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CAN THE BASIC FEATURES OF CLIMATE VARIABILITY BE SIMULATED 
WITH SIMPLE MODELS ? 

Theories and speculations on the nature of climate and 
climate variability cover a wide range, but there exists gen­
eral agreement that the climatic system represents a complex 
structure of coupled subsystems - generally divided broadly 
into the atmosphere, oceans, cryosphere and biosphere of 
which each component repre5ents a detailed discipline in its 
own right, and which interact across a wide spectrum of space 
and time scales in a complicated manner which ultimately deter­
mines the dynamics of the complete system [20J. 

If detailed models of the dynamics of each of the indivi­
dual subsystems of the climatic system existed, and the neces­
sary computing power were available, one could in principal try 
to simulate the dynamics of the complete climatic system by 
"brute force" by coupling the individual subsystems together in 
a comprehensive numerical model [21J, However, it is question­
able whether thill would be a useful exerci5e" One would have 
no guaranty that the unavoidable idealizations and simplifica­
tions introduced into the separate subsystems, even if verified 
for each of the subsystems individually, were still appropriate 
when the subsystems were subjected to different modes of 
response, involving different time and space scales, through 
their interactions with the rest of the system,- It can be ar­
gued that the main challenge of climate modeling should be seen 
rather in the opposite approach, in the attempt to identify the 
structure of the governing interactions within the climate sys­
tem and to express these in terms of rather simple climate 
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models. Once such a first order picture has been established, 
the models can be iterated and gradually developed, through 
more detailed comparisons with data, into more sophisticated 
models. 

It is of course not obvious that such an approach will 
succeed. Indeed, simple arguments will be presented in the 
following that the principal features of climate variability 
cannot be simulated by elementary climate models if the models 
are restricted to low order deterministic systems containing 
only a few degrees of freedom. However, it will be shown in 
the next section that more encouraging results are obtained if 
the class of models is extended to include stochastic forcing 
terms. 

1.0 

o 0.1 0.2 0.3 0.4 

Frequency (cycll plr lIIonth) 

Figure 2 Variance spectra of selected amplitudes of empirical 
orthogonal functions of sea surface temperatures anomalies: 
n is the function mode number (after Barnett and Davis, 
1975, [2]). 

Some general guidelines on the type of climate model re­
quired to simUlate climate variability may be derived from the 
statistical properties of observed climate fluctuations. Fig­
ures 1 3 show examples of the variance spectra of climatic 
fluctuations observed over two very different time ·scale 
ranges. The distributions may be regarded as representative of 
climatic variance spectra on all time scales. The characteris­
tic feature of all spectra is a continuous red distribution, 
increasing towards low frequencies according to some power 
law 
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E(w) = const. w-2 (I) 

where q typically lies in the range 

1 < q < 2 ( 2) 

The power law normally holds throughout the definition 
range of the spectrum, from the lowest resolution frequency 
(limited by the length of the record) up to the Nyquist cut-off 
frequency (limited by the sampling interval or the time resolu­
tion of the record). 

An exception are the paleoclimatic spectra of Figure 1, 
which are terminated on the low-frequency side by a peak at a 
period near 105 years. This peak has been the subject of vari­
ous speculations but has still not been conclusively explained. 
Also apparent in these spectra are weak peaks, barely statisti­
cally significant above the continuum, near periods of 2xl04 
years and 4xl0 4 years, which have been attributed to variations 
of the earth's orbit in accordance with Milankovitch's theory 
[19]. However, apart from these features, the dominant charac­
teristic of essentially all climatic time series, covering time 
scales from tens of thousands of years down to a few weeks, is 
the continuous red distribution of the variance spectrum 
without the occurrence of prominent peaks. 

It is an interesting observation that phenomena with simi­
lar statistical characteriatics (described by Press [3], as 
"flicker noise") are not limited to climatic fluctuations but 
are found widely in nature, Mandelbrot [4] mentions that 
Richardson discovered the same statistical properties for 
coastlines, and cites numerous other examples of one and higher 
dimensional configurations in nature which fall into the same 
statistical category. 

The common feature of these processes is that they are ba­
sically non-analytical, i.e.· the variances of the processes, or 
their derivations, if calculated formally by integrating over 
the spectrum from zero to infinite frequency, become infinite. 
ThUS, the power law distribution (1), (2). if extended out to 
zero and infinite frequency, represents a process yet) for 
which both the variance and the variance of the time derivation 
are infinite, 

<y2> = lim J F(w)dw (3) 
wL+O wL W 

«~~) 2> lim r w2F(w)dw (4) 
w ->00 

U 0 
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This elementary property immediately creates difficulties 
when one attempts to simulate climatic variability by simple 
deterministic models., Any set of coupled equations 

i 1, ... n ( 5) 

describing the evolution of a system y = (Y1' Yn) with a 
finite number of degrees of freedom n will necessarily yield 
finite variances for the individual components of the system 
and their derivatives (provided the system contains no solu­
tions which grow without bounds - a necessary condition anyway 
for the meaningful simulation of climate fluctuations). 
Although relatively low order nonlinear systems can be con­
structed which simulate fluctuations of a rather random appear­
ance [5], the variance spectra of these fluctuations are neces­
sarily concentrated in a finite band of frequencies and are 
therefore unable to reproduce the characteristic broad ban­
dedess of climatic spectra which is responsible for the simul­
taneous divergence of the integrals (3) and (4) when the lower 
and upper frequency limits wL and Wu approach zero and infini­
ty, respectively, 

It is possible to reproduce broad band variance spectra of 
the desired characteristics with numerical models in the limit 
as the number of degrees of freedom becomes very large. For 
example, general circulation models of the atmosphere contain­
ing 104_105 degrees of freedom generally reproduce reasonably 
realistic turbulence spectra exhibiting power law distribu­
tions, similar to the form (1), (2), These spectra generally 
extend from periods of several days to a short period cut-off 
of a few hours, The low frequency end of the spectrwn can be 
extended further by coupling the atmospheric general circula­
tion model to an ocean circulation and cryosphere model. How­
ever, this approach would defeat the main goal of climate 
modeling as defined here, namely to identify the basic 
processes which are responsible for the observed statistical 
properties of climate variability and to construct the simplest 
conceivable model which is able to reproduce the observed 
features. 

A more fruitful approach under these circumstances may be 
to seek as starting point a simple model which is characterized 
by a broad band variance spectrum. This leads naturally away 
from low-order deterministic models to stochastic models. We 
shall find that this approach yields a simpler and more per­
tinent description of the role of the atmosphere in generating 
climatic fluctuations than the application of high resolution 
atmospheric general circulation models. 
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ELEMENTARY STOCHASTIC MODELS OF CLIMATE VARIABILITY 

The conceptually simplest example of a broad band stochas­
tic process is stationary white noise xi(t). This is charac­
terized by a 6-function covariance function 

<xi(t+T)Xj(t» = Cij6(T) ( 6) 

« •. ,,> denotes ensemble expectation values) 
and a frequency independent covariance spectrum 

(7) 

where Cij = const. 

If an elementary low-order deterministic climate model of 
the form (3) is extended to include white-noise forcing, 

dY i 
~ = Fi(y) + xi (8) 

one obtains in general a process which is characterized by a 
broad band, red-noise variance spectrum of a form qualitatively 
similar to (1), (2), The non-analytic properties of the cli­
mate variability implicit in a spectrum of this form are intro­
duced directly through the non-analytical forcing function xi' 
The transformation from a white noise input Xi to a red noise 
response Yi is a consequence of the time integration involved 
in solving (8). The form of the y-covariance spectrwn depends 
in detail on the structure of the ~internal feedback function 
F(Z)' A number of rather simple feedback models have been in­
vestigated which were able to simUlate observed climate fluc­
tuations over various time scales reasonably well [6,7,8,9,10]. 
Some examples are given in Figures 3, 4 and 5. 

Despite the reasonable agreement 
basic questions arise in this modeling 

with observations, 
approach : 

(i) What is the origin of the white noise forcing 

two 

(ii) The simUlation of an observed variance spectrum by a model 
is clearly not a conclusive demonstration that the model 
is correct.. How can the model then be verified reliably 
against data 

The concept of white noise forcing is clearly an idealiza­
tion, It is generally used in physics as an asymptotic approx­
imation when the response of a system has a much larger charac­
teristic time scale than the characteristic time scales of the 
forcing" In this case the forcing functions may be approximat-
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Figure 3 Variance spectra of Arctic sea ice anomalies at three 
typical longitudes (curves represent first-order Markov 
models, cf. second section). 
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ed as a sequence of uncorrelated 6-functions. The response of 
an electronic system to the impulses of individual impacting 
electrons, or the Brownian motion of a large molecule bombarded 
by much smaller molecules, represent classical examples of this 
description. 

In the case of climatic fluctuations, such a time scale 
separation exists between the turbulent motions of the atmos­
phere, with correlation times typically of the order of a few 
days, and the remaining components of the climatic system, the 
oceans, cryosphere and biosphere, which are characterized by 
response time scales ranging from months to several thousand 
years. In terms of the slow climatic variations in this time 
scale range, the statistical forcing by the much shorter period 
atmospheric weather disturbances (in the form of varying fluxes 
of heat, moisture and momentum at the earth's surface) may 
therefore be represented simply as (temryorarily) uncorrelated 
white noise. The theory (and numerical simulation) of statist­
ical climate fluctuations can be greatly simplified through 
this approximation. 

The second problem, the verification that random forCing 
by atmospheric weather disturbances is indeed the principal 
cause of observed climate fluctuations (at least in some time 
scale ranges) is more difficult. We are faced here with the 
general problem of the construction and verification of sta­
tistical models from data, which we turn to in the following 
section. 

/ 
VALIDITY AND STATISTICAL SIGNIFICANCE OF MODELS 

The standard method of verifying a linear model is to com­
pare the theoretical and observed auto-spectra and cross spec­
tra (or covariance functions) of 'the input and output time 
series. The method provides a clear assessment of the skill of 
the model (i.e., the fraction of the output variance which can 
be expressed as a linear response to the input) and a compari­
son of the theoretical and observed transfer function relating 
the input and response. The method can be readily extended 
also to test nonlinear systems [11]. 

Although such techniques have been applied successfully to 
verify stochastic climate models in the short tiffie scale range 
[7,12], they are often inapplicable in climate variability stu­
dies because the input data is not accessible. For example, in 
testing stochastic models of global sea surface temperature 
variations during the last few decades, or Northern Hemisphere 
temperature variations over still longer periods, it is virtu­
ally impossible to reconstruct reliable time series of the glo-
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bal short-term weather variability postulated as the white­
noise forcing for these periods. 

In these cases one is able to test the validity of the 
model only by comparing the theoretical and observed statistics 
of the "slow" components Yi of the climatic system. The "ve­
rification" therefore reduces to the demonstration that, for a 
given postulated model (8), the cross spectra of the output 
time series Yi(t) can be adequately reproduced assuming a white 
noise input Xi characteriZed by a "reasonable" cross spectral 
coefficient matrix Cij (cf. eq. (7». Such a test is neverthe­
less nontrivial, since a complete set of functions Fij(w) 
depending on frequency must be simulated using only a set of 
constants Cij and a few model coefficients for tuning. 

Although the lack of input data makes it easier to fit a 
model to the remaining output data, it also makes it more dif~ 
ficult to satisfy the opposing requirement of statistical sig­
nificance of the model. Clearly, a model containing a number 
of adjustable parameters can always be tuned to reproduce a 
given finite set of observed data, provided the number of free 
parameters is chosen sufficiently large. However, the signifi­
cance of the model will then be small in the sense that some of 
the parameters or parameter combinations (and the physical 
processes which they represent) may be redundant, simpler 
models yielding equally acceptable simulations of the data 
within the errors of the data. An equivalent measure of the 
statistical significance of a model can be expressed in terms 
of the statistical errors of the model parameters. These arise 
in the present application through the (unavoidable) estimation 
errors of the cross spectra of the finite time series Yi(t) to 
which the model is fitted (as well as through possible addi­
tional measurement errors). In general, the model parameter 
errors increase as the number of parameters increase. Thus~the 

model in fact becomes less determined the more sophisticated 
the model and the better the apparent fit of the model to the 
data. 

Various techniques have been developed to determine the 
optimal number of parameters of a model to yield the most suit­
able compromise between the conflicting requirements of a good 
fit to the data (as expressed in terms of "skill", "consisten­
cy" or model "val:i.dity") and a sufficiently high level of sta­
tistical significance of the resulting best fit 'model 
[13,14,15,16]. 

The application of such statistical model fitting tech­
niques can be helpful not only in establishing the nature of 
certain kinds of climate variability, but also in determining 
the physical parameters describing interactions within the 
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climatic system. As example, Figure 6 shows the region of 
validity in the North Pacific of a simple, locally decoupled, 
fixed depth (copper plate) model of the mixed layer of the oce­
an [9]. In this model, heat exchange between the mixed layer 
and the atmosphere occurs only through local white noise forc­
ing and a negative feedback Newtonian cooling term proportional 
to the sea surface temperature anomaly. The model is seen to 
be valid in most of the interior of the North Pacific, but 
fails along the edges of the ocean and in the equatorial re­
gions, presumably due to the presence of strong advecting 
currents. The auto-spectra of sea surface temperature fluctua­
tions at individual locations were used as data base for the 
model test (as appropriate for a decoupled model). An analysis 
of the cross spectra of temperature fluctuations at different 
locations, however, shows that these cannot be adequately 
modeled by a decoupled model in most of the ocean and that the 
advection of sea surface temperature anomalies by currents 
should presumably be taken into consideration also in the inte­
rior ocean. 

Figure 7 shows the region of validity of an extended model 
based on these results including advection by currents and hor­
izontal diffusion [17]. In this case both auto spectra and 
cross spectra were used to validate the model. The empirically 
determined mixed layer currents obtained by a best fit to the 
data are shown in Figure 8. Reasonable agreement is found with 
standard current charts, determined largely from ship drift 
data (cf. Figure 9). Additional information which can be ex­
tracted from the model is the level and spatial correlation 
scale of the atmospheric white noise forcing and the effective 
diffusion coefficient characterizing the non-advective disper­
sion of sea surface temperature anomalies. Similar techniques 
have been applied to the study of sea ice anomalies [10]. 

In summary, it may be concluded that the construction and 
verification of stochastic climate models by statistical model 
fitting techniques is a useful tool not only for providing in­
sight into possible mechanisms of climate fluctuations, but 
also for determining internal interaction coefficients of the 
climate system which are often difficult to measure directly. 
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