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Abstract
In this paper we determine all Padovan numbers that are palindromic concatenations of two
distinct repdigits.
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1 Introduction

Let (Pn)n≥0 be the sequence of Padovan numbers, given by Pn+3 = Pn+1 + Pn , for n ≥ 0,
where P0 = 0 and P1 = P2 = 1. The first few terms of this sequence are

(Pn)n≥3 = {1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, . . .}.
A repdigit (in base 10) is a positive integer N that has only one distinct digit. That is, the
decimal expansion of N takes the form

N = d · · · d
︸ ︷︷ ︸

� times

= d

(

10� − 1

9

)

,
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for some positive integers d and � with 0 ≤ d ≤ 9 and � ≥ 1. This paper is a contribution to
the rather well studied topic of Diophantine properties of certain linear recurrence sequences.
More specifically, our paper is a variation on the theme focusing on representations of terms of
a recurrent sequence as concatenations of members of another (possibly the same) sequence.
For a general study of the results underpinning this topic, we direct the reader to the paper [2]
by Luca and Banks, wherein (as a consequence of their level of generality) some ineffective
(but finiteness) results were obtained on the number of terms of certain binary recurrent
sequences whose digital representation consists of members of the same sequence.
In Ref. [1], the authors considered Fibonnaci numbers which are concatenations of two
repdigits (in base 10) and showed that the largest such number is F14 = 377. Recently,
diophantine equations involving Padovan numbers and repdigits have also been studied. In
Ref. [12], the authors found all repdigits that can bewritten as a sum of two Padovan numbers.
This result was later extended to repdigits that are a sum of three Padovan numbers by the
second author in Ref. [8]. In Ref. [9], in the direction similar to the one in Ref. [1], the second
author considered all Padovan numbers that can be written as a concatenation of two distinct
repdigits and showed that the largest such number is P21 = 200. More specifically, it was
shown that if Pn is a solution of the Diophantine equation Pn = d1 · · · d1

︸ ︷︷ ︸

� times

d2 · · · d2
︸ ︷︷ ︸

m times

, times,

then

Pn ∈ {12, 16, 21, 28, 37, 49, 65, 86, 114, 200}.

Other related interesting results in this research direction include: the result of Bednařík and
Trojovská [3], the result of Boussayoud, et al. [4], the result of Bravo and Luca [5], the result
of the second author [7], the result of Erduvan and Keskin [11], the result of Rayaguru and
Panda [16], the results of Trojovský [17,18], and the result of Qu and Zeng [15]. A natural
continuation of the result in Ref. [9] would be a characterization of palindromic Padovan
numbers. As a first step in this direction, we (for the time being) consider the (more restrictive)
Diophantine equation

Pn = d1 · · · d1
︸ ︷︷ ︸

� times

d2 · · · d2
︸ ︷︷ ︸

m times

d1 · · · d1
︸ ︷︷ ︸

� times

,

where d1, d2 ∈ {0, 1, 2, . . . , 9}, d1 > 0. (1)

Our result is the following.

Theorem 1 The only Padovan numbers which are palindromic concatenations of two distinct
repdigits are

Pn ∈ {151, 616}.

2 Preliminary results

In this section we collect some facts about Padovan numbers and other preliminary lemmas
that are crucial to our main argument. This preamble to the main result is similar to the one
in Ref. [9] and is included here for the sake of completeness.
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2.1 Some properties of the Padovan numbers

Recall that the characteristic equation of the Padovan sequence is given by φ(x) := x3 −
x − 1 = 0, with roots α, β, and γ = β given by:

α = r1 + r2
6

and β = −(r1 + r2) + i
√
3(r1 − r2)

12
,

where

r1 = 3
√

108 + 12
√
69 and r2 = 3

√

108 − 12
√
69.

For all n ≥ 0, Binet’s formula for the Padovan sequence tells us that the nth Padovan number
is given by

Pn = aαn + bβn + cγ n, (2)

where

a = α + 1

(α − β)(α − γ )
, b = β + 1

(β − α)(β − γ )
, and c = γ + 1

(γ − α)(γ − β)
= b̄.

The minimal polynomial of a over Z is given by

23x3 − 5x − 1,

and its zeros are a, b, c as given above. One can check that |a|, |b|, |c| < 1. Numerically, we
have the following estimates for the quantities {α, β, γ, a, b, c}:

1.32 <α < 1.33,

0.86 < |β| =|γ | = α− 1
2 < 0.87,

0.54 <a < 0.55,

0.28 < |b| = |c| < 0.29.

(3)

It follows that the contribution to the right hand side of Eq. (2) due to the complex conjugate
roots β and γ is small. More specifically, let

e(n) := Pn − aαn = bβn + cγ n . Then, |e(n)| <
1

αn/2 for all n ≥ 1. (4)

The last inequality in (4) follows from the fact that |β| = |γ | = α− 1
2 and |b| = |c| < 0.29

(by (3)). That is, for any n ≥ 1,

|e(n)| = ∣

∣bβn + cγ n
∣

∣ ≤ |b||β|n + |c||γ |n = |b|α− n
2 + |c|α− n

2 < 2 · 0.29 · α− n
2 <

1

αn/2 .

Furthermore, the following estimate also holds:

Lemma 1 Let n ≥ 1 be a positive integer. Then

αn−3 ≤ Pn ≤ αn−1.

Lemma 1 follows from a simple inductive argument.
Let K := Q(α, β) be the splitting field of the polynomial φ over Q. Then [K : Q] = 6 and
[Q(α) : Q] = 3. We note that the Galois group of K/Q is given by

G := Gal(K/Q) ∼= {(1), (αβ), (αγ ), (βγ ), (αβγ )} ∼= S3.
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Therefore, we identify the automorphisms of G with the permutation group of the zeroes of
φ. We shall find particular use for the permutation (αβ), corresponding to the automorphism
σ : α �→ β, β �→ α, γ �→ γ .

2.2 Linear forms in logarithms

Likemany proofs of similar results, the crucial steps in our argument involve obtaining certain
bounds on linear forms in (nonzero) logarithms. The upper bounds usually follow easily from
a manipulation of the associated Binet’s formula for the sequence in question. For the lower
bounds, we need the celebrated Baker’s theorem on linear forms in logarithms. Before stating
the result, we need the definition of the (logarithmic) Weil height of an algebraic number.
Let η be an algebraic number of degree d with minimal polynomial

P(x) = a0

d
∏

j=1

(x − α j ),

where the leading coefficient a0 is positive and the α j ’s are the conjugates of α. The loga-
rithmic height of η is given by

h(η) := 1

d

⎛

⎝log a0 +
d

∑

j=1

log
(

max{|α j |, 1}
)

⎞

⎠ .

Note that, if η = p
q ∈ Q is a reduced rational number with q > 0, then the above definition

reduces to h(η) = logmax{|p|, q}.We list somewell known properties of the height function
below, which we shall subsequently use without reference:

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±1
2 ) ≤ h(η1) + h(η2),

h(ηs) = |s|h(η), (s ∈ Z).

We quote the version of Baker’s theorem proved by Bugeaud, Mignotte, and Siksek ([6],
Theorem 9.4).

Theorem 2 Let η1, . . . , ηt be positive real algebraic numbers in a real algebraic number
field K ⊂ R of degree D. Let b1, . . . , bt be nonzero integers such that

	 := η
b1
1 . . . η

bt
t − 1 
= 0.

Then

log |	| > −1.4 · 30t+3 · t4.5 · D2(1 + log D)(1 + log B)A1 . . . At ,

where

B ≥ max{|b1|, . . . , |bt |}
and

A j ≥ max{Dh(η j ), | log η j |, 0.16}, for all j = 1, . . . , t .
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2.3 Baker–Davenport reduction

The bounds on the variables obtained via Baker’s theorem are usually too large for any
computational purposes. In order to get further refinements, we use the Baker–Davenport
reduction procedure. The variant we apply here is the one due to Dujella and Pethö ([10],
Lemma 5a). For a real number r , we denote by ‖ r ‖ the quantity min{|r − n| : n ∈ Z},
which is the distance from r to the nearest integer.

Lemma 2 Let κ 
= 0, and A, B, μ be real numbers with A > 0 and B > 1. Let M > 1 be a
positive integer and suppose that p

q is a convergent of the continued fraction expansion of κ
with q > 6M. Let

ε :=‖ μq ‖ −M ‖ κq ‖ .

If ε > 0, then there is no solution of the inequality

0 < |mκ − n + μ| < AB−k

in positive integers m, n, k with

log(Aq/ε)

log B
≤ k and m ≤ M .

We will also need the following lemma by Gúzman Sánchez and Luca ([13], Lemma 7):

Lemma 3 Let r ≥ 1 and H > 0 be such that H > (4r2)r and H > L/(log L)r . Then

L < 2r H(log H)r .

3 Proof of themain result

3.1 The low range

With the help of a simple computer program in Mathematica, we checked all the solutions
to the Diophantine equation (1) in the ranges d1 
= d2 ∈ {0, 1, 2, . . . , 9}, d1 > 0 and
1 ≤ �,m ≤ n ≤ 1000. We found only the solutions stated in Theorem 1. Here onwards, we
assume that n > 1000.

3.2 The initial bound on n

We note that (1) can be rewritten as

Pn = d1 · · · d1
︸ ︷︷ ︸

� times

d2 · · · d2
︸ ︷︷ ︸

m times

d1 · · · d1
︸ ︷︷ ︸

� times

= d1 · · · d1
︸ ︷︷ ︸

� times

·10�+m + d2 · · · d2
︸ ︷︷ ︸

m times

·10� + d1 · · · d1
︸ ︷︷ ︸

� times

= 1

9

(

d1 · 102�+m − (d1 − d2) · 10�+m + (d1 − d2) · 10� − d1
)

. (5)

The next lemma relates the sizes of n and 2� + m.
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Lemma 4 All solutions of (5) satisfy

(2� + m) log 10 − 3 < n logα < (2� + m) log 10 + 1.

Proof Recall that αn−3 ≤ Pn ≤ αn−1. We note that

αn−3 ≤ Pn < 102�+m .

Taking the logarithm on both sides, we get

n logα < (2� + m) log 10 + 3 logα.

Hence, n logα < (2� + m) log 10 + 1. The lower bound follows via the same technique,
upon noting that 102�+m−1 < Pn ≤ αn−1. �
We proceed to examine (5) in three different steps as follows.
Step 1. From Eqs. (2) and (5), we have that

9(aαn + bβn + cγ n) = d1 · 102�+m − (d1 − d2) · 10�+m + (d1 − d2) · 10� − d1.

Hence,

9aαn − d1 · 102�+m = −9e(n) − (d1 − d2) · 10�+m + (d1 − d2) · 10� − d1.

We thus have that

|9aαn − d1 · 102�+m | = | − 9e(n) − (d1 − d2) · 10�+m + (d1 − d2) · 10� − d1|
≤ 9α−n/2 + 27 · 10�+m

< 28 · 10�+m,

where we used the fact that n > 1000. Dividing both sides by d1 · 102�+m , we get
∣

∣

∣

∣

(

9a

d1

)

· αn · 10−2�−m − 1

∣

∣

∣

∣
<

28 · 10m+�

d1 · 102�+m
≤ 28

10�
. (6)

We put

	1 :=
(

9a

d1

)

· αn · 10−2�−m − 1.

We shall compare this upper bound on |	1|with the lower bound we deduce from Theorem 2.

Note that	1 
= 0, since thiswould imply thataαn = d1·102�+m

9 . If this is the case, then applying
the automorphism σ on both sides of the preceeding equation and taking absolute values, we
have that

∣

∣

∣

∣

d1 · 102�+m

9

∣

∣

∣

∣
= |σ(aαn)| = |bβn | < 1,

which is false. We thus have that 	1 
= 0.
With a view towards applying Theorem 2, we define the following parameters:

η1 := 9a

d1
, η2 := α, η3 := 10, b1 := 1, b2 := n, b3 := −2� − m, t := 3.

Since 102�+m−1 < Pn ≤ αn−1, we have that 2� + m < n. Thus we take B = n. We note
that K = Q(η1, η2, η3) = Q(α), since a = α(α + 1)/(2α + 3). Hence D = [K : Q] = 3.
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We note that

h(η1) = h

(

9a

d1

)

≤ 2h(9) + h(a) ≤ 2 log 9 + 1

3
log 23 < 5.44.

We also have that h(η2) = h(α) = 1
3 logα and h(η3) = log 10. Hence, we let

A1 := 16.32, A2 := logα, A3 := 3 log 10.

Thus, we deduce via Theorem 2 that

log |	| > −1.4 · 30634.532(1 + log 3)(1 + log n)(16.32)(logα)(3 log 10)

> −1.45 · 1030(1 + log n).

Comparing the last inequality obtained above with (6), we get

� log 10 − log 28 < 1.45 · 1030(1 + log n),

and therefore,

� log 10 < 1.46 · 1030(1 + log n). (7)

Step 2. We rewrite Eq. (5) as

9aαn − d1 · 102�+m + (d1 − d2) · 10m+� = −9e(n) + (d1 − d2) · 10� − d1.

That is,

9aαn − (d1 · 10� − (d1 − d2)) · 10m+� = −9e(n) + (d1 − d2) · 10� − d1.

Hence,

|9aαn − (d1 · 10� − (d1 − d2)) · 10m+�| = | − 9e(n) + (d1 − d2) · 10� − d1|
≤ 9

αn/2 + 18 · 10� < 19 · 10�.

Dividing throughout by (d1 · 10� − (d1 − d2)) · 10m+�, we have that
∣

∣

∣

∣

(

9a

d1 · 10� − (d1 − d2)

)

· αn · 10−�−m − 1

∣

∣

∣

∣
<

19 · 10�

(d1 · 10� − (d1 − d2)) · 10m+�
<

19

10m
.

(8)

We put

	2 :=
(

9a

d1 · 10� − (d1 − d2)

)

· αn · 10−�−m − 1.

As before, we have that 	2 
= 0 because this would imply that

aαn = 10m+�

(

d1 · 10� − (d1 − d2)

9

)

,

which in turn implies that
∣

∣

∣

∣
10m+�

(

d1 · 10� − (d1 − d2)

9

)∣

∣

∣

∣
= |σ(aαn)| = |bβn | < 1,
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which is false. In preparation towards applying Theorem 2, we define the following param-
eters:

η1 := 9a

d1 · 10� − (d1 − d2)
, η2 := α, η3 := 10, b1 := 1, b2 := n, b3 := −� − m, t := 3.

In order to determine what A1 will be, we need to find the find the maximum of the quantities
h(η1) and | log η1|.
We note that

h(η1) = h

(

9a

d1 · 10� − (d1 − d2)

)

≤ h(9) + h(a) + �h(10) + h(d1) + h(d1 − d2) + log 2

≤ 3 log 9 + h(a) + � log 10

< 3 log 9 + 1

3
log 23 + 1.46 · 1030(1 + log n)

< 1.48 · 1030(1 + log n),

where in the second last inequality above, we used (7). On the other hand, we also have that

| log η1| =
∣

∣

∣

∣
log

(

9a

d1 · 10� − (d1 − d2)

)∣

∣

∣

∣

≤ log a + log 9 + | log(d1 · 10� − (d1 − d2))|
≤ log a + log 9 + log(d1 · 10�) +

∣

∣

∣

∣
log

(

1 − d1 − d2
d1 · 10�

)∣

∣

∣

∣

≤ � log 10 + log d1 + log 9 + log(0.55) +
∣

∣

∣

∣

∣

|d1 − d2|
d1 · 10�

+ 1

2

( |d1 − d2|
d1 · 10�

)2

+ · · ·
∣

∣

∣

∣

∣

≤ � log 10 + 3 log 9 + 1

10�
+ 1

2 · 102� + · · ·

≤ 1.46 · 1030(1 + log n) + 3 log 9 + 1

10� − 1

< 1.48 · 1030(1 + log n),

where in the second last inequality, we used Eq. (7). We note that Dh(η1) > | log η1|.
We thus let A1 := 4.44 ·1030(1+ log n). We take A2 := logα and A3 := 3 log 10, as defined
in Step 1. Similarly, we take B := n.
Theorem 2 then tells us that

log |	2| > −1.4 · 306 · 34.5 · 32 · (1 + log 3)(1 + log n)(logα)(3 log 10)A1

> −2 · 1013(1 + log n)A1 > −8.88 · 1043(1 + log n)2.

Comparing the last inequality with (8), we have that

m log 10 < 8.88 · 1043(1 + log n)2 + log 19

< 9 · 1043(1 + log n)2. (9)

Step 3. We rewrite Eq. (5) as

9aαn − d1 · 102�+m + (d1 − d2) · 10m+� − (d1 − d2) · 10� = −9e(n) − d1.
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Therefore,
∣

∣

∣9aαn − (d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2)) · 10�
∣

∣

∣ = | − 9e(n) − d1|

≤ 9

αn/2 + 9 < 10.

Consequently,
∣

∣

∣

∣

(

1

9a

)

(d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2)) · α−n · 10� − 1

∣

∣

∣

∣
<

10

9aαn
<

3

αn
.

(10)

Let

	3 :=
[(

1

9a

)

(d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2))

]

· α−n · 10� − 1.

As before, we have that 	3 
= 0 since we would have that

aαn = 1

9

(

d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2)
)

· 10�.

Applying the automorphism σ from the Galois group G on both sides of the above equation
and then taking absolute values, we have that

∣

∣

∣

∣

1

9

(

d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2)
)

· 10�

∣

∣

∣

∣
= |σ (

aαn) | = |bβn | < 1,

which is false. We would now like to apply Theorem 2 to 	3. To this end, we let:

η1 :=
[(

1

9a

)
(

d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2)
)
]

, η2 := α, η3 := 10,

b1 := 1, b2 := −n, b3 := �, t := 3.

As in the previous cases, we can take B := n and D := 3. We note that

h(η1) ≤ h(9) + h(a) + h(d1) + (� + m)h(10) + h(d1 − d2)

+ mh(10) + h(d1 − d2) + 3 log 2

≤ 5 log 9 + log 23

3
+ (� + m) log 10 + m log 10

≤ 6 log 9 + (� + m) log 10 + m log 10.

Using Eqs. (7) and (9), we have that

(� + m) log 10 < 1.46 · 1030(1 + log n) + 9 · 1043(1 + log n)2

< 10 · 1043(1 + log n)2. (11)

Thus, we deduce that

h(η1) < 20 · 1043(1 + log n)2.

123
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We now find an upper bound for | log η1|. We have that

| log η1| =
∣

∣

∣

∣
log

((

1

9a

)
(

d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2)
)
)∣

∣

∣

∣

≤ log 9 + log a + | log(d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2))|
≤ 2 log 9 + log(d1 · 10�+m) +

∣

∣

∣

∣
log

(

1 − (d1 − d2)(10m − 1)

d1 · 10�+m

)∣

∣

∣

∣

≤ 3 log 9 + (� + m) log 10 +
∣

∣

∣

∣
log

(

1 − (d1 − d2)(10m − 1)

d1 · 10�+m

)∣

∣

∣

∣

≤ 3 log 9 + (� + m) log 10

+
∣

∣

∣

∣

∣

|(d1 − d2)(10m − 1)|
d1 · 10�+m

+ 1

2

( |(d1 − d2)(10m − 1)|
d1 · 10�+m

)2

+ · · ·
∣

∣

∣

∣

∣

≤ 3 log 9 + (� + m) log 10 + 1

10�
+ 1

2 · 102� + · · ·

< 3 log 9 + (� + m) log 10 + 1

10� − 1

< 1.1 · 1044(1 + log n)2,

where in the last inequality above, we used the bound from (11). We note that D · h(η1) >

| log η1|. We thus let A1 := 6 · 1044(1 + log n)2, A2 := logα and 3 log 10. Theorem 2 then
implies that

log |	3| > −2 · 1013(1 + log n)A1 > −1.2 · 1058(1 + log n)3.

Comparing the last inequality with (10), we deduce that

n logα < 1.2 · 1058(1 + log n)3 + log 3.

It follows that

n < 5 · 1058(log n)3.

With the notation of Lemma 3, we let r := 3, L := n, and H := 5 · 1058 and notice that this
data meets the conditions of the lemma. Applying the lemma, we have that

n < 23 · 5 · 1058(log(5 · 1058))3.
After a simplification, we obtain the (rather loose) bound

n < 1.04 · 1066.
Lemma 4 then implies that

2� + m < 1.4 · 1065.
The following lemma summarizes what we have proved thus far:

Lemma 5 All solutions to the Diophantine equation (1) satisfy

2� + m < 1.4 · 1065 and n < 1.04 · 1066.
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3.3 The reduction procedure

The bounds obtained in Lemma 5 are too large to be useful computationally. Thus, we need
to reduce them. To do so, we apply Lemma 2 as follows. First, we return to the inequality
(6) and put

z1 := (2� + m) log 10 − n logα + log

(

d1
9a

)

.

The inequality (6) can be rewritten as

|	1| = ∣

∣e−z1 − 1
∣

∣ <
28

10�
.

If we assume that � ≥ 2, then the right–hand side of the above inequality is at most 28/100 <

1/2. The inequality |ez − 1| < x for real values of x and z implies that z < 2x . Thus,

|z1| <
56

10�
.

This implies that
∣

∣

∣

∣
(2� + m) log 10 − n logα − log

(

9a

d1

)∣

∣

∣

∣
<

56

10�
.

Dividing through the above inequality by logα gives
∣

∣

∣

∣
(2� + m)

log 10

logα
− n +

(

log(d1/9a)

logα

)∣

∣

∣

∣
<

56

10� logα
.

So, we apply Lemma 2 with the quantities:

κ := log 10

logα
, μ(d1) := log(d1/9a)

logα
, 1 ≤ d1 ≤ 9, A := 56

logα
, B := 10.

Let κ = [a0; a1, a2, . . .] = [8; 5, 3, 3, 1, 5, 1, 8, 4, 6, 1, 4, 1, 1, 1, 9, 1, 4, 4, 9, 1, 5, . . .] be
the continued fraction expansion of κ .We setM := 1066 which is the upper bound on 2�+m.
With the help of Mathematica, we find that the convergent

p

q
= p141

q141
= 92894276795199235673676174009251522651329656614011503595729035741839

11344567100398997770258435239827426964781308977543724537727298754290
,

is such that q = q141 > 6M . Furthermore, it gives ε > 0.0716554, and thus,

� ≤ log((56/ logα)q/ε)

log 10
< 70.

Therefore, we have that � ≤ 70. The case � < 2 also holds because � < 2 < 70.
Next, for fixed d1 
= d2 ∈ {0, 1, 2, . . . , 9}, d1 > 0 and 1 ≤ � ≤ 70, we return to the
inequality (8) and put

z2 := (� + m) log 10 − n logα + log

(

d1 · 10� − (d1 − d2)

9a

)

.

From the inequality (8), we have that

|	2| = ∣

∣e−z2 − 1
∣

∣ <
19

10m
.
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Assume thatm ≥ 2, then the right–hand side of the above inequality is atmost 19/100 < 1/2.
Thus, we have that

|z2| <
38

10m
,

which implies that
∣

∣

∣

∣
(� + m) log 10 − n logα + log

(

d1 · 10� − (d1 − d2)

9a

)∣

∣

∣

∣
<

38

10m
.

Dividing through by logα gives
∣

∣

∣

∣

∣

(� + m)
log 10

logα
− n + log

(

(d1 · 10� − (d1 − d2))/9a
)

logα

∣

∣

∣

∣

∣

<
38

10m logα
.

Thus, we apply Lemma 2 with the quantities:

μ(d1, d2) := log
(

(d1 · 10� − (d1 − d2))/9a
)

logα
, A := 38

logα
, B := 10.

We take the same κ and its convergent p/q = p141/q141 as before. Since � + m < 2� + m,
we set M := 1066 as the upper bound on �+m. With the help of a simple computer program
in Mathematica, we get that ε > 0.0000918806, and therefore,

m ≤ log((38/ logα)q/ε)

log 10
< 73.

Thus, we have that m ≤ 73. The case m < 2 holds as well since m < 2 < 73.
Lastly, for fixed d1 
= d2 ∈ {0, 1, 2, . . . , 9}, d1 > 0, 1 ≤ � ≤ 69 and 1 ≤ m ≤ 73, we return
to the inequality (10) and put

z3 := � log 10 − n logα + log

(

d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2)

9a

)

.

From the inequality (10), we have that

|	3| = ∣

∣ez3 − 1
∣

∣ <
3

αn
.

Since n > 1000, the right–hand side of the above inequality is less than 1/2. Thus, the above
inequality implies that

|z3| <
6

αn
,

which leads to
∣

∣

∣

∣
� log 10 − n logα + log

(

d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2)

9a

)∣

∣

∣

∣
<

6

αn
.

Dividing through by logα gives,
∣

∣

∣

∣

∣

�
log 10

logα
− n + log

(

(d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2))/9a
)

logα

∣

∣

∣

∣

∣

<
6

αn logα
.
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Again, we apply Lemma 2 with the quantities:

μ(d1, d2) :=
log

(

(d1 · 10�+m + (d1 − d2) · 10m − (d1 − d2))/9a
)

logα
, A := 6

logα
, B := α.

We take the same κ and its convergent p/q = p141/q141 as before. Since � < 2� + m, we
choose M := 1066 as the upper bound for �. With the help of a simple computer program in
Mathematica, we get that ε > 0.00000594012, and thus,

n ≤ log((6/ logα)q/ε)

logα
< 602.

Thus, we have shown that n ≤ 602, contradicting our assumption that n > 1000. Therefore,
Theorem 1 holds. �
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