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KLAUS HASSELMANN, SUSANNE HASSELN1ANN, CLAUS BRUNIN(,. and ANN'LGRHI SlPI-ll)l'l

INTERPRETATION AND APPLICATION OF SAR
WAVE IMAGE SPECTRA IN WAVE MODELS

A new closed integral transform relation describing the nonlinear mapping of a surface-wave spec-
trum into a synthetic aperture radar (SAR) image spectrum is presented and applied to selected Labrador
Sea Extreme Waves Experiment cases. The new results agree well with observations and with computa-
tions using earlier Monte Carlo techniques. The integral transform can be expanded in a series whose
terms can be computed rapidly using fast Fourier transforms. The series expansion of the integral trans-
form expression is also useful in identifying the relative contributions of different imaging mechanisms.

INTRODUCTION

Synthetic aperture radars (SAR'S)tO be flown on ocean trum has been derived by Hasselmann and Hassel-
satellites and polar orbiting platforms in the 1990s will mann.' Although the transformation is strongly non-
provide ocean wave modelers for the first time with glob- linear, a closed relation between the input surface-wave
al measurements of the two-dimensional ocean-wave spectrum and output SAR spectrum could nevertheless be
spectrum. This should bring an unprecedented boost to derived by making use of the Gaussian property of the
ocean-wave modeling But SAR images of the ocean- input wave field, which enables all higher order nonlinear
wave surface are not easily interpreted. They are often dependencies on the input field to be reduced to the sur-
strongly nonlinear and show pronounced asymmetries face-wave spectrum.
with respect to range and azimuthal imaging. The devel- The closed integral expression can be readily evaluated,
opment of appropriate methods for the efficient process- after a suitable series expansion, by means of fast Fourier
ing and assimilation of SAR wave data into ocean-wave transforms (FFT'S). The computing time (less than I s per
models is not straightforward and presents a major chal- spectrum on a CRAY-2 computer) is short enough for the
lenge to the ocean-wave community. method to be applied operationally to satellite SAR data.

The basic mechanisms of SAR ocean-wave imaging are The integral was also evaluated directly without expan-
nevertheless rather well understood today (cf, Ref. 1). sion, and although the FFr technique could not be ap-
In particular, the characteristic nonlinearity and range- plied, essentially identical results were obtained with
azimuth asymmetry of SAR wave images can be ex- comparable computation times for somewhat reduced
plained by the large azimuthal displacements-compared spectral resolution.
with the scales of the long waves-of individual back- The series expansion of the integral transform relation
scattering elements in the image plane caused by the or- is also useful in clarifying the role of the various imag-
bital motions of the long waves. ing mechanisms. Thus, the relative contributions from

To cope with this strong nonlinearity, computations hydrodynamic and tilt modulation, from linear velocity
of the transformation of a surface-wave spectrum into bunching, from the interference between these processes,
a SAR image spectrum have been carried out in the past and from higher order nonlinear velocity-bunching inter-
largely by means of "brute force" Monte Carlo simula- actions can be individually identified as separate spec-
tions,2- in which a series of random realizations of the tral terms of the series expansion.
sea surface is generated for a given ocean-wave spectrum, The closed transformation expression has the addi-
and the sea surface is mapped into the sAR image plane, tional advantage of lending itself readily to inversion by
pixel by pixel, for each realization. The SAR images are means of iterative inverse modeling methods, Details are
then Fourier transformed, and the squared Fourier am- given in Ref. 8.
plitudes are averaged over the ensemble of realizations In this article, the results of the theory are summarized
to obtain an estimate of the image variance spectrum. and applied to examples from the Labrador Sea Extreme
Typically, 20 to 50 individual sea-surface realizations (40 Waves Experiment a.EwEx), using as input hindcast
to 100 degrees of freedom) need to be mapped. The wave spectra computed with the WAMI wave model.'
method is relatively costly in computer time and suffers The theory is verified by comparing the new computa-
from the usual Monte Carlo statistical sampling uncer- tions with the Monte Carlo simulations.
tainty. Also, it does not offer a simple approach to the
inverse problem of estimating the surface-wave spectrum
from a measured SAR image spectrum. To discuss meaningfully the new transformation rela-

Recently, a new closed integral relation for the map- tion presented in the next section and interpret its sub-
ping of a surface-wave spectrum into a SAR image spec- sequent application to LEWEX SAR spectra, some basic
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concepts and notation need to be introduced, See Ref. nonlinear corrections) are still only poorly known and
I for a review of the standard two-scale theory of SAR need further study.
imaging of a surface-wave field on which these concepts The frozen surface sR image represents a snapshot
are based. The derivation of the spectral transformation of the field o(r, t) at a particular time, say t - 0. Mea-
relation is given in Ref. 8. suring the image modulation intensity l'(r) (after sub-

It is convenient to regard the SAR surface-wave image traction of the mean) in units of the normalized cross
as the result of two consecutive imaging mechanisms: section, o(r, 0)/a,
the cross-section modulation that produces the frozen o(r 0)
surface image, IR(r), and the additional motion effects l 0(r) . ... 0 (5)
that, together with the frozen surface contribution, yield 7
the net SAR image, Is(r), where r is the position vector, and introducing the Fourier integral,

The Frozen Surface Contribution /A(r) "dk !(k)e(A (6)

The frozen surface image, IR(r), of a linear ocean-
wave field corresponds to the image that would be ob- we have, from Equation 2,
tained by a real aperture radar tAR). To a good approx-
imation, it can be linearly related to the surface-wave IR(k) = r(k) + m(- k)" (7)
field.

The surface-wave elevation ý(r, t) of a linear ocean- where the asterisk indicates a complex conjugate. We
wave field can be decomposed into a superposition of have ignored here the SAR system MR., It appears simply
freely propagating wave components: as an additional factor in Equation 7 that we may re-

gard as absorbed in the definition of rn(k).

•(r, t) = dk '(k) exp(i[k r -r t) We have also ignored, for simplicity, distortion effects
because a side-looking radar does not, in fact, make a

+ complex conjugate] , (1) field snapshot image but builds up the image from a se-
quence of consecutively imaged snapshot strips. Thus,

wes moving waves are imaged with slightly Doppler displaced
where o = gk is the gravity-wave frequency, tis "wave numbers of encounter." (This straightforward
time, " is the wave height, i designates the "imaginary geometric effect applies equally for a RAR and a SAR and
part of," and k is the wave number vector. To avoid should be distinguished from the SAR motion effects
a proliferation of symbols, we shall use the some symbol summarized in the following section.)
for a function and its Fourier transform, distinguishing Finally, we have not considered clutter effects. To first
the two where necessary by their arguments. If the RAR order, they may simply be represented as an additional
imaging mechanism is linear, the variations of the clutter noise spectrum superimposed on the image spec-
(specific) backscattering cross section, a(r, t), can be trum discussed here. "
similarly decomposed into free wave components: We note that according to Equation 7,

a(r, t) a l + dk[m(k) exp(ilk • r - w1]) IR(k) = IR(-k) , (8)

+ complex conjugate] J , (2) in accordance with the reality condition for a frozen two-
dimensional surface, whereas ý (k), ( - k) and, similarly,

where the cross-section modulation, m(k), is linearly m(k), m(-k) refer to different time-dependent wave
related to •'(k) through a modulation transfer function components propagating in opposite directions and
(MTF), TR(k), which, therefore, are not related.

In terms of the directional wave spectrum FRk), de-
m(k) = TR(k) (k) (3) fined by

and a denotes the space-time averaged cross section. <•(k(k)(k')> = 6(k - ') F(k) (9)
The RAR MF, T(k), can be further decomposed into 2

tilt and hydrodynamic contributions: (where the angle brackets denote ensemble means) such

TR(k) = TV(k) + Th(k) . that

The tilt and hydrodynamic MTF's have been discussed <r2= > F(k) dA , (10)
in detail by various authors.' ""0 For the general the-
ory, however, we require only the net frozen surface and the frozen surface SAR image variance spectrum
MTF, TR(k), without invoking its decomposition into tilt PR(k) is defined by
and hydrodynamic components. We point out also that
although we present here a quantitative closed theory (IR*(k)IR(k')) = 6(k - kV)PR(k) , (11)
for the imaging mechanism as such, the details of the
hydrodynamic MTF required as input (and its possible with
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P )(1 2) qualitative description of the S,.,, spectrum, even in
PR,(k) cdk .(12) strongly nonlinear cases.

The above relations define all quantities needed to
the linear amplitude relations (Eqs. 3 and 7) translate write the general spectral nonlinear transfer expression.
into the linear relation with the exception of three autocovariance and covari-

(2 +ance functions, which are formed fromn quadratic prod-
Ptk) = 1[] TR(k)I F(k) + TR(-k)j F k)I ucts of the fields v and ,R at time lag. zero and finite

(13) spatial lag r:

Motion Effects f'(r) (v(x + r)v(x)>

We limit the discussion of motion effects to pure ve- e r
locity bunching. Higher order acceleration smearing can 3 !"(k)l T' (k)J- exp(ik r) dk (20)
be included in the general theory,' but it is usually
small and will be ignored here for simplicity. f R(r) = (It(x + r)IR(x))

Velocity bunching arises through the variable azimuthal
displacements, ý, of individual backscattering elements in , (t(k) I T (k)
the image plane caused by the spatially variable long-wave
orbital velocities. According to standard SAR theory, + h( - k) ITR( k) ) exp(ik , r) dA . (21)

/3v , (14) fR'(r) = (IR(x + r)v(x)) = 1-(F )T 1 (k)T (k)y

where v is the range component of the local long-wave + F( -k)TH ( -k)*T' (-k) exp(ik . r) dk
orbital velocity advecting the small-scale backscattering (22)
element, and THE CLOSED NONLINEAR SPECTRAL

13 = p/U, (IS) TRANSFORMATION RELATION
The general nonlinear spectral transformation relation

where p is the slant range and U is the platform velocity, derived in Ref. 8 is presented in two forms: as a closed
For displacements that are small compared with the nonlinear integral transform expression, and as a power

characteristic wavelength of the long waves, the velocty- series expansion. The general integral form does not lend
bunching mechanism can be linearized and described by itself readily to computation by fast transform techniques,
a velocity bunching NITF: whereas the terms of the power series expansion can be

evaluated individually by fast Fourier transforms. Thus,

T "b(k) = - i `3k, T (k) , (16) the expansion form can usually be computed more rapid-
ly. The decomposition into a series also provides a clearer

where the orbital velocity MTF is picture of the interplay of the various lin( and non-

Sk, linear imaging mechanisms in the formation of the final
T v(k) = sin 0- + i os) (17) image.s k/ The transform was computed both by direct integra-

eSAR i s tion (using a lower resolution representation of the spec-
The S image spectrum is then given by the linear ex- trum) and by the fast Fourier transform expansion
pression method. The results were essentially identical.

P s(k) T' ½[T(k) IF(k) + ITs(k)'F( -k) I The closed integral expression has the form
(18) ,

(P(k) = (27r) 2exp[-k2,1' 2lI drte '4 'exp[k-,30f'(r)l

where the net SAR MITF is X I I + fR(r) + ik,O[fR'(r) - fR'(-r)]

Ts(k) = TR(k) + T "(k) . (19) + (k,03) 2 [fRl(r) - fR'( 0 )] LfR((-r) -

The index S refers here and in the following to the SAR f(o)] I, (23)
image, including motion effects, while the index R refers, where
as before, to the frozen surface RAR image.

The lii ear theory has only limited applicability. As (24)
will be shown later, it breaks down in all cases, even for
low sea states, for high azimuthal wave numbers. The is the root mean square azimuthal displacement.
general nonlinear transformation expression presented The power series expansion is obtained by expanding
in the next section yields, to lowest order, a simple quasi- the second exponential factor in Equation 23. (it is the
lhieai gc~icraliza*:,3n of Equation 18 containing an ad- dependence of this factor on k2 that destroys the other-
ditional nonlinear azimuthal cutoff factor. This is found wise straightforward Fourier transform structure of the
to be quite widely applicable and provides a reasonable integral.) One obtains a series of the form
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S2,1 Since only Fourier transforms are invoked, the corn-
Ps(k) = exp(- k2') E • (k, 3) "'P, (k) putations are relatively fast. The complete transforma-

n,, n ,,•2n - (25) tion can be computed in less than I s on a ( RAN 2. (The
computations could also be carried out efficientlý on a

where the index n indicates the order in nonlinearity with personal computer with hard-wired fast Fourier trans-
respect to the input wave spectrum, and the index ?n the form.) Good convergence is normally achieved even for
order with respect to the velocity-bunching parameter strongly nonlinear spectra for n - 4 to 6. The contribu-
0 (which is seen to occur always in combination with tions from the higher order terms are concentrated main-
the azimuthal wave number k,). ly in the neighborhood of the (normally not very im-

Explicitly, portant) azimuthal cutoff regions.

s ,As a check, the integral (Eq. 23) was also evaluated
Pf,, = Sn IfV(r.)"l I(26) directly. The wave-number coordinates were transformed

to frequency-direction coordinates, and the integral was
= iifR(r) -- f(R--r)lf' (r)' ) computed using the relatively low resolution of the wave

P,., - I (fn - 1 model (30* directional resolution and a logarithmic ftre-

(27) quency discretization with Aw/w = 0.1). The computa-
tion time was comparable with the fast Fourier transform
expansion method, and the results were virtually identical.

P, f2 ( fR (r)f (r)" n An important feature of the expansions 25 and 30 isI)_ (n- I!the occurrence of the common (nonlinear) azimuthal cut-
off factor

+ -2)! [f() -'f(0)] C = exp(-k,2'-) . (31)

X ffR, -r) -f'(O)]fr(r)"2
3  , (28) Without inclusion of this azimuthal cutoff factor, the
) straightforward linear approximation F'(k) must al-

where 9, denotes the Fourier transform operator ways break down at high azimuthal wave numbers, even
for low sea states, since real wave spectra, and therefore

= (27r) dr exp(- ik • r) (29) also Fs, decay as a power of the wave number at high
j wave numbers, rather than exponentially, as required by

Equation 30.
and n runs through all positive integers 1, 2 ..... For In contrast, the lowest order quasi-linear approxi-
nonpositive integers, the factorial function is defined as mation
0! = 1 and [(-l)!]- 0. We have left out a term
P01, in the sum representing an irrelevant 6-function Ps(k) = exp(-k, ' 2)P'(k) (32)
contribution at k = 0 arising from the mean image in-
tensity. of Equation 30, with inclusion of the nonlinear azimuthal

Summation over the velocity-bunching index m for cutoff factor, remains a valid approximation for the en-
fixed nonlinearity order n yields a stratification of the tire spectrum. In practice, Equation 32 was found to
expansion with respect to the nonlinearity only: yield a reasonable quantitative approximation for about

halt the SEASAT and tEWlix SAR spectra studied in Ref.
Ps(k) = exp(-k2') 15 and by C. Briining and L. F. Zambresky (personal

I )communication), and was successful in capturing the
x (Pý (k) + PM (k) + . . . P (k) + .... (30) qualitative features of the SAR spectrum in all cases.

If applied as a first approximation in the inverse map-
The linear term, P•, is found to be identical (as it must ping problem, the quasi-linear form can be immediately
be) to the linear SAR spectrum of Equation 18. inverted analytically (for given k'). The solution can then

The computation of Ps(k) according to Equations 25 be used to construct a general iterative inversion method
or 30 involves three steps: for estimating wave spectra from observed SAR spec-

1. Computation of the three autovariance and covar- tra.' The method gave good convergerice in both linear
iance functions f '(r), f R(r), and f R`(r) using the Fou- and strongly nonlinear cases.
rier transform relations 20, 21, and 22. The existence of a common azimuthal cutoff factor

2. Computation of the various covariance product (Eq. 31) acting on all terms of the spectral expansion
expressions in Equations 26 through 28. (Eq. 30) has a useful practical application. Since the cut-

3. Computation of the Fourier transforms of the co- off scale ý' can be readily determined for any S'\R spec-
variance product expressions, yielding the series 25. (If trum, regardless of the details of the nonlinear imaging
ihere is no need to stratify the expansion with respect process, it provides a robust estimate of a useful integral
to nonlinearity order, the covariance products of differ- wave parameter: the root mean square orbital velocity
ent nonlinearity order n for given velocity-bunching or- component in the range direction.
der m can be collected together and Fourier transformed It is of interest that Beal et al.," Lyzenga,' and
in a single operation.) Monaldo and Lyzenga't have already noted empiri-
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cally that the observed azimuthal cutoff scale appeared hindcast using the w.-Al third generation vwave model.'
to be proportional to the total root mean square orbital Comparison of the hindcast wase fields with wxave-buoy
velocity integrated over the entire long-wave spectrum observations indicated that the hindcast was acceptable
(or some similar integral wave parameter). Previously, as a first guess, although some systematic deviations were
this finding had been difficult to interpret theoretically. found (cf. Fig. I). The cases were selected from larger
The frequently used SAR two-scale model, in which an data sets that were analyzed as part of a more extensive
additional scale separation is introduced at the SAR reso- wave hindcast study (C. 3rfining and L. F. Zambresky,
lution scale, yields an explicit azimuthal smearing given personal communication).
by the so-called "velocity spread" term (cf. Refs. I and The principal SAR parameters of the two runs are list-
19). This is determined by the subresolution scale con- ed in Table 1. The polarization was horizontal-horizontal
tribution to the root mean square orbital velocity, i.e., and the look direction to the right for both runs. The
by the integral over only the high wave-number tail of damping factor and wind input modulation term in the
the long-wave orbital velocity spectrum. Tucker" com- hydrodynamic Ntrr were set equal to zero. The images
puted the effect of this smearing and obtained a filter for both runs were taken over essentially the same wave
function that was identical to our form C(Eq. 31), but field, but the two sk flight directions were opposite,
with E' replaced by the root mean square azimuthal dis- and the aircraft altitude and thus the 03 parameters (po/U)
placement (the velocity spread) arising from only the differed by a factor of nearly two.
short subresolution scale waves. The present closed trans- Figures 1 and 2 compare the observed and computed
formation theory indicates that the nonlinear velocity SAR spectra for the two runs. The two rows in the
bunching from the longer waves must also contribute
to the azimuthal smearing, and that the net effect of both
short and long waves can be expressed very •imply by Table 1. SAR parameters for two LEWEX runs on 14 March 1987
the azimuthal cutoff factor C-in accordance with Beal at the Tydeman (50*N latitude. 45°W longitude); the flight speed
et al. 16 and Lyzenga's 5 findings, was 128 mis and the incidence angle was 52*.

Flight Slant Range-to-
APPLICATION TO LEWEX Time direction Altitude range, p velocity

As an illustration, we apply the transform relation to Run (UT) (deg) (in) (in) ratio, 03
two LEWEX cases. The input wave spectra for the trans- 1 1219 89 3688 5990 46.8
formation computations were taken from the observed 2 1259 270 6096 9902 77.4
directional wave buoy (Wavescan) data and from a wave

Hindcast waves Computed fully nonlinear Computed quasilinear Observed SAR spectrum
Fn,= 2.18 Fmax = 27.8 Fmax = 29.5 Frnax 2,72 x 10-3

0.15

0
.0 0
2

-0.15
-0.15 0 0.15 Monte Carlo

Observed Wavescan Computed fully nonlinear Computed quasilinear simulated spectrum
F =ax 0.923 Fmax = 17.0 Fnaxi= 16.7 Fmax = 17,0

0.15

.• 0

0

E

--0.15

-0.15 0 0-15
Wave number (rad/m)

-0.5 0 0.5 1.0

Figure 1. Hindcast (top row) and observed (Wavescan, bottom row) wave spectra together with computed SAR spectra for LEWEX
run 1 over the Tydeman, 1219 UT on 14 March, The observed SAR spectrum is shown in the top right panel. The bottom right
panel shows the Monte Carlo simulated SAR spectrum for the Wavescan wave spectrum. The aircraft flight direction is in the x.
direction. Spectra are normalized with respect to the maximal spectral density Fm,, (given in units of M4 ).
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Hindcast waves Computed fully nonlinear Computed quasilinear Observed SAR spectrum
Fmax = 2.23 Fmax 40.6 Fma, = 45.4 Fmaý, 7.06 × 10-3

0.15

0

E

-0.15
-0.15 0 015 Monte Carlo

Observed Wavescan Computed fully nonlinear Computed quasilinear simulated spectrum
Fmax 0.974 Fnax= 28.6 Fmax 26,9 Fax = 28.4

0.15

*0

E

-0.15
-0.15 0 0.15

Wave number (rad/m)
-.0.5 0 0.5 1.0

Figure 2. Same as Figure 1 but for LEWEX run 2 over the Tydeman, 1259 UT on 14 March. The aircraft flight direction is opposite
that of run 1. Coordinates are defined as before in the aircraft frame.

figures correspond to different input wave spectra, 4. The theoretical SAR spectra agree reasonably well
shown in the left column. The Monte Carlo computa- with the measured SAR spectra in all cases. This, together
tions are shown only for the Wavescan spectra (second with the features listed above, underlines the need for
row). a first-guess input wave spectrum and the application

Several features are apparent: of quantitative nonlinear mapping computations for the
1. The SAR wave image spectra show little resem- meaningful interpretation of measured SAR spectra.

blance to the (symmetrized) input wave spectra. This is, 5. The quasi-linear approximation (Eq. 32) yields a
of course, a well-known feature of SAR spectra. But per- good first-order description, perhaps not surprising in
haps it has not always been fully appreciated that the these examples of relatively linear, predominately
distortion can be pronounced not only for azimuthally range-traveling waves.
traveling waves, for which the nonlinearities are large, 6. The closed nonlinear transformation relation and
but also for relatively linear range traveling waves, as the Monte Carlo computations yield essentially identical
in these examples. results. The small deviations between the Monte Carlo

2. The azimuthal cutoff is well defined and occurs method and the closed integral computations near the
at a lower wave number for the higher altitude flight, azimuthal cutoff line can probably be attributed to the
as expected. analytical Phillips form of the high-frequency tail of the

3. The sAR spectra show evidence of some azimuthal spectrum used in the Monte Carlo computations as op-
asymmetry relative to the SAR look direction that is not posed to the modeled spectrum in the closed integral
apparent in the original wave spectra. The asymmetry computations.
depends on the wave propagation direction relative to The distortions of the SAR spectra relative to the wave
the SAR look direction. In run 1 (Fig. 1), waves in the spectra can be explained rather simply by the structure
top right quadrant are enhanced relative to the waves of the SAR MTW, Equation 19. The azimuthal asymmetry
in the top left quadrant, whereas in run 2 (Fig. 2), waves is produced by interference between the frozen surface
in the bottom right quadrant (corresponding to the top and velocity-bunching MTF'S. The frozen-surface MlTF is
left quadrant in the 1800 rotated spectrum of Fig. 1) are symmetrical about the look direction, whereas the velo-
enhanced relative to the bottom left quadrant. The fact city-bunching MTF is antisymmetrical (cf. Eqs. 5, 6, 16,
that the asymmetry depends on the SAR look direction- and 17). Thus, while the square modulus of each MTF,
in both the simulations and the observations-is a clear taken by itself, is symmetrical about the look direction,
indication that it represents an artifact of the imaging the square modulus of the net complex SAR MTF, consist-
and is not a real feature of the wave spectrum. ing of the sum of both MiTf's is, in general, nonsymmet-
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ricai. It follows, moreover, that a change in sign of the order terms and arises from the product of the factor
look direction interchanges the enhanced and attenuated (k,3)" with the exponential azimuthal cutoff factor C.
lobes of the wave spectrum, as seen in Figures 1 and 2. CONCLUSIONS

The interference between the frozen surface and the
velocity-bunching modulation can be identified explicitly A new, closed, nonlinear, integral transform relation
in the expansion (Eq. 25). The relevant spectral distribu- describing the mapping of a two-dimensional surface-
tions are shown in Figure 3 for run 1, The first term, wave spectrum into a SAR image spectrum has been
C • PSo (n = I, m = 0) (Fig. 3A), represents the fro- presented and discussed for two i.EviwEX examples. The
zen surface contribution (but with the inclusion of the new transform relation offers a number of advantages.
azimuthal cutoff factor C). It is positive everywhere and It is rapid and accurate enough to be applied routinely
reproduces the approximately symmetrical distribution to the processing of quasi-continuous operational satellite
of the wave spectrum about the s#,R look direction. The SAR data. It offers a simple approach to the inverse
second term, C • (kOj)PSl (n = I, m = 1) (Fig. 3B), problem of inferring the optimal wave spectrum from
represents the quadratic interference between the frozen a measured SAR spectrum for a given first-guess wave
surface and velocity-bunching transfer functions. It is spectrum (cf. Ref. 8). By expanding the integral trans-
asymmetrical, alternating in sign between quadrants. The form in a Fourier transform series, it provides a clearer
third term, C - (k, 1)

2P•2 (n = 1, m = 2) (Fig. 3C), insight into the details of the mapping mechanisms. The
represents the pure (quasi-linear) velocity-bunching term, expansion yields separate spectral contributions for the
without the RAR contribution. It is positive and sym- frozen-surface (RAR) modulation term, the linear
metrical. The sum of the first three terms yields the quasi- velocity-bunching mechanism, the linear interaction be-
linear SAR spectrum, Equation 32 (Fig. 3D), which is tween the two, and the higher order nonlinear velocity-
shown also in the corresponding panel of Fig. 1. The bunching interactions and distortions. The azimuthal
asymme'ry of the quasi-linear spectrum is seen to arise smearing caused by nonlinear velocity-bunching effects
from the interference term. Asymmetries occur in general can be expressed very simply as an exponential cutoff
in all higher order, odd-m terms of the expansion (e.g., factor that applies to all terms of the expansion.
Figs. 3E and 3F), contributing to the asymmetry of the The LEWEX examples demonstrate that SAR ocean-
final nonlinear sAR spectrum (Fig. 3H). Figure 3G (m = wave imaging theory is in good agreement with measure-
10) is an example of a higher order symmetrical spectral ments. The SAR spectra can differ strongly from the in-
term. It exhibits a pronounced concentration along the put wave spectra so that a general quantitative interpreta-
azimuthal cutoff line that is characteristic of all higher tion of SAR image spectra in all cases is possible only

A RAR image B Interference term C Velocity bunching image D Ouasilinear image
Fmax = 25.9 Fmax = 6.80 Fmax = 18.1 Fmax = 295

0.15

0-0
E

-0.15
-0.15 0 0.15

E kx 3 term F kx
9 term G kxW term H Fully nonlinear image

Fmax =0.475 Fmax =1.53 x 10-'2  Fmax =9.45 x 10-1 Fmax =27.8
0.15

S0
E

-0.15

-0.15 0 0.15
Wave number (rad/m)

-0.5 0 0.5 1.0
Figure 3. Contributions of various spectral expansion terms to the SAR spectral image for LEWEX run 1. Note the asymmetry about
the look direction induced by the terms with odd m (k, powers). The dominant asymmetry arises from the linear RAR velocity-
bunching interference term (m = 1, n = 1).

123



K. Hassehmann et aL.

with the aid of exact nonlinear transform computations Il'cinln K , ili lia ýnla.n (SI \,rn1rcti; \appilloa,r (Ca t n-w
and a reasonable first-guess wave spectrum derived from "Soc Specirumt nsri 'AR lInr SevrNxruin sii Ii, i s s'r

a model. The quasi-linear SAR image spectrum (the linear co I' ' ehý Re i i Isnrt i s*~.-

SAR spectrum augmented by the azimuthal cutoff factor) \NA Ioc-ý I hu-ecatkv.(urVasn \\,o fjrcra'rr \Fodci I Pht',
nevertheless provides a good quantitative approximation (Ae'urllre Il8,I -l(t

9Xran ti

in many cases in which the nonlinearities are not too se- Kelr \l * rd\ ih,1 Rarks. ind It't -I' .5'

vere and also provides a useful qualitative description I'lan. %k. j I Keller. %\ a .nd 0""s. ,. 'k rai31r, hI.'nc rr

of the spectrum even for strongly nonlinear cases. (kcn \ve Radar ModuIanaouu I ratr'cr Irsrnmrn,:< J1 t(.or*s Re,~ M,
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