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ABSTRACT

Methods of estimating the significance of optimal regression models selected from a model hierarchy
proposed by Barnett and Hasselmann (1979) are reexamined allowing for the multiple-candidate nature
of the selection criteria. It is found that the single-candidate models’ significance value previously used
can over- or underestimate the true multiple-candidate significance level of the selected model depend-
ing on the selection criteria used. A number of possible selection strategies to remove these problems
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are discussed and evaluated both theoretically and by Monte Carlo simulations.

1. Introduction

In a recent paper Barnett and Hasselmann (1979,
hereafter called BH) discussed methods for con-
structing linear-regression models that balanced the
competing requirements of skill and statistical sig-
nificance. The methods are designed to select an
optimum model from a model hierarchy of increas-
ing order. The selection decision was based on the
individual statistical significance of each member of
the hierarchy. However, the statistical significance
of the model actually selected will in general differ
from the individual significance value computed
for the model since the selection procedure repre-
sents a multivariate test of statistically dependent
candidate models, whereas the individual sig-
nificance values correspond to a single model test.
The actual significance level of the selected model
. can be greater or smaller than its single-model sig-
nificance measure depending on the selection cri-
teria used. This fact was ignored by BH and the
purpose of the present note is to elucidate the rela-
tion between the actual multicandidate significance
level of the selected model (hereafter referred to as
¢') and its single-model significance measure (c)
for a number of possible model selection criteria.

The significance of a set of estimated regression-
model coefficients (a;) is evaluated by BH with
respect to the null hypothesis of a true model with
zero coefficients (a? = 0). The covariance matrix
M = (8ada;) of the differences, 8a; = a; — af,
between the coefficients a; estimated from a finite
realization and the true model coefficients af is
assumed known (although in practice it must be esti-

mated). The distribution of errors 8a; is assumed
Gaussian.
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The appropriate test statistic characterizing the

significance of the model is given by

n

p: = Y M;i'da,da;. (1

i.J=1
The variable p? presents a x? variable with n de-
grees of freedom. p?is invariant with respect to linear
transformations, and rotation of (1) into a diagonal
form yields the sum of n squares. The model of
order n was therefore regarded as statistically sig-
nificant at confidence level ¢ if pZ exceeds the ap-
propriate critical value x2 .. We note that the statis-
tic p? represents the optimal quadratic form for test-
ing significance in the sense that it defines the
smallest volume in a; space for a given probability
volume. Also, the surfaces p* = constant represent
surfaces of constant probability density.

To arrive at a suitable balance between the com-
peting requirements of achieving both model skill
and significance, the significance test was applied by
BH not to a single model, but to a nested hierarchy
of models. The model selection criterion was pro-
posed in which the model with the largest order n
was chosen for which model n and all lower order
models (m) exceeded at prescribed confidence
level ¢: p% > x4 for 1=m<n, plu < Xitre-
This criterion, in general, is rather stringent and
requires particularly good a priori insight in choosing
the ordering of the lowest predictors. Theoretical
analysis and Monte Carlo tests show that the multi-
candidate significance level (c’) of the selected
highest-order model is normally considerably higher
than the single-model significance level (c¢) (cf.
Rule B below and Table 1).

In practice, however, BH tacitly relaxed the re-
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TABLE 1. Multi-candidate significance (¢') vs model order (N')
for a single-candidate significance of 0.90.

N’ ¢’

0.89987
0.94540
0.96507
0.97831
0.98328
0.98787
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straint p2 = x%,. for all 1 < m =< n and accepted
models in which the first few members of the
heirarchy failed to satisfy the significance criteria.
Theoretical analysis and Monte Carlo tests have
shown that this imprecise procedure generally yields
significance levels ¢’ that are smaller than ¢ and
- depend on the number of members in the hierarchy
that are allowed to fall below the critical x* value.
We are indebted to Russ Davis for pointing this
out to us.

2. Linear model hierarchies and optimal model-
selection criteria

BH first orthogonalized the predictors and then
ordered them with respect to variance. Next, all
predictors were discarded that could not be dis-
tinguished from white noise, using the method of
Preisendorfer and Barnett (1977) (see also Preisen-
dorfer et al., 1981). This yielded a maximum num-
ber of N predictors, z,, z,, . . . , zy, and hence
the maximum model order. The model hierarchy
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was defined as a set of N models constructed from
the first predictor, the first two predictors, . . . ,
all N predictors. This, or any other, means of con-
structing a model hierarchy is largely subjective,
but must be made a priori in order to carry out
meaningful significance tests.

The set of N values, pi, characterizing the
individual significance of each model of the hier-
archy was then calculated and formed the basis for
selecting the ‘‘optimal’’ model. The a priori selec-
tion criterion is again essentially arbitrary, re-
flecting the modelers’ individual choice of trade-
offs between significance and skill. However, once
the selection criterion is specified, the statistical
significance relative to the null hypothesis of a zero
prediction model (a? = 0) can be evaluated by
Monte Carlo simulations, or in special cases,
analytically. It is a straightforward matter to gen-
eralize the procedure to models which have
a? # 0 (cf. Preisendorfer, 1979). Examples where
this may be useful are given later. Some examples
of how the p? might evolve with respect to the

© X2 are shown in Fig. 1 and will be useful in a

later discussion.

In the Monte Carlo simulations to be discussed
below the covariance matrix was assumed to be
diagonalized so that the statistic p3 reduces to

n
2 2y —
Pn = Eam‘,

i=1

2

where the \; are eigenvalues of M ;. The members
of the p? set for a given data realization were then
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Fi1G. 1. Sample model paths in the space of multi-candidate model paths for
N = 10. Two x*curves for significance levels of ¢ and 4 also are shown. See

Section 3 for a discussion of this figure.
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TABLE 2. Single-candidate (c) versus multi-candidate (c') confidence levels for various model order (N).

Single Model order

candidate

confidence 1 2 3 4 5 6 7 g 9 ‘10
0.9000 0.90053 0.85490  0.82616  0.80298 0.78630 0.77143 0.75858 0.74719 0.73789 0.72947
0.9100 0.90961 0.86720  0.83874  0.81842 0.80324 0.78807 0.77638 0.76694 0.75765 0.74965
0.9200 0.92202 0.88342 0.85893 0.84003 0.82517 0.81332 0.80332 0.79418 0.78563 0.77805
0.9300 0.93013 0.89631 0.87333 0.85575 0.84262 0.83237 0.82250 0.81348 0.80583 0.79885
0.9400 0.94010  0.91054  0.89054 0.87570 0.86321 0.85305 0.84388 0.83596 0.82906 0.82244
0.9500 0.95064  0.92482 0.90838 0.89505 0.88454 0.87544 0.86827 0.86122 0.85491 0.84975
0.9600 0.96024  0.93939  0.92503 0.91384 0.90566 0.89802 0.89136 0.88572 0.88072 0.87571
0.9700 0.97100  0.95584  0.94472 0.93592 0.92873 0.92261 0.91746 0.91281 0.90879 0.90457
0.9750 0.97482 0.96151 0.95213 0.94464 0.93882 0.93362 0.92936 0.92511 0.92136 0.91831
0.9800 0.97997 0.96893 0.96096 0.95441 0.94902 0.94467 0.94099 0.93763 0.93482 0.93205
0.9850 0.98601 0.97686 0.97110 0.96655 0.96228 0.95868 0.95555 0.95285 0.95065 0.94884
0.9900 0.98993 0.98418  0.98013 0.97677 0.97410 0.97164 0.96931 0.96756 0.96605 0.96435
0.9950 0.99525 0.99240 0.99004  0.98809 0.98661 0.98849 0.98434 0.98327 0.98243 0.98144
0.9975 0.99761 0.99613 0.99494 0.99385 0.99295 0.99214 0.99151 0.99102 0.99055 0.99002
0.9999 0.99941 0.99842 0.99806 0.99768 0.99738 0.99700 0.99677 0.99664 0.99650 0.99628

obtained by drawing n independent normal random
numbers for each coefficient a;, squaring the co-

of the set. This potential problem is illustrated in
Fig. 1 by curve A. For the maximum model order
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efficients and summing. Because of the invarianceof N (= 10) the value of p? shown by the , is

p%: to linear transformation, the resulting sig-
nificance tables (e.g., Table 2) generated by the
Monte Carlo simulations apply generally for any
covariance matrix M;.

We ignore here complications arising from the
fact that the error-covariance matrix is not known
precisely but must also be estimated from the finite
data realization. The estimation uncertainties in the
A; are generally small, if N is small compared with
the effective number of independent data samples

. This was the case for the examples considered
by BH. More careful consideration is required
when N becomes of order N,.

The following selection criteria have been con-

“sidered. :

a. Rule A: Unordered predictor set

In this case the optimal model is taken as the
maximum-order model N. This approach considers
only the maximum number of predictors, paying no
attention to their ordering, and places substantial
importance on the objective rules used to de-
termine N. After filtering out predictors that can-
not be distinguished from white noise, one simply
constructs the model with the remaining predictors.
The significance of the selected model in this case
is identical to the significance measure inferred
from the single-model test statistic p%, i.e., ¢’ = c.

The inherent danger of using this technique is
that for large N the model will be normally insig-
nificant. However, lower-order significant models of
the hierarchy may have been constructed if a
physically plausible, a priori hypothesis had been
introduced to define the more important predictors

below x%,. and model would be rejected at the c
significance level. However, for 2 <sn < 35, p2 is
above x2 . indicating that a lower order model may
have been accepted. Methods for determining
this situation are given below (cf. Rule C).

b. Rule B: Sequential fixed-significance-level selec-
tion criterion

In this case the optimal model is defined as
the highest order model N’, satisfying p% = x%.c,
for all m in the interval 1 <= m < n; n =< N. This
corresponds to the stringent form of the selection
criterion proposed by BH and corresponds to curve
B in Fig. 1. For orthogonal errors da; the probabil-
ity of the null model satisfying this condition at the
order n or greater is given by

o€ e
Crzf J
b, Jb,

wa(ul)f(uz_) co
b

n

Ftn)dunditny -+ dus, ()
where
by =dy - ng u, by =d,, 4)
=1 .
and where
f(u) = YDA e ™, 5)

is the probability density of a x*-variate with one
degree of freedom.

For large n the computation of ¢’ according to
Eq. (3) becomes rather tedious and it is simpler to
determine by Monte Carlo simulations. Table 1
shows an example of the dependence ¢’ on ¢ and n.
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A selection criterion requiring p% = x2,. for all
m in the range 1 <m < n, n < N is appropriate
only if the modeler has high confidence in his order-
ing of predictors. In this sense, the criterion may
be regarded as the antithesis of Rule A, which is
appropriate if no ordering can be devised. In most
practical applications selection criteria intermediate
between these two limits will be most useful. Two
examples of such selection criteria are given below.

c. Rule C: Nonsequential fixed-significance-level
selection criterion

The optimal model is taken to be the highest-
order model n satisfying p2 = x3. in the range
I =<n=<N. This criterion corresponds approxi-
mately to that actually applied by BH. In this case
the model associated with curve A (Fig. 1) would
now be accepted as significant. The last p? value
that exceeds x2 occurs at n = 5 [point (b)] and so
the model order N’ = 5. Similarly, model C would
be accepted with order 9. Model D which never
exceeds the critical curve would be rejected.

The probability ¢’ of finding a significant model
for given single-candidate confidence level ¢ in a
hierarchy of N models is given by

b,
cf=1_J
0

The relation between ¢’ and the parameter ¢ and
N are shown in Table 2 and Fig. 2. For n = 4 the
Monte Carlo computations again prove more effi-
cient than the direct integration of (6). A compari-
son between the theoretical and Monte Carlo esti-

by
f fQuy) - fluy)duy - - - duy.  (6)
0
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Fic. 2. Single-candidate versus multi-candidate confidence
levels for various model orders (N). The solid line is from the
Monte Carlo simulation while the dotted line came from exact
analytical solutions of Eq. (6).
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TaBLE 3. Comparison of theoretical (Th) and Monte Carlo (MC)
estimates of multi-candidate confidence for regression models
up to order 3.

Model order
1 2 3
Con-
fidence MC Th MC Th MC Th
0.90 0.9005 0.9000 0.8549 0.8451 0.8262 0.8242
0.95 0.9506 0.9500 0.9248 0.9249 0.9084 0.9077
0.99 0.9899 0.9900 0.9842 0.9843 0.9801 0.9801

mates of ¢’ (Table 3) shows excellent agreement
for the two sets of calculations.

As noted earlier, the above test, like Rules A
and B and D below, can be generalized to include
models assumed to have a? # 0 and to be additively
perturbed by Gaussian noise. The subsequent
values of p? may new be compared against a non-
central x> distribution (cf. Preisendorfer, 1979)
and so the test procedure, evaluation of ¢’, etc.,
go through as above. Applications of these fea-
tures of the test might include the significance
testing of a given theoretical model against a data
set or in estimating the degree of similarity be-
tween two (theoretical) models competing to repre-
sent a given data base (cf. BH, Section 7).

d. Rule D: Maximal significance model

The optimal model in this case is defined as the
model that is associated with the highest single-
candidate significance level d as determined by the
equality p% = x%,. This situation is illustrated on
Fig. 1 by the point (a) on curve A. This choice
represents a tradeoff which emphasizes significance
relative to skill, whereas the previous choice (Rule C)
yields higher hindcast-skill models at smaller sig-
nificance levels, e.g., point (b), Fig. 1. However,
the relation between ¢’ and ¢ is the same for both
selection criteria. In both cases, for given fixed
single-candidate confidence level ¢, a given data
realization will yield an accepted model if at least
one of the set of variables p?, . . . , pN exceeds
its associated significance level x%., x3., . . .
X%..; the two selection criteria differing only in the
choice of model order. The differences in the
statistical distribution of optimal models selected by
the two criteria appear only if the two-dimensional
probability densities with respect to both ¢ and
selected model order n are considered.

e. Other possible rules

A number of further selection criteria inter-
mediate to the option for maximal single-candidate
significance or maximal skill for given single-
candidate significance can be obtained by consider-
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ing the incremental changes in significance asso-
ciated with the addition of individual predictors.
Here again it is important that the selection cri-
teria and the ordering of predictors be defined a
priori since an a posteriori screening of the full
set of N predictors automatically ensures that the
significance of the selected model is of the same
order as the significance of the full N-predictor
model (cf. Rule A). Provided the selection rules
require, as before, that at least one of the set of
variables p?, . . ., p} exceeds its associated
single-candidate significance value at a given con-
fidence level ¢’, then the same relations between
¢ and ¢’ apply as in Rules C and D.

3. Summary

The problem of estimating the significance and
order of linear regression models has been re-
examined. Several new significance tests are pro-
posed to replace those originally suggested by
Barnett and Hasselmann (1979) since the latter tests
either underestimated or overestimated model
significance. The newer tests and the tables needed
to apply. them, given here in detail, offer the po-
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tential user alternative approaches to the con-
struction of regression-model hierarchies.
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