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Abstract: Precipitation is the most important input to hydrological models, and its spatial variability 
can strongly influence modeled runoff. The highly dense station network WegenerNet (0.5 stations 
per km2) in southeastern Austria offers the opportunity to study the sensitivity of modeled runoff 
to precipitation input. We performed a large set of runoff simulations (WaSiM model) using 16 
subnetworks with varying station densities and two interpolation schemes (inverse distance 
weighting, Thiessen polygons). Six representative heavy precipitation events were analyzed, plac-
ing a focus on small subcatchments (10–30 km2) and different event durations. We found that the 
modeling performance generally improved when the station density was increased up to a certain 
resolution: a mean nearest neighbor distance of around 6 km for long-duration events and about 2.5 
km for short-duration events. However, this is not always true for small subcatchments. The suffi-
cient station density is clearly dependent on the catchment area, event type, and station distribution. 
When the network is very dense (mean distance < 1.7 km), any reasonable interpolation choice is 
suitable. Overall, the station density is much more important than the interpolation scheme. Our 
findings highlight the need to study extreme precipitation characteristics in combination with run-
off modeling to decompose precipitation uncertainties more comprehensively. 

Keywords: precipitation variability; extreme events; rain gauge network; hydrological modeling; 
sensitivity analysis; spatial rainfall resolution; precipitation interpolation 
 

1. Introduction 
Heavy precipitation events can have significant impacts on society and ecosystems 

by causing severe floods and landslides. Moreover, such events are intensifying due to 
climate change in many areas [1–4]. Hydrological models have served as an important 
tool to assess the impacts of heavy precipitation events on runoff and other hydrological 
processes. Since precipitation is the most important input in hydrological models [5–7], it 
is crucial to understand its uncertainty and how this uncertainty affects the simulated 
runoff. Assessing the spatial and temporal heterogeneity of precipitation is becoming in-
creasingly important, especially with respect to heavy precipitation events [8,9]. Convec-
tive storm cells with large volumes of precipitation can easily trigger hazards, but the 
limited spatial and temporal extent of these cells is associated with huge levels of meas-
urement uncertainty [10]. In addition to the measurement uncertainty of rain gauges, con-
siderable uncertainty can arise when point-level measurements are spatially interpolated 

Citation: Hohmann, C.; Kirchengast, 

G.; O, S.; Rieger, W.; Foelsche, U. 

Small Catchment Runoff Sensitivity 

to Station Density and Spatial  

Interpolation: Hydrological  

Modeling of Heavy Rainfall Using a 

Dense Rain Gauge Network. Water 

2021, 13, 1381. https://doi.org/ 

10.3390/w13101381 

Academic Editor: Scott Curtis 

Received: 26 March 2021 

Accepted: 11 May 2021 

Published: 15 May 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Water 2021, 13, 1381 2 of 28 
 

 

to obtain final gridded products [10–13]. Such gridded datasets are crucial in that they 
allow researchers to collect areal precipitation information within catchment and sub-
catchment areas, which can then especially be used in spatially distributed hydrological 
models. Areal precipitation data can also be derived from radar and satellite-based obser-
vations. However, all measurements come with their own uncertainty levels and pros and 
cons [7,14]. On the one hand, the point measurements are most reliable for quantitatively 
measuring amounts of precipitation, whereas such measurements often do not provide 
reliable information about the spatial patterns of heavy precipitation because of the sparse 
distribution of point measurement sites. On the other hand, radar systems and satellites 
provide higher spatial resolution data, but the indirect precipitation estimates they pro-
vide do not allow the quantitation of specific precipitation amounts [15–21]. 

Despite the availability of remote-sensing data, ground-based precipitation measure-
ment tools are still widely used in hydrological modeling [6,22]. Many studies, such as 
those by Lopez et al. [22], Goovaerts [23], and Zeng et al. [6], pointed out the advantages 
of dense and regularly distributed precipitation station networks. For many years, re-
searchers have analyzed the effect of precipitation station density on hydrological model 
performance [5,6,12,24–27]. Dong et al. [25] and Xu et al. [27] used a statistical approach 
to identify the appropriate number of precipitation gauges and the influence of gauge 
density on the model performance of a lumped model. Both studies found a threshold 
above which an increase in station density does not lead to better model performance. 
Such a threshold can also be seen in many other studies [5,6]. Meselhe et al. [26] applied a 
conceptual and a physically based model to identify the impact of temporally and spa-
tially sampling precipitation on runoff predictions (using a highly dense station network). 
The physically based model was more sensitive to changes in the spatial and temporal 
resolution of rainfall. A threshold with no significant increase in model performance can 
also be seen in this case for both models. Huang et al. [12] used a lumped and a distributed 
hydrological model to study the sensitivity of model performance to spatial rainfall reso-
lution. They identified temporal resolution as the most important aspect, observing better 
model performance at higher temporal resolutions. Many of these studies placed a focus 
on the model performance and used lumped hydrological models. Here, we focus on the 
sensitivity of runoff in small subcatchments and report results of a process-based model. 

When using station data as rainfall input for hydrological models, the spatial inter-
polation schemes must also be considered. Many different interpolation options and pos-
sibilities have been broadly studied [28–30] including arithmetic mean [12,25,31], Thiessen 
polygons (TP) [6,26,32], inverse distance weighting (IDW) [13,33–35], and different types 
of kriging, such as ordinary kriging [8,33,35] or external drift kriging [5,27,33]. The differ-
ences between the interpolation schemes are especially pronounced when extreme values 
are included [30]. Therefore, the selection of interpolation schemes can affect hydrological 
simulations, especially under heavy rainfall events. Given that our study area has a mod-
erate topography with regularly distributed stations [36], we did not expect to obtain 
added value by using more complex geostatistical methods such as kriging. Therefore, we 
decided to focus on the two most widely used deterministic interpolation schemes, TP 
and IDW. We further analyzed the weighting power parameter of the IDW interpolation, 
which indicates the weight of the surrounding stations. A weighting power of 2 is nor-
mally used for IDW interpolations [37] but without making any further considerations 
[38]. Only a few studies have analyzed the influence of the weighting power on hydrolog-
ical model simulations [38,39], while some other studies have focused only on the inter-
polated precipitation [37,40]. 

To counteract the uncertainty with respect to spatial and temporal resolution, it is 
possible to take ground-based measurements from a highly dense station network. In this 
study, the following research questions were addressed: How many precipitation stations 
do we need to reliably model runoff during heavy rainfall events? Are there specific fea-
tures of small subcatchments to reliably model runoff under heavy rainfall events? How 
strongly does the interpolation scheme influence runoff results when the precipitation 
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station density is the same? The highly dense station network WegenerNet (WEGN) 
(about 0.5 station per 1 km2 over an area of around 300 km2) in the southeastern Alpine 
forelands of Austria was used to ask these questions as applied to the Raab catchment and 
its subcatchment areas. The region is well known for its heavy precipitation events [35,41]. 
Because of the exceptionally dense data coverage, it was possible to analyze the influence 
of precipitation station densities on runoff in detail. Therefore, we set up the widely used, 
physically based “Water Flow and Balance Simulation Model” WaSiM [42] and simulated 
runoff with varying station densities. All subnetworks were simulated using different pre-
cipitation interpolation schemes, namely, one TP scheme and three IDW schemes with a 
weighting power of 1 (IDW1), of 2 (IDW2), and of 3 (IDW3). Previous studies have as-
sessed the impact of the station density and interpolation on precipitation data quality, 
such as mean and extreme rainfall values [43–45]. We go one step further, applying our 
initial study approach and focus to study the impact of such precipitation uncertainty on 
hydrologic simulation results, and especially on runoff peaks, using a combination of sta-
tion densities and interpolation methods. 

2. Study Area and Data 
2.1. Study Area 

The study area is part of the Raab catchment, an area of southeastern Alpine foreland 
draining into the Raab river. The Raab river flows from the “Passailer” Alps in the prov-
ince of Styria, Austria, at an altitude of around 1150 m.a.s.l. until it joins the Danube river 
in Hungary. The area covered in this study ranges from the gauging station Takern II/ 
Raab to Neumarkt/Raab, including a total area of around 500 km2 (Figure 1). The gauging 
station Feldbach/Raab is located between these two stations. Beside the main river Raab, 
we analyzed five subcatchments (Table 1, Figure 1) with areas of around 10 to 30 km2, all 
of which are covered by the WEGN. Two subcatchments are located on the northern side 
of the Raab and three on the southern. Since we did not have measured runoff data for 
these subcatchments, we implemented pour points in the model directly before they 
flowed into the Raab river. 

The total study area is moderately hilly with elevations ranging from 230 to 530 m. 
The land use is predominately agricultural with some patchy forest areas. The dominant 
soil texture is sandy loam. The mean annual precipitation is around 850 mm, and the mean 
annual temperature about 9.5 °C. The study area was chosen because of its vulnerability 
to heavy/convective precipitation events [41] and climate change [46], as well as the data 
availability. Since the region has a very dense climate network, the WEGN, which is op-
erated by the Wegener Center for Climate and Global Change, University of Graz, Austria 
[36]. The WEGN has been used to measure precipitation, temperature, humidity, and other 
variables since early 2007 and includes 150 stations within an area of around 23 × 18 km. All 
data are quality controlled by the WEGN QC system [36], and additional bias correction 
is implemented for precipitation data [47]. 
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Figure 1. Map of the Raab catchment area in southeastern Austria (left), including the full catchment area extending down 
to the runoff gauge Neumarkt/Raab (red line), the focus area (grey area), the subcatchments (orange line), the WegenerNet 
region (violet box), the locations of rain gauge stations (dot symbols), and the runoff gauges (triangle symbols). Inset 
shows a map of Europe; Austria is shown in yellow and the Raab catchment, in red. An enlarged view of the study area 
(right) shows the station subnetworks and subcatchments used in this study. 

Table 1. Characteristics of the study catchment area and representative subcatchment areas with 
the total basin area of the latter extending up to the gauging station/pour point into the river Raab. 

Catchment Area (km2) Location from Raab 
Neumarkt/Raab (total catchment) 987 - 

Neumarkt/Raab (focus area) 488 - 
Feldbach/Raab (total catchment) 689 - 

Feldbach/Raab (focus area) 190 - 
Subcatchment Area (km2) Location from Raab 

Auersbach 28.9 north 
Saazerbach 27.2 south 
Giemerbach 16.0 south 
Haselbach 12.3 south 
Kornbach 12.2 north 

2.2. Data 
To perform hydrological modeling with WaSiM, we need meteorological data for 

precipitation, temperature, relative humidity, wind speed, global radiation, and air pres-
sure aggregated at a 30-minute time resolution. Table 2 provides an overview of the max-
imum available number of stations for each parameter, as well as the station source. The 
WEGN has a dense station network and a 5-minute time resolution, forming a rectangular 
grid due to the comparability to climate models. It is located in the middle of the focus 
area around the Feldbach/Raab gauging station, but does not cover the total Raab catch-
ment area. Therefore, we also needed to include data from the Austrian Weather Service 
(ZAMG), which has a 15-minute time resolution, and from the Austrian Hydrographic 
Service (AHYD), which has a 1- to 15-minute time resolution to properly simulate runoff 
(Table 2). In order to run the model only for the focus area, the Takern II/Raab gauging 
station was used as an inflow point. Runoff data from the Neumarkt/Raab gauging station 
were used for calibration and from the Feldbach/Raab gauging station for cross checks 
and further analysis. For precipitation event identification, the Integrated Nowcasting 
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through Comprehensive Analysis (INCA) system developed by Haiden et al. [48] was 
used, which is a multivariable analysis and nowcasting system developed at the ZAMG. 

Table 2. Catchment attributes and hydrometeorological data used for hydrological modeling with 
WaSiM with the following sources: HYDROBOD—homogeneous soil and land use grids by 
Klebinder et al. [49]; LStmk/LBgld—state government offices of the provinces of Styria and Bur-
genland; TANALYS—pre-processing tool of the hydrological model WaSiM [42]; WEGN—highly 
dense station network data version 7.1 [50]; ZAMG—data from the Austrian Weather Service; 
AHYD—data from the Austrian Hydrographic Service. 

Catchment Attributes Source Resolution 
Land use types HYDROBOD 100 m 
Soil information HYDROBOD 100 m 

DEM LStmk, LBgld 10 m 
River network LStmk, LBgld - 

Geological information LStmk, LBgld - 
Subcatchments, slope, 
river width and depth, 

other information 
TANALYS output 100 m 

Meteorological Data Source Number of Stations 
Precipitation WEGN 150 

 ZAMG 5 
 AHYD 3 

Temperature WEGN 150 
 ZAMG 5 
 AHYD 3 

Relative humidity WEGN 150 
 ZAMG 5 
 AHYD 3 

Wind speed WEGN 12 
 ZAMG 5 

Air pressure WEGN 1 
 ZAMG 5 

Global radiation ZAMG 5 
Runoff AHYD 3 

Static attributes are needed in addition to hydrometeorological station data. The dig-
ital elevation model (DEM), river network, and geological information were provided by 
the Austrian state government offices of Styria and Burgenland. The topographic analysis 
tool (TANALYS) of WaSiM uses the DEM to calculate other required grids, such as flow-
time, subcatchments, slope, river width, and depth [42]. Homogeneous soil and land use 
grids (HYDROBOD) were provided by Klebinder et al. [49] with a resolution of 100 × 100 m 
in our research area. The HYDROBOD maps were created using the methods cited in 
Krammer et al. [51]. Maps for every single soil layer (0–20, 20–50, 50–100 cm) and param-
eters such as soil texture (percentage of sand, silt, and clay), saturated hydraulic conduc-
tivity, Mualem van Genuchten parameters (combinations of residual water content and 
saturation water content), and soil thickness were used. 

3. Modeling Approach 
3.1. Model Setup and Calibration 

We used the hydrological model WaSiM, which was developed by Schulla [42], at 
the ETH Zurich in Switzerland for studying climate change in Alpine catchments. WaSiM 
is a well-established, widely used, distributed, and process-oriented hydrological model. 
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It has been used in similar catchments and for many different purposes, such as to perform 
climate change studies [46,52,53], land use change studies [54,55], and measure opera-
tional uses (e.g., at FOEN Switzerland). We focused on a process-oriented model to keep 
the model uncertainty as small as possible as compared to conceptual models, which are 
often used for similar precipitation runoff studies [6,12,25]. Using this type of model also 
allowed us to study ungauged subcatchments within our calibrated catchment area. Fur-
thermore, WaSiM had already been successfully applied by Hohmann et al. [46] in the 
study area to perform a climate change sensitivity study with a low-flow focus. 

In this study, we used the WaSiM-Richards Version 10.04.07. All modules of WaSiM 
used are shown in Figure 2. For more information about the modules, see Schulla [42] or 
the WaSiM user guide by Schulla [56]. The model was set up with a spatial resolution of 
100 × 100 m and a temporal resolution of 30 min. WaSiM allows the option to internally 
interpolate the meteorological station data to grids. The evapotranspiration was estimated 
with the Penman–Monteith equation [57], and the unsaturated zone with the Richards 
equation, parameterized after van Genuchten [58]. The soil was split up into four calcula-
tion layers (0–20, 20–50, 50–100 cm, 1–20 m) with a total depth of 20 m, including the first 
groundwater layer. By including the data from Klebinder et al. [49], we could include a 
total of 416 soil parameter combinations in the soil table of WaSiM for our study domain. 
The final groundwater parameters of the 2D groundwater module were fitted to represent 
the baseflow quite accurately during the calibration period. Therefore, the saturated hor-
izontal conductivity was split up into areas around the river with 1 × 10−3 m s−1 and the 
surrounding hilly areas with 5 × 10−4 m s−1. Adopting reasonable values, the colmation 
factor was set to 5 × 10−5, and the unitless specific storage coefficient to 0.2. In addition to 
the gridded groundwater parameters, WaSiM was calibrated using four soil module pa-
rameters, which influence the shape and volume of the simulated runoff hydrograph 
when no measured or literature data were available [56]: these were the storage coefficient 
of the surface runoff kd (shape of the surface runoff hydrograph) and interflow ki (shape 
of the interflow hydrograph), the drainage density for interflow dr, and a recession con-
stant of the soil krec (both of which influence the amount of interflow). 

The model calibration period was from 1 May to 30 September 2009 with a model 
spin-up period from 1 November 2007 to 30 April 2009. We calibrated the model only for 
the extended summer months (May to September), since most of the heavy rainfall events 
occur during these months in southeastern Styria. The validation periods were the ex-
tended summers of 2010 and 2011. The model performance was assessed with the Nash–
Sutcliffe model efficiency coefficient (NSE) [59], logarithmic Nash–Sutcliffe efficiency 
(logNSE), Kling–Gupta efficiency (KGE) [60], and percent bias (PBIAS) [61]. NSE is the 
most frequently used performance measure in hydrological modelling and places a focus 
on peak flow [62]. To collect information about the overall flow and especially about the 
low-flow periods, logNSE was included [46]. KGE provides information about the corre-
lation, bias, and variability between the simulations and observed discharge [62]. PBIAS 
provides the average tendency of the over- and underestimation of the discharge [61]. 

The calibration was mostly performed manually. To obtain a first best-guess of the 
model parameters, the shuffled complex evolution optimization algorithm developed at 
the University of Arizona (SCE-UA) [63] was used. The manual calibration was first per-
formed with a focus on the efficiency measures and by carrying out a visual comparison 
of the time series of measured and simulated runoff. Second, since the runoff components 
such as base flow, interflow, and surface runoff are important in process-based modelling, 
we visually analyzed the distribution of the runoff components for specific events. Be-
cause manual calibration steps were necessary, the model was calibrated with the IDW2 
interpolation and 158 precipitation stations and was not recalibrated with all different 
precipitation inputs and interpolation schemes. This approach is considered as appropri-
ate, because the deviation between the efficiency measures for all studied cases from those 
observed in the calibration run was found to be negligible. The deviations observed in the 
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calibration/validation period exhibited a maximum deviation of 0.04/0.02 in NSE, 
0.07/0.13 in logNSE, 0.08/0.04 in KGE, and 11/14% for PBIAS, respectively. 

The best model performance was obtained with the parameter set of krec = 0.8, dr = 40, 
kd = 1.5, and ki = 2. This setup resulted in a model performance for the river runoff in the 
calibration period of summer 2009 with an NSE of 0.80, logNSE of 0.76, KGE of 0.77, and 
PBIAS of 8%. The validation period of summer 2010 and 2011 resulted in an NSE of 0.63, 
logNSE of 0.56, KGE of 0.69, and PBIAS of 19%. The observed and simulated runoff for 
the calibration and validation periods are plotted in Figure A2 in Appendix A. 

 
Figure 2. WaSiM model setup, including modules and input datasets used in this study (created 
after scheme of Schulla [56]). The focus of this study was to evaluate runoff output data (box 
marked in dark blue) as simulated by WaSiM with various precipitation data resolutions at input 
(blue box), and using different interpolation schemes (violet box) IDW—inverse distance 
weighting and TP—Thiessen polygons. 
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3.2. Experimental Design 
Our study design is visualized in Figure 3 and described in the following sections. 

 
Figure 3. Overview of the study design with total catchment and subcatchment areas, gauge station subnetworks 
(ZAMG—data from the Austrian Weather Service; AHYD—data from the Austrian Hydrographic Service; WEGN—
highly dense station network), and full precipitation network (Ref-158-Stations), analyzed short-duration and long-dura-
tion events, spatial interpolation schemes (inverse distance weighting with power of 1 (IDW1), power of 2 (IDW2) and 
power of 3 (IDW3); Thiessen polygons (TP)) for precipitation input data, and the key runoff output data analyzed. 

3.2.1. Selection of Precipitation Station Network Densities 
To obtain precipitation input data at various spatial resolutions, we defined subnet-

works (Table 3 and Figure 3) using the 158 stations. The lowest-density network includes 
only the five ZAMG stations (5-Stations); the mean nearest neighbor distance is 11.0 km. 
This corresponds to an operational meteorological monitoring setup in Austria. The next 
subnetwork includes three more stations from the AHYD network (8-Stations). This 
would be a typical setup for the operational use of hydrological models. 

In addition to the operational setup, precipitation stations from the WEGN are in-
cluded for higher resolution subnetworks. For the main analyses, we defined seven evenly 
distributed subnetworks consisting of rain gauges ranging from 12–109 stations (primary 
subnetworks in Table 3 and Figure 1). In addition, we defined six complementary subnet-
work cases ranging from 12–75 stations with different actual WEGN stations (Table 3 and 
Figure A1 in Appendix A). The spatial uncertainty of the precipitation depends not only 
on the number of gauges or station density, but also on their spatial configuration [13]. 
Therefore, these complementary subnetworks were considered to further investigate the 
uncertainty that was related to a given number of pre-defined subnetworks. 

All available precipitation stations, 158 in total, served as our reference (Ref-158-Sta-
tions) with a mean nearest neighbor distance of 1.4 km. We assumed that the most accu-
rate areal precipitation information could be obtained from Ref-158-Stations, and there-
fore, we calibrated the model using this setup. 
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Table 3. Precipitation stations of the operational subnetwork cases, the primary subnetwork cases, 
the complementary subnetwork cases, and the reference subnetwork with the total number of 
stations per subnetwork, together with the specific station data source (Z: ZAMG, A: AHYD, W: 
WEGN) and the estimated mean nearest neighbor distance. The distance estimates were calculated 
with an ArcGIS software tool. 

Subnetworks 
Gauge  

Subnetwork Case 
Number  

of Stations (Z/A/W) 
Mean Nearest  

Neighbor Distance (km) 
Operational 5-Stations 5 (5/-/-) 11.0 

 8-Stations 8 (5/3/-) 10.5 
Primary 12-Stations 12 (5/3/4) 7.2 

 17-Stations 17 (5/3/9) 5.9 
 25-Stations 25 (5/3/17) 4.0 
 36-Stations 36 (5/3/28) 3.2 
 52-Stations 52 (5/3/44) 2.6 
 75-Stations 75 (5/3/67) 2.0 
 109-Stations 109 (5/3/101) 1.7 

Complementary 12-comp-Stations 12 (5/3/4 comp) 8.3 
 17-comp-Stations 17 (5/3/9 comp) 5.4 
 25-comp-Stations 25 (5/3/17 comp) 4.1 
 36-comp-Stations 36 (5/3/28 comp) 3.0 
 52-comp-Stations 52 (5/3/44 comp) 2.4 
 75-comp-Stations 75 (5/3/67 comp) 2.0 

Reference Ref-158-Stations 158 (5/3/150) 1.4 

3.2.2. Selection of Precipitation Events 
We selected heavy precipitation events observed with the WEGN during the ex-

tended summer (May–September) period in 2009–2014 (see also [11]). We first defined 
rain events with a minimum inter-event time of 6 h [64,65] and then selected the top 10% 
of the heaviest rainfall events. Finally, for the case studies, the three most extreme, small-
scale, short-duration and the three most extreme, large-scale, long-duration events were 
selected (see also Figure A3 in Appendix A). The short-duration events were identified as 
the three events with the strongest peak hour during our study period. The long-duration 
events were selected as those with the largest total precipitation amount. We additionally 
conducted a visual inspection of the INCA data across the study area (Figure 4) to check 
the spatial scales of the selected rainfall events. Table 4 shows a description of the six 
rainfall events considered in this study. 
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Figure 4. Precipitation time series of the “short-1 event” measured at WEGN and ZAMG stations (left panel) throughout 
the WEGN network area (purple box in the four panels on the right). In the panel on the left, “WEGN” shows mean areal 
precipitation computed from the 150 stations (black line) with a min–max range among the stations (gray shaded), while 
“ZAMG” shows mean precipitation (red line) obtained from the 3 ZAMG stations with a min–max range across the sta-
tions (yellow-shaded). The map sequence in the four panels on the right shows the evolution of the precipitation event as 
revealed by the gridded INCA analysis across the WEGN network (purple box) and the Raab catchment area (red line). 

Table 4. Precipitation events selected for this study and associated key characteristics. The precipitation information indi-
cated for the events was estimated from WEGN data. The runoff information included the measured peak runoff at the 
total catchment outlet, the Neumarkt/Raab gauging station. The HQ gives a rating if the peak runoff was statistically 
reached or exceeded once per year (HQ1) or once per ten years (HQ10). 

Event Start Date 
Duration 

(h) 
Total Precipitation 

(mm) 
Peak Hourly 

Precipitation (mm) 
Peak Runoff 

(m3 s−1) HQ 

short-1 10 August 2009 4 34 19 107 HQ1 
short-2 19 August 2011 2 23 18 36 <HQ1 
short-3 01 September 2011 4 28 26 26 <HQ1 
long-1 22 June 2009 66 121 10 244 >HQ10 
long-2 03 August 2009 25 106 10 213 HQ10 
long-3 17 September 2010 54 60 5 55 <HQ1 

3.2.3. Spatial Interpolation Schemes 
In this work, we employed three different IDW setups and the TP interpolation. We 

decided to use these methods for several reasons: IDW and TP are both widely used in-
terpolation methods in hydrological studies [30,66]. Our network is fairly dense, with reg-
ularly distributed stations in a landscape with moderate topography; therefore, we do not 
expect to obtain additional value from taking more complex geostatistical measures. The 
literature is ambiguous regarding which interpolation method is the best, and especially 
for high-resolution station networks, more complex geostatistical methods do not provide 
additional value [40,67]. The important influence of the weighting power of IDW on mod-
eling results has not yet been studied broadly, nor has it been studied for such a dense 
station network [38,39]. The methods of IDW and TP are implemented in WaSiM and, 
therefore, widely used by the model users. Additional altitude information was not in-
cluded, because the elevation differences in the area are fairly small (altitude differences 
are no more than about 300 m). 

IDW is the sum of all contributing station data with specific weights [42]. It is calcu-
lated as follows: 
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(ݑ)ݖ̂  =  ෍൫ݓ௝ ∙ ௝൯ ൯௝ݑ൫ݖ  (1)

with ݓ௝ = ଵௗ൫௨,௨ೕ൯೛ ⋅ ଵ஼  and ܥ = ∑ ଵௗ൫௨,௨ೕ൯೛௝  follows ∑ ௝௝ݓ = ,ݑ௝൯ observed value at the station j. ݀൫ݑ൫ݖ .௝  weight of the observed value at the station jݓ .interpolated value at location u  (ݑ)ݖ̂(2) 1  .weighting-power exponent of the inverse-distance scheme  ݌ .௝൯ distance to the station jݑ
In our study, we used the standard weighting power p of 2 (IDW2) as well as the 

weighting power p of 1 (IDW1) and of 3 (IDW3) for comparison. The search radius was 
set differently for the core WEGN region and the surrounding stations. Since our focus 
region was the WEGN region itself, and we do not have such a dense network throughout 
the entire catchment area, we maintained a fixed precipitation input for the surrounding 
area. So, for the 12-Stations case and onwards, the IDW2 interpolation case with the five 
ZAMG and three AHYD stations and a 60 km radius of influence was maintained for the 
surrounding area. 

The WEGN region (23 × 18 km) was then interpolated with each subnetwork and 
interpolation scheme, respectively. A smoothing buffer of 3 km was set, between the 
WEGN region and its surroundings. This setup enabled us to change the radius of influ-
ence for the WEGN stations individually without losing important information from the 
supporting weather stations. The radius of influence was subsequently set to 20 km for 
the 12- and 17-Stations cases and to 10 km for the 25-Stations case and onward so that we 
could include all supporting information and still obtain proper information for all loca-
tions. 

Using the TP interpolation, the precipitation data collected at the nearest station were 
always taken. Each grid cell of the model received information from the nearest station, 
and the polygons formed (Thiessen polygons) represent lines of equal distance between 
two stations [42]. Hence, TP is a simpler method to apply than IDW, but the former is still 
widely used in hydrological modeling [6,26,32]. 

3.2.4. Runoff Analysis Approach 
In our study, we analyzed an event-specific time series of runoff and peak flow de-

viations. The time series are visualized for all events individually, but are combined with 
different station network densities and interpolation schemes. For each catchment, inter-
polation method, and event, the peak flow deviation was calculated individually as a per-
cent of the total value. For this purpose, the maximum runoff value was calculated using 
the simulation results from every subnetwork case (MAX value); this value was then com-
pared to the maximum runoff value from the full-network reference case (MAX Ref-158-
Stations), which best captures the “true” spatial variability of precipitation in the study 
area. This deviation metric is computed as follows: peak flow deviation ሾ%ሿ = (MAX value) − (MAX Ref-158-Stations)(MAX Ref-158-Stations)   × 100 (3)

The timing of the maximum peak flow was also calculated. Therefore, the difference 
between the earliest and the latest peak flows with all station densities (including the com-
plementary subnetworks) of every single event and each catchment was calculated sepa-
rately. 
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4. Results 
4.1. Results for Individual Example Events 

In this section, we focus on individual precipitation events. Figure 5 shows exem-
plary maps of the interpolated precipitation data, as well as the resulting runoff in the 
representative small subcatchment of Haselbach (12 km2) for the short-1 event. With the 
12-Stations case, the maps of the two interpolation schemes and the resulting runoffs at 
Haselbach are very different. In the case of the Ref-158-Stations, the interpolation schemes 
have a smaller impact on the areal precipitation estimation as compared to the 12-Stations 
case. In the Haselbach subcatchment at this short-1 event, the difference between the 
IDW2 and TP interpolation in the 12-Stations case is more pronounced than the difference 
between the 12-Stations and Ref-158-Stations cases. 

 
Figure 5. Exemplary precipitation maps using the WaSiM interpolation schemes of inverse distance weighting with power 
of 2 (IDW2) and Thiessen polygons (TP) for the short-1 event (10 August 2009 at 17:30), for the 12-Stations and Ref-158-
Stations subnetwork cases (four panels on the upper-left). The time series (bottom row and right column panels) show the 
precipitation (dashed, from top) and the modeled runoff (solid) of this event in the representative small subcatchment of 
Haselbach (12 km2). 
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In Figure 6, the runoff time series of the short-1 event and the long-1 event for the 
interpolation schemes of IDW2 and TP are visualized for three subcatchments. 

 

 
Figure 6. Precipitation and associated runoff time series for the short-1 event (top six-panel plate) and long-1 event (bottom 
six-panel plate), respectively, for all subnetwork cases and the full Ref-158-Stations network; the complementary runs 
(comp runs) for the 12-comp-Stations to 75-comp-Stations subnetworks are depicted in gray. Results are shown for the 
inverse distance weighting with power of 2 (IDW2) and Thiessen polygons (TP) interpolation schemes (top and bottom 
rows per plate), for the Haselbach (left), Giemerbach (middle), and Auersbach (right) subcatchments. 

The short-1 event in the Haselbach subcatchment shows very little runoff for the 
8-Stations case under the IDW2 interpolation as compared to the other cases. When exam-
ining the range of gauge densities, no systematic variation of simulated runoff peaks is 
observed. For instance, while the lowest runoff is simulated from 8-Stations with IDW2, 
the highest runoff was seen from 36-Stations with the same interpolation scheme. In the 
Giemerbach subcatchment, the lowest runoff is seen in the 5- and 8-Stations cases, and the 
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highest runoff with the 36-Stations case (both TP interpolation). Applying the IDW2 in-
terpolation, the 36-Stations case also shows the highest value, but the 8- and 12-Stations 
cases show the lowest. In the Auersbach subcatchment, the IDW2 interpolation shows the 
lowest values with 5- and 8-Stations cases, and the highest runoff with the 52-Stations 
case. Applying the TP interpolation, the 5- and 8-Stations cases produce the same mini-
mum runoff results. The maximum runoff is seen in the 52-Stations case. 

The runoff results obtained for the long-1 event are almost ten times higher than that 
of the short-1 event. The order, maxima, and minima also differ greatly between the two. 
The IDW2 and TP interpolation schemes lead to a different runoff curve order and even 
different curve shapes. This becomes visible in the Haselbach runoff curves, which have 
different shapes in the two interpolation schemes and different minima and maxima. In 
the Giemerbach subcatchment, the highest value is simulated for the 12-Stations case with 
the TP interpolation and for the 5-Stations case under IDW2. In the Auersbach subcatch-
ment, the lowest runoff is seen in the 12-Stations case with both interpolation schemes. 
The highest values are modelled in the 8-Stations cases when using IDW2, and in the 5- 
and 8-Stations cases when using TP interpolation. 

These are examples of one short- and one long-duration event for three subcatch-
ments, but they do not cover the total range of setups and results. Therefore, the combined 
figures are shown in Section 4.2. 

4.2. Combined Results for all Events 
4.2.1. Timing of Peak Flow 

We calculated the differences in the timing of the runoff peak using all densities and 
interpolation schemes for all (sub)catchments (Table 5). The deviations range mostly be-
tween 0 and 3.5 h, with the exception of the long-3 event. The long-3 event shows huge 
timing differences, with up to 31 h in the Saazerbach subcatchment. Here, the first peak 
flow was measured on 17 September 2010 at 23:30 and the last on 19 September 2010 at 
6:30. Haselbach shows a similar timing of the runoff peaks, with the exception of the 8-Sta-
tions case, when applying all interpolation schemes. In this case, the timing of the runoff 
peak is also one day later than in the other cases. At Neumarkt/Raab gauging station, the 
difference is mostly just 3 h, but the TP 8-Stations case has a maximum peak flow that is 
around 15 h later than the other cases. 

When examining the short-1 event, we see that the runoff peaks at the Neu-
markt/Raab and Feldbach/Raab gauging station were always at the same time. For the 
short-2 event at station Neumarkt/Raab, the timing of the peak runoff is mostly the same, 
but the two cases show a half-hour difference. This event also shows the smallest devia-
tions in the peak timing, i.e., just 1.5 h. The short-3 event shows no specifically noticeable 
cases, whereby the timing differences at Neumarkt/Raab gauging station are up to 3 h; in 
the Saazerbach subcatchment up to 3.5 h; 1.5 h or less for the other catchments. When 
examining the long-1 and long-2 events, no specifically noticeable cases are visible, and 
the timing differences are just between 0.5 and 2/2.5 h. 

Table 5. Calculated differences in the timing of the runoff peak for all subnetwork station densities and interpolation 
schemes separately for all (sub)catchments. 

Event Neumarkt/Raab Feldbach/Raab Kornbach Haselbach Saazerbach Auersbach Giemerbach 
short-1 0 h 0 h 0.5 h 2 h 3.5 h 1 h 2 h 
short-2 0.5 h 0.5 h 1.5 h 1 h 1.5 h 0.5 h 0.5 h 
short-3 3 h 0.5 h 1.5 h 1.5 h 3.5 h 1 h 1.5 h 
long-1 1 h 1 h 0.5 h 2 h 2 h 1.5 h 0.5 h 
long-2 1.5 h 0.5 h 2.5 h 2 h 1.5 h 1 h 1 h 
long-3 15.5 h 1.5 h 1 h 28.5 h 31 h 1 h 1 h 
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4.2.2. Peak Flow Deviation 
Figure 7 shows the peak flow deviations as calculated with Equation (3) for all ana-

lyzed station cases and for the IDW and TP interpolations, respectively. The interpolation 
schemes of IDW1 and IDW3, as well as all results of the complementary subnetworks, are 
plotted in Appendix A (Figure A4). We can see that the different short- and long-duration 
rainfall events lead to a significantly different runoff picture, while the interpolation 
schemes and different catchments are much more similar. Lower station densities 
(<12-Stations) mostly show larger deviations from the Ref-158-Stations full network case 
(darker colors) than cases with more stations (lighter colors). 

The three short events show more extreme differences between the station densities 
than the three long events. When a comparison was made between the (sub)catchments, 
no single (sub)catchment was especially noticeable. Using the TP interpolation generally 
results in more extreme values than using IDW2. Differences between the results obtained 
with three IDW interpolation schemes are less pronounced than differences seen between 
the results from IDW and TP interpolation (Figure 7 and Figure A4). 

If we take a look at the short-1 event under all interpolation schemes and for all 
(sub)catchments, we see that the 8-Stations subnetwork shows the strongest negative peak 
flow deviation as compared to the Ref-158-Stations case. This sums up to nearly –70% at 
Saazerbach when using the IDW2 interpolation. The Saazerbach subcatchment modeling 
results also show slightly different behavior than the others, with a positive peak flow 
deviation being seen for the 5-Stations case when using the TP interpolation. Haselbach 
shows the most positive value of around +50% with the 36-Stations subnetwork and the 
IDW1 interpolation conditions. 

The short-2 event reveals a similar picture as the short-1 event, with pronounced neg-
ative peak flow deviations also seen for the less dense networks. Again, the most negative 
deviation appears in the Saazerbach subcatchment in the 8-Stations case (IDW2) with 
nearly –65%. The most positive values are obtained when TP interpolation is used for the 
Saazerbach, Giemerbach, and Haselbach subcatchments. 

The short-3 event shows a more positive peak flow deviation pattern as compared to 
those obtained in the short-1 and short-2 events. Especially Auersbach shows positive de-
viations, with more simulated runoff seen than in the Ref-158-Stations cases for almost all 
interpolations and station density cases. Including data from the complementary network, 
but also the primary networks, results in quite extreme values for the short-3 event. The 
runoff gauges at the main river stations of Neumarkt/Raab and Feldbach/Raab seem to 
reflect the mix of extreme positive and extreme negative peak flow deviations with maxi-
mum values of around +15% and −30%. 

The long-1 event shows the strongest peak flow deviations among the long duration 
events. Giemerbach shows especially high positive values when TP interpolation is used, 
deviating from the Ref-158-Stations case by up to 90%. Auersbach shows different behav-
ior, with the most negative values observed for the 12- to 52-Stations cases and deviations 
of up to –35%. The 5- and 8-Stations cases result in positive peak flow deviations in all 
catchments. 

The long-2 event shows less pronounced peak flow deviations than the long-1 event. 
Haselbach and Kornbach show the most positive deviations with up to +60% seen in the 
5- and 8-Stations cases. 

The long-3 event appears to be very similar to the long-2 event, showing little peak 
flow deviations in most of the cases. Here, Saazerbach shows the most positive peak flow 
deviation in the 8-Stations case when TP interpolation is used, i.e., +75%. 

By comparing all events together, some results can be summarized for individual 
(sub)catchments. For the Raab river gauging stations of Feldbach/Raab and Neu-
markt/Raab, the peak flow deviation starting from the 25-Stations subnetwork is almost 
the same as the Ref-158-Stations full network (less than 10%). This implies that data from 
the 25-Stations network would be sufficient to adequately simulate the Raab river runoff. 
However, the complementary network shows deviations of up to 14% for the gauge at 
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Neumarkt/Raab in the 25-Stations case, and here, using only the 36-comp-Stations case 
would be sufficient, as it shows deviations below 10%. At the Feldbach/Raab gauging sta-
tion, using the 36-Stations case of the primary subnetwork results in deviations below 
10%, but using only the complementary subnetwork is not sufficient, even with 75-comp-
Stations. 

 
Figure 7. Peak flow deviation from the Ref-158-Stations case as a grid-cell plot with each cell indicating the magnitude of 
the deviation on a color scale. The cases of all six events (one event per panel), all (sub)catchments (columns within each 
panel), two interpolation schemes IDW2—inverse distance weighting with power of 2 and TP—Thiessen polygons 
(stacked subpanels in each panel), and all subnetwork cases (rows per subpanel) are shown. 

Auersbach and Saazerbach show a deviation of more than 10% at least for one event, 
where even the 109-Stations case does not result in the same runoff as the 158-Ref-Stations 
case. Giemerbach and Kornbach show a threshold at the 109-Stations case, after which no 
large improvement in the accuracy of the simulated runoff is seen, compared to the Ref-
158-Stations case. Haselbach already shows such a threshold in the 75-Stations case. 

On the one hand, the inclusion of data from a specific number of stations leads to 
large changes in simulated runoff in many subcatchments. Giemerbach shows such a large 
step/change from the 25- to the 36-Stations case (e.g., in the short-1 event when using the 
TP interpolation, the value for the 25-Stations case is around −50%, and for the 36-Stations 
case +30%). These large steps are especially noticeable for the short-duration events, but 
are also measurable for the long-duration ones. The Haselbach subcatchment also shows 
this behavior, but between the 17- and 25-Stations cases. 

On the other hand, no changes between some subnetworks are visible in some sub-
catchments, especially when using the TP interpolation. The northern catchments Auers-
bach and Kornbach almost do not show differences if we simulate runoff using data from 
5- or 8-Stations subnetworks and all interpolation schemes (<1%). If we use the TP inter-
polation, the analysis of data from the 17-, 25-, and 36-Stations subnetworks lead to the 
same peak flow results in these northern catchments. Giemerbach shows almost the same 
runoff in all events in the 5-, 8-, and 12-Stations, and also between the 17- and 25-Stations 
cases. 

In Figure 8, we summarize the results for peak flow deviations as a function of all 
station subnetworks for the primary and the complementary subnetworks. These results 
highlight the fact that the direction of biases (overestimation vs. underestimation) is af-
fected primarily by the gauge network density rather than the interpolation scheme used. 
For long-duration heavy precipitation events, assessing a mean value over all catchments, 
we find that the biases decrease more rapidly when the number of gauges in the network 
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increases. The long-duration heavy precipitation events as a mean over all (sub)networks 
show a threshold behavior with 17 regularly distributed stations, yielding satisfactory 
performance for all interpolation schemes. From the 17-Stations case and onward, the bias 
is less than about 10% and converges with higher subnetwork densities. 

Note that our subnetworks represent a quite regularly distributed gauge configura-
tion, and therefore, the uncertainty in the runoff simulations can be somewhat greater 
than for more irregular gauge location configurations, which is visible in the complemen-
tary station case. Here, the 25-comp-Stations case would be sufficient, after which no large 
improvement in the runoff accuracy compared to the Ref-158-Stations case becomes visi-
ble. 

The short-duration heavy precipitation events show such a threshold behavior in the 
52-Stations case, within the 10% range. Above this threshold, the values converge with 
higher subnetwork densities. In the complementary network, 75-comp-Stations are also 
below the 10% deviation, so this case would be as good as the Ref-158-Stations case if data 
are averaged across all (sub)catchments. 

 

 
Figure 8. Peak flow deviation between the Ref-158-Stations case and the mean across all (sub)catchments for all subnet-
work cases (x-axis of panels) and interpolation schemes (different line styles, see legend) IDW2, IDW3, and IDW1—inverse 
distance weighting with powers of 2, 3, and 1, TP—Thiessen polygons, respectively, for the three short events (left) and 
the three long events (right). The data shown in the upper panels were calculated based on the ten primary subnetwork 
cases (5- to 158-Stations) and in the lower panels, for the six complementary ones (12-comp- to 75-comp-Stations). 
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5. Discussion 
In our event-based study, we chose the three most extreme short- and long-duration 

events. Significant differences in peak runoff among these six events were observed at the 
Neumarkt/Raab gauging station, in part due to different preconditions: the short-1 event, 
with over 100 m3 s−1 peak flow, was influenced by the long-2 event that had occurred a few 
days before, and the other two short events in 2011 had drier preconditions and conse-
quently smaller peak flows with 26 to 36 m3 s−1. 

5.1. Threshold Behavior 
The mean over all catchments and events (Figure 8) shows a “sufficiency threshold”; 

above this density, only small runoff changes of about 10% can be observed, which con-
verge when higher subnetwork densities are used. For the long-duration events, this 
threshold occurs in the 17-Stations case using a regularly distributed subnetwork. This cor-
responds to a mean nearest neighbor distance of 5.9 km or around 30 stations per 1000 km2. 
The short-duration events only show such threshold when the 52-Stations case is analyzed 
using the primary subnetwork (mean distance of around 2.6 km or around 150 stations 
per 1000 km2). Such thresholds have also been reported in the literature, where no better 
performances after crossing specific station densities are seen [5,22,25,27]. For example, 
Lopez et al. [22] mentioned a threshold of 24 gauges per 1000 km2 for the Thur basin (area 
1700 km2), and Xu et al. [27] of around 1 rain gauge per 1000 km2 for the Xiangjiang River 
catchment (area 94,660 km2). Evidently these studies focused on large catchments and 
larger scales. By comparing the results of the primary network with the results obtained 
from the complementary networks (i.e., irregularly distributed stations), we found that 
collecting data from a regularly distributed network requires the use of fewer stations to 
properly simulate runoff. 

In contrast to these “sufficiency thresholds”, the individually fairly small subcatch-
ments do not always show such a sufficient density in our high-resolution case, where the 
results are both catchment- and event-dependent (Figure 7). Compared to the Ref-158-
Stations cases, a sufficient density can only be reached in the Giemerbach and Kornbach 
subcatchments using a high density with the 109-Stations. In the Auersbach and Saazer-
bach subcatchments, this is not possible even with 109-Stations. In the Haselbach sub-
catchment, using the 75 stations of the primary subnetwork are sufficient, but not using 
the 75 complementary stations. For this, a much denser and well-targeted network is 
needed to obtain peak flow deviations that are lower than 10% as compared to the Ref-
158-Stations case in small subcatchments. 

5.2. Influence of Station Location 
Adding four WEGN stations to the operational subnetworks (5- and 8-Stations cases), 

we noticed that including data from the first four WEGN stations in the primary subnet-
work (12-Stations cases) consistently resulted in much lower peak flow deviations from 
the Ref-158-Stations case, but including data from the first four complementary stations 
(12-comp-Stations) led to much higher peak flow deviations. Therefore, in catchments 
where station numbers are still sparse, the location of the stations is very important for 
mitigating the under-sampling problem. Watson et al. [62] pointed out that not only the 
density of precipitation measurements has a significant impact, but also that the stations 
needed to be positioned in critical areas. 

The effect of the station location is clear within the operational setup when compar-
ing the 5- and 8-Stations cases. In the Auersbach and Kornbach subcatchments, the peak 
flow under all interpolation schemes in these cases is the same for subcatchments on the 
northern side of the Raab river. These two catchments are not influenced by the AHYD 
stations located to the west, south, and farther east of the Raab river. However, the pre-
cipitation input of the Saazerbach subcatchment is often strongly influenced by AHYD 
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stations to the west of the river that supply meteorological information. This information 
is especially important, since many storms come into the area from the west or north-west. 

In some cases, the simulated runoff did not change, even when more stations were 
included. Using TP interpolation in Giemerbach, Kornbach, and Auerbach subcatch-
ments, it did not matter whether we used 5-, 8-, or 12-Stations or the 17- and 25-Stations 
case. The peak flow deviation always stayed the same for the primary subnetwork, be-
cause the supporting stations are too far away to be included when using the TP interpo-
lation. These effects were not as pronounced when IDW interpolation schemes were used, 
since the influence radius here also included information from weather stations that are 
within the larger surrounding area. 

Due to the “right” location change, the simulated runoff differed strongly from one 
subnetwork to the other in some cases. In the Haselbach subcatchment in the 17- to the 
25-Stations case (IDW2), a change of around −30 to +40% peak flow deviation occurred. 
This is because one WEGN station of the 25-Stations case is very close to the subcatchment. 
In the Giemerbach subcatchment, changes from −50 to +30% were observed (25- to 36-
Stations case), because two WEGN stations were added, and these are located directly in 
the catchment. Therefore, we observed that the location of the gauging stations is highly 
crucial in areas where the sampling densities are basically still insufficient. 

By placing our focus on small catchments, we can clearly point out that the station 
density has a larger influence on small subcatchments than on the total Raab catchment. 
The specific spatial location of precipitation stations is much more important when ana-
lyzing data for small catchments. It has already been noted in other studies that the loca-
tion of precipitation measurements is important on all scales [22,24,68]. Using the highly 
dense WEGN, we could show new empirical evidence that again underlines the im-
portance of these locations in small catchments, i.e., in the 10 to 30 km2 area class. 

5.3. Effect of Timing of Peak Flow 
By analyzing the timing of peak flow (Table 5), we see that the differences are mostly 

quite small as compared to the model time resolution of 30 min. Nevertheless, a difference 
of three hours can make substantial difference regarding (flash) flood prevention, espe-
cially in small catchments. This difference is most profound when the time difference 
arises only from the station network density in combination with the station locations. In 
the special case of the long-3 event with a precipitation event duration of 54 h, the absolute 
peak runoff occurs even on different days. The total rainfall of 60 mm fell over a long time 
period, and depending on the station density and location, different amounts were simu-
lated in the area. This result is especially important with respect to small catchments, 
where the influence of specific stations is even more pronounced. As seen before, the total 
Raab catchment at station Neumarkt/Raab is also influenced by this effect, and a time dif-
ference up to 9 h can occur. 

5.4. Comparison of Interpolation Schemes IDW and TP 
Turning specifically to examine the characteristic influences of the interpolation 

scheme, several aspects are salient, including the special properties of TP interpolation. 
Precipitation maps of interpolated gridded rainfall are generally very different when dif-
ferent IDW and TP interpolations are used with stiff borders between the TP polygons 
(Figure 5). These lead to sharp differences in simulated precipitation amounts between 
two adjacent polygons, especially in cases of high spatial rainfall variability. Therefore, 
the greatly pronounced peak flow deviation is also due to this reason (Figure 7). 

Compared to using the different IDW interpolation schemes, the effect of using the 
TP interpolation is much stronger. However, by comparing the three IDW interpolation 
schemes, we see that the differences among them are not negligible. Peak flow deviations 
of up to 50% from the IDW2 to the IDW1 case are possible (e.g., short-3 event, 5-Stations, 
Saazerbach). The influence of the interpolation scheme is highly event-dependent and es-
pecially pronounced in small catchments with a low subnetwork number. For the total 
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catchment area of Neumarkt/Raab and Feldbach/Raab, the differences are below a 5% de-
viation. In this case, it does not make a difference which IDW scheme is used, but the 
choice between IDW and TP is distinct. 

Among the IDW interpolation schemes, the peak flow deviations of IDW3 tend to be 
the closest ones yielded by using the TP interpolation. This result is expected, since the 
higher IDW3 weighting power gives less weight to the surrounding stations than IDW2 
or IDW1. Dirks et al. [40] suggested using the power values of 2 for daily and monthly, 3 
for hourly, and 1 for yearly precipitation interpolations to minimize the interpolation er-
ror. Kurtzman et al. [39] mentioned that the influence of weighting power depended on 
spatial pattern, specifically referring to the location of the catchment in their Mediterra-
nean study area. Large power values of 3 are more effective closer to the coast line, 
whereas smaller power values such as 1 are more effective closer to the mountains. Our 
study area is close to the mountains, which seems to support the observations of Kurtz-
man et al. [39] regarding the IDW1 interpolation, but we use half-hourly time steps, which 
is more similar to the use of the IDW3 method in Dirks et al. [40]. Our results do not sug-
gest that there is a certain IDW weighting power value for performing optimal hydrolog-
ical modelling in the Rabb catchment. We used the IDW2 as reference, as it is also the most 
widely used [37]. In other studies in the WEGN region, the weighting power of 2 was also 
set for the precipitation interpolation [69,70] based on performance tests such as leave-
one-station-out verifications on small-scale rainfall events. Nevertheless, if we use many 
stations, we see no relevant difference between the different weighting power of the IDW in-
terpolations from about from the 52-Stations case onward (mean distance of around 2.5 km). 

Overall, if only a few stations are available, the IDW interpolations, and in particular 
IDW2, are preferable for analyzing data from regions with moderate topography. The TP 
interpolation is not recommended for areas with complex topography and low station 
densities, as also stated by Kobold and Brilly [32]. Dirks et al. [40] also do not recommend 
the TP interpolation, because of its unrealistic discontinuous rain fields, although the in-
terpolation errors between TP and IDW are comparable. Only when the network is highly 
dense, as in our cases with at least 350 station per 1000 km2 or more, the TP method might 
be an option, since it is computationally the least expensive. Nevertheless, precipitation 
maps with sharp differences that are still unrealistic will exist that could adversely impact 
runoff results in very small catchments. 

In summary, our results clearly show the influence of the interpolation scheme on 
modelling, especially for few-station networks. Nonetheless, the impact of station net-
work density is clearly much more significant for runoff simulations than the impact of 
the interpolation scheme. 

6. Conclusions 
We used the highly dense WEGN station network in the southeastern Alpine fore-

land of Styria, Austria, to analyze the influence of rain gauge network density and interpo-
lation schemes on simulated runoff, placing a focus on small subcatchments (10 to 30 km2). 

Our first key question was “How many precipitation stations do we need to reliably 
model runoff during heavy rainfall events?” This question cannot be answered in general 
due to the complex spatiotemporal characteristics of the events, and especially of the 
short-duration convective events. Although our results show that the influence of the sta-
tion network density is specifically catchment-, (station) location-, and event-dependent, 
we were able to derive average, guideline results. 

For long-duration stratiform-type events (lasting typically longer than a day) and av-
eraging over all catchments, a station density with a mean nearest neighbor distance of 
around 6 km (17-Stations) is found to be sufficiently dense to perform robust runoff mod-
eling, including reliable peak runoff estimations. To obtain an average for all catchments 
from the short-duration heavy convective rainfall events (lasting typically a few hours 
only), at least a mean nearest neighbor distance of around 2.6 km (52-Stations, regularly 
distributed subnetwork) is needed for runoff modeling. Our simulations with data from 
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the complementary subnetworks show that not only the density of stations but also their 
spatial configuration is crucial. 

The second research question “Are there specific features of small subcatchments to 
reliably model runoff under heavy rainfall events?” can be answered with a clear “Yes”. 
By focusing on subcatchments in the 10 km2 size class, our results show that sufficient 
station density is mostly higher with 109-Stations (mean distance 1.7 km) or not even 
reached at numbers lower than the reference case. Therefore, especially in small subcatch-
ments, both the station density and the actual station locations are crucial. Here, the influ-
ence of station location also depends on typical storm tracks across the catchment. 

Furthermore, the radius of influence of each station plays an important role for pre-
cipitation interpolations. The third key research question “How strongly does the inter-
polation scheme influence runoff results when the precipitation station density is the 
same?” is related to this. The answer to this question depends on the station density. For 
very dense station networks (in our case 109 to 158 stations, mean distance of 1.7 km to 
1.4 km), the specific interpolation scheme is not relevant. The simpler TP interpolation is 
already sufficient in these cases, although it can provide unrealistic rainfall fields. Overall, 
the interpolation scheme is found to be clearly less influential than the gauge network 
density on simulated runoff. Hence, when analyzing and interpreting modeled runoff 
based on rainfall input data, station network density will most importantly influence the 
results as long as a reasonable interpolation is chosen. 

We emphasize that it is important to carry out an explicit study of the hydrological 
response to different precipitation events. Many earlier studies have evaluated the “accu-
racy” of (remote-sensing) gridded rainfall event data by making direct comparison with 
ground gauge measurements [18,19,71]. Our study findings highlight the fact that it is also 
important to evaluate the performance of precipitation datasets at various resolutions to 
measure hydrological runoff response. Such evaluations will provide broader practical 
guidance both to rainfall data providers as well as to hydrological model users. 

The dependence on specific rainfall event characteristics and station network density 
is mitigated in the main river runoff. However, regarding local-scale hazards that can oc-
cur, such as severe overland flooding, flashfloods, and hillslope landslides that are trig-
gered by short-duration convective events, it is necessary to obtain more dense observa-
tions to perform reliable hydrological modeling and estimate the risks of these hazards 
and suggest protective action. While the WEGN is a unique, long-term research facility 
with sufficiently high station density, it is quite limited in terms of area. The densification 
and expansion of runoff and rainfall gauge networks in this and many other risk-prone 
areas, therefore, would be a great and much needed improvement on top of existing ob-
servations. An alternative would be to tap other data sources, enabling suitable data prod-
ucts to be obtained at high spatiotemporal resolutions, such as well-calibrated, high-qual-
ity precipitation radar data. 

In deploying new stations, selected station locations have a strong effect on gridded 
precipitation fields and, therefore, also on runoff results, especially in small catchments. 
In this study, we selected two subnetwork ensembles, the primary and the complemen-
tary subnetwork with gauges from the WEGN. The primary subnetwork contained sta-
tions with a quite regular distribution, and the complementary subnetwork contained dif-
ferent WEGN stations. Performing a more detailed analysis, whereby the influences of 
irregular distributions are examined by randomly picking and evaluating stations more 
closely on the basis of catchment characteristics, may be a useful design step for determin-
ing new station placements in other areas. This would help us to arrive at an optimal rain 
gauge network design for hydrological purposes in the specific catchment. 

Since such dense networks are available in virtually no other place worldwide, the 
runoff impact results derived here for the Raab catchment and its subcatchments in south-
eastern Austria need to be “transferred” to other regions with due care, examining the 
comparability of weather, hydrology, and landscape characteristics [36,41,72]. With such 
due care, we consider the essential results and conclusions to be transferable to many 
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other mid-latitude land regions. For the majority of ungauged or extremely sparsely ob-
served small catchments, the awareness of both the level of skill and limitations of rain-
fall–runoff modeling, as reported here, will be particularly crucial. 
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Appendix A 

 
Figure A1. Enlarged view of the study area, as in Figure 1, indicating the complementary subnet-
work setups and subcatchments used in the study. 

 
Figure A2. Simulated (blue line) and observed runoff (red line) at the Neumarkt/Raab gauging 
station for the calibration period of May to September 2009 (top) and the validation period of May 
to September 2010 (middle) and 2011 (bottom). From the top of each panel, the interpolated pre-
cipitation (grey line) is co-visualized over the same extended summer periods. 
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Figure A3. Classification of the selected most extreme three short-duration and three long-dura-
tion events within our study time frame over the extended summer months (May to September) in 
2009–2014. 
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(a) 

 
(b) 

 
(c) 

Figure A4. Complementary to Figure 7. Peak flow deviation to Ref-158-Stations case as a grid-cell plot with each cell 
indicating the magnitude of the deviation on a color-scale, for the cases of all six events (one event per panel), all 
(sub)catchments (columns per panel), the four interpolation schemes inverse distance weighting with power of 2 (IDW2), 
power of 3 (IDW3), power of 1 (IDW1), and Thiessen polygons (TP)) (stacked subpanels per panel), and all subnetwork 
cases (rows per subpanel). (a) depicts the results of the complementary subnetwork of IDW2 and TP interpolation; (b) the 
results for the primary subnetworks for IDW3 and IDW1; (c) the ones of the complementary subnetworks (IDW3 and 
IDW1) analyzed in this study. 
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