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ABSTRACT The link prediction problem in the network concerns to predict the existence of links between
node pairs, which is a research hotspot in different scenarios with network applications. Methods of
predicting links based on network topology and structures provide a number of measurements to reveal
the underlying relationship between two nodes. In this paper, a motif-based similarity index for link
prediction is proposed to calculate the similarity score of two nodes concerning their local environment,
which takes advantage of existing similarity definitions and the motifs. This motif-based similarity can
be generalized to more complicated cases by considering different motifs and keeps the same level of
computational complexity with the existing indexes. Experimental results on 9 public benchmark datasets
and 1 randomly generated dataset show the effectiveness of our proposed index, and accuracies on several
datasets are significantly improved. The performance of motif-based similarity suggests that considering
typical motifs on networks could improve the precisions of link prediction tasks, and exploring specific
structure characteristics on networks will point out an important and effective direction for more research

with network methods applied.

INDEX TERMS Link prediction, similarity score, motif, high-order structure.

I. INTRODUCTION

Many social, biological and other systems could be described
by complex networks. The nodes in the networks repre-
sent the individuals in the systems, and the edges represent
the relationships between individuals. In recent years, com-
plex networks have provided a number of effective methods
to describe and analyze complex systems and are widely
researched. Various behaviors on network are described and
predicted on the basis of known network structural char-
acteristics, and one of the most important problems is the
link prediction problem, which has attracted more and more
attention recently. The link prediction problem in the network
refers to how to predict the possible existence of a link
between two unconnected nodes through known information
such as existing network nodes and structures [1]. The link
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prediction problem includes both the prediction of unknown
links and the prediction of future links. This problem has
important meaning and significant values in both aspects of
methodology and application.

Recently link prediction methods based on the network
structure have received a lot of attention. Compared with
the attribute information of nodes which requires extra data,
the network structure information is easier to obtain and
requires less extra effort to gather and collect. At the same
time, this type of method has universal applicability to net-
works with similar structures, thereby avoiding the huge
needs for computing cost in obtaining specific parameter
combinations for different networks. Based on the character-
istics of network structure, many similarity-defined methods
based on network topological features have emerged, and
the abilities of these indexes in predicting links in various
scenarios like social cooperation networks have been ana-
lyzed [2]. Another type of link prediction method is based
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on maximum likelihood estimation of the network structure.
This method uses the hierarchical structure of the network
for link prediction, and performs well on networks with clear
hierarchical structure [3]. Existing similarity definitions such
as Common Neighbor [4], Jaccard [5], Adamic-Adar [6],
Preferential Attachment [7] and Cannistrai-Alanis-Ravai [8]
take advantage of the local connection environments to mea-
sure the correlations of two nodes, and another index Clus-
tering Coefficient for Link Prediction [9] uses the clustering
coefficient to fulfill the link predictions. As a widely used
graph learning method, Node2vec (n2v) provides another
way to understand the structure and correlation among
nodes in a global viewpoint [10]. These methods embody
the local and global connection types, and have achieved
good performance on the prediction tasks of some network
datasets.

As an important network structure concept, motif is well
studied in many scenarios of network science [11]. Motif
can be viewed as basic/frequent building blocks of networks
and can be treated as the molecules composing the complex
systems. Generally, typical motifs could work as elemental
components and are able to determine some global charac-
teristics of large networks. Attentions on specific motifs and
organizations promote deeper research and understanding of
network-related tasks. Particularly, the classical clustering
efficient is also a calculation related to 3-motifs (aiming at
the triangle structure).

In this paper, inspired by the existing similarity measure-
ments and the motif structures, a new similarity definition
based on motifs will be proposed to calculate the correlations
of target node pairs, and it is a more comprehensive index
that can have more compatible applications by considering
different motif types. Experiments on some real network data
and randomly generalized one will be conducted to show the
performance of our proposed similarity index. Our contribu-
tions are three-fold:

o The relationship of the existing similarities for link pre-
diction with motifs is discussed, which provides a new
angle to view the link prediction tasks by considering
network structures.

o A motif-based similarity definition for link prediction is
proposed to measure the correlations of targeted node
pairs, and this definition can be generalized to more
complicated cases by considering different motifs.

« Experimental results on public benchmark datasets and
randomly generated dataset validate the effectiveness of
our motif-based similarity, and the accuracy on some
datasets shows significant improvement.

The remainder of this paper is organized as follows.
Section II summarizes the related work on link prediction
problems and motif studies. Section III introduces the back-
grounds, definitions and some properties of our proposed
similarity score. Section IV describes the experiments, a com-
parison with existing indexes, and analysis of the perfor-
mance of our index. Finally, we conclude the paper and
propose some future work in Section V.
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Il. RELATED WORK

This paper will focus on the link prediction problem and
build a similarity measurement based on the network motif
structure, and the related work of these two aspects will be
reviewed in this section.

A. LINK PREDICTION RELATED

As aresearch area with extremely high theoretical and empir-
ical values, link prediction has long attracted the attention of
academia and industry. The ideas and methods are mainly
based on Markov chain and machine learning. Sarukkai
applied Markov chain to network link prediction and path
analysis [12]. Popescul and Ungar proposed a regression
model to predict the citation relationship of scientific litera-
tures in the literature citation network [13]. Lin defined the
similarity between nodes based on nodes attributes, which
could be directly used for link prediction [14]. Although the
application of external information such as node attributes
can indeed obtain good prediction results, it is very diffi-
cult or even impossible to obtain this information in many
cases. Furthermore, even if accurate information about node
attributes could be obtained, identifying useful and useless
information for network link prediction and which informa-
tion is still a problem.

Among the many proposed methods, similarity-based
approaches appear to be particularly vibrant, with new ideas
and indicators keeping emerging and taking into account
various features. Inspired by cosine similarity, G. Salton
and M. McGill defined Salton Index to illustrate the link
probability [15]. Ravasz et al. introduced Hub Promoted
Index and Hub Depressed Index to acquire the promotion
in link formation for two situations: links between hubs and
high-degree nodes and links between hubs and low-degree
nodes respectively [16]. Leicht et al. proposed Local Leicht-
Holme-Newman index to define the similarity between a pair
of nodes related to the amount of neighbors they share [17].
Zhou et al. defined Resources Allocation in 2009 based on
the resource allocation process [18]. Most of these existing
methods are based on the local information of graphs, which
is relatively easier to collect but may not be effective in some
cases, due to their limited representation abilities on graphs’
local characteristics. Therefore, it is supposed to improve the
accuracy of link prediction greatly if having a more through-
out understanding of the graph.

Deep learning related work also acts as an important role in
the link prediction problem, which always uses more global
information of the targeted network data. The deep learning
model E-LSTM-D for predicting end-to-end dynamic links
can not only deal with long-term prediction problems, but
also be suitable for networks of different scales [19]. The
weighted link prediction model using learning automata strat-
egy predicts the occurrence of each link according to the
weight information of the current network [20]. Multi-level
graph neural network based on the original method uses
the multi-layer perceptron strategy to model the hierarchi-
cal structure and introduces the attention mechanism, which
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can accurately predict on the noisy knowledge graph [21].
A series of stacking models are constructed by using the
diversity, and the prediction factors are combined into a
single algorithm and applied to the real world integrated
network, which can achieve almost optimal prediction [22].
With the development of deep learning, future research
should focus on learning appropriate heuristics for a given
network, rather than using predefined heuristics [23]. The
characteristics of interpretability, simplicity and scalability
make link prediction widely used in practice. Node2vec is
an algorithm for learning the continuous feature represen-
tation of nodes in a network, that is, learning the mapping
from a node to a low dimensional feature space, and keep-
ing the network neighborhood of nodes to the maximum
extent [10], [24].

B. MOTIF STUDY RELATED

Motifs are simple building blocks of complex networks,
which were first proposed by Milo et al. [11]. More formally,
motifs are defined as patterns of interconnections, whose
frequencies of occurring in real-world complex networks are
significantly higher than those in random networks with same
scales. Later Milo et al. have found crucial motifs structure
in networks from biochemistry [25], [26], neurobiology [27],
ecology [28], and engineering [7] fields.

One of the most important aspect of motifs is that they pro-
vide a new solution for defining universal classes of networks
from the perspective of topological structure levels [11]. For
example, motifs in the electronic sequential logic circuit net-
works analyzed from ISCAS89 benchmark set [29] are found
to be exactly the same as those in the synaptic connection
network among neurons in C. Elegans [27]. On the other
hand, the motifs in the synaptic connection network respond-
ing to information transmission are different from those in the
ecological food networks [28] that respond to energy trans-
mission, which seems to indicate that information flow and
energy flow have significantly different patterns and features.
In particular (see Figure 1), three motifs in subfigure (1), (2),
and (3) appear frequently in the electronic sequential logic
circuit networks and synaptic connection network, while the
motifs in subfigure (3) and (4) appear frequently in the eco-
logical food networks.

In addition, we can capture key structure information by
analyzing specific motifs, which is difficult to get through
the single edges in networks. For example, using motifs to
bring high-order local structures into the graph neural net-
work (GNN) can enhance the capability of the GNN model
compared to edge-based models and improve the perfor-
mance of downstream tasks [30]. Benson et al. proposed that
important hub cities can be found in the airport networks
by using specific motifs rather than edges [31]. Zhao et al.
proposed to merge high-level relationships into regular
PageRank algorithm [32], which can significantly improve
the performance of user ranking in social networks [33]. The
motif is a highly active research topic and a lot more research
combining real-world data could be expected in the future.
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FIGURE 1. Motifs for undirected graph. (1) is a 2-motif, (2)-(3) are
3-motifs, and (4-9) are 4-motifs.

lll. METHODS

In this section, a comparative analysis of the existing simi-
larity measurements for link prediction is performed, and a
new similarity index based on the high-order structure, in our
case motifs, will be proposed to investigate the possibility of
connecting two nodes on a given graph.

A. ANALYSIS OF EXISTING SIMILARITIES

Similarity indexes play an important role in predicting links
and evaluating the possibility of adding new edges by setting
scores for node pairs on a graph. Many similarity indexes
are proposed to measure the score for each node pair, such
as Common Neighbor (CN), Jaccard (JC), Resource Alloca-
tion (RA), Preferential Attachment (PA), Cannistrai-Alanis-
Ravai (CAR):

CN(x.y) = IN(®) N N@), ¢))
ING) NN
JCx,y) = ———, 2
C = N NG @
PA(x,y) = INX)| - INO)I. 3)
1
RAG,y)= Y = ——, )
ZEN(X)NN(y) deg(z)
CAR(x,y) = CN(x,y) - [ENW) NN (5)

where N (x) denotes the neighborhood of node x, E(N(x) N
N(y)) denotes the edge set induced by the node set N(x) N
N(y), and |[N(x)| denotes the number of nodes in the set
N(x). These indexes mainly focus on common neighbors
of a pair of nodes (x,y), and RA and CAR consider the
edge density among the local environment of the node pair
(x,y), in which deg(z) reflects number of nodes connected
to the common neighbor z and E(N(x) N N(y)) indicates
the edge density among the common neighbors of node
x and y.
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There is another index Clustering Coefficient for Link Pre-
diction (CCLP):

CCLP(x.y)= Y CC., (6)
ZEN NN (y)

where CC; is the local clustering coefficient of node z. The
CAR and CCLP have better performance on many different
datasets [9]. In the viewpoint of motif, the CAR and CCLP
have strong correlations with 3-motifs (triangle motif). The
definitions of CCLP can be rewritten as:

Z motif (z)

CCLP(x,y) = deg(z) - (deg(z) — 1)/2

@)

ZeN(x)NN(y)

where motif (z) counts the 3-motif number related with
node z. For the CAR index, any (z1,z2) € E(N(x) NN (y)) is
an edge between the common neighbors z;, z» of x and y, and
two 3-motifs are composed by x, z1, 22 and y, z1, z2.The CAR
and CCLP indexes take into account the information of the
common neighbors and perform better on the link prediction
problem, as shown in Figure 2.

FIGURE 2. The local environment of the CAR and CCLP indexes. The red
lines illustrate the 3-motifs related with the common neighbors. CCLP
counts the clustering coefficient of the nodes z,, - - - , z;, and CAR can
induce 3-motifs by the edges between common neighbors, such as the
red triangles in the figure.

B. MOTIF-BASED SIMILARITY MEASUREMENT
The CN, JC, PA and RA indexes all focus on the common
neighbor number of the predicted edge (x, y). The structures
(x, zi, ¥) can be viewed as the motif in Figure 1 (2), and these
structures can also be treated as underlying motifs in Figure 1
(3) if nodes x and y are connected. Then, the structures
(x, zi, y) are named as underlying triangle motifs. The CAR
and CCLP indexes mainly reflect the influence of triangle
motifs in the local neighborhood of the predicted edge.
Motivated by the existing similarities and link prediction
requirements, the prediction of edge (x, y) should consider
three parts: the neighborhood of node x, the neighborhood of
node y and their intersection. Similarities for link prediction
aim to measure the correlations between nodes x and y, and if
the neighborhood intersection is relatively larger (compared
to the neighborhood union), nodes x and y should have higher
possibility to be connected, which is reflected by the defini-
tion of JA index concerning the node degrees.
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To provide a high-order structure description for the corre-
lation between x and y, we propose a Motif-Based Similarity,
which considers the local environment based on the motifs:

ING) NN)I ®)
IN(x) N N)| + motif (x) + motif (y)
A schematic graph is presented in Figure 3.

MS(x,y) =

FIGURE 3. The schematic graph of the motif-based similarity. The
common neighbors z,, - - - , z; will form underlying triangle motifs with
nodes x and y, which is illustrated by the green triangles. The motif (x)
counts two kinds of motifs, one is induced by the common neighbor such
as the red triangle motif (x, z;, z,), the other is induced other neighbors
such as the red triangle motif (x, a, b). motif (y) has similar cases as
motif (x).

In this research, the motif-based similarity aims at the tri-
angle motif to measure the local correlations between nodes.
The numerator denotes the new generated triangle motifs if
node x and y are connected, and the denominator gives all the
possible triangle motifs with edge (x, y) added. It is worth
noting that here we require motif (x) > 0 and motif (y) > 0
to avoid trivial case that the MS index degenerates to 1.

C. GENERALIZATION OF THE MOTIF-BASED SIMILARITY
The definition of motif-based similarity can be easily general-
ized to more complicated structures. The motifs in this paper
mainly focus on the triangle motif. When considering other
high-order motifs, the generalized Motif-Based Similarity can
be defined as:

|Umotifs(x, y)|
|Umotifs(x, y)| + motif (x) + motif (y)’
where Umotifs(x,y) denotes the new generated motifs after
x and y get connected and motif (x) and motif (y) are the
numbers of existing motifs related with nodes x and y. Here,
the motifs could be 4-motifs, 5S-motifs or other high-order
motifs, and we could focus on some specific motifs or a com-
bination of some different motif types. Thus, the definition
of motif-based similarity can fulfill more complicated task
requirements, and taking advantage of the motif structures
could promote the research of nodes correlation/similarity
and the link prediction problem. In this paper we only
consider the 3-motifs in all experiments, since for most
small-scale networks 3-motifs are sufficient to reflect the
typical structure characteristics, and it is still a challenge to
identify and apply appropriate and exact high-order motifs
accurately for large-scale networks.

MSg(x,y) =

&)
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D. COMPUTATIONAL COST OF THE MOTIF-BASED
SIMILARITY

For the motif-based similarity, it only refers to the neighbors
of node x and y. If node x and y have degree deg(x) and
deg(y), calculating N(x) N N(y) needs at most deg(x) X
deg(y) basic steps and calculating motif (x) and motif (y) only
needs (deg?(x) + deg®(y))/2 basic steps. So, calculating the
motif-based similarity of node pair (x, y) requires deg(x) x
deg(y) + (deg?(x) + deg*(y))/2 computational cost. For a
network with nodes number N and average degree (k), this
time cost has an average 2(k)? value and the total time cost
for evaluating the similarity scores of all the N2 /2 node pairs
is N2 (k)? in average.

The CAR index also requires to calculate the common
neighbors N (x) N N(y) which costs at most deg(x) x deg(y)
basic steps, and counting |E(N (x) N N(y))| will cost at most
min®(deg(x), deg(y))/2 basic steps, which leads to average
%(k)2 time cost for each pair of nodes and %N 2(k)? in total.
The CCLP index requires to calculate the clustering coeffi-
cients of the common neighbors in N (x) NN (y), which refers
to the second-order neighbors of nodes x and y. On high-
coefficient networks the number of second-order neighbors
is generally larger than that of the first-order neighbors,
which lead to a higher time cost for each node pair and the
total. Compared to the CCLP and CAR similarity indexes,
the motif-based similarity has time cost with the same level.

IV. EXPERIMENTS AND RESULTS

A. DATASET

In the experiments, 9 public benchmark datasets and 1 ran-
dom generated dataset will be used to exhibit the effective-
ness of the motif-based similarity. Dolphins dataset is an
undirected social network of frequent associations among
62 dolphins in a community living off Doubtful Sound,
New Zealand. Two well-established subcommunities are con-
tained in this dataset [34]. Proteinl, protein2, protein3 are
network-based datasets which represent the 3D structure of
proteins. In addition, protein3 is a dataset of an uncon-
nected network and contains isolated nodes [35]. NetScience
dataset is about the co-authorship network among scientists
in the field of network science since 2006. This network is
a one-mode projection from the bipartite graph of authors
and their scientific publications. In this article, we select
the largest maximal clique in the dataset as our experiment
data [36]. Jazz dataset is an undirected social network of
cooperations among 198 Jazz musicians [37]. The football
network is a representation of the schedule of Division I
games in season 2000. Nodes in the graph represent different
colleges and edges represent regular-season games between
the two teams they connect. 115 teams were separated into
12 conferences. In the schedule, games between members of
the same conference went earlier than between members of
different conferences. And intra-conference games are more
frequent than inter-conference games, which indicates it is
highly likely to emerge community structure in this dataset
[38]. Geom values undirected network with 7343 vertices
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and 11898 edges based on the co-work between two authors.
Two authors are linked with an edge, if and only if they
wrote a common work (paper, book, ...). The value of an
edge is the number of common works [39]. Ca-GrQC(ca)
is an undirected and unweighted graph which describes the
collaboration network of Arxiv General Relativity [40]. In the
random geometry graph model (RGG), nodes are placed in
a unit cube randomly. Two nodes are linked if the distance
between them is no more than the radius threshold value set
in advance. We generate a dataset of graphs with 200 nodes
and about 1000 edges.

In Table 1, some basic topological features such as number
of nodes and edges, average degree, average shortest distance
and clustering coefficient are presented.

TABLE 1. Basic topological features of Network datasets, including
number of nodes and edges, average degree, average shortest distance
and clustering coefficient (* means unconnected).

Nets N M <k> <d> CC
jazz 198 2742 27.7 224 0.62
dolphins 62 159 5.13 336 026
football 115 613 10.66 2.51 04
netscience 379 914 4.82 6.04 0.74
protein| 95 213 448 6.28 04
protein2 53 123 4.64 379 041

protein3 99 212 4.28 * 0.36
RGG 200 1083 11.87 631 1.64
geom 7343 11898 3.24 531  0.73
ca 4158 13422  6.46 6.05 0.63

In the preprocessing of the 10 dataset, 90% edges are ran-
domly selected from the original network datasets as training
set, and the rest 10% are set as part of the testing set 7. Then,
we calculate the similarity indexes of all the non-existing
edges (including the testing set), and then sort the indexes
values of nodes pairs in descending order. A top-L precision
is calculated as Ly /L, where L indicates the top-L node pairs
under the sorted similarity index and Ly is the number of
edges belonging to the testing set in the top-L node pairs.

B. RESULTS AND ANALYSIS

In Table 2, the Area Under Curves (AUCs) of the CAR,
CCLP, CN, JC, PA, RA, n2v and motif-based similarity (MS)
indexes are provided to show the efficiency of the proposed
motif-based similarity. Except on the jazz, geom and ca
datasets, the MS index has better performance than others and
RA works better on these three datasets, but the MS index also
has comparable results on them. On the datasets dolphins,
netscience, protein3, geom, ca the MS index improves the
AUC values larger than 2% than the existing methods. Com-
pared with CAR, CCLP and n2v, the MS index outperforms
them greatly on all the datasets except jazz.

In Table 3, the precision of methods CAR, CCLP, n2v and
MS are provided to show the link prediction accuracy, which
give the average ratio of Ly /L for L = 20. By the results it
can be seen that the MS index outperforms other except only
the geom dataset, for the relatively small networks the MS
index can have better performance, but the CCLP also has
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FIGURE 4. The ROC curves of index MS, n2v, CAR and CCLP. The vertical axis shows TPR (true positive rate) and the horizontal axis
represents FPR (false positive rate). Each result is the average on 100 such experiments.
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TABLE 2. Link prediction accuracy of compared similarity indexes
estimated by AUC. Each result is the average on 100 such experiments.

AUC CAR CCLP MS CN JC PA RA n2v
jazz 0954 0959 0941 0955 0.96 0.771  0.97 0.939
dolphins 0.652 0.838 0.865 0.739 0.733 0.643 0.732 0.777
football 0.814 0.84 0851 0.839 0.5 0.27 0.839 0.83

netscience  0.817 0923 0947 0852 0.864 0273 0.853 0.945
proteinl 0.564 0.84 0872 0.861 0.868 0.39 0.863  0.858
protein2 0577 0819 0.854 0834 0.85 0.494  0.841 0.843
protein3 0.672 0.822 0.851 0.823 0.827 0.532 0.825 0.804

RGG 0971 0985 0989 0984 0988 0.53 0.986  0.988
geom 0.731 0.835 0.886 0.891 0.891 0.765 0.891 0.846
ca 0809 0913 0932 0935 0935 0.740 0.936 0.924

TABLE 3. Link prediction accuracy of compared similarity indexes
estimated by precision. Each result is the average on 100 such
experiments.

precision MS CCLP CAR n2v
jazz 0981 0919 0938 0.944
dolphins 0.113  0.05 0.05 0.013
football 0431 0406 0.375 03
netscience  0.713  0.625  0.619 045
proteinl 0.2 0.075 0.1 0.075
protein2 0.219 0.069  0.069 0.094
protein3 0.175 0.106  0.138 0.113

RGG 0.819 0.65 0.613  0.65
geom 0.72 0.99 0.97 0.69
ca 0.99 0.99 0.97 0.99

superiority on the large-scale networks geom and ca, which
indicates more complicated high-order motifs should be con-
sidered to optimize the MS index. As the link prediction
problem aims at predicting the potential connections among
nodes, the False Negative Rate means little for the aim and the
evaluation of recall for these methods is not provided here.

As the motif-based similarity mainly focuses on the trian-
gle motif structures and has close relations with CAR and
CCLP, in Figure 4 we illustrate the ROC (receiver operating
characteristic) curves of MS, CAR and CCLP as local meth-
ods, together with n2V as global method for link prediction.
AUC is the area under the ROC curve, and ROC reflects
a similar effect as AUC. By the ROC, it can be seen that
on jazz and RGG, the four methods work similarly; on the
dolphins, netscience, protein2 and protein3, MS, n2v and
CCLP outperform in different FPR ranges; on the football,
proteinl, geom, ca datasets, MS presents obvious superiority
compared to others.

The cumulative numbers of predicted edges Ly for increas-
ing L is shown in Figure 5 for different datasets. The proposed
index MS is fully dominant on the geom dataset compared to
other indexes, and in data set protein3 and dolphins, MS gets
the more comparable cumulative number of predicted edges
than others in a large range of L. Moreover, except for some
initial L values, MS and n2v achieve the best performance
in most cases, which is true for datasets such as proteinl,
protein2, football, netscience and RGG. For datasets football
and RGG, when L exceeds around 20, MS and n2v exceed
CCLP in performance and remain in the lead since then, and
for datasets protein3 and dolphins, this threshold may be a bit
higher and around 200. While MS and n2v do not perform as
well as CCLP in some cases, it remains its advantage over
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CAR in all these datasets. For dataset netscience and ca,
MS and n2v outperform for relatively large L values, which
accounts for only a small proportion if we consider all the
values of L. For the dataset jazz, the method MS and n2v have
not gained better performance than CAR and CCLP for along
time but reached the same level of predicting ability as them
in the end. The curves of cumulative numbers of predicted
edges for MS and n2v are almost the same for all datasets
except geom.

By the topological features of Network datasets from
Table 1 and AUC results from Table 2, it could be observed
that the motif-based index works more efficiently when the
average degree of the network is not too large. For the jazz,
its average degree (k) is 27.7 and it means that the local
connection is very dense, which suggests that there will be
too many triangle motifs in each node-pair neighborhoods.
In this case, the statistical characteristics of the common
neighbors N (x) N N(y) is prominent to reflect the correlation
and similarity of two targeted nodes x and y, so the CCLP and
CAR indexes outperform the motif-based similarity. In the
RGG and football dataset, the average degree is near around
10 and the MS, n2v, CAR and CCLP indexes have similar per-
formance. When the average degree is around 5, motif-based
similarity has significant performance on the rest 5 datasets.
This phenomenon illustrates that the motif-based similarity
is more suitable for the low-average-degree datasets. On the
large-scale networks geom and ca, MS does not have the best
performance and it is believed high-order motif may improve
the results by using proper motifs.

The similarity indexes listed for link prediction in Table 2
can be classified into 4 classes: the one aiming at only the
common neighbor information including CN, PA, CAR and
CCLP, the one only considering the neighbors of the aimed
node pair including PA, the indexes JC and MS which calcu-
late both the neighborhood and common neighbor informa-
tion, and the last one n2v which uses global information of the
network. For the high-average-degree networks, the common
neighbor information will play a major role in measuring the
node-pair similarity for link prediction, and for a relatively
low-average-degree network, the neighborhood and common
neighbors should both be considered to calculate the simi-
larity of link prediction. Also, the main difference of the JC
and MS indexes is that the high-order structure is considered
for our proposed motif-based similarity. High-order structure
and more connection information considered in a network
dataset will help understand the underlying node correlations
and improve the efficiency in the link prediction problem.

V. CONCLUSION

Motif-based similarity for link prediction provides a new
viewpoint to understand the local environments of target
node-pair correlations. It takes the advantages of the existing
indexes such as CAR and CCLP, and has a better perfor-
mance by experiments on some datasets. Typical or designed
motifs on a network play important roles in the link pre-
diction problem. Sufficiently and effectively using proper
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motif structures can help achieve deeper understanding of the
underlying mechanism for link prediction problem. Consider-
ing the expendability of the motif-based similarity, extracting
and locating the most related motifs will be an interesting
direction to improve the efficiency, which will be further
studied in our future work. Besides, combining the typical
motif structures with other link prediction techniques (e.g.,
Graphic Neural Networks) would also be a valuable research
direction.

The research direction of the link prediction problem has
gradually shifted from methods that rely on node attributes
to methods that use network structure information [2], and
the accuracy has been significantly improved. Existing algo-
rithms mainly describe the structural characteristics of a cer-
tain aspect of the network, and their predicting capabilities
vary a lot in different networks. For more complex networks,
such as weighted networks and directed networks, how to pre-
dict through structural information is still worthy of in-depth
discussion [41]. This research not only helps to reveal the
advantages and limitations of the link prediction problem
itself, but also has significant practical values.
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