
 

 

Supplementary material 

 
Data preprocessing 

a) ENIGMA data: Imaging data were processed by each center through the standard ENIGMA 

workflow. In brief, individual surface modeling was performed using FreeSurfer 5.3.0 1–4, including 

magnetic field inhomogeneity correction, non-brain tissue removal, intensity normalization, and 

segmentation. White and pial surfaces were fit along tissue boundaries. Surfaces were inflated to 

spheres, followed by spherical registration to standard (fsaverage) space. Based on the Desikan-

Killiany atlas 5, cortical thickness was measured across 68 grey matter brain regions.  

b) HCP data: HCP data underwent minimal preprocessing pipelines using FSL, FreeSurfer, and 

Workbench, briefly summarized as follows 2,6,7: 

b-i) T1- and T2-weighted data: Data were corrected for gradient nonlinearity and b0 distortions, and 

the T1- and T2-weighted data were co-registered using a rigid-body transformation. The bias field 

was adjusted using the inverse intensities from the T1- and T2-weighting. White and pial surfaces 

were generated using FreeSurfer 1–4. A midthickness surface was generated by averaging white and 

pial surfaces, and used to generate the inflated surface that was registered to the Conte69 template 8 

using MSMAll 9 and downsampled to a 32k vertex mesh.  

b-ii) Microstructure data: HCP provides a myelin-sensitive proxy based on the ratio of the T1- and 

T2-weighted contrast 10,11. Here, we first generated 14 equivolumetric cortical surfaces within the 

cortex and sampled T1w/T2w ratio values along these surfaces 12. A microstructural similarity matrix 

was constructed by calculating linear correlations of cortical depth-dependent T1w/T2w intensity 

profiles between different Desikan-Killiany parcels 5, controlling for the average whole-cortex 

intensity profile 12. The matrix was thresholded at zero and log-transformed 12. A group-average 

matrix was constructed by averaging matrices across participants. 

b-iii) rs-fMRI data: Data were corrected for distortions and head motion, and were registered to the 

T1-weighted data and subsequently to MNI152 space. Magnetic field bias correction, skull removal, 

and intensity normalization were performed. Noise components attributed to head movement, white 

matter, cardiac pulsation, arterial, and large vein related contributions were removed using FMRIB’s 

ICA-based X-noiseifier (ICA-FIX) 13. Time series were mapped to the standard grayordinate space, 

with a cortical ribbon-constrained volume-to-surface mapping algorithm. The total mean of the time 

series of each left-to-right/right-to-left phase-encoded data was subtracted to adjust the discontinuity 

between the two datasets, and these were concatenated to form a single time series data. A functional 

connectivity matrix was constructed via linear correlations of the fMRI time series of different 

Desikan-Killiany atlas parcels 5. Fisher’s r-to-z transformations rendered connectivity values more 

normally distributed 14, and we averaged the connectivity matrices across participants to construct a 

group-average functional connectome, also available via the ENIGMA Toolbox 

(https://github.com/MICA-MNI/ENIGMA) 15.  

c) MICs data: MICs data were preprocessed using micapipe (https://github.com/MICA-

MNI/micapipe), which integrates AFNI, FSL, FreeSurfer, ANTs, and Workbench 2,6,7,16,17. 

c-i) T1-weighted data: Data were de-obliqued, reoriented, intensity non-uniformity corrected, and 

skull stripped. Models of the inner and outer cortical surfaces were generated using FreeSurfer 1–4, 

and segmentation errors were manually corrected.  

c-ii) qT1 data: After registering qT1 data to FreeSurfer space using a boundary-based registration 18, 

we generated 14 equivolumetric intracortical surfaces and sampled qT1 intensity as in vivo proxies 

of depth-dependent cortical microstructure 12. The microstructural profile similarity matrix was 

constructed using the same procedures as for the HCP data. 

https://github.com/MICA-MNI/ENIGMA
https://github.com/MICA-MNI/micapipe
https://github.com/MICA-MNI/micapipe
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c-iii) rs-fMRI data: We discarded the first five volumes, removed the skull, and corrected for head 

motion. Magnetic field inhomogeneity was corrected using topup with reversed phase-encoded data 
19. After applying a high-pass filter at 0.01 Hz, noise components attributed to head movement, white 

matter, cardiac pulsation, arterial, and large vein related contributions were removed using ICA-FIX 
13. Preprocessed time series were mapped to the standard grayordinate space, with a cortical ribbon-

constrained volume-to-surface mapping algorithm. After regressing out time series spikes, a 

functional connectivity matrix was constructed by calculating linear correlations of time series 

between different Desikan-Killiany parcels 5. We applied Fisher’s r-to-z transformation to the 

individual functional connectivity matrix and averaged across participants to construct a group-

average functional connectome.  
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Supplementary Figure 1 Multimodal processing. T1-weighted data from ENIGMA consortium 

underwent FreeSurfer-based preprocessing and were used for calculating atypical asymmetry and 

cortical atrophy in TLE patients relative to controls. Structural and functional MRI from the HCP and 

MICs datasets were preprocessed, and we generated microstructural/functional gradients using non-

linear dimensionality reduction techniques. Abbreviations: HCP, Human Connectome Project; MICs, 

microstructure-informed connectomics; AI, asymmetry index; ipsi, ipsilateral; contra, contralateral; 

fMRI, functional magnetic resonance imaging. 
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Supplementary Figure 2 Results of left and right TLE. (A) Atypical cortical asymmetry in left 

and right TLE and (B) stratification of the effects (i.e., asymmetry index) according to functional 

communities and lobes. (C-D) Results for cortical atrophy. (E) Location of the temporal lobe. (F)  

Cortical atrophy in left and right TLE patients relative to controls for each hemisphere in the temporal 

lobe. Significant differences are marked with asterisks. For details, see Fig. 1.  
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Supplementary Figure 3 Results from different connectome densities. Microstructural and 

functional gradients derived from (A) 20, (B) 30, (C) 40, and (D) 50% density of connectivity 

matrices. Scatter plots show spatial correlations between microstructural/functional gradients and 

atypical cortical asymmetry (left) and atrophy (right). 
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Supplementary Figure 4 Gradients obtained from locally acquired microstructural and 

functional MRI data in healthy controls and patients with TLE. (A) Microstructural (left) and 

functional (right) gradients in healthy controls are shown on the brain surface. Associations between 

atypical cortical asymmetry and atrophy and these gradients are shown in the scatter plots. (B) 

Gradients and associations presented for patients with TLE. 
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Supplementary Figure 5 Analyses for subcortical and hippocampal volume. (A) Atypical 

asymmetry of subcortical/hippocampal volume differences and atrophy between individuals with 

TLE and controls. (B) Consistency probability of atypical asymmetry and atrophy in 

subcortical/hippocampal volume across individuals. (C) Prediction results for (top) duration of 

epiulepsy and (bottom) age at seizure onset using cortical and subcortical features. For details, see 

Fig. 1, 2, and 3.  
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