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ANALOGUES OF CYCLIC INSERTION-TYPE
IDENTITIES FOR MULTIPLE ZETA STAR VALUES

Steven CHARLTON

(Received 17 August 2019 and revised 4 January 2020)

Abstract. We prove an identity for multiple zeta star values, which generalizes some
identities due to Imatomi, Tanaka, Tasaka and Wakabayashi. This identity gives an analogue
of cyclic insertion-type identities, for multiple zeta star values, and connects the block
decomposition with Zhao’s generalized 2–1 formula.

1. Introduction

For integers s1, . . . , sr ≥ 1, the multiple zeta values (MZVs) and multiple zeta star values
(MZSVs) are defined by the following series, respectively,

ζ(s1, . . . , sr ) :=
∑

0<n1<n2<···<nr

1
ns1

1 · · · n
sr
r
,

ζ ?(s1, . . . , sr ) :=
∑

0<n1≤n2≤···≤nr

1
ns1

1 · · · n
sr
r
.

These series are convergent for sr > 1. In each case r is called the depth, and s1 + · · · + sr is
called the weight. We make use of the shorthand ‘wt’ for the weight of the MZVs appearing
in an identity, and write {s}n to mean s repeated n times.

In [8], the following identities for multiple zeta star values are conjectured.

CONJECTURE 1.1. [8, Conjectures 4.1 and 4.3] For any integers a0, . . . , a2n ≥ 0, we have∑
permute a0,...,a2n

ζ ?({2}a0+1, 1, {2}a1 , 3, {2}a2 , . . . , 1, {2}a2n−1 , 3, {2}a2n )
?
∈Qπwt, (1)

∑
permute a1,...,a2n

ζ ?(1, {2}a1 , 3, {2}a2 , . . . , 1, {2}a2n−1 , 3, {2}a2n )
?
∈Qπwt. (2)

Notice the blocks of 2 all have lengths ai , except for the initial one; it has length a0 + 1 in
the first identity and length 0 in the second identity.

These identities are similar in structure to the cyclic insertion conjecture of [1], on
classical MZVs, and should perhaps be regarded as an analogue. The cyclic insertion
conjecture states the following.
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CONJECTURE 1.2. [1, Conjecture 1] For any integers a0, . . . , a2n ≥ 0, we have∑
cycle a0,...,a2n

ζ({2}a0 , 1, {2}a1 , 3, {2}a2 , . . . , 1, {2}a2n−1 , 3, {2}a2n )
?
=

πwt

(wt+ 1)!
.

In [4], a symmetrized version of Conjecture 1.2 was proven by the author, up to a rational,
using the motivic MZV framework of Brown [2, 3]. This symmetrized result was generalized
by the author to a wider class of MZVs using the (alternating) block decomposition of iterated
integrals [5], along with a conjectural cyclic version. A proof of a generalization of the cyclic
version has since been claimed by Hirose and Sato [6], under the name of block-shuffle
identity.

Zhao’s generalized 2–1 formula, Theorem 1.4 in [9], gives an expression for an arbitrary
MZSV as a sum of alternating MZVs, with arguments from a certain indexing set 5(s(1)).
As a consequence, in Theorem 5.2 of [9] Zhao gives a concise proof of Conjecture 1.1. The
goal of this paper is to generalize Zhao’s proof of Conjecture 1.1, by connecting Zhao’s
construction s(1) with the block decomposition of the multiple zeta value ζ(s). This allows us
to give analogues of other MZV cyclic insertion identities in the MZSV case.

Before stating the main result, we must first recall the construction of the block
decomposition from [5]. Any word in {0, 1}× can be written as a concatenation of some
number of ‘alternating words’ 0, 1, 01, 10, 010, 101, 0101, 1010, . . . . By deconcatenating
w at a repeated letter, one obtains the (unique) decomposition of w into the minimal possible
number of such words. Moreover, by assuming w starts with 0, the lengths of the alternating
words uniquely determine w since the concatenation occurs at a repeated letter.

Definition 1.3. (Block decomposition [5]) For w ∈ {0, 1}×, starting with a 0, write w as
a concatenation of the fewest alternating words w1, . . . , wn , with lengths `1, . . . , `n ,
respectively. The block decomposition of w is

bl(w) := (`1, . . . , `n).

Note that the block decompositions (`1, . . . , `n) corresponding to words describing
an MZV via the integral representation (i.e. first letter 0, last letter 1 for the bounds of
integration) satisfy the parity condition

n −
n∑

i=1

`i ≡ 1 (mod 2).

Convergence reasons mean that such a block decomposition will also satisfy `1 > 1 and
`n > 1.

Example 1.4. For w = 01100101010010101 (corresponding to ζ(1, 3, 2, 2, 3, 2, 2)), we
have

bl(w)= bl( 01︸︷︷︸
2

| 10︸︷︷︸
2

| 0101010︸ ︷︷ ︸
7

| 010101︸ ︷︷ ︸
6

)= (2, 2, 7, 6).

From the lengths (2, 2, 7, 6) we recover a unique word starting with 0, by writing

bl−1(2, 2, 7, 6)= 0 1 | 1
repeat

0 | 0
repeat

10101 0 | 0
repeat

10101= w.
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We also make use of the following notation around partitions. For n ≥ 1 a positive
integer, write Part(n) for the set of all unordered partitions r= {r1, . . . , rk} of the set
{1, . . . , n} into subsets r1, . . . , rk . Write Partodd(n) for those such that the cardinality
#ri of each subset ri is odd. These partitions are unordered and consist of subsets, which
means r= {{1}, {2, 4, 5}, {3}} and r′ = {{4, 5, 2}, {3}, {1}} both represent the same element
of Partodd(5). The subsets in the partition may be canonically indexed in lexicographic order.
For notational simplicity, I may drop all of the set brackets when writing a partition, and
simply use | to separate the subsets of this partition. So I can write the above as r= 1|245|3,
say.

We can now state the main result of this paper.

THEOREM 1.5. For integers `i > 1, the following identity on MZSVs holds:∑
σ∈Sn

ζ ?(bl−1(2 ◦ `σ(1), . . . , `σ(n)))=
∑

r={r1,...,rk }
∈Partodd(n)

2#r
∏
i=1

(#ri − 1)!
∏
i=1

ζ̃

(∑
j∈ri

` j

)
.

Here
ζ ?(0; 10t1−1

· · · 10td−1
; 1) := ζ ?(t1, . . . , td),

as in the iterated integral representation of an MZV, including also the bounds of integration.
Moreover we define ζ̃ and ◦ by

ζ̃ (n)=

{
ζ(n) if n odd,
1
2ζ
?({2}n/2) if n even,

and ◦ =

{
‘+’ if n 6≡

∑
`i (mod 2),

‘,’ if n ≡
∑
`i (mod 2).

In particular, the sum is always a polynomial in Riemann zeta values, since

ζ ?({2}m) ∈Qπ2m .

In the case all `i even, we recover the identities in Conjecture 1.1, and can give explicit
terms for the right-hand side in various cases.

Example 1.6. If (`1, `2, `3)= (2a + 2, 2b + 2, 2c + 2), we are in the case n = 3, and
◦ = ‘+’ since

∑
i `i 6≡ 3 (mod 2). Then

ζ ?(bl−1(2+ 2a + 2, 2b + 2, 2c + 2))= ζ ?({2}a+1, 1, {2}b, 3, {2}c).

To give the corresponding identity, Theorem 1.5 tells us that we need to sum over
r ∈ Partodd(3)= {1|2|3, 123}, and so for the right-hand side we obtain

23(1− 1)!3 · 1
2ζ
?({2}a+1) · 1

2ζ
?({2}b+1) · 1

2ζ
?({2}c+1)

+ 21(3− 1)! · 1
2ζ
?({2}a+b+c+3).

The first line corresponds to the partition r= 1|2|3, and the second to the partition r= 123.
This combination simplifies to

ζ ?({2}a+1)ζ ?({2}b+1)ζ ?({2}c+1)+ 2ζ ?({2}a+b+c+3).

This gives the identity∑
permute a, b, c

ζ ?({2}a+1, 1, {2}b, 3, {2}c)

= ζ ?({2}a+1)ζ ?({2}b+1)ζ ?({2}c+1)+ 2ζ ?({2}a+b+c+3) ∈Qπwt,

as in case (1) of Conjecture 1.1.
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If (`1, . . . , `4)= (2a + 2, 2b + 2, 2c + 2, 2d + 2), we are in the case n = 4, and
◦ = ‘,’ since

∑
i `i ≡ 4 (mod 2). Then

ζ ?(bl−1(2, 2a + 2, 2b + 2, 2c + 2, 2d + 2))= ζ ?(1, {2}a, 3, {2}b, 1, {2}c, 3, {2}d).

We sum over r ∈ Partodd(4)= {1|234, 134|2, 124|3, 123|4, 1|2|3|4}, and obtain∑
permute a, b, c, d

ζ ?(1, {2}a, 3, {2}b, 1, {2}c, 3, {2}d)

= 2
(
ζ ?({2}a+b+c+3)ζ ?({2}d+1)+ ζ ?({2}a+b+d+3)ζ ?({2}c+1)

+ ζ ?({2}a+c+d+3)ζ ?({2}b+1)+ ζ ?({2}b+c+d+3)ζ ?({2}a+1)
)

+ ζ ?({2}a+1)ζ ?({2}b+1)ζ ?({2}c+1)ζ ?({2}d+1) ∈Qπwt,

as in case (2) of Conjecture 1.1.

Example 1.7. (Hoffman’s identity) For integers a, b, c ≥ 0, Hoffman’s identity on MZVs
(generalized and proven up to Q by the author in [5], and the generalization itself proven
exactly by Hirose and Sato in [6]) states

ζ({2}a, 3, {2}b, 3, {2}c)− ζ({2}b, 3, {2}c, 1, 2, {2}a)+ ζ({2}c, 1, 2, {2}a, 1, 2, {2}b)

=−ζ({2}a+b+c+3).

It arises from the block decomposition (`1, `2, `3)= (2a + 3, 2b + 3, 2c + 2) of the first
MZV above.

We can apply Theorem 1.5 to (`1, `2, `3)= (2a + 3, 2b + 3, 2c + 2) to obtain an
analogue on MZSVs. We are in the case ◦ = ‘+’, since

∑
i `i 6≡ 3 (mod 2), and we obtain

the following combination of MZSVs:

ζ ?({2}a+1, 3, {2}b, 3, {2}c)+ ζ ?({2}b+1, 3, {2}a, 3, {2}c)

+ ζ ?({2}b+1, 3, {2}c, 1, 2, {2}a)+ ζ ?({2}a+1, 3, {2}c, 1, 2, {2}b)

+ ζ ?({2}c+1, 1, 2, {2}a, 1, 2, {2}b)+ ζ ?({2}c+1, 1, 2, {2}b, 1, 2, {2}a).

Theorem 1.5 tells us that we need to sum over r ∈ Partodd(3)= {1|2|3, 123}, and so we obtain

23(1− 1)!3ζ(2a + 3)ζ(2b + 3) · 1
2ζ
?({2}c+1)

+ 21(3− 1)! · 1
2ζ
?({2}a+b+c+4),

where the first line corresponds to r= 1|2|3 and the second line to r= 123. This combination
simplifies to

4ζ(2a + 3)ζ(2b + 3)ζ ?({2}c+1)+ 2ζ ?({2}a+b+c+4).

Similar identities can be given for a wide range of initial block lengths, allowing one to
produce identities for many MZSVs with indices 1, 2 and 3. Consider the following example.

Example 1.8. Starting with ζ ?(1, 3, 3, {2}m), one reads off the block decomposition

bl−1(0; 1 100 100 (10)m; 1)= (2, 2, 3, 2m + 2).
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By taking (`1, `2, `3)= (2, 3, 2m + 2), we are in the case ◦ = ‘,’ as
∑
`i ≡ 3 (mod 2).

Theorem 1.5 gives us the following identity containing ζ ?(1, 3, 3, {2}m):

ζ ?(1, 3, 3, {2}m)+ ζ ?(1, 2, 1, {2}m, 3)+ ζ ?(1, {2}m, 3, 3)

+ ζ ?(1, 2, 1, 3, {2}m)+ ζ ?(1, 3, {2}m, 1, 2)+ ζ ?(1, {2}m, 3, 1, 2)

= 2ζ(2)ζ(3)ζ ?({2}m+1)+ 4ζ(2m + 7).

2. Background on Zhao’s generalized 2–1 formula

Warning: since I use the opposite convention for MZVs, the version of ‘s(1)’ defined here is
the reverse of the one obtained from Zhao’s definition. In fact, I will construct s(i) by forward
induction, so that the last element s(k) is the relevant one. These changes are incorporated into
the text below and the proofs thereafter.

Much of the proof relies on Zhao’s generalization of the 2–1 formula, proven in [9].
In this section we recall the necessary notation and concepts from [9] in order to apply the
generalized 2–1 formula.

Introduce D= Z>0 ∪ Z>0 and D0 = Z≥0 ∪ Z≥0, where Z>0 = {n | n > 0} is the set of
signed positive numbers and Z≥0 = {n | n ≥ 0} is the set of signed non-negative numbers.
The absolute value and sign functions are extended to Z≥0 via |a| = |a| and sgn(a)=−1, for
a ∈ Z≥0. (Note that sgn(0)= 1.) Under the operation ‘⊕’ defined by

a ⊕ b =

{
|a| + |b| if exactly one of a and b is in Z≥0,

|a| + |b| if a, b ∈ Z≥0 or if a, b ∈ Z≥0,

the set D0 forms a semi-group.
Since 0 and 0 do not play a role for us, we can just think that n is essentially −n, and

then the operation ⊕ is addition of absolute values and multiplication of the signs.
The multiple zeta values ζ(s1, . . . , sk) then extend to so-called alternating MZVs, with

arguments si ∈ D, via

ζ(s1, . . . , sr ) :=
∑

0<n1<n2<···<nr

sgn(s1)
n1 · · · sgn(sr )

nr

n|s1|
1 · · · n

|sr |
r

.

This series is convergent provided sr 6= 1, even including the case where sr = 1.
Zhao’s generalized 2–1 theorem [9, Theorem 1.4] gives a relation between a truncated

MZSV and a sum over a certain indexing set 5(s(k)) of a certain mollified companion to the
truncated (alternating) MZVs. We recall first the construction of s(i). Let s= (s1, . . . , s`)
be an argument string, then with my reversed MZV convention, we construct s(i), for
i = 1, 2, . . . , `, by forward induction. (Zhao would define s(i), i = `, . . . , 2, 1, by backward
induction.) Set

s(1) =

{
(1) if s1 = 1,

({1}s1−2, 2) if s1 ≥ 2.

Then for 1< i ≤ ` define

s(i) =


s(i−1)

· (1) if si = 1,

s(i−1)
⊕ (2) if si = 2,

s(i−1)
⊕ (1, {1}si−3, 2) if si ≥ 3.
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Here, for a= (a1, . . . , ar ) and b= (b1, . . . , bt ), one sets

a · (1)= (a1, . . . , ar , 1),

a⊕ b= (a1, . . . , ar−1, ar ⊕ b1, b2, . . . , bt ).

From Zhao’s generalized 2–1 theorem involving truncated MZ(S)Vs, one obtains the
following result directly relating MZSVs and alternating MZVs. (Here I use s(k), whereas
Zhao would use s(1) with the other MZV convention.)

LEMMA 2.1. (Zhao) For any arguments s= (s1, . . . , sk) ∈ (Z>0)
k with sk > 1, we have

ζ ?(s)= ε(s)
∑

p∈5(s(k))

2#pζ(p),

where 5(t1, . . . , t`) is the set of all indices of the form (t1 ◦ · · · ◦ t`), where ◦ is either ‘,’ or
‘⊕’, and ε(s)= 1 if s1 = 1, and ε(s)=−1 if s1 ≥ 2.

Proof. Apply Theorem 1.4 of Zhao [9], and pass to the limit n→∞ using Lemma 4.5 of
Zhao [9]. Lemma 4.5 requires that the last argument of the alternating harmonic sum has
absolute value > 1; this is the case since the last entry of s(k) has absolute value ≥ 2 when
sk ≥ 2. 2

Example 2.2. For clarity, we give an illustration of this result in the case of ζ ?(1, 3, 3, {2}m),
from Example 1.8. Since s1 = 1, we set

s(1) = (1).

Then since s2 = s3 = 3 we obtain

s(2) = (1)⊕ (1, {1}0, 2)= (2, 2),

s(3) = (2, 2)⊕ (1, {1}0, 2)= (2, 3, 2).

Finally since si = 2, for i ≥ 4, we get

s(i) = (2, 3, 2)⊕ (2)⊕i−3
= (2, 3, 2i − 4),

so in particular s(m+3)
= (2, 3, 2m + 2). Since s1 = 1, we find ε(s)= 1, and applying the

generalized 2–1 theorem gives

ζ ?(1, 3, 3, {2}m)= 2ζ(2m + 7)+ 4ζ(5, 2m + 2)+ 4ζ(2, 2m + 5)+ 8ζ(2, 3, 2m + 2).

Recall that the block decomposition of ζ(1, 3, 3, {2}m) is (2, 2, 3, 2m + 2); this already
suggests a close relationship between the block decomposition and Zhao’s s(i) construction.

3. Proof of Theorem 1.5

The key step in the proof is to relate the block decomposition to Zhao’s s(i), with the following
lemma. This will allow us to directly apply Zhao’s generalized 2–1 theorem and obtain the
result.
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LEMMA 3.1. Let s= (s1, . . . , sk) be a sequence of MZV arguments (not necessarily
convergent). Let L= (`1, . . . , `n) be the corresponding block decomposition. If `1 = 2, then
the last s(k) associated to s in Zhao’s s(i) construction is given by

s(k) = (˜̀2, . . . , ˜̀n),
otherwise `1 > 2 and then

s(k) = (`̃1 − 2, . . . , ˜̀n),
where ˜̀i =

{
`i if `i odd,

`i if `i even.

Proof. The proof of this proceeds by induction on the depth of s. We directly check the claim
for depth 1, when s= (s1).

Case s1 = 1: then s(1) = (1) and bl(1)= (2, 1).

Case s1 = 2: then s(1) = (2) and bl(2)= (4).

Case s1 ≥ 3: then s(1) = ({1}s1−2, 2) and bl(s1)= (3, {1}s1−3, 2), by writing the word for s1
out

0; 10{0}s1−30; 1= 010 | {0 |}s1−3
| 01.

Now suppose the result holds for all depth-d argument sequences s. Notice that whether
`1 = 2 or `1 > 2 does not change when adding a new argument, since it is tied to whether
the first argument s1 = 1 or s1 > 1, respectively. We can also consider both cases together,
by viewing the first as a degenerate version of the second, where `̃1 − 2= 0̃ := ∅ makes no
contribution.

Let (`1, . . . , `n) be the block decomposition of (s1, . . . , sk). By induction we know that

s(k) = (`̃1 − 2, ˜̀2, . . . , ˜̀n).
In general, observe that the integral word corresponding to (s1, . . . , sk, sk+1) is obtained
from the integral word for (s1, . . . , sk) by appending {0}sk+1−11. This is just a streamlined
version of removing the upper bound 1 of integration, appending the string 1{0}sk+1−1 which
corresponds to sk+1, then re-appending the upper bound 1 of integration.

Case sk+1 = 1: then

s(k+1)
= (`̃1 − 2, ˜̀2, . . . , ˜̀n) · (1)
= (`̃1 − 2, ˜̀2, . . . , ˜̀n, 1)

= (`̃1 − 2, ˜̀2, . . . , ˜̀n, 1̃).

Since the upper bound of integration is 1, appending the extra {0}01= 1 produces a new
block with length 1, as

· · · | · · · 01010 · · ·︸ ︷︷ ︸
`n−1

| · · · 0101︸ ︷︷ ︸
`n

 · · · | · · · 01010 · · ·︸ ︷︷ ︸
`n−1

| · · · 0101︸ ︷︷ ︸
`n

| 1.

So the block decomposition of (s1, . . . , sk, 1) is (`1, . . . , `n, 1), which matches the result
of s(k+1).
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Case sk+1 = 2: then

s(k+1)
= (`̃1 − 2, . . . , ˜̀n)⊕ (2)
= (`̃1 − 2, . . . , ˜̀n−1, ˜̀n ⊕ 2)

= (`̃1 − 2, . . . , ˜̀n−1, `̃n + 2).

This is because ⊕ 2 does not change the parity or sign of the result, so ˜̀n ⊕ 2= `̃n + 2.
Since the upper bound of integration is 1, appending the extra {0}11= 01 increases the

length of the last block by 2, as

· · · | · · · 01010 · · ·︸ ︷︷ ︸
`n−1

| · · · 0101︸ ︷︷ ︸
`n

 · · · | · · · 01010 · · ·︸ ︷︷ ︸
`n−1

|

`n+2︷ ︸︸ ︷
· · · 0101︸ ︷︷ ︸

`n

01 .

So the block decomposition of (s1, . . . , sk, 2) is (`1, . . . , `n−1, `n + 2), which matches the
result of s(k+1).

Case sk+1 ≥ 3: then

s(k+1)
= (`̃1 − 2, . . . , ˜̀n)⊕ (1, {1}sk+1−3, 2)

= (`̃1 − 2, . . . , ˜̀n−1, ˜̀n ⊕ 1, {1}sk+1−3, 2)

= (`̃1 − 2, . . . , ˜̀n−1, `̃n + 1, {̃1}sk+1−3, 2̃).

This is because ⊕ 1 changes both the sign and the parity, so ˜̀n ⊕ 1= `̃n + 1.
Since the upper bound of integration is 1, appending the extra {0}sk+1−11= 0{0}sk+1−301

increases the length of the last block by 1, and adds new blocks as

· · · | · · · 01010 · · ·︸ ︷︷ ︸
`n−1

| · · · 0101︸ ︷︷ ︸
`n

 · · · | · · · 01010 · · ·︸ ︷︷ ︸
`n−1

|

`n+1︷ ︸︸ ︷
· · · 0101︸ ︷︷ ︸

`n

0 | { 0︸︷︷︸
1

|}
sk+1−3

| 01︸︷︷︸
2

.

So the block decomposition of (s1, . . . , sk, sk+1) is (`1, . . . , `n−1, `n + 1, {1}sk+1−3, 2),
which matches the result of s(k+1).

In each case the result matches, so by induction the block decomposition of s=
(s1, . . . , sk) and s(k), the last s(i) in Zhao’s construction, are related as claimed. 2

Given integers `1, . . . , `n , with `n > 1, we can form a block decomposition
(2 ◦ `1, . . . , `n) where

◦ =

{
‘+’ if n 6≡

∑
`i (mod 2),

‘,’ if n ≡
∑
`i (mod 2).

This corresponds to some MZV argument string s= (s1, . . . , sk), by the parity condition.
From the lemma we find that s(k) = (˜̀1, . . . , ˜̀n).

We now give a result which allows us to symmetrize the result of Zhao’s generalized 2–1
theorem.
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PROPOSITION 3.2. Let s= (s1, . . . , sn) be given, and assume Sn acts on the indices
1, . . . , n in the standard way. Then

∑
σ∈Sn

∑
p∈5(σ ·s)

2#pζ(p)=
∑

q={q1,...,qt }
∈Part(n)

2#q
( #q∏

i=1

#qi !

)
ζsym

(⊕
j∈q1

s j , . . . ,
⊕
j∈qt

s j

)
,

where ζsym(a1, . . . , at ) :=
∑
τ∈St

ζ(aτ(1), . . . , aτ(t)) symmetrizes the arguments of the
MZV.

That is, one can move the Sn action from s to the arguments of the zeta, at the expense of
some coefficients.

Proof. Firstly, observe that p ∈5(σ · s) means p = sσ(1) ◦ · · · ◦ sσ(n), where each ◦ is ‘,’
or ‘⊕’. But this is equivalent to p = σ · (s1 ◦ · · · ◦ sn), under the induced Sn action, and
(s1 ◦ · · · ◦ sn) ∈5(s1, . . . , sn). So we can write∑

σ∈Sn

∑
p∈5(s)

2#pζ(σ · p).

Warning: σ acts on the elements si inside p= (s1 ◦ · · · ◦ sn), and not on the comma-separated
blocks. So ζ(σ · p) is not simply ζsym(p). We need to do further manipulation to obtain the
desired form.

An element p ∈5(s) is of the form s1 ◦ · · · ◦ sn for some choices ◦ = ‘,’ or ‘⊕’. That is

p=
(
s1 ⊕ · · · ⊕ si1 , si1+1 ⊕ · · · ⊕ si2 , . . . , sit−1+1 ⊕ · · · ⊕ s it︸︷︷︸

=n

)
,

and

σ · p=
(
sσ(1) ⊕ · · · ⊕ sσ(i1), sσ(i1+1) ⊕ · · · ⊕ sσ(i2), . . . , sσ(it−1+1) ⊕ · · · ⊕ sσ(it )︸︷︷︸

it=n

)
.

We can therefore define a surjective map

φ : (5(p), Sn)→ Part∗(n),

(p, σ ) 7→ [{σ(1), . . . , σ (i1)}, {σ(i1 + 1), . . . , σ (i2)},

. . . , {σ(it−1 + 1), . . . , σ (it )}],

where i1, . . . , it are given by the expression for σ · p above. Here Part∗(n) is the set of
ordered partitions r= [r1, . . . , rk] of the set {1, . . . , n}, into subsets r1, r2, . . . , rk . The
order of the elements of the parts is not important, but the order of the parts themselves is.
That is [{a, b}, {c}] = [{b, a}, {c}], but these are different from [{c}, {a, b}].

If q= φ(p, σ )= [q1, . . . , qt ], then ζ(σ · p)= ζ(
⊕

j∈q1
s j , . . . ,

⊕
j∈qt

s j ), and
#q= #p. Notice that #φ−1(q)= #q1! · · · #qt !, since any permutation which respects the parts
of p maps to the same q. So we can write that the desired sum is

=

∑
q=[q1,...,qt ]
∈Part∗(n)

2#q
( #q∏

i=1

#qi !

)
ζ

(⊕
j∈q1

s j , . . . ,
⊕
j∈qt

s j

)
.
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Finally, we have a surjective map

ψ : Part∗(n)→ Part(n),

[q1, . . . , qt ] 7→ {q1, . . . , qt },

with ψ−1({q1, . . . , qt })= {[qσ(1), . . . , qσ(t)] | σ ∈ St }.
So the sum can be written

=

∑
q={q1,...,qt }
∈Part(n)

2#q#q1! · · · #qt !
∑
σ∈St

ζ

( ⊕
j∈qσ(1)

s j , . . . ,
⊕

j∈qσ(t)

s j

)
︸ ︷︷ ︸

=:ζsym

.

This completes the proof. 2

Using the symmetric sum formula [7] (or rather Zhao’s generalization to alternating
MZVs, a special case of which is stated in Lemma 5.1 of [9]), one can evaluate the right-
hand side above. This symmetric sum formula states that

ζsym(s1, . . . , sk)=
∑

b∈Part(k)

(−1)k−#b
#b∏

i=1

(#bi − 1)!
#b∏

i=1

ζ

(⊕
j∈bi

s j

)
.

We obtain the following.

PROPOSITION 3.3. The following evaluation holds:

∑
q∈Part(n)

2#q
( #q∏

i=1

#qi !

)
ζsym

(⊕
j∈q1

s j , . . . ,
⊕
j∈q#q

s j

)

=

∑
r∈Partodd(n)

2#r
#r∏

i=1

(#ri − 1)!
#r∏

i=1

ζ

(⊕
j∈ri

s j

)
.

Proof. Firstly, we must apply the symmetric sum formula to evaluate the left-hand side. It
gives

∑
q∈Part(n)

2#q
( #q∏

i=1

#qi !

) ∑
t∈Part(#q)

(−1)#q−#t
( #t∏

j=1

(#t j − 1)!
) #t∏

j=1

ζ

(⊕
α∈t j

⊕
β∈qα

sβ

)
.

As the parts qα are disjoint, the ζ argument⊕
α∈t j

⊕
β∈qα

sβ

can be written as ⊕
α∈r j

sα,

for some partition r ∈ Part(n). This partition is obtained from (q, t) by ‘flattening’ in the
following sense:

f (q, t) := r= {r1, . . . , r#t}, ri =
⋃
j∈ti

q j .
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(Recall that we have indexed the subsets in q in lexicographical order.) For example

f ({

q1︷ ︸︸ ︷
{1, 2, 4},

q2︷ ︸︸ ︷
{3, 5},

q3︷ ︸︸ ︷
{6, 8},

q4︷︸︸︷
{7} }, {

t1︷ ︸︸ ︷
{1, 3, 4},

t2︷︸︸︷
{2} })

= {q1 ∪ q3 ∪ q4, q2} = {{1, 2, 4, 6, 7, 8}, {3, 5}}.

So we may formally write the sum as∑
r∈Part(n)

∑
(q,t)∈ f −1(r)

2#q(−1)#q−#t
( #q∏

i=1

#qi !

)( #t∏
j=1

(#t j − 1)!
) #r∏

k=1

ζ

(⊕
α∈rk

sα

)
.

We thus need to evaluate the coefficient

cr :=
∑

(q,t)∈ f −1(r)

2#q(−1)#q−#t
( #q∏

i=1

#qi !

)( #t∏
j=1

(#t j − 1)!
)
.

We want to show two things: firstly that, if the partition r has any even size parts, then the
coefficient is 0. Secondly, if the partition only has odd size parts, the coefficient is as indicated
in the statement of the proposition.

We can describe f −1(r) more explicitly, as follows. The elements q which flatten to
r are obtained as q=

⋃#r
j=1 T j , where T j is any partition of r j . This choice of partitions

T1, . . . , T#r determines t, since r j =
⋃

T j . For example, if

r= {{1, 3, 4, 5, 7}, {2, 6, 8}},

then f −1(r) 3 (q, t), where

q=
⋃
{{1, 4 | 3 | 5, 7}︸ ︷︷ ︸

T1

, {2, 6 | 8}︸ ︷︷ ︸
T2

} = {{1, 4}, {2, 6}, {3}, {5, 7}, {8}},

t= {{1, 3, 4}, {2, 5}},

for the partitions T1 = 14 | 3 | 57 of r1 = {1, 3, 4, 5, 7} and T2 = 26 | 8 of r2 = {2, 6, 8}.
Under this construction we have

#t= #r, #ti = #Ti , #q=
#r∑

i=1

#Ti .

Moreover q j = Tk,` ∈ Tk for some k, `, so that

#q∏
j=1

#q j ! =

#r∏
k=1

#Tk∏
`=1

#Tk,`!.

Thus

cr = (−1)#r
∑

T1∈Part(#r1)

· · ·

∑
T#r∈Part(#r#r)

(−2)
∑

i #Ti ·

#r∏
k=1

#Tk∏
`=1

#Tk,`! ·

#r∏
j=1

(#T j − 1)!.

This sum can now be factored into a product of the form

cr = (−1)#r
#r∏

i=1

g(#ri ),
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where

g(i) :=
∑

w∈Part(i)

(−2)#w(#w− 1)! ·
#w∏
`=1

#w`!.

I claim that g can be evaluated as follows:

g(i)=

{
−2(i − 1)! if i odd,

0 if i even.

If this claim does hold, then

cr =

{
0 if some #ri even,

(−1)#r ∏#r
i=1(−2)(#ri − 1)! if all #ri odd,

=

{
0 if some #ri even,

2#r ∏#r
i=1(#ri − 1)! if all #ri odd.

So the proposition will follow. 2

For the proof to be complete, we need to show the following claim.

CLAIM 3.4. Let

g(n) :=
∑

w∈Part(n)

(−2)#w(#w− 1)! ·
#w∏
`=1

#w`!,

then

g(n)=

{
−2(n − 1)! if n odd,

0 if n even.

Proof. We show the generalized identity

1
n!

g(n, x)=−
1
n
+

1
n
(1+ x)n,

where

g(n, x) :=
∑

w∈Part(n)

x#w(#w− 1)! ·
#w∏
`=1

#w`!.

Hence for x =−2, we obtain

g(n,−2)=−(n − 1)! + (n − 1)!(−1)n =

{
−2(n − 1)! n odd,

0 n even,

as claimed.
To show the generalized identity, we can first show that the derivatives agree. Then

integrating gives
1
n!

g(n, x)= c +
1
n
(1+ x)n,

for some constant c. One sees that c =−1/n by setting x = 0; the left-hand side is 0 and the
right-hand side is c + 1/n, which proves the claim.
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To see the derivatives agree, we must show

1
n!

g′(n, x)= (1+ x)n−1,

equivalently,

g′(n, x)= n!(1+ x)n−1. (3)

Term-by-term differentiation of g(n, x) gives

g′(n, x)=
∑

w∈Part(n)

x#w−1#w! ·
#w∏
`=1

#w`!.

The coefficient of x i−1 on the right-hand side of equation (3) is

n!
(

n − 1
i − 1

)
.

The coefficient of x i−1 on the left-hand side is∑
w∈Part(n)

#w=i

#w!︸︷︷︸
i !

·

#w∏
`=1

w`!.

These two expressions give two different ways to count the number of ordered partitions of
[1, . . . , n] into i non-empty ordered parts, and hence are equal. Here an ordered partition
with ordered parts means that

[
[1, 2], [3]

]
,
[
[2, 1], [3]

]
,
[
[3], [1, 2]

]
and

[
[3], [2, 1]

]
are

all counted as distinct. In the following, we refer to such a partition as an ordered/ordered
partition.

We can form an ordered/ordered partition of [1, . . . , n] into i parts by first taking
any permutation of [1, . . . , n], then inserting i − 1 bars into any choice of the n − 1 gaps,
breaking the i non-empty parts, for example

[1, . . . , 8]
permute
−−−−−→ [4,

↑

5, 2, 3,
↑

7, 6,
↑

1, 8]

insert bars
−−−−−→

[
[4], [5, 2, 3], [7, 6], [1, 8]

]
.

There are n! permutations, and
(n−1

i−1

)
ways of choosing i − 1 positions from the n − 1 gaps.

This gives the right-hand side.
Alternatively, we can form an ordered/ordered partition of [1, . . . , n] by taking a

partition in Part(n) of {1, . . . , n} into i parts, then reordering the i parts arbitrarily, as well
as arbitrarily reordering the elements of each part. Every such ordered/ordered partition of
[1, . . . , n] arises in this way, for some unique w, as forgetting about both orderings gives a
surjection onto Part(n), for example

Part(8) 3 w= {{1, 8}, {2, 3, 5}, {4}, {6, 7}}

permute parts
−−−−−−−→
and elements

[
[4], [5, 2, 3], [7, 6], [1, 8]

]
.
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Let w ∈ Part(n) be a partition of {1, . . . , n} into i parts, with sizes of each part
#w1, . . . , #wi , respectively. Then there are i !

∏#w
`=1 #w`! such ordered/ordered partitions

arising from w. We must sum over all such w ∈ Part(n), giving

∑
w∈Part(n)

#w=i

i ! ·
#w∏
`=1

#w`!.

This is the left-hand side.
The coefficients of both sides agree, hence we get the required equality of derivatives,

and so the claim follows. 2

Finally, we can use these results to prove Theorem 1.5.

Proof of Theorem 1.5. Using Lemma 2.1 and Lemma 3.1 we have that∑
σ∈Sn

ζ ?(bl−1(2 ◦ `σ(1), . . . , `σ(n)))= ε(◦)
∑
σ∈Sn

∑
p∈5(σ ·(˜̀1,...,˜̀n))

2#pζ(p),

for ε(+) := −1 and ε(, ) := 1. This is because each ε(s) agrees with ε(◦), for the following
reason. If ◦ = ‘,’, then

bl−1(2, `σ(1), . . .)= 01 | 1 · · · .

This means the MZSV ζ ?(bl−1(2, `σ(1), . . .))= ζ ?(1, . . .) and ε(s)= 1 since s1 = 1.
Otherwise ◦ = ‘+’, and

bl−1(2+ `σ(1), . . .)= 0101 · · ·

since every `i > 1. This means the MZSV ζ ?(bl−1(2+ `σ(1), . . .))= ζ ?(2, . . .), and ε(s)=
−1 since s1 = 2.

Now interchange the summations, and write the result as a sum over odd-sized partitions
using Proposition 3.2 and Proposition 3.3:

= ε(◦)
∑

r∈Partodd(n)

2#r
#r∏

i=1

(#ri − 1)!
#r∏

i=1

ζ
(⊕

j∈ri

˜̀j

)
.

Since the size of each partition is odd, we can explicitly evaluate
⊕

j∈pi
˜̀j , and the

resulting ζ as follows.

Case #{`i | even} ≡ 0 (mod 2): then ⊕
j∈pi

˜̀j =
∑
j∈pi

` j ,

and this sum is odd. This is because the number of bars is additive (i.e. the sign is
multiplicative), and there are an even number of bars in total. So the ⊕ sum agrees with
the sum of the undecorated `i . Moreover, the total is odd since we sum an odd number of odd
numbers.

Overall, this means

ζ

(⊕
j∈pi

˜̀j

)
= ζ

(∑
j∈pi

` j

)
.



Cyclic insertion for multiple zeta star values 351

Case #{`i | even} ≡ 1 (mod 2): then ⊕
j∈pi

˜̀j =
∑
j∈pi

` j ,

and this sum is even. This is because there are an odd number of bars in total, so one remains
after doing the ⊕ sum. Consequently the ⊕ sum agrees with the bar of the undecorated sum.
Moreover, the total is even, since we add an even number of odd numbers.

This means

ζ

(⊕
j∈pi

˜̀j

)
= ζ

(∑
j∈pi

` j

)
.

We can now use Zlobin’s evaluation [10] of ζ ?({2}n)=−2ζ(2n) (which is also contained in
Zhao’s generalized 2–1 theorem) to write

ζ

(∑
j∈pi

` j

)
=−

1
2
ζ ?
(
{2}(1/2)

∑
j∈pi

` j
)
.

This is almost our definition of ζ̃ . I claim that the number of −1 signs between ε(◦) and all
the −ζ ?({2}n) is even. We may discard it to obtain an equivalent formula with our original
definition of ζ̃ .

Why is the total number of ‘−1’s even?

Case ◦ = ‘,’: here ε(,)= 1, since the MZSVs begin

ζ ?(bl−1(2, `σ(1), . . .))= ζ ?(01 | 10 · · · )= ζ ?(1, . . .).

I claim that the number of ‘even-sum’ parts is even, hence the total number of ‘−1’s is even
as claimed. In this case n ≡

∑
`i (mod 2), and we can check n odd or even separately.

Suppose n is odd, then
∑
`i is also odd. By counting the number n of `i , we see

p ∈ Partodd(`i ) has an odd number of parts. If an odd number of parts have even sum, we
would have

∑
`i even, a contradiction.

Similarly if n is even, then
∑
`i is also even. By counting the number n of `i , we see

p ∈ Partodd(`i ) has an even number of parts. If an odd number of parts have even sum, we
would again have

∑
`i odd, a contradiction.

Case ◦ = ‘+’: here ε(+)=−1, since all `i > 1, meaning the MZSVs begin

ζ ?(bl−1(2+ `σ(1), . . .))= ζ ?(0101 · · · )= ζ ?(2, . . .).

I claim that the number of ‘even-sum’ parts is odd, hence the total number of ‘−1’s is even
as claimed. In this case n 6≡

∑
`i (mod 2), so just check n odd or even separately.

Suppose n is odd, then
∑
`i is even. By counting the number n of `i , we see that

p ∈ Partodd(`i ) has an odd number of parts. If an even number of parts have even sum, we
would obtain

∑
`i odd.

Finally n is even, so
∑
`i is odd. By counting the number n of `i , we see that

p ∈ Partodd(`i ) has an even number of parts. If an even number of parts have even sum,
we would obtain

∑
`i even.

In all cases the overall number of ‘−1’s is even and we can drop the −1 from the
definition of ζ̃ , to obtain the required result. This completes the proof of Theorem 1.5. 2
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