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Neural Novel Actor: Learning a Generalized
Animatable Neural Representation for
Human Actors

Qingzhe Gao’, Yiming Wang’, Libin Liu®, Lingjie LiuT, Christian Theobalt, Baoquan Chent

Abstract—We propose a new method for learning a generalized animatable neural human representation from a sparse set of multi-view
imagery of multiple persons. The learned representation can be used to synthesize novel view images of an arbitrary person and further
animate them with the user’s pose control. While most existing methods can either generalize to new persons or synthesize animations
with user control, none of them can achieve both at the same time. We attribute this accomplishment to the employment of a 3D proxy for
a shared multi-person human model, and further the warping of the spaces of different poses to a shared canonical pose space, in which
we learn a neural field and predict the person- and pose-dependent deformations, as well as appearance with the features extracted from
input images. To cope with the complexity of the large variations in body shapes, poses, and clothing deformations, we design our neural
human model with disentangled geometry and appearance. Furthermore, we utilize the image features both at the spatial point and on
the surface points of the 3D proxy for predicting person- and pose-dependent properties. Experiments show that our method significantly

outperforms the state-of-the-arts on both tasks.

Index Terms—Neural Rendering, Neural Radiance Field, Human Synthesis
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INTRODUCTION

YNTHESIZING high-quality free-viewpoint videos of an ar-

bitrary human character using a sparse set of cameras is
crucial for many computer graphics applications, including VR/AR,
film production, video games, and telepresence. Many of these
applications require user control over human poses in the synthesis.
Achieving these with traditional methods is difficult because it
needs an expensive capturing setup [4], [11]], [12]], [15]I, [19], [55],
the production-quality human geometry and appearance models,
and manual invention and corrections [[10], [[13], [57].

Recently, neural human representation and rendering algorithms
based on the neural radiance fields (NeRF) [40]] have demonstrated
the ability to overcome the limitations of the traditional approaches.
Some methods [6], [31]], [44], [56] can learn an animatable human
representation from multi-view imagery in a person-specific setting,
but they are not able to generalize to new persons. Other works [7]],
[127], [39], [[75]] proposed generalizable radiance fields for humans
conditioned on input image features, inspired by the generalized
neural representation for static scenes [5], [9]], [34], [63], [73]. With
the learned representations, they can generate novel views of an
arbitrary person from sparse multi-view images without training.
However, their representations are not animatable and thus cannot
generate images with user’s pose control.

In this paper, we address a challenging yet practical problem
— training a model capable of rendering unseen individuals in a
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feed-forward manner using only still images captured from sparse
viewpoints as input, as illustrated in Fig. [} To tackle this task,
we introduce a new approach to learning a generalized animatable
neural human representation from sparse multi-view input imagery
of multiple persons. This representation allows us to generalize to
new persons without training and further animate the representation
with pose control.

Specifically, our method uses a Skinned Multi-Person Linear
(SMPL) model as a 3D proxy and transforms each pose space
to a shared canonical pose space. Then a neural radiance field in
the canonical space is learned and we estimate person- and pose-
dependent geometry and appearance with the features extracted
from the input images. To efficiently learn this representation for
multiple persons, we disentangle the geometry and appearance
in our human model by extracting separate features for geometry
and appearance properties to condition the prediction of these
properties. Furthermore, we extract the image features at both the
spatial points and the surface points of SMPL to better infer the
person- and pose-dependent properties.

We evaluate our method on the ZJU-MoCap [45]], DeepCap [21]
and DynaCap [20] datasets. Our method significantly outperforms
the state-of-the-art, MPS-NeRF [17]], in this challenging task. To
demonstrate the effectiveness of our representation, we also sepa-
rately evaluate its performance in two key aspects: generalization of
novel view synthesis and animation with user-defined pose control.
The experiments show that our method outperforms the state-of-
the-art on both these tasks. These evaluations provide compelling
evidence that our method has the potential to serve as a robust
baseline model for future research endeavors in the domain of
generalizable 3D human rendering.

In summary, our technical contributions are:

o We present a new method for achieving both the novel view
synthesis of arbitrary persons and the animation synthesis



with pose control at the same time.

e« We design a new generalized animatable neural human
representation with disentangled geometry and appearance,
which can be learned efficiently from sparse multi-view
imagery of multiple persons.

« We present a new way to predict the person- and pose-
dependent properties by taking the features at both the
spatial points and the surface points of SMPL into account.

2 RELATED WORK
2.1 Human Performance Capture

There have been multiple studies addressing novel view synthesis
of human performance. While many methods based on pre-scanned
human models [4], [11]], [15]], [S5]] can capture humans in a sparse
multi-view setting, pre-scanned human models are often unavailable
in most cases. Recent works rely on depth sensors [10], [[13[], [57]
or dense arrays of cameras [[12], [19] to achieve high-fidelity
reconstruction, but these settings are not easily accessible. By
employing neural networks, some methods [37], [38]], [65] can
compensate for geometric artifacts through the modification of the
rendering pipeline. More recently, several works [22]], [23]], [41],
[49], [50], [51], [76] have been able to reconstruct 3D humans
from a single image using 3D human geometry priors. However,
these methods rely on 3D geometry data and cannot generalize to
complex poses that are not present in the training data. In contrast,
our method is capable of generalizing to new persons using only
sparse multi-view image supervision.

2.2 Neural Representations for human

Neural rendering techniques 28], [32], [53]], [58], [[65] have enabled
neural networks to learn 3D object reconstruction from 2D images.
Various 3D representations, such as 3D voxel-grid [29]], [35],
[54]], [[69], point clouds [1]], [65]], textured mesh [30], [33], [58],
[67], and multi-plane images [14], [[60], [77], have been learned
from 2D images through differentiable rendering to enhance novel
view synthesis performance. However, achieving higher resolution
remains challenging due to memory constraints.

NeRF [40] represents scenes with implicit fields of density and
color. To extract more accurate surfaces, some works [42]], [62],
[[71], [72] employ the signed distance function (SDF) to represent
geometry in a scene. Building on these representations, numerous
studies [8], [[16], [43]l, [45]l, [48]l, [156], [64]l, [66], [68]] use neural
representation to capture humans. However, optimizing for each
novel video is time-consuming.

Generalizable neural representation methods [5], [9f, [34],
[63[, [70], [73]] address this issue by employing implicit fields
conditioned on image features. Inspired by these works, some
studies [7], [27], [39], [[75]] propose generalizable radiance fields
for humans, but they fail to achieve an animatable human model.

Leveraging the Skinned Multi-Person Linear (SMPL) model
[36], several works [3], [6], [31]], [44]], [56] manage to obtain an
animatable neural representation for humans. However, they still
require subject-specific training. In contrast, our proposed novel
deformable neural human representation enables us to acquire an
animatable neural human representation from a single multi-view
image of a new person without the need for additional training.

MPS-NeRF [17]] can also learn an animatable neural human
representation from multi-view images of a single frame of the
target person. It mainly relies on inverse skinning weights of
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SMPL [36] to animate the representation, while our method learns
an additional residual deformation mapping to compensate for
the deformation that cannot be modeled by inverse kinemetric
transformation. Furthermore, the representation of MPS-NeRF
is based on NeRF [40] , while our representation additionally
disentangles geometry and appearance by formulating them as two
separate template implicit functions based on NeuS [62].

3 METHOD

Given a set of multi-view RGB videos of several persons perform-
ing various motions, our goal is to learn a generalized animatable
neural human representation (Fig. [2) in the training. At inference
time, our model enables two tasks: (1) Generalization: given a
sparse multi-view (e.g., 3 or 4 views) videos of an unseen person
performing arbitrary motions, we can synthesize novel views of the
person performing these motions without training. (2) Animation:
given a sparse multi-view images of an unseen person in a static
pose, we can animate the neural representation of the person to
generate novel pose images according to the user’s pose control.

Our method uses the Skinned Multi-Person Linear (SMPL)
model [36] as a 3D proxy and learns a canonical pose space shared
by all the persons and poses. For each 3D point in a posed space,
we convert it into this canonical space using the inverse skinning
transformations [23]] and the non-rigid deformations predicted
by a neural network. Then, we learn a neural field [62] in the
canonical space to infer Signed Distance Fields (SDF) and color for
generating the final images. Our key idea is to extract geometry and
appearance features for each 3D point from the sparse input images
and use these features to infer the non-rigid residual deformations,
SDF and color at the 3D point. To better train our model on
multiple persons, we propose two new designs: (1) We disentangle
geometry and appearance by formulating them as two separate
template implicit functions in the canonical space. (2) We extract
the geometry and appearance features at both the 3D point and
its nearest SMPL vertices; the rationale is that our model is a
person-agnostic model and the 3D proxy (i.e., SMPL model) for
different persons is shared. Therefore, taking the properties at both
the 3D point and its SMPL surface points into consideration would
better infer the distance of the 3D point to the SMPL surface for
different persons.

In the following, we first introduce our deformable neural
human representation (Sec. and then explain how we construct
the geometry and appearance features used in such a representation
(Sec.[3:2). Based on our neural representation, we can synthesize
novel view images for arbitrary human poses (Sec. [3.3).

3.1

In order to represent different human identities and poses, we
adopt SMPL [36] as the base model in our framework. SMPL is
a mesh-based human model consisting of a template mesh with
N, = 6890 vertices V € R™*3 and driven by N; joints. It deforms
the template mesh according to a set of parameters, p, representing
the body shape and pose of a person. This process can be written
as

Deformable Neural Human Representation

v, = SMPL (v, p,w,), )

where v € V represents a surface vertex and w, is the skinning
weight of v. We consider a predefined pose pg as the canonical
model of our framework. The canonical space is then defined
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Output: novel view synthesis and animation synthesis with user’s pose control

Fig. 1. Our model learns a generalized animatable neural human representation with multi-view RGB videos of several persons performing various
motions. At inference time, given sparse multi-view images, our model can directly get novel view synthesis and animation synthesis with user’'s pose

without further optimization.
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Fig. 2. Overview of our framework. Given a query point « in the posed space, we use inverse skinning transformation of its nearest surface point
and a predicted residual deformation 6 to transform « to the canonical space. The deformed point & is used as input to our geometry network
and appearance network. The pose-dependent residual deformation is predicted using geometry features uge,, 2ge, and the relative displacement
d; between the query point = and every joint. The appearance features w3, 23, are used as input to the appearance network. The appearance

network also takes the view direction d as input.

as the corresponding 3D space containing this canonical model.
For an arbitrary pose p, we can transform the spacial points in
the corresponding posed space into this canonical space using the
SMPL surface as guidance. Such transformation links the canonical
space to different posed spaces and thus allow those spaces to share
the common features defined in the canonical space.

3.2 Geometry and appearance features

Our framework utilizes two latent variables, Fye, and Fyp, to
represent the geometry and appearance features of a person,
respectively. These features are extracted from the input images
and then used to render new images of the person performing novel
poses from novel views. Our framework obtains the geometry and

appearance features in a similar manner, so we omit the subscripts
in this section for simplicity when it is not confusing.

Both the geometry and appearance features are defined at every
spacial point around the human model. The latent variable F'
defined at a spacial point & consists of two components F' =
(u*, 2¥), where u* represents the image features based on pixel
alignment, and z* are surface features computed based on the
connectivity of the SMPL mesh.

3.2.1 Occlusion-aware image features

Formally, our framework takes a sparse set of multi-view images,
{I},c =1,...,Nc, captured by N¢ calibrated cameras as input,
where each image I° € R¥*W*G+1) contains the RGB color of
every pixel and a foreground mask indicating the pixels belong to



the person. We apply CNN [26]] to these images and extract a set
of feature maps U at multiple resolutions as

U = CNN([I°)). )

Then, for every spacial point &, we obtain a set of image features
{u‘} by projecting x onto each feature map U*. Inspired by [27],
we employ a self-attention mechanism to aggregate these image
features from different views to compute the image features u* at
T as

O(u) - K(uf)
Vd

where Q(-), K(-), and V(-) are the learnable query, key, and
value embedding functions proposed in the original self-attention
mechanism [|61f], and d is the dimension of the embedding space.

When a spacial point is occluded in an input image I¢, its
corresponding image features u¢ is not reliable and should not
be weighted the same as the features from the other images.
We thus employ an occlusion-aware mechanism to ensure this
principle. Specifically, when a 3D query point x is occluded by
the posed SMPL model in an input image /¢, we subtract a fixed
bias B¢ from the corresponding attention weights in Equation (3)
to explicitly inform the self-attention mechanism of this occlusion.
This mechanism is partially inspired by Attention with Linear
Biases (ALiBi) [47]. We find that it effectively mitigates the
artifacts caused by occlusion in our experiments.

u”* = softmax (
c

-I—B“) -V (u), 3)

3.2.2 Pose-aware surface features

The mesh structure of the SMPL model provides a strong prior
for determining the shape and appearance of human body. To fully
utilize such structural cues, we associate surface features to the
mesh and diffuse them to the spacial points in the surrounding
space.

To build these surface features, we extract the occlusion-aware
image features of every vertex of the mesh from the image and
employ the Graph Convolution Networks (GCN) to fuse them
as suggested by [25]], [46], [52]. GCN is a special convolutional
network structure that aggregates the information on each individual
vertex based on the connectivity of the mesh. We additionally
include the displacement between each pair of connected vertices
in this operation. Considering that the SMPL mesh is deformed
based on pose parameters, this augmentation effectively allows the
GCN to encode an implicit pose description into the computation,
thus resulting in a set of pose-aware features.

To enhance the generalization ability of GCN, we use a novel
local representation instead of global pose parameters (e.g. SMPL’s
72 dimension of pose vector) as the input pose information of
GCN. Specifically, the pose information is included in the graph
edges, by using the direction and length of the posed edges
as their features. The edge features are scattered to the node
features to conduct message passing for the GCN. This localized
pose representation helps the GCN to generate pose-dependent
appearance and geometry to reduce reconstruction loss during
training and generalize to new poses after training on a dataset with
a large variety of poses.

Formally, assuming the input images correspond to pose
parameters p;, we compute a deformed mesh V), using SMPL
and project each vertex v € V,, onto the input images, obtaining
a set of occlusion-aware image features {u"}. Then, we convert
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these image features using the pose-aware GCN described above
and compute surface features

{zlv} = GCN({U’V}vVPl)' “4)

When rendering a new pose p, we transform these input surface
features {z}} onto the corresponding new SMPL mesh V,, via
another GCN procedure

{z"} =GCN({2]},Vp). ©)

The GCNs of Equation (@) and Equation (5) do not share weights.
Note that these surface features, {z"}, are defined only on the
surface vertices v € V. We then extend them to the surrounding
space through a diffusion process. Specifically, for a spatial point ©
in the vicinity of the deformed mesh V,, we find K nearest vertices
{v*} C V, on the mesh and take their features {2*}. The surface
feature z* of the query point x is then computed as

z" =Y wMLP(2",z — "), (6)
k

where wy = (|| —v*||+&)7'/ Lk (lx —v¥|| +€)7!, and € is a
small scalar used to prevent dividing by zero.

3.2.3 Implementation

For a spacial point @, the latent variable Fyeo = (Upeo, Zgeo) and
Fypp= (u{a‘pp, zg‘pp) are computed using the images features and the
surface features defined above. To further enforce disentanglement
of the features, we let the appearance features F}, be independent
of the driYing pose p. .This is ?chieved by C(.)mplllting Zypp USINg
the canonical pose pg in Equation (3), as depicts in Figure 2]

3.3 Pose-driven Volume Rendering

Using the geometry and appearance features Fyeo, and Fypp
extracted from the input images, our framework can render new
images from a novel viewpoint given an arbitrary driving pose
p. We employ NeuS [62], an SDF-based differential renderer, to
synthesize those images. NeuS predicts the color of each pixel by
accumulating the radiance along the camera ray 7 passing through
the pixel. This computation can be discretized using a series of
spacial points {x;} sampled along 7. Specifically, NeuS computes

&) = Y. Taser, %)
i=1

where C(7) is the predicted color, T; = Hj;]l (1 — o) is the discrete
accumulated transmittance, ¢; represents the opacity values defined
as

o — max (%o) , ®)

and ¢ (x) = (1+e %)~ with a learnable scalar k. The color values
¢; and the SDF values s; in the above equations are evaluated at
every sample point ;. Our framework handles every sample point
in the same way, so we omit the subscript i in the rest of this
section for simplicity.



3.3.1 Pose-driven deformation field

Given a driving pose p, we transform each sample point & into
the canonical space and evaluate ¢ and s based on the canonical
position &. This mechanism is inspired by recent studies [31],
[59]], which have shown its efficiency in modeling dynamic scenes
and human poses. We define the deformation mapping & using
the inverse skinning transformation [23]]. As suggested by [31]],
an additional residual deformation mapping 6® is employed to
compensate for the deformation that cannot be captured by the
inverse skinning, such as the deformation of cloth. The canonical
position & of a sample point x is thus computed as

z =P(x,p)+0P(x,p). ©)

®(x, p) is the inverse skinning mapping

Ny
Dz, p) =) wi (Rj(x—8v)+t), (10)
j=1
where R; and £ ; represent the rotation and translation that transform
joint j from pose p back to the canonical pose py, w; € wy, is the
corresponding skinning weight of the surface point v that is the
nearest to @, and Ny is the number of joints. Note that we allow the
pose parameters to also define the body shape of the target person.
A displacement v is leveraged to compensate for the deformation
caused by the change of body shape. Specifically,

8v =SMPL (v, B(p), w,) —SMPL (v,B(po), wy),  (11)

where (-) extract the body shape parameters from p.

The residual deformation 0@ is computed using the geometry
features F, extracted from the input images. We further consider
the relative displacement between the query point « and every
joint, collectively represented by dj, as an extra cue. The residual

displacement is thus computed as

0P (x, p) = MLP(F}

geo?df)' (12)

3.3.2 SDF-based volume rendering
After transforming the sample points & into the canonical space &

using the deformation field, we compute its SDF value s and color
cas

5= (&) (13)
c=% (&, Fapp,d,s,1y). (14)

Both .#” and ¢ are implemented as MLPs. The SDF function .7
only takes the canonical position of « as input. The color function
¢ considers the appearance feature Fy,,, the view direction d, the
SDF value s of the sample point, as well as the normal vector 1,
of the implicit surface at the sample point. n, can be computed
as the gradient of the SDF function n, = V,.%(x). The results of
these functions are then used by NeuS to predicts the color of the
pixel as described above.

3.4 Training

For every training image, we render m random pixels and sample n
spacial points on each generated camera ray. The loss function is
then defined as

<= lleé(r) —C(r)|li +A1 Y. BCE(M,,M,)
m rN— T —

color loss mask loss (15)
1 ~
tho Y (lna > — 1)> +2; LPIPS(C(P),C(P)),
w eikonal term LPIPS loss
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where the color loss measures the difference between the predicted
color C(r) and the ground truth C(r), the mask loss matches the
predicted mask M, = Y, T;o; with the foreground mask M, by
computing the binary cross entropy (BCE) between them, and
an Eikonal term [18] is adopted to regularize the SDF function.
We further employ a perceptual loss, LPIPS [74], to ensure the
quality of the synthesized image. This LPIPS loss is computed by
rendering random patches P sampled on the target image.

During training, we utilized multi-view inputs with multiple
frames to introduce pose variation. In detail, we randomly selected
a frame of a character and used its multi-view inputs to train the
model. This involved reconstructing an image of another view
using any three available views and calculating the loss. During
testing, we only use a single frame of multiview image to generate
an animatable avatar, which is consistent with our training setting.
The process of obtaining image features to render a new pose
involves transforming a 3D point from the new pose to the input
pose to acquire image features, using the canonical space as a
bridge. Besides image features, we also get pose-aware surface
features for the new pose using the GCN as described.

4 EXPERIMENT

Implementation details. We train our models using the Adam [24]
optimizer. We follow a two-stage training regime for a faster
convergence. We first pre-train the SDF network using the canonical
model mentioned in Sec[3.2] and then train all the networks jointly.
The learning rate is first linearly warmed up from 0 to 5 x 107*
in the first 2k iterations and then is controlled by the cosine decay
schedule. In the second stage, we freeze the SDF network after
training for SOK iterations. We use the sampling strategy proposed
in NeuS [62]], and the numbers of the coarse and fine sampling are
32 and 32 respectively. Following Neural Actor [31], we also adopt
a geometry-guided ray marching process for the volume rendering.
Specifically, we only sample points near the SMPL surface to speed
up the rendering process. We first train our models on 4 Nvidia
V100 32G GPUs and sample 1024 rays per batch per GPU for
80K iterations without LPIPS loss. Then, we randomly select two
additional patches P (size 24 x 24) per GPU to continue training
the model with LPIPS loss for 20,000 iterations. The training takes
about 38 + 18 hours to complete. Because the number of subjects in
the ZJU-MoCap is small, we augment the data using color jittering
during the training. For the loss weight, we set A1, 4; both to 0.1,
and A3 to 1.

Evaluation metric. We measure the quality with two evaluation
metrics: Peak Signal-to-Noise Ratio (PSNR), and Structural Simi-
larity Index Measure (SSIM). Following previous work, we project
the 3D bounding box of the human body onto the image plane to
get a 2D mask and only calculate the PSNR and SSIM of the mask
area instead of the whole image. For the 3D reconstruction, we
only provide the qualitative results, as shown in Fig. 5] because the
ground truth is not available.

The goal of our work is to get novel-view and novel pose
human synthesis. To the best of our knowledge, only MPS-NeRF
[17] can achieve both at the same time. Hence, we conduct two
experiments: novel view synthesis generation (Sec and pose
control animation (Sec [4.2)).

4.1

In this part, we evaluate our approach on the novel view synthesis
generalization task. Given a sparse multi-view (e.g., 3 or 4 views)

Generalization
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Fig. 3. Qualitative comparison of identity generalization on the ZJU-MoCap [|45] dataset. Our method outperforms three baselines, Neural Human
Performer (NHP) |27], Keypoint NeRF (KN) [39] and MPS-NeRF (MPS) [17] in terms of synthesized wrinkles and appearance details. All methods are
trained on all the source subjects and directly tested on the target subjects without training.

TABLE 1
Quantitative comparison of the generalization task in the four settings. We evaluate the synthesis quality on two metrics: PSNR and SSIM . We
compare with other generalized model, Neural Human Performer (NHP) [27],Keypoint NeRF (KN) [39] and MPS-NeRF (MPS) [17]. Our method
achieves significantly better performance in identity and cross-dataset generalization. In other two setting, our method is on par with other methods.
Additionally, we provide the results of a person-specific model, Neural Body (NB) [45], in the task of seen poses for seen subjects as an upper-bound
baseline. Our method achieves comparable performance with this benchmark.

Setting Identity generation Cross-dataset Pose generation Seen subjects
Method PSNRT SSIMT PSNRT SSIMt PSNR?T SSIMT PSNRt SSIM?
NB | - - | - - | - - | 2856 0.943
NHP 24.85 0.908 23.16 0.869 26.19 0.915 26.90 0.927
KN 24.92 0.910 22.31 0.861 27.64 0.933 2791 0.938
MPS 22.99 0.877 22.38 0.842 24.66 0.880 24.84 0.887
Ours 25.14 0.914 24.19 0.886 27.36 0.929 27.83 0.938

videos of an unseen person performing arbitrary motions, our
method can synthesize novel views of the person performing these
motions without training. In this setting, we compare our method
with MPS-NeRF (MPS) [[17]], Keypoint NeRF (KN) [39]], Neural
Human Performer (NHP) [27] and Neural Body (NB) [45]. We
also compare our method with Neural Body (NB) [45] which is a
person-specific model

ZJU-MoCap dataset consists of 10 human subjects captured
from 23 synchronized cameras. Following NHP, we split the dataset
into two parts: 7 source subjects and 3 target subjects. We evaluate
our method and the baseline methods in the following four different
settings. Note that for all the comparisons except the cross-dataset
generalization, the first 300 frames of the source or target subjects
are used for training, and the rest frames (unseen poses) are used
for testing.

1) Identity generalization. First, we evaluate the generalization
to different identities by testing on the target subjects. All methods
are trained on all the source subjects and directly tested on target

subjects. As Tab. [T] and Fig. [3] show, our method gives the best
performances quantitatively and qualitatively.

2) Cross-dataset generalization. To further test the general-
izability of our method to new datasets, we train all methods on
the ZJU-MoCap dataset and directly test on the DeepCap [21]] and
DynaCap [20] dataset without fine-tuning. As shown in the Tab.
[1] our method significantly improves the performance compared
to other methods. Even though the training and testing datasets
are significantly different in the appearance distribution and the
distance from the camera to subject, our method still can achieve
impressive results without fine-tuning, as shown in Fig. [4]

3) Pose generalization. In this setting, all the methods are
trained on the source subjects and tested on unseen poses of the
same subject. All methods are trained on all source subjects
together. As Tab. [1| shows, our model outperforms MPS, NHP
significantly on PSNR and SSMI. Our method also achieve
comparable results to KN.

4) Seen poses of seen subjects. To demonstrate the superiority



GT MPS Ours

Fig. 4. Qualitative comparison of cross-dataset generalization on novel view synthesis. All methods are trained on the ZJU-MoCap [45] and directly
tested on the DeepCap [21] and DynaCap [20]. Our method significantly outperforms other baselines.

Fig. 5. Visualization of 3D reconstruction results. The meshes are extracted by running the Marching Cubes algorithm on the predicted volume
density. Other methods contain more unwanted artifacts compared to our method.

of our model, we evaluate the performance for seen poses of source
subjects. All methods except NB are trained on the all source
subjects and tested on the seen poses of them. Tab. [I| demonstrates
that our method outperforms MPS and NHP, and it is comparable
to NB and KN.

Note that KN is sightly better than our method in task 3 and 4,
but our method outperform it significantly in task 1 and 2. Moreover,
there are artifacts in the results of KN for cross dataset, which do
not appear in the results of the ZJU-MoCap dataset. The reason for
this is that KN sets a fixed hyper-parameter that controls the impact
of each keypoint. The hyper-parameter determines relative spatial

encoding for 3D query point and keypoints, which is sensitive
to human body shape and pose. As a result, KN can overfit the
training dataset, but it does not generalize well for the pose or
shape not seen in the training dataset. And KN is not animatable
human models.

Our method shares the same goal as MPS-NeRF but differs in
our approach. MPS-NeRF mainly relies on the SMPL model to
fuse image features for generating novel views, while we associate
surface features with the SMPL model and diffuse them onto
surrounding spatial points using a specially designed GCN network.
This allows us to reconstruct reasonable geometry details, such as
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Fig. 6. Qualitative comparison of Pose generalization on the ZJU-MoCap dataset. Our method significantly outperforms three baselines, Neural
Human Performer (NHP) [27], Keypoint NeRF (KN) [39] and MPS-NeRF (MPS) |17], in terms of synthesized wrinkles and appearance details.

clothes and hair, even with sparse input images. Additionally, our
occlusion-aware self-attention mechanism can effectively handle
mesh points that are occluded in the sparse input images. As shown
in Tab. [T} these mechanisms allow our method to significantly
outperform MPS-NeRF in all tasks.

In conclusion, our method achieves state-of-the-art results on
the novel view synthesis generalization task for new character
(identity and cross-dataset generalization). And our method is
comparable to other methods in the fitted task.

4.2 Animation

The task of animation is that, given sparse multi-view images of
an unseen person in a static pose, the model needs to generate
novel pose images under user’s pose control. This task is distinct
from the pose generation task discussed in Sec In the case
of generating images, the task only requires pose input without
any image input. On the other hand, pose generation tasks involve
using image input to generate novel view images. To evaluate the
performance of this task, we compare our method with Neural
Body (NB), Animatable Nerf (AN) [44], Neural Actor (NA) [31]
and MPS-NeRF (MPS) [17] on the ZJU-MoCap dataset. Neural
Human Performer (NHP) [27] and Keypoint NeRF (KN) [39] are
not animatable human models and thus cannot generate images
with user’s pose control. The spilt for the ZJU-MoCap dataset is
the same as that described in Sec. .11

MPS-NeRF and our method are the generalized animatable
human model for this task, so we train them on all the source
subjects. At test time, we directly obtain an animatable model of
the target person just from the sparse camera views of one frame of
the target person without training. Other person-specific methods
are trained in a person-specific manner on the first 300 frames of
the target person and tested on the remaining frames of the same
person.

Tab. |2 and Fig. [/| demonstrate that our method significantly
outperforms MPS-NeRF quantitatively and qualitatively. MPS-
NeRF relies on the inverse skinning over the SMPL model to
animate the character, while our method employs an additional
residual deformation mapping to compensate for the deformation
that SMPL cannot model. This mechanism results in a more
accurate shape and appearance, as shown in Fig.

Moreover, our method outperforms other baselines even though
it is trained and evaluated in a more difficult setting (i.e., unlike
other baselines, our method is not overfitted to the target subject
during training). Neural Actor (NA) [31] is designed for input
videos with dense camera views and requires obtaining textures for
each frame of the input video. However, in sparse view settings,
acquiring high-quality textures can be challenging due to issues
like self-occlusion that reduce effectiveness. Moreover, Animatable
NeRF (AN) [44] and Neural Body (NB) [45]] do not account for self-
occlusion in sparse view and lack specific designs for completing
the missing parts during training. In contrast, our method can
obtain high-quality avatars from sparse view inputs using carefully
designed modules, such as GCN and the occlusion-aware self-
attention mechanism. We believe that our design can also enhance
per-scene optimization methods. Additionally, our method is trained
on multi-person data, which allows for better pose generalization
compared to methods trained on single-person data.

To more effectively demonstrate the efficacy of our approach,
we assess its performance on a cross-dataset evaluation. Among
existing methods, only MPS-NeRF and our method are capable of
accomplishing this task. We train all method on the ZJU-MoCap
dataset and directly test on the DeepCap [21]] and DynaCap [20]
dataset. To demonstrate the difficulty of this task, building upon
prior research by VideoAvatar [2]], we implemented a baseline
projection method (denoted as Tex), which projects pixel colors
onto the surface of the SMPL model. The SMPL model, learned
from scans of unclothed humans, is unable to represent clothing
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Fig. 7. Qualitative comparison of the Animation task on the ZJU-MoCap dataset. We compared with three person-specific methods, Neural Body (NB)
[45], Animatable Nerf (AN) |44], Neural Actor (NA) [31] and the generalized method, MPS-NeRF (MPS) [17]. Note that the person-specific methods
are trained with 300 frames of a target person and tested on the same person, while MPS-NeRF and our method is trained on all source subjects
and obtains an animatable human model of a target person just from one frame of the person. Our method outperforms all baselines even in a

disadvantaged setting.

TABLE 2
Quantitative comparison of the animation task. Our method achieves the
best performance in two metrics, compared to three person-specific
animatable human models, NeuralBody (NB) [45], AnimatbleNerf
(AN) [44], and Neural Actor (NA) [31] and MPS-NeRF (MPS) [17]

Method NB AN NA MPS Ours
PSNR?T 23.03 22.95 22.50 21.80 23.18
SSIM T 0.880 0.875 0.878 0.858 0.886

or other personal surface details. We estimate per-vertex defor-
mations of the SMPL model by rendering it to fit the foreground
mask. However, it cannot accurately model geometry, due to the
limitations of the SMPL template as a base. In contrast to simple
projection, we reconstructed better geometry and used our GCN
module to complete the missing parts from a few viewpoints,
resulting in better performance, as shown in Fig. [8] Furthermore,
the state-of-the-art method MPS-NeRF, which relies exclusively
on pixel-aligned features and does not incorporate human prior
information or disentangle appearance and geometry, produced
inferior results, particularly when applied across different datasets.

We also fine-tune our model for approximately 10 minutes with
the same input, using 3 images as input and another image as the
target each time. As shown in Fig. [§] fine-tuning can reduce color
deviations caused by differences in lighting distribution between
the test data and training dataset. Additionally, fine-tuning can
result in more accurate geometry.

4.3 Appearance and geometry control

As our method disentangles the geometry and appearance in the
human modeling, we can either change the appearance while
keeping the geometry fixed or control the body shape of modeled
humans by manipulating shape parameters in SMPL. Fig. [9]

demonstrates the synthesized images after changing the body shape
and exchanging the appearance.

4.4 Ablation Study

We conduct ablation studies using the ZJU-MoCap dataset on
both the generalization and animation tasks. The same experiment
settings as described in Sec. [f.1] and Sec. [f.2] are used for these
two tasks. The results are shown in Table [3] We also provide visual
result in Fig. [T0]to further demonstrate the significance of different
components.

We first evaluate the effect of the GCN used in extracting
the surface features. The baseline, w/o GCN, is performed by
computing the surface features directly using the image features.
In the absence of the GCN module, the model cannot effectively
handle occlusion and utilize prior knowledge about the human
body as discussed in Sec. [3.2.2] which leads to artifacts both in
shape and appearance as showed in Fig. [I0] Additionally, the drop
in performance shown in Tab. [3]underscores the importance of the
GCN module.

We also evaluate the effect of the image features. We compare
with: 1) removing the image features from the geometry features
(W/0 Ugeo); 2) removing the image features from the appearance
features (W/0 Uypp); 3) disabling the occlusion-aware self-attention
mechanism (w/o Occ) by letting B¢ = 0 in Equation (). As
visible in Fig. the predicted results have significant geometric
deviations when lacking the geometry feature wge,, mainly reflected
in the lack of clothing geometry and errors in the shape of
the person. Similarly, when lacking the appearance feature wapp,
the model’s generalization ability is significantly impaired, as
evidenced by reconstructing incorrect clothing colors and confusing
clothing with limbs. Furthermore, when lacking the occlusion
module, the model’s ability to process multi-view information is
greatly reduced, and it may incorrectly utilize the input information
that should not be used, such as reconstructing frontal clothing
information in the back. These comparisons show that the image
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Fig. 8. Qualitative comparison of cross-dataset generalization on animation. Tex: projects pixel colors onto the surface of the SMPL model with
per-vertex deformations. Finetune: fine-tune our model for approximately 10 minutes with the same input. MPS-NeRF and our method trained on the
ZJU-MoCap [45] and directly tested on the DeepCap [21] and DynaCap [20]. Our method shows significant superiority over other methods, while also

yielding superior outcomes with fine-tuning.

Fig. 9. Results of changing appearance and geometry. We can directly
change human shape (top row) and human appearance (bottom row)
while keeping other factors fixed.

features are critical to quality results, while our occlusion-aware
mechanism effectively improves the perceptual realism.

To validate our design of disentangling the geometry and
appearance features, we train a model with a single variable for
both the appearance and geometry features (w/o Sep). When the
disentangling module is missing, the model is prone to confusing
geometry and appearance during training, resulting in many

artifacts in both geometry and appearance in the predicted results.

For example, in Figure [I0] an erroneous human body shape is
depicted, and clothing is mistakenly reconstructed on the hand. As
shown in Tab. [3] our disentangled features achieve better image
quality in terms of all of the three metrics.

In table ] we show the performance of our model in terms
of the generalization to novel views and novel animations with
different numbers of input views. The performance of our method

w/o Sep

GT Full model w/o GCN W/0 Uge, W/0 tgpp w/o Occ

Fig. 10. Visual result of the ablation studies for different components.
Occ: the occlusion-aware self-attention mechanism, Sep: separation of
geometry and appearance features.

degrades slightly when given fewer input views.

We also compared our method using NeuS and the original
volume rendering algorithm in Nerf. By using the NeuS rendering
method, the sampling points are more concentrated on the object
surface, which makes the deformation field easier to train. This also
allows for more accurate human geometry and fewer appearance
artifacts, as shown in the pose driven results in the Fig.[T1}

5 DISCUSSION

Despite its success, our framework still has several limitations.
First, our method relies on the accuracy of pose tracking, and the
low-quality SMPL estimation may result in artifacts. It would be
interesting to optimize the SMPL parameters in the framework.



TABLE 3
Ablation study for different components. Occ: the occlusion-aware
self-attention mechanism, Sep: separation of geometry and appearance

features.
Unseen subjects Animation
PSNRT SSIM T PSNRT SSIM T
w/o GCN 24.27 0.891 22.81 0.872
W/0 Ugeo 23.79 0.890 2234 0.875
w/0 Uapp 23.39 0.881 22.38 0.870
w/o Occ 24.10 0.889 22.79 0.874
w/o Sep 23.68 0.891 22.46 0.874
Full model 25.14 0.914 23.18 0.886
TABLE 4

Quantitative evaluation of using different numbers of input camera views
during inference. The performance of our method degrades slightly when
given fewer input views.

view number 1 view 2 views 3 views 4 views
PSNRT| 23.28 2426 2478 25.14

Unseen subjects SSIM?T | 0.887 0.900 0.909 0914
PSNRT| 2230 2290 23.08 23.18

Animation SSIMt | 0.875 0.881 0.883  0.886

Second, our method can only handle the clothing types that follow
the topology of the SMPL model, and it is challenging to model
very loose clothes, such as skirts. Finally, our method does not
model complex lighting effects and we assume the uniform lighting
in the input multi-view videos. When the assumption cannot be
met (e.g., the ZJU-MoCap dataset), our model tends to learn
the average lighting and produce the results with color shift. We
leave them for future work. Moreover, it is noteworthy that our
proposed model exhibited exceptional performance despite being
trained on a restricted dataset. The potential benefits of augmenting
our framework to accommodate larger models and incorporating
additional training data warrant further exploration.

We extract image features from both the spatial and surface
points of the SMPL model to more effectively infer person- and
pose-dependent properties, and our GCN integrates local pose
information by using the edges of the posed SMPL as its edge
features, enabling the generalization of pose-aware surface features.
In contrast, for the novel view synthesis generalization task, the
state-of-the-art method, Keypoint NeRF (KN) [39], relies on spatial
encoding for 3D query points and keypoints, which is sensitive
to human body shape and pose. The person- and pose-dependent
properties of our method lead to improved performance in pose-
dependent appearance and geometry in the task of cross-dataset
and identity generalization. On the other hand, in the task of
animation, although we design a residual module to compensate for
the deformation caused by changes in body shape and pose, using
the extracted pose-aware surface features. However, determining
the changes in appearance and geometry with different poses is
challenging, given only four static images as input. Consequently,
the performance of pose-dependent appearance and geometry in
this task is not as strong as in novel view synthesis. As a result,
exploring the use of multi-view videos in testing to enhance this
capability is another interesting direction.

6 CONCLUSION

We presented Neural Novel Actor, a new method for learning
a generalized animatable neural human representation from a
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Fig. 11. Comparison of NeuS rendering and NeRF rendering: The NeuS
rendering method enables more accurate human geometry and fewer
appearance artifacts.

sparse set of multi-view imagery of multiple persons. With the
learned representation, we can synthesize novel view images of
an arbitrary person using a sparse set of cameras and further
synthesize animations with user’s pose control. To efficiently learn
this representation for multiple persons, we design our proposed
human representation with disentangled geometry and appearance.
Furthermore, we leverage the features at both the spatial points and
the surface points of SMPL to infer pose- and person-dependent
geometry and appearance. Extensive experiments demonstrate that
our method significantly outperforms the state-of-the-arts on the
tasks of novel view synthesis of new persons and the animation
synthesis with pose control.
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