English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!DetailsSummary

Discarded

Preprint

Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization

MPS-Authors
/persons/resource/persons244828

Sha,  Zhiqiang
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons237977

Schijven,  Dick
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons4382

Francks,  Clyde
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Imaging Genomics, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(No access)

Supplementary Material (public)
There is no public supplementary material available
Citation

Sha, Z., Schijven, D., & Francks, C. (2021). Patterns of brain asymmetry associated with polygenic risks for autism and schizophrenia implicate language and executive functions but not brain masculinization. bioRxiv, 10.1101/2021.03.19.436120. doi:10.1101/2021.03.19.436120.


Abstract
Autism spectrum disorder (ASD) and schizophrenia have been conceived as partly opposing disorders in terms of systemizing versus empathizing cognitive styles, with resemblances to male versus female average sex differences. Left-right asymmetry of the brain is an important aspect of its organization that shows average differences between the sexes, and can be altered in both ASD and schizophrenia. Here we mapped multivariate associations of polygenic risk scores (PRS) for ASD and schizophrenia with asymmetries of regional cerebral cortical surface area, thickness and subcortical volume measures in 32,256 participants from the UK Biobank. PRS for the two disorders were positively correlated (r=0.08, p=7.13×10−50), and both were higher in females compared to males, consistent with biased participation against higher-risk males. Each PRS was associated with multivariate brain asymmetry after adjusting for sex, ASD PRS r=0.03, p=2.17×10−9, schizophrenia PRS r=0.04, p=2.61×10−11, but the multivariate patterns were mostly distinct for the two PRS, and neither resembled average sex differences. Annotation based on meta-analyzed functional imaging data showed that both PRS were associated with asymmetries of regions important for language and executive functions, consistent with behavioural associations that arose in phenome-wide association analysis. Overall, the results indicate that distinct patterns of subtly altered brain asymmetry may be functionally relevant manifestations of polygenic risk for ASD and schizophrenia, but do not support brain masculinization or feminization in their etiologies.