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ABSTRACT

There are concerns that new approaches to the synthesis of
high quality face videos may be misused to manipulate videos
with malicious intent. The research community therefore de-
veloped methods for the detection of modified footage and
assembled benchmark datasets for this task. In this paper, we
examine how the performance of forgery detectors depends
on the presence of artefacts that the human eye can see. We
introduce a new benchmark dataset for face video forgery de-
tection, of unprecedented quality. It allows us to demonstrate
that existing detection techniques have difficulties detecting
fakes that reliably fool the human eye. We thus introduce
a new family of detectors that examine combinations of spa-
tial and temporal features and outperform existing approaches
both in terms of detection accuracy and generalization.

Index Terms— forgery detection, dataset, detectors

1. INTRODUCTION

Model- and learning-based approaches to face video synthe-
sis have reached high levels of visual realism. Some allow
facial expressions to be modified or transferred [1–3], while
others implement face swapping, i.e. replacing the face in-
terior with a different face identity [4]. Reacting to con-
cerns that these could be misused to modify videos in un-
ethical ways, the research community has developed tech-
niques to detect forgeries, for generic content [5–7] as well
as specifically for faces [8–10]. In order to compare the ef-
fectiveness of forgery detection methods it is vital to evaluate
them on benchmark datasets. As one example, FaceForen-
sics++ [8] contains internet videos modified by several face
synthesis techniques [1, 3, 11–13] and demonstrates that an
off-the-shelf image classifier, XceptionNet [14], outperforms
methods specifically designed for fake detection. However,
whenever a forgery detector achieves a high detection accu-
racy on a dataset, we must wonder: Does this mean that the
detector is very good, or does it mean that the fakes in the
dataset are just too easy to detect? Based on the observation
that the fakes in existing benchmark datasets of forged face
videos seem to be easy to spot for the human eye (Figure 2),
we have formulated the following hypothesis:

Fig. 1. Forgeries from VideoForensicsHQ.

Hypothesis (H): The accuracy of existing face video forgery
detection methods depends on visual artefacts that humans
would be able to spot with the naked eye. As soon as fakes
are missing such artefacts, detector performance will drop.

The artefacts in question include temporal jitter, implausible
lighting, unnatural smoothness and blending boundaries, oc-
curing as part of the synthesis process. In the course of inves-
tigating H we make two main contributions:

First, we present VideoForensicsHQ, a benchmark dataset
of high quality face video manipulations, designed to not in-
clude said artefacts (Figure 1). Our user study shows (see
supplemental) that humans find our fakes considerably harder
to detect than in previous datasets. Only VideoForensicsHQ
allows us to investigate H, by evaluating existing detectors on
it, showing that their performance leaves room for improve-
ment. Second, making use of this room, we present a novel
family of learning-based detectors that examine combinations
of color, low-level noise and temporal correlations. We find
these to perform better than previous methods on high-quality
fakes and to even generalize to unseen synthesis methods.

2. RELATED WORK

Face Reenactment & Editing: Face reenactment techniques
control facial expressions in a video [1, 2, 16, 17]. Many of
them extract expressions by fitting a face model [18] and then
re-synthesizing the face with parameters copied from a source
video [1,2,16]. Kim et al. [2] for the first time showed space-
time coherent realistic global pose and expression editing in
videos using a GAN. [16] is a more comprehensive overview.
Face Manipulation Datasets: Several datasets of manipu-
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FS, DF, F2F [8] Deep Fake Dataset [13]

NT [8] DFDC [15]

Fig. 2. Previous face video manipulation datasets contain no-
ticeable artefacts. “Neural Textures” [8] offers the best quality
so far, which is why we included it in our user study.

lated images [19, 20] or videos [8, 15, 20] exist. Roessler et
al.’s FaceForensics++ dataset [8] contains 1,000 videos, each
manipulated by 4 different techniques [1, 3, 11, 12]. Their re-
sults show that many manipulation approaches produce very
noticeable artefacts. Google released the Deep Fake Detec-
tion Dataset [13]. Many sequences exhibit visual artefacts.
Facebook released a dataset [21] of manipulated face videos
of varying quality, with face resolution often much less than
2992. Jiang et al. presented DeeperForensics 1.0 [22], which,
augmentations aside, provides 1000 forgeries derived from
[8]. As can be seen in Figure 2, our user study, and our evalu-
ation (Section 5), all these datasets are made up of fakes that
are easily detected by humans and machines.
Detection of Manipulated Visual Content: Generic detec-
tion techniques [5,7,23–27] often examine low-level features
such as high-frequency components and noise. Fridrich et
al. [23] introduced convolutional kernels designed for ste-
ganalysis, that were later formulated as a constrained CNN
[24]. Bayar et al. [5] suppress image content to focus on
low-level patterns. The work of [27] localizes edited regions
of an image by examining so-called “noiseprints”. Face-
specific techniques can be classified into single-image-based
[6–9, 19, 28–30] and multi-image-based [10, 31] approaches.
Zhou et al. [19] detect face swaps using a two stream network
(visual artefacts + steganalysis features). MesoInc-4 [6] is a
CNN that learns at which level of granularity to investigate
the input. Rössler et al. [8] examined a variety of manip-
ulation detection techniques [6, 23, 24] on their FaceForen-
sics++ dataset, with XceptionNet [14] emerging as the most
robust detector. Other works have studied temporal correla-
tions, based on “action-units” [9] or RNN’s [10].

3. THE VideoForensicsHQ DATASET

To investigate H, we need a benchmark dataset that contains
many fakes of high quality: In order for humans to be unable
to spot fakes, we must avoid artefacts such as temporal jitter,
unnatural movement, implausible lighting, unusual smooth-
ness, or strong blending boundaries. While there definitely

are state-of-the-art synthesis techniques that achieve such
quality under ideal conditions, we are not aware of a large-
scale benchmark dataset that aggregates many such high qual-
ity results. VideoForensicsHQ is the first such dataset, as con-
firmed by our user study (supplemental material). The chal-
lenge does not lie in finding a novel synthesis method and it is
by no means our goal to present one. Instead we adapt Deep
Video Portraits (DVP) [2] for large-scale fake creation.

While DVP can transfer performances from a source per-
son to a different target person, this mode can lead to arte-
facts if the distribution of facial expressions differs a lot be-
tween source and target. Not even the “style-preserving” vari-
ant [16] avoids glitches as reliably as necessary. We thus
produce “intra-person” transfers (i.e. source and target are
the same person). Recent works [32, 33] show this to be a
very relevant threat-scenario. Since DVP is trained on a set of
frames that is disjoint from the source/target sequence, it has
not seen the expressions to synthesize in advance and must
still generate the typical GAN artefacts that are common with
synthesis methods, but typically go unnoticed by humans.
VideoForensicsHQ At-A-Glance: VideoForensicsHQ con-
tains 1737 videos of talking faces (43% male, 57% female),
with 8 different emotions. Most videos have resolution
1280 × 720. They amount to 1,666,816 frames with aver-
age resolution 9682 and the average face covering 4872 pix-
els. There are three different subsets: Group#1 was mined
from [16], Group#2 from RAVDESS [34], and Group#3
from YouTube. In total, our dataset contains 326,973 fake
frames, comparable to the “Neural Textures” [3] part of Face-
Foresnics++. While their fakes are the ones that come clos-
est to our dataset in terms of visual quality (see Figure 2),
our user study (supplemental) shows that our fakes are much
harder to detect for humans: 65.8% of our fakes are mistaken
as reals, while only 14.3% of the “Neural Textures” fakes pass
this test. For more details see our supplemental document.
Production process: Mining real videos as the basis for our
fakes is challenging because jump-cuts, animations and un-
usual face poses need to be circumvented automatically, espe-
cially for YouTube. To synthesize video of an identity, DVP
requires about 5 - 10 minutes of training material, with all
frames showing the same face at roughly the same distance,
in a near-frontal pose. To find such material, we run a fa-
cial landmark tracker [35] on all frames of all source videos,
obtaining 66 landmark positions for every frame fi, and one
confidence value in the range [0, 1] for every landmark posi-
tion. We compute three metrics:

1. ci: avg. landmark confidence for frame fi

2. di: avg. offset between landmark positions in fi and
fi−1, divided by face size

3. mean and standard deviation of the ci’s and di’s

A frame is regarded unsuitable in any of the following cases:
a) ci < 0.2, b) di > 0.1, c) ci < 0.6 deviates from the confi-
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Fig. 3. We apply monocular reconstruction to videos from the “Synthesis” set, to obtain facial parameters that are close to the
training distribution. DVP [2] turns these into photorealistic videos.

dence mean by more than 110% of the std.dev. (in neg. direc-
tion), d) di > 0.025 deviates from the displacement mean by
more than 110% of the std.dev. (in pos. direction). If none of
these apply, the frame is added to the current segment of suit-
able frames. A segment here is a contiguous set of frames,
with no scene cuts. We add the longest good segments to
the training set for the respective identity until 5000 to 6000
frames are reached. All good segments beyond that make up
the disjoint synthesis set for this identity.

The training set is processed with a monocular face re-
construction approach [18], which encodes the facial perfor-
mance as a sequence of parameter vectors. The vectors are
then rendered to obtain the conditioning input that DVP learns
to turn into RGB output again (Figure 3). Thus for each iden-
tity, we obtain one DVP model that can render facial perfor-
mances at photorealistic quality. The input to such a model
can be any arbitrary facial performance, also given as a se-
quence of parameter vectors. But to reliably avoid strong
artefacts, we need to give facial performances as input that are
close to the distribution that DVP saw during training (with-
out, of course, using any of the training data!). We simulate
a faker that is able to synthesize such parameter sequences,
by applying monocular reconstruction to the synthesis set as
well, thereby obtaining parameters that have the necessary
properties. This is why our fakes mostly avoid clearly visi-
ble glitches, but still preserve the less noticeable artefacts that
every GAN-based synthesis method inevitably exhibits.

For further details, including our modifications to DVP,
we refer to our supplemental document. More synthesis re-
sults are shown in our submission video.

4. DETECTING HIGH-QUALITY FACE
MANIPULATIONS

We consider XceptionNet [14] a representative of existing
face video forgery detection methods, because it ranked high-
est in FaceForensics++ [8]. If H is true, XceptionNet should
perform worse on VideoForensicsHQ than it does on Face-
Forensics++. This expectation is justified because Xception-
Net is a generic image classifier that has not been designed for
fake detection and thus should look for clearly visible arte-
facts in the image space. Since it nevertheless outperformed

all other, detection-specific methods in [8], we want to en-
hance its ability to detect seemingly flawless fakes, without
compromising its ability to detect strong artefacts. We thus
present a novel family of detectors that examine combina-
tions of multiple cues (Figure 4): the original RGB values,
low-level spatial noise, and temporal correlations.

XceptionNet consists of an entry flow Indαβγδε, a mid-
dle flow M, and an exit flow Out. Parameters α, β, γ,
δ, and ε specify the number of features per convolutional
layer (see supplemental), while d specifies the number of in-
put channels. One can denote XceptionNet as the function
C := In3,32,64,128,256,728 ◦M8 ◦Out, applied to color im-
ages, yielding a score for class “real” and one for “fake”.
In the following, leading or trailing zeros in the indices of
Ind,α,β,γ,δ,ε disable the respective layers.

Repetitions of M drive up memory consumption and train-
ing overhead. To test whether 8 repetitions are actually nec-
essary for forgery detection, we remove M entirely:

B := In3,32,64,128,256,728 ◦M0 ◦Out

Since VideoForensicsHQ contains very few strong visual
artefacts that C or B could easily pick up, we define S to not
classify frames F ∈ R299×299×3 themselves, but their spa-
tially high-pass-filtered versions 1

2 ·(F−g∗F )+ 1
2 , where g is

a Gaussian kernel of size 5, with standard deviation σ = 1.1.
The architecture of S is that of B.

Our combination of C and S,

CS := (In3,32,64,128,256,364, In3,32,64,128,256,364) ◦M2 ◦Out

receives the same inputs as C and S and fuses the color and
noise features just before entering M2, where the combined
receptive field of the convolutional kernels has size 17 × 17
(see Figure 4). We extend CS to

PPct := (In3,32,64,0,0,0, In3,8,8,0,0,0)◦ In0,0,72,128,256,512
PPcts := (PPct, In3,16,32,64,128,256)

CST := PPcts ◦M1 ◦Out

which receives temporal features as a third input (Figure 4).
They are extracted as follows:

1. Spatial Gaussian kernel (size 49, σ = 7.7), suppress-
ing high spatial frequencies that motion would turn into
temporal ones (e.g. an edge sweeping over a pixel).
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2. Pixel-wise temporal high-pass filtering of the form
Ai := − 1

4Fi−1 +
1
2Fi +− 1

4Fi+1.

3. Batch normalization.

4. Amplitudes smaller than t are dampened by comput-
ing A′i := thrt(Ai) − thrt(−Ai), where the function
thrt(A) := t

10 · (ln (1 + exp(x)) + 10 · sigmoid(x))
for x := 10

t · (A− t) is smooth and differentiable in t.

5. Computation of temporal gradients: Gi := |Ai−Ai−1|.

6. Temporal lowpass filtering (kernel ( 1
32 ,

1
8 ,

3
16 ,

1
8 ,

1
32 )).

This process emphasizes unnaturally fast motions (i.e. quick
changes from one frame to the next), often observed in forg-
eries. With the exception of step 1, all operations are pixel-
wise. Step 2 suppresses low temporal frequencies, which are
likely of natural origin. Steps 3 and 4 ensure that among the
high frequency spikes we focus on those of a certain mini-
mum amplitude, which are most likely artificial. Step 5 turns
oscillations between + and - into large positive values. Step 6
stabilizes the resulting signals, such that more output frames
exhibit bright regions that the classifier can detect. For more
information on thrt see our supplemental material.

We are not aware of any existing face video forgery de-
tectors that use such an approach. We deliberately resist any
reflex to make “everything trainable” in our feature extraction,
to prevent it from overfitting to the training data. Only thresh-
old t is trainable, and our evaluation (Section 5.2) shows that
our detectors generalize better than completely trainable ones.

The number of repetitions of M and the points at which
we fuse streams were empirically chosen to maximize detec-
tion accuracy while not exceeding the 11GB of GPU memory
in an NVIDIA 1080Ti. The resulting tradeoffs can lead to
S performing slightly better than CS and CST on videos in
which color and temporal information do not give a benefit
over spatial noise, because the latter two cannot dedicate as
much memory to spatial noise as S (Section 5). On the other
hand, spatial noise cues alone do not generalize as well as
combinations with other types of information (Section 5.2).

5. RESULTS

Based on our new dataset VideoForensicsHQ and our novel
family of detectors we can now investigate H:
State of the Art Techniques We compare our detectors to
a number of related techniques: Detector C, published as
“XceptionNet” [14], performs best in the FaceForensics++
benchmark [8]. We evaluate MesoInc-4 [6], Bayar et al. [5]
and Durall et al. [30] as they show good results in analysing
low-level features. We also compare to Wang et al. [7], a re-
cent classifier that generalizes to unseen rendering methods.
Preprocessings and training Videos were preprocessed with
one common pipeline before being fed into all detectors (tem-
porally smooth face crops, rescaling to appropriate resolu-

Spatial noise Temporal noise

R
ea

l
Fa

ke

Fig. 4. Our detectors extend XceptionNet [14] to a multi-
stream classifier for combinations of color, spatial noise and
even temporal features.

tions). Imbalances in the datasets were accounted for by
weighted sampling. More details in supplementary material.

5.1. Detecting highly photorealistic manipulations

To test H, we trained all detectors on FaceForensics++ [8]
and DeeperForensics 1.0 [22], which both contain strong vi-
sual artefacts (Figure 2), as well as on VideoForensicsHQ,
which does not (Figure 1). Table 1 confirms H: With the ex-
ception of our novel detectors all accuracies are considerably
lower for VideoForensicsHQ, than for previous datasets. In
fact, XceptionNet (C), the best detector in [8] drops by more
than 10% and is even outperformed by B, which is a reduced
version of C. Our detectors S, CS and CST on the other hand
perform well on all three datasets. We observe that CS and
CST perform not quite as well as S. This is because they had
to sacrifice some of the GPU memory that S can dedicate to
spatial noise, in order to handle color and temporal features (
Section 4). Since VideoForensicsHQ does not contain strong
visual or temporal artefacts, this sacrifice does not pay off.

We remark that only our dataset is able to differentiate the
best detectors from one another, while on previous datasets
many detectors achieve close to 100% accuracy.

5.2. Generalization across manipulation techniques

Since the synthesis method for a forgery is often unknown,
detectors should generalize to unseen methods.

To evaluate this ability, we train detectors on the Face-
Forensics++ subsets FS ∪ NT (FaceSwap + Neural Tex-
tures [3]) and F2F ∪DF (Face2Face [1] + Deep Fakes) and
then test them on the subset they were not trained on. We
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Table 1. Test accuracies and validation accuracy maxima of
our detectors (B, S, CS, CST) and previous approaches.

Arch. FF++ Deeper VFHQForensics
C 99.23% 98.64% 88.59%
B 99.34% 98.09% 91.95%
S 99.38% 98.21% 99.45%
CS 99.25% 98.32% 97.12%
CST 99.35% 98.34% 97.78%

MesoInc-4 92.44% 97.25% 76.73%
Wang et al. 75.55% 61.05% 56.44%
Durall et al. 56.69% 62.88% 61.98%
Bayar et al. 95.82% 97.89% 74.65%

Note: Numbers averaged over 2 training runs.

do not use VideoForensicsHQ for this experiment, because
it contains only one manipulation technique and differs from
other datasets in more respects than just the synthesis method
(much higher resolution faces, no visible cues, etc). Face-
Forensics++ is better suited here because all other factors can
be kept constant when switching between synthesis methods.

Table 2 shows that training our detectors on FS ∪ NT
makes them generalize well to F2F ∪ DF , where they out-
perform existing methods. CS ranking higher than S and C
suggests that combining color and spatial noise can help gen-
eralization. The inverse, (train on F2F ∪ DF , test on FS),
gives low accuracies for all detectors, suggesting thatFS con-
tains artefacts not seen in F2F ∪DF . The subset NT seems
to be easier to generalize to, with our detectors tending to out-
perform existing techniques and CST ranking highest.

Although detectors like C or Bayar et al. could theoret-
ically learn the spatial filtering we hardcoded for S, we see
them perform considerably worse than S in Tables 1 and 2.

5.3. Further results

Since no single dataset can cover all variations of forged video
content (synthesis methods, image qualities, lighting condi-
tions, camera angles, etc.), a robust detector should support
training on a union of datasets. We evaluated detectors on
such a union and found ours to outperform previous ones,
with CST ranking highest. We also investigated the impact
of the number of training identities and found our detectors
to require fewer identities than previous methods. Detailed
results can be found in our supplemental document.

6. CONCLUSION

In this paper, we have introduced VideoForensicsHQ, the first
benchmark set for face video detection that provides a large
number of manipulations a human would not be able to spot.
Only with this dataset were we able to investigate whether

Table 2. Training on FaceForensics++ subsets FS ∪NT and
F2F ∪DF , with test accuracies for the opposite subsets.

Arch. Train: FS ∪NT Train: F2F ∪DF
Acc.F2F Acc.DF Acc.NT Acc.FS

C 82.25% 92.91% 58.40% 50.09%
B 90.40% 95.15% 66.03% 50.27%
S 98.46% 94.93% 85.21% 55.19%
CS 99.46% 98.74% 86.74% 51.78%
CST 98.91% 99.03% 90.65% 56.77%

MesoInc-4 89.65% 71.94% 73.10% 49.76%
Wang et al. 77.91% 80.03% 84.40% 58.89%
Durall et al. 55.87% 55.47% 53.68% 54.19%
Bayar et al. 64.22% 94.53% 64.04% 50.02%

Note: Numbers averaged over 3 training runs.

current approaches to face video forgery detection are ready
for the advent of synthesis methods that produce seemingly
“perfect” results, confirming hypothesis H. To compensate
for the shortcomings of existing detection approaches in this
scenario, we have introduced a novel family of detectors that
combine spatial and temporal information in a way that has
not been used in the area of face video forgery detection be-
fore. We have shown our detectors to outperform related
methods both on previous datasets and on VideoForensicsHQ.

While at first sight one might mistake the “intra-person”
expression transfers in our dataset as harmless, recent works
[32, 33] demonstrate that even slight manipulations of this
kind can have dramatic consequences. VideoForensicsHQ is
the first and so far only benchmark dataset that allows their
study. The absence of human-detectable artefacts in Video-
ForensicsHQ has the advantage of preventing detectors from
learning to rely on their presence. This suggests that Vide-
oForensicsHQ should be included in any “serious” detector
training set and allows the detection community to prepare
for future advances in forgery approaches already today.

Acknowledgement: This work was supported by the ERC
Consolidator Grant 4DReply (770784).
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Table 1. VideoForensicsHQ subsets
Subset Fake frames Real frames

group#1 60,058 119,992
group#2 74,765 190,259
group#3 192,150 1,029,592

total 32,6973 1,339,843

1. SYNTHESIS DETAILS

We mined the authentic raw footage for our dataset from
[1] (Group#1), RAVDESS [2] (Group#2) and YouTube
(Group#3). Table 1 lists the sizes of these subsets.

The original version of DVP [3] cannot handle dynamic
backgrounds and works at a fixed resolution of 2562. We thus
prepare training frames by cropping them around the face and
masking out the background (see pipeline figure in the main
paper), in order to make the network focus all its capacity on
the face region. The resulting square images are scaled to
resolution 2562. Instead of a separate conditioning image for
the eye-gaze (like in [3]) we overlay the eye gaze rendering
on the face rendering. We use temporal supervision for DVP,
by means of “temporal windows”, as proposed in [3]: The
discriminator sees temporal volumes of 5 frames for most of
Group#2. We found the temporal window to not improve
quality considerably, which is why Group#3 and Group#1
were synthesized with window size 1. We train our DVP mod-
els for up to 200 epochs, estimating the mean squared photo-
metric error against ground truth on the validation set. The
model with the smallest error is used for synthesis. Since the
facial performances we are rendering at synthesis time have
been reconstructed from real footage, we know the coordi-
nates of the face region in that footage. This allows us to
alpha-blend the DVP output into those original frames.

Figure 1 shows more forgery examples from our dataset.

2. USER STUDY

We conducted a user study to asses the quality of our fakes
compared to FaceForensics++ [4]. We randomly selected 13

Table 2. User study results

Source Rated
“fake”

Rated
“real”

Real videos 15.0% 85.0%
“Neural Textures” fakes [4] 85.7% 14.3%

VideoForensicsHQ fakes 34.2% 65.8%

manipulated videos from VideoForensicsHQ and 13 manipu-
lated videos from the “Neural Textures” subset of FaceForen-
sics++ [4], created with the reenactment technique by Thies et
al. [5]. Other approaches in FaceForensics++ produce fakes
with much more visible artefacts (see Figure 2 in the main
manuscript). In addition, we randomly selected 6 unmodified
videos from VideoForensicsHQ and 7 from FaceForensics++.

In total our study contains 39 videos, randomly shuffled
for each participant. For each video, we recorded the an-
swer to the question “Does the video look real or fake?”.
Most participants were computer scientists, with little-to-no
knowledge of face manipulation techniques. 61 subjects par-
ticipated in the study. On average, fakes from VideoForensic-
sHQ were rated real 65.8% of the time, and fakes from Face-
Forensics++ were rated real only 14.3% of the time. Table 2
lists the full results. We note that unmodified videos were
also rated as manipulated 15% of the time, which reflects a
baseline error level in human detection performance. We also
asked participants what made them flag a video as modified.
Some of the most common responses were:

1. Various visual artefacts, especially in mouth interior

2. Non-natural eye movement

3. Body movements or hand gestures not matching speech

4. Non-natural mouth-related movements e.g. lips being
tight when they should not be, deforming/dislodging
jaw, etc.

5. Incorrect audio-lip synchronization

6. A single glitch occurring over 2-3 seconds

7. Spoken language not matching language of written text

978-1-6654-3864-3/21/$31.00 ©2021 IEEE
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Fig. 1. Forgeries from VideoForensicsHQ.

2



3. DETECTION DETAILS

3.1. Parametrization of XceptionNet

In order to build our detectors, we have generalized Xception-
Net [6], by parametrizing various dimensions of its architec-
ture (see main paper). Figure 2 clarifies the meaning of each
parameter we introduced.

3.2. Temporal filtering

The function thrt is supposed to dampen low amplitudes of a
signal. The parameter t is a threshold specifying which am-
plitudes are to be dampened. Figure 3 plots thrt for different
values of t. The function is differentiable in t, such that the
training process can automatically determine a good position
and shape for the “cliff”.

3.3. Detection preprocessing

All training and test data for all detectors is preprocessed by
one common pipeline: Face bounding boxes are computed us-
ing dlib [7], with temporal smoothing of their coordinates. We
extract constant-size square bounding boxes, scaled to resolu-
tion 2992. We resample videos at 25fps. Frames for which no
face bounding box can be found are omitted. For MesoInc-4
we scale the resulting frames to 2562, whereas for Durall et
al. we compute a 209-dimensional feature vector as specified
in [8].

3.4. Detection training

The Xception-based detectors C, B, S, CS and CST are
all trained with stochastic gradient descent (momentum 0.9,
weight decay 10−5), multiplying the initial learning rate of
0.03 with factor 0.970.1 per epoch. For CST we initialize t
with 1

40 . Previous detectors are trained as specified in their
publications, except for Wang et al. and Durall et al.: Wang
et al. is claimed to generalize well to unseen rendering meth-
ods. We thus use its pretrained weights and merely optimize
a threshold on its singular output value, based on the ROC
curve over the samples that were seen within one epoch of
training. We perform this optimization for 5 epochs and av-
erage the 5 resulting thresholds. For every training batch
of Durall et al. [8] we optimize a new SVM model on the
Fourier features. At validation and test time we average the
predictions of all SVM models obtained in this way.

All detectors are trained with batch size 24, except for
MesoInc-4 (512) , Durall et al. (512) and Bayar et al. (256).
Except for Wang et al., all methods are trained with a hard
limit of 100 epochs. We stop training earlier if 5 epochs with
a validation accuracy of more than 99% have been seen (not
necessarily consecutively). The model with maximal valida-
tion accuracy is used at test time.

To account for imbalances in the datasets, we randomly
sample 10% of the training frames and 20% of the valida-
tion frames in every epoch. Sampling here means to first
uniformly select a class (“real”/“fake”), then a subset (which
is relevant for VideoForensicsHQ because it consists of three
different groups), then a subject and then one of the sequences
for this subject. Frames are sampled uniformly from se-
quences. Since Durall et al. is not designed for the amounts
of data resulting from the aforementioned sampling rates we
lower them to 0.5% training and 1% validation samples for
this method.

This training procedure is the reason why in Table 1 of the
main paper, the accuracies we report for MesoInc-4 and Ba-
yar et al. on FaceForensics++ are slightly lower than the ones
reported in [4]. However, the detectors based on Xception-
Net [6] (C, B, S, CS, CST), do not seem to be impacted by
this, which we interpret as a strength of XceptionNet-based
architectures.

At test time, we evaluate all frames of the test set in which
a face could be found, but weigh per-frame predictions by
the probability of a frame being sampled according to above
sampling process.

4. FURTHER RESULTS

4.1. Training on a union of datasets

Since no single dataset can cover all variations of forged video
content (synthesis methods, image qualities, lighting condi-
tions, camera angles, etc.), a robust detector should support
training on a union of datasets. To evaluate how well detectors
handle this setup we have trained them on the union of Face-
Forensics++, VideoForensicsHQ and DFDC (preview) [9]
and tested them on FaceForensics++ and VideoForensicsHQ
(Table 31). Compared to training on only one single dataset
(see main paper), the task is now hard enough to also differen-
tiate our detectors from one another: B again performs better
than C. S and CS are on par. CST can now demonstrate the
benefit of temporal information, ranking highest on both test
sets.

4.2. Impact of training corpus size

VideoForensicsHQ contains only 45 identities, while Face-
Forensics++ contains 1000 identities. This raises the question
of how many identities are necessary to train a detector.

We have thus randomly sampled small training sets from
VideoForensicsHQ, with different numbers of identities. De-
tectors were trained on these subsets and then tested on ran-
dom test sets of 15 identities each (disjoint from the training
sets). Figure 4 shows the average accuracies after training on

1 [9] contains very challenging perspectives and lighting conditions, as
well as fast motion, making our preprocessing struggle to the point that it
becomes the limiting factor of accuracy: All detectors, ours and previous,
achieve about 80% test accuracy.
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Fig. 2. The building blocks of XceptionNet [6] are the basis of our multi-stream detectors (see Figure 4 of the main manuscript).
In order to trade memory capacity between multiple streams and fuse them at the right locations, we changed the numbers of
features in each layer of each instance of such a building block. ε in M and ζ in Out are determined by the number of output
feature in the preceding block.

4



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Graphs of thrt, for t ∈ {0.2, 0.4, 0.6, 0.8}.

different numbers of identities. For each number of identities
we have sampled 3 to 5 different training sets.

We observe that the best detectors achieve close to 100%
test accuracy already for training corpora of only 25 identi-
ties (training + validation), which is much fewer than the to-
tal number of identities in VideoForensicsHQ, providing ev-
idence that our dataset is sufficient to generalize to unseen
identities, and that our detectors do not overfit to the training
identities.
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