizes of each part #w1, . . . ,#wi

respectively. Then there are i!
∏#w

l=1 #wl! such ordered/ordered partitions arising fromw. We must
sum over all such w ∈ Part(n), giving

∑

w∈Part(n)
#w=i

i!

#w∏

l=1

#w1! .

This is the left hand side.
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The coefficients of both sides agree, hence we get the required equality of derivatives, and so
claim follows. �

Finally, we can uses these results to prove the theorem.

Proof of theorem. Using Lemma 2.2, we have that

∑

σ

ζ⋆(bl−1(2 ◦ ℓσ(1), . . . , ℓσ(n))) = ε(◦)
∑

σ∈Sn

∑

p∈Π(σ·(ℓ̃1,...,ℓ̃n))

2#pζ(p) .

Notice ε(◦) matches with ε(s), for the following reason. If ◦ = “ , ”, then ζ⋆(bl−1(2, ℓ1, . . .)) = I(01 |

1 · · · ) = ζ(1, . . .) and ε(s) = 1 since s1 = 1. Otherwise ◦ = “ + ′′, then ζ⋆(bl
−1(2 + ℓ1, . . .)) =

I(0101 · · · ) = ζ(2, . . .), and ε(s) = −1 since s1 = 2.
Interchange the summations, write the result as a sum over odd-sized partitions using the

Proposition 2.4

= ε(◦)
∑

r∈Partodd(n)

2#r
∏

i

(#ri − 1)!
∏

i

ζ
(⊕

j∈ri

ℓ̃j

)
.

Since the size of each partition is odd, we can explicitly evaluate
⊕

j∈pi
ℓ̃j , and the resulting ζ

as follows.

Case #{ℓi| even } ≡ 0 (mod 2): Then

⊕

j∈pi

ℓ̃j =
∑

j∈pi

ℓj ,

and this is sum is odd. This is because the number of bars is additive (i.e. the sign is multiplicative),
and there are an even number of bars in total. So the ⊕ sum agrees with the sum of the undecorated
ℓi. Moreover, the total is odd since we sum an odd number of odd numbers.

Overall, this means

ζ

(⊕

j∈pi

ℓ̃j

)
= ζ

(∑

j∈pi

ℓj

)
.

Case #{ℓi| even } ≡ 1 (mod 2): Then

⊕

j∈pi

ℓ̃j =
∑

j∈pi

ℓj ,

and this sum is even. This is because there are an odd number of bars in total, so one remains after
doing the ⊕-sum. Consequently the ⊕-sum agrees with the bar of the undecorated sum. Moreover,
the total is even, since we add an even number of odd numbers.

This means

ζ

(⊕

j∈πi

ℓ̃j

)
= ζ

(∑

j∈pi

ℓj

)
.

We can now use Zlobin’s evaluation [10] ζ⋆({2}n) = −2ζ(2n), (which is also contained in Zhao’s
2-1 theorem) to write

ζ

(∑

j∈pi

ℓj

)
= −

1

2
ζ⋆
(
{2}

1
2

∑
j∈pi

ℓj
)
.

This is almost our definition of ζ̃. I claim that the number of −1 signs between ε(◦) and all
−ζ⋆({2}n)’s is even. We may discard it to obtain an equivalent formula with our original definition

of ζ̃.

Why is the total number of −1’s even?
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Case ◦ = “ , ”: Here ε(,) = 1, since the MZV’s begin ζ⋆(bl−1(2,≥ 2)) = ζ⋆(01 | 10 · · · ) = ζ⋆(1,≥
2). I claim that the number of ‘even-sum’ parts is even, hence the total number of −1’s is even as
claimed. In this case n ≡

∑
ℓi (mod 2), and we can check n odd or even separately.

Suppose n odd, then
∑
ℓi also odd. By counting the number n of ℓi, we see p ∈ Partodd(ℓi) has

an odd number of parts. If an odd number of parts have even sum, we would have
∑
ℓi even, a

contradiction.
Similarly if n even, then

∑
ℓi also even. By counting the number n of ℓi, we see p ∈ Partodd(ℓi)

has an even number of parts. If an odd number of parts have even sum, we would again have
∑
ℓi

odd, a contradiction.

Case ◦ = “+ ”: Here ε(+) = −1, since the MZV’s begin ζ⋆(bl−1(2+ ≥ 2, . . .)) = ζ⋆(0101 · · · ) =
ζ⋆(2, . . .). I claim that the number of ‘even-sum’ parts is odd, hence the total number of −1’s is
even as claimed. In this case n 6≡

∑
ℓi (mod 2), so just check n odd or even separately.

Suppose n odd, then
∑
ℓi is even. By counting the number n of ℓi, we see that p ∈ Partodd(ℓi)

has an odd number of parts. If an even number of parts have even sum, we would obtain
∑
ℓi

odd.
Finally n even, so

∑
ℓi is odd. By counting the number n of ℓi, we see that p ∈ Partodd(ℓi) has

an even number of parts. If an even number of parts have even sum, we would obtain
∑
ℓi even.

In all cases the overall number of −1’s is even and we can drop the −1 from the definition of ζ̃,
to obtain the required result. This completes the proof of the theorem. �
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