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Abstract: Optical trapping is a vital tool in biology, allowing precise optical manipulation
of nanoparticles, micro-robots, and cells. Due to the low risk of photodamage and high trap
stiffness, fiber-based dual-beam traps are widely used for optical manipulation of large cells.
Besides trapping, advanced applications like 3D refractive index tomography need a rotation of
cells, which requires precise control of the forces, for example, the acting-point of the forces
and the intensities in the region of interest (ROI). A precise rotation of large cells in 3D about
arbitrary axes has not been reported yet in dual-beam traps. We introduce a novel dual-beam
optical trap in which a multi-core fiber (MCF) is transformed to a phased array, using wavefront
shaping and computationally programmable light. The light-field distribution in the trapping
region is holographically controlled within 0.1 s, which determines the orientation and the
rotation axis of the cell with small retardation. We demonstrate real-time controlled rotation of
HL60 cells about all 3D axes with a very high degree of freedom by holographic controlled light
through an MCF with a resolution close to the diffraction limit. For the first time, the orientation
of the cell can be precisely controlled about all 3D axes in a dual-beam trap. MCFs provide
much higher flexibility beyond the bulky optics, enabling lab-on-a-chip applications and can
be easily integrated for applications like contactless cell surgery, refractive index tomography,
cell-elasticity measurement, which require precise 3D manipulation of cells.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical traps are powerful tools to manipulate and move objects ranging in size from nano- to
micron-scales. They are widely applied in biology to manipulate cells in a contact-free manner.
The most common optical traps are optical tweezers (OT) [1]. In OTs the dominant force
component is the gradient force. Therefore, a steep intensity gradient is required, which can be
achieved by sharply focusing the light with a high numerical aperture (NA) microscope objective,
mainly in free-space setups. This is accompanied by a small working distance of microscope
objectives, which can be a limitation. Holographic optical tweezers (HOT) using spatial light
modulators (SLM) originally employed micro-fabricated diffractive optical elements [2] to create
multiple traps. The technological progress of SLM boosted the technique’s applicability, as it
enabled precise wavefront shaping and optical manipulation by holographic control [3-6]. This
made optical trapping a vital tool for polymer and small cell manipulation in biotechnology,
nanotechnology, and manufacturing [7—11]. However, a high NA is required for stable trapping,
which can cause photodamage on the biological sample due to the high laser intensity in the
trapping region [12]. The risk of photodamage is strongly reduced in dual-beam traps [13] by
trapping the object with two counter-propagating divergent or moderately focused beam with low
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NA [14,15]. Dual-beam traps are usually implemented based on optical fibers, providing higher
flexibility and can be easily implemented into lab-on-a-chip systems [16,17].

Optical fibers are widely employed in optical manipulation for higher penetration depth and
lab-on-a-chip applications [17-25]. Holographic optical manipulation of micro-particles with a
size of 1.5um through a customized multimode fiber shows the potential of optical manipulation
in deep tissues [18]. To manipulate cells much larger than the wavelength, dual-beam traps are
realized with two single-mode fibers, having the advantage that they can be easily integrated
for lab-on-a-chip applications [17,22]. The first one-dimensional optical manipulation of cells
was done by the optical stretcher [19-21]. Two-dimensional (2D) optical manipulation, which
rotates the cell about the microscopic optical axis, was realized by mechanical misalignment
of the two beams in a dual-beam fiber trap. The so-called fiber-optic spanner consists of two
opposing fibers with a slight misalignment, which leads to rotation of the trapped sample
[26-28]. Further cell-rotation about the micro-channel’s axis was realized by inducing pressure
on one of the fibers in the vertical direction [29]. However, the flexibility of these techniques
is strongly limited by the precision of the mechanical components, and the vibrations from the
mechanical movement can degrade the stability of the system [25]. To overcome the drawbacks
of mechanical movement, a holographic controlled cell-rotation about the optical axis of fiber
was achieved with few-mode fibers [23,24]. Nevertheless, the linear and angular displacement
of the above-mentioned dual-beam manipulation techniques are still large. Stable rotation of
cells is achieved by combining dual-beam trap with microfluidic techniques [29-32]. The cell is
trapped slightly off the middle of a microchannel, and a flowing medium induces the rotation due
to the force gradient acting on the cell. The system can be run with a continuous flow to increase
the system’s stability and throughput. Dielectrophoretic cell rotation [33] was proposed with
lab-on-a-chip systems, however, this approach strongly depends on particles’ electrical properties.
In-plane and out-of-plane rotation of cells were achieved by acoustic microstreaming using two
different configurations [34,35]. This approach shows a wide range of rotation capability for
biological samples ranging from micrometer to submillimeter scale. However, these approaches
can only rotate the cell about less than two axes, and the targeted and repeatable orientation of
the cell is difficult to achieve. Up to now, a device that can fully control the rotation of a large
biological cell about all three axes in 3D is currently not available.

For the first time, we propose a flexible and stable 3D cell rotation approach with an adaptive
phased-array optical manipulator (PAOM). The PAOM is based on a modified dual-beam trap
(Fig. 1(a)), consisting of a commercially available MCF in conjunction with a single-mode fiber
(SMF). Due to initial optical path differences between cores, plane-waves propagating in MCFs
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Fig. 1. (a) The 3D illustration shows a biological cell is rotated about X-,Y-and Z- axis
with the PAOM, which consists of a multi-core fiber bundle and an opposing single-mode
fiber. (b) 3D illustration demonstrates the workflow of the PAOM. Cells are delivered to the
trapping region by the microflow.
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result in a speckled output in the ROI, which is 600 um away from the distal fiber facet. These
path differences can be corrected by calibration employing DOPC [36,37]. In our previous work,
in-situ calibration approaches based on digital phase conjugation (Fig. 2(b)) are demonstrated
to overcome the phase distortion in MCFs [38,39]. Therefore, an MCF can be transformed
into a phased array by holographic control of phase and amplitude of the light wave exiting the
individual cores (Fig. 2). The PAOM is thus capable to real-time control the intensity distribution
in the ROI with high fidelity and by this achieve a targeted orientation of a biological cell about
any axis in 3D. Miniature multi-core fibers with diameters of 350 um enable the integration of
the PAOM to a microfluid channel (Fig. 1(b)), promising high throughput non-contact optical
manipulation of biological cells.
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Fig. 2. Illustration of the adaptive phased-array optical manipulator (PAOM). A superposi-
tion of phase masks is imaged on the proximal facet of the MCF for holographic control of
the beam profile at the ROI. (a) Each core is modulated in a corresponding circular area on
the SLM, blazed gratings are superposed on each circular area. (b) Digital optical phase
conjugation (DOPC) pre-compensates the phase distortion in the MCF. (c) The modulation
layer displays the phase modulation holograms for the tailored output of the MCF. (d) Phase
modulation to correct the tip and tilt of the output beam of the MCF. (e) The rotating elliptical
beam at the MCF output rotates the cell about Z-axis in PAOM. (f) Lateral beam-shift
induces rotation of cell about the other 3D axes in PAOM.

2. Controlled rotation of cells about an arbitrary axis in 3D
2.1. Transform a multi-core fiber into a phased-array

We transform a 50 cm commercially available MCF (FIGH-350S; Fujikura) with 10,000 cores
and a core-to-core distance smaller than 3um, into a phased array, using the experimental setup
depicted in Fig. 3.

The laser beam from a 532-nm diode-pumped laser is expanded by a 4-f configuration (L2-L3)
to fully use the active area of the SLM (PLUTO LCOS SLM, Holoeye Photonics). Light coupled
in each fiber core is modulated by a corresponding circular area on the SLM. Due to the cladding
area is not illuminated, the crosstalk between cores is suppressed and the quality of the phase
modulation is increased. Blazed gratings are superposed on each circular area (Fig. 2(a)) for
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Fig. 3. Sketch of the experimental setup for calibration and beam profile control of an MCF.
Laser, diode-pumped solid-state (DPSS) laser. HWP, half-wave plate; PBS, polarizing beam
splitter cube; SLM, spatial light modulator; L1-L8, lenses; SF, spatial filter; BS1, 10:90
beamsplitter cube; BS2, 50:50 beamsplitter cube; PL, polarizers; ND, neutral density filters;
CAM1, CAM2, CMOS cameras; MO1, MO2, microscope objectives; QWP, quarter-wave
plate. Red marked area shows a moderate focus generated at the ROI for optical trapping by
the phase modulation on the SLM. The blue arrows indicate the propagation direction of the
laser beam.

higher diffraction efficiency, resulting in higher intensity in the first diffraction order. The first
order transmits through an iris diaphragm (shown as SF in Fig. 3) in the Fourier plane of a
4-f system (L4-L5), while all the other diffraction orders from the SLM are filtered out, which
reduces the influence of unwanted diffraction background [40—42]. The phase modulation,
which is contained in the first order, is projected on the proximal fiber facet by a compact
microscope system including a microscope objective (MO1; 20X Plan Achromat Objective,
0.4 NA, Olympus). The proximal facet of the MCF is back-projected on the CAMI1 (uEye
camera, IDS), shown in Fig. 3, to monitor the modulation input of the MCF, ensuring the phase
modulation is exactly projected on the fiber facet.

The individual cores have different optical path-lengths, which distorts the phase information
of the light propagating through the MCF [43]. We use digital holography [44] to measure
this distortion. The reference beam is split from the same laser source by a polarizing beam
splitter (shown as PBS in Fig. 3). The power ratio of reference- and object beam can thus be
easily adjusted by rotating the half-wave plate (HWP). In order to remove the back-reflected light
when coupling the beam into the SMF, a quarter-wave plate (QWP) is introduced and rotated to
45°. The distal fiber facet is projected on the CMOS camera (CAM2; uEye camera, IDS) by the
microscope system (MO2, L7), and interferes there with the collimated reference beam. Neutral
density filters (NE5S0, Thorlabs) are mounted on cameras to avoid overexposure. The digital
off-axis hologram (Fig. 4(a-c)) is used to determine the phase difference between the cores. To
compensate for the phase delay, the measured phase of each core on the camera (CAM2) was
conjugated and affine transformed into the SLM coordinate system. If the phase conjugate is
displayed on the SLM, it pre-deforms the wavefront and corrects the phase distortion of the MCF
(Fig. 4(d-f)). A precise beam control for stable trapping and rotation requires a high-quality
calibration, leading to a high peak-to-background ratio and accurate beam forming in the ROI.
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Fig. 4. The calibration process of the MCF. (a) Off-axis digital hologram of the MCF’s fiber
facet captured on CAM2. (b) Fourier transformed spectrum image of the captured hologram,
two first-order terms are separated from the off-axis holography. Red marked area denotes
one of the first order terms cropped in the spectrum image for phase reconstruction. (c)
The reconstructed phase of cores from the captured hologram before calibration, denoting a
random phase distribution of cores. (d) The polar histogram shows a quantitative evaluation
of the phase distribution of cores. The length of bars in the polar histogram indicates the
number of cores that are in the same phase range. (e) The reconstructed phase of cores from
the captured hologram after calibration with DOPC, demonstrating the phase distortion is
compensated by the DOPC. (f) The polar histogram shows 93.75% of used cores’ phase are
compensated to the range of [-7/8, 7/8].
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2.2. Dual-beam trap with multi-core fiber

To form a dual-beam trap, the MCF functions as a phased array. The compensating phase map is
superimposed by a tailored Fresnel lens (Fig. 5(a)) and displayed on the SLM to individually
modulate the phase of each core for generating a moderately focused beam which has a low NA
(Fig. 5(b)). We assume that the total magnification ratio from the SLM to the phased-array is M,
the pixel pitch of the SLM is a and the center of the Fresnel lens located at (xg, yo). To generate a
moderately focused beam with a focal distance of f, the phase modulation value ¢(x, y) for the
core centered at (x, y) in the SLM coordinate system can be described as

¢(x,y) = mod [(x x0)* + (v = y0)’],2 ey
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Fig. 5. (a)The 3D plot of the tailored Fresnel lens for the PAOM. (b) Holographic axial
amplitude slice at the center of the beam from PAOM. This focus is generated at 600 um
away from the fiber facet with a very high peak-to-background ratio of 29dB. (c) Illustration
shows a biological cell in the divergent part of the beam. (d) The scattering force on the cell
acts along the transverse direction. The black arrow represents the light ray transmitting
through the cell. (e) Illustration shows a biological cell trapped in the PAOM. (f) The
scattering forces from both beams cancel out.

The moderately focused beam leads to the scattering force induced by momentum-transfer
from light to matter toward the transverse beam propagation direction (Fig. 5(c,d)). The opposing
divergent beam from the SMF (780HP, 0.13 NA, Thorlabs) induces the force toward the opposite
direction (Fig. 5(e)). The cell is trapped stably when the forces cancel out (Fig. 5(f)). The laser
power from each fiber is below 40mW to avoid photodamge or thermal change. The object can be
trapped with high stiffness when the NAs and intensity of both beams is equal, which indicates
the focal length f of the Fresnel lens

d
f= 53— )

2 NAsyr
where d is the the modulated area’s diameter of the MCF.
Conventional embedded dual-beam traps consisting of two single- or multi-mode fibers
[17,19,23,24] are fixed on the chip. To obtain a stable optical trap, the two fibers should share the
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same optical axis. Any slight tilt of the fibers will degrade the quality of the trap. To compensate
for such slight tilts, our PAOM has the capability to further superposing an adaptive tilt correction
phase image (Fig. 2(d)) on the SLM phase modulation.

2.3.  Dynamic modulation of PAOM orientates the cell about the fiber axis

In order to rotate a biological cell about the fiber-axis (Z-axis), a dynamically controlled
asymmetric beam has to be employed. However, precise beam profile control in the trapping
region close to the diffraction limit is an obstacle. It has been demonstrated that the rotation of a
double-lobe mode from a few-mode fiber can facilitate the orientation of cells about this axis [24].
Nevertheless, the double-lobe beam profile is asymmetric to the opposing Gaussian beam profile
emitting from the SMF, which may induce further unbalanced gradient force. The intensity
distribution of the two lobes has to be precisely equal to cancel out the gradient force and not
induce unwanted cell rotation around undesired axes or further movement between the lobes.

We employ a dynamic modulated elliptical beam profile (Fig. 6(a)) to overcome this problem.
Due to the near Gaussian distribution of the elliptical beam profile during rotation, the scattering
force is canceled out in the manipulation process. Therefore, this tailored beam profile, in
principle, can avoid lateral movement of the cell during the rotation (Fig. 6(b)). The direction of
the gradient force will point in a direction to draw the area of high refractive index of the cell into
the area of high intensity of the beam [24,26]. Hence, a cell with heterogeneous refractive index
distribution or non-spherical shape follows the rotation of the beam (Fig. 6(c)). To specify, the
scattering forces from both fibers are canceled out in Z-axis. In each rotation step, the elliptical
beam from the MCEF is rotated for 1° about the Z-axis, the net torque from the gradient force
rotates the cell toward the same direction. The gradient force decreases when the cell rotates to
the maximum overlap position. The opposing frictional torque from the surrounding liquid slows
down the rotation until the net torque from the gradient force is larger than the static frictional
torque.

6.tx.) = mod |1+ B =P + (=30 27 )

Previously reported wavefront shaping with phase modulation mostly uses Gerchberg-Saxton
algorithm [24,45,46], which is an iterative phase retrieval algorithm. This approach takes more
than 10 s for calculating a single phase modulation image in our setup [47]. To achieve real-time
generation of the elliptical Gaussian beam profile, the Fresnel lens is "stretched" by a deformation
factor of B along the X-axis. Therefore, the modified Fresnel lens (Fig. 6(d)) can be described as

Compared to the iterative phase retrieval algorithms, the simplicity of our approach (Eq. 3)
enables real-time holographic control of the beam profile. It takes just 0.02 s to generate one
phase modulation image, and can be even faster with GPU acceleration. The elliptical beam
aspect ratio can be precisely manipulated by simply changing the deformation factor S for various
applications. The phase modulation image is rotated about the center of the Fresnel lens (xg, yo),
which determines the orientation of the elliptical beam. The corresponding phase modulation
value for the phased-array is sampled from the modified Fresnel lens (Fig. 6(e)). Continuous and
homogeneous rotation of the elliptical beam profile from 0° to 360° in 1°-steps is captured by the
camera (CAM2) (see Visualization 1). As shown in Fig. 6(f), the detected experimental rotation
angle of the beam profile fits the modulation angle very well. A small shape vibration of the
beam profile is characterized by the full-width half-maximum (FWHM) of the minor and major
axis (Fig. 6(g,h)), with a mean deviation of 2% and 5%, respectively. The intensity homogeneity
is crucial for a stable rotation of the cell because it determines the scattering force. The mean
deviation of the averaged amplitude distribution at each angle is only 4% over a full 360° rotation.
The homogeneous rotation of the elliptical beam profile enables the robust control of the cell’s
orientation.
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Fig. 6. (a) Selected frames from a full 360° rotation of the elliptical beam profile, the
scale bar indicates a length of Sum (see Visualization 1). (b) Illustration shows a biological
cell was rotated about the fiber axis by the gradient force induced by the rotation of the
elliptical beam in the PAOM. The direction of rotation is denoted by the green arrow. (c)
Due to the heterogeneous internal refractive index distribution, the cell follows the rotation
of the elliptical beam. The green arrow indicates the direction of rotation. (d) A "stretched"
Fresnel lens calculated from Eq. 3 are rotated for 360° to orientate the elliptical beam profile.
White arrow indicates the "stretching" direction of the Fresnel lens for creating the elliptical
beam profile. (e) Phase modulation value for each core is transferred to the phased-array.
(f) Measured rotation angle of the beam profile and the corresponding rotation angle of the
phase modulation. (g) The white dashed line indicates the fitted ellipse, and the red dashed
lines indicate the major and minor axis of this ellipse, respectively. Beside the image is
the Gaussian fitted amplitude distribution along the minor and major axis respectively. (h)
Full-width half maximum (FWHM) of the major and minor axis and the normalized mean
amplitude distribution of the beam profile at each rotation angle.
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The PAOM is integrated to a microscope with a long working distance objective (50X, 0.42 NA,
Mitutoyo) to observe the rotation of the cell (Fig. 7(a,b)). Shortpass filters (FES0500, Thorlabs)
are mounted in front of the camera to remove the scattered light from optical manipulation.
Visualization 2 demonstrates a step-controlled rotation of an HL.60 cell which is recorded on
CAM3 (Ueye CP, IDS). The speed of the video is modified to 7.5x to show the rotation process
better. The selected frames in Fig. 7(c) shows a full-180° rotation of the cell. To quantitative
evaluate the rotation, the distance of the marked features (Fig. 7(c)) to the center of cell is
measured on the 2D images. The cell is considered as a perfect sphere, therefore the cell
orientations in the selected frames, which is shown in Fig. 7(d), can be calculated from the lateral
shift to the center of cell. The error bar indicates the calculated angle deviation caused by the
diffraction limit. The cell was rotated at a constant angular speed, and its orientation follows the
rotation of the elliptical beam.

Channel

0 20 40 60
Time [s]

Fig. 7. (a) Optical setup for observing the rotation of cells. L9-L11, lenses; MO3,
microscope objective; TL, tube lens; SPF, shortpass filter; CAM3, CMOS camera. (b) 3D
illustration of the marked area in (a). (c) Microscopic image frames recorded on CAM3 in
the first and third row show a controlled rotation of an HL60 cell about the fiber axis (Z-axis)
(see Visualization 2). The rotation angle is calculated by the red and blue marked unique
feature on the cell. The scale bar represents a length of Sum. The corresponding elliptical
beam profiles at the beam waist which are demonstrated in the second and fourth row . (d)
The orientation of the cell is almost linearly proportional to the time, which shows a uniform
rotation.

2.4. Controlled cell-rotation about an arbitrary axis in 3D

We have demonstrated that biological cells can be rotated about the Z-axis by holographic
controlled rotating elliptical beam profile. To achieve cell-rotation about the other two axes in
the PAOM, we demonstrate an approach that rotates the cell about the X- and Y-axis by lateral
shifting the beam emitted from the MCF (Fig. 8(a)). The net torque from optical forces induces
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the rotation, and the cell rotates at a constant angular speed when the resultant torque from
optical forces and the opposing friction force from the surrounding liquid is zero. To be more
specific, due to the gradient force always pointing toward the area of highest light intensity for an
object with higher refractive index than surrounding, lateral shift of the beam waist (Fig. 8(b))
induces a resultant gradient force toward the shift direction (Fig. 8(c)). This gradient force cause
the movement the cell to the position where the gradient forces from both beams are canceled

out in longitude direction (Fig. 8(d)). The action point of both scattering forces 7Mcp, ?SMF
shifts from the center of gravity by a distance of 77, 73, respectively. This net torque from both
scattering forces induces the rotation of the cell. Due to the relatively rough surface of the cell,
the frictional torque _T)f,ict,-gn from the surrounding liquid is not neglectable. The resultant torque
7 caused by the two opposing transverse scattering forces and the friction force can be described
as

T =T ycE + TSMF = T friction = T1 X ?MCF +73 X ?SMF — 7 friction- (€]

(d)

.\ Fumcrg

T
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Fig. 8. (a) 2D slice in Y-Z plane shows a biological cell is rotated about the X-axis by shift
the beam in the Y-axis direction. (b) The intensity profile of the beam waist in the X-Y plane
demonstrates the lateral shift of the beam in all directions. (c) Sketch of the scattering and
gradient forces of the initial state when the beam from the MCF is shifted in Y-axis direction.
(d) The cell moves to the position where gradient forces are canceled out, and the net torque
from both scattering forces induces the rotation. The cell rotates at a constant angular speed
when the torque from scattering forces is canceled out with the frictional torque from the
surrounding liquid. The cell rotates about the X-axis with a constant angular speed.

SN
It causes a change in the angular momentum L in the direction of that torque

ﬁ

E— T (5)

Therefore, the angular acceleration depends on the resultant torque 7. When the resultant
torque is zero, the cell can rotate with a constant angular speed about the axis perpendicular
to the focus shift direction due to the constant angular momentum (Fig. 8(a)). However, the
offset distance needs to be tailored for cells with different diameters and shapes to keep the
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cell rotating about its pivot position. Cells with larger size have larger static friction, therefore
larger torque from both fibers is required to start the rotation. According to Eq. 4, increasing
the offset distance can increase the torque from fibers to rotate larger cells. It has to be noted
that further increase the offset distance from the tailored position can induce spiral rotation or
even orbital rotation [48,49]. Therefore, precise manipulation of the beam in all directions with a
sub-micrometer precision is required. Increasing the laser power can be an alternative solution,
but the power from both fibers has to be increased simultaneously to avoid lateral movement. In
principle, this approach is an advanced version of the optical spanner [28,29], which is based on
mechanical misalignment of two SMFs to induce a rotation. The PAOM enables introducing this
misalignment digitally in all directions and thus allows for rotation in three dimensions.

In order to have precise control of the beam offset, we use variables m,, m, which determines
the lateral shift of the Fresnel lens center (xo, yo) in X- and Y-axis, respectively,

raM

@s(x,y) = mod {2]‘_/1

(b = G0+ mP + [y = 00 + my)P) ,2n}. ©)

The minimum travel step of m,, m, is the pixel pitch of the SLM, which is 90 nm at the trapping
region in our setup. The beam modulated by the phased-array can move in all directions in the
X-Y plane by program control. The supplementary video (see Visualization 3) captured by the
camera (CAM2) demonstrates the real-time program controlled beam movement. Fig. 9(a) is the
trajectory of the real-time holographic controlled movement of the beam waist, which shows the
high fidelity of the beam motion control. The intensity stability is crucial for maintaining the
balance of scattering forces. The mean amplitude in Fig. 9(b) characterizes a very high intensity

stability in the beam movement process with a mean deviation of 0.78% and a maximum intensity
variation smaller than 5%.
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Fig. 9. (a)Trajectory of the beam movement shown in the supplementary video (see
Visualization 3). (b) Normalized mean amplitude at the focal spot when the beam is moved
in X- and Y- direction, with a mean deviation of 0.78% and a maximum intensity variation
smaller than 5%.

To illustrate the real-time cell-motion control capability of the PAOM, an HL60 cell with an
irregular shape was trapped for fast identification of the rotation angle (see Visualization 4). The
cell is first rotated about the X-axis by precisely shifting the beam to the tailored offset position in
Y-direction (Fig. 10(a, b)). When a full-360° rotation is finished, the beam shifts to the tailored
offset position in X-direction by real-time program control. This changes the orientation of the
cell by 90° about Y-axis (Fig. 10(c, d)). The beam is then switched back to the offset position in
Y-direction to further rotate the cell about X-axis (Fig. 10(e, f)). To the best of our knowledge,
this is the first time a real-time controlled multi-axis rotation of a biological cell is achieved in
a dual-beam trap. It should be noted that the beam can be laterally shifted in any direction in
3D with high fidelity, which means controlled rotation about an arbitrary axis of a cell can be
achieved by our approach.
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Fig. 10. (a) X-Y plane slice at beam waist of the output from MCF shows the program-
controlled shift of the beam in the Y-axis. This induces rotation of the cell about the X-axis.
(b) Microscopic image frames in the Y-Z plane (see Visualization 4) show a controlled
rotation of an HL60 cell about the X-axis. The rotation angle is calculated by the red marked
unique feature on the cell. The scale bar represents a length of Sum. (c) After the cell is
fully rotated about the X-axis, the beam is shifted by real-time program-control to create
beam offset in the X-axis. This induces rotation of the cell about the Y-axis. (d) Frames
shows rotation about the Y-axis for 90°. The red dashed line indicates the orientation of the
cell. (e) The beam is shifted back to the off-set position in Y-axis. (f) The cell is then rotated
about the X-axis for the second time by controlled beam shift to show full spatial information
of the cell. (g) Quantitative characterization of program-controlled beam shift in X- and Y-
direction and the corresponding rotation angle about X- and Y-axis. The dark blue solid line
denotes the cell-rotation angle about X-axis, the light blue dashed line denoting rotation
about Y-axis. The orange solid line denotes the controlled offset distance of the beam from
MCEF in Y-direction, the orange dashed line denoting offset distance in X-direction. This
demonstrates that, in the PAOM, the orientation and the rotation axis of the cell can be
controlled in real-time.
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3. Discussion

To the best of our knowledge, the PAOM is the first dual-beam trap device that can stably rotate
cells much larger than the wavelength about all 3D axes in a real-time program-controlled way
due to the very high degree of freedom of the direct light delivery of the MCF based phased-array.
The simplicity of our phase generation algorithm and the fast response of the modern liquid
crystal SLMs enables real-time modulation of the beam profile at the ROI. The entire running
time of generating a phase modulation image and displaying it on the SLM can be faster than 0.1
s even with a conventional computer. It can be noticed in the Visualization 4 that there isa 1 s
retardation for the cell to change the rotation axis from X- to Y-axis, because when the beam is
shifted, the cell always moves to the most stable position where the gradient forces are cancelled
out and the torque of the scattering forces is zero before the rotation (Fig. 8(c,d)). This process
takes slightly longer time for a large beam shift distance. The cell shown in Fig. 10 has shorter
diameter in Y-axis, which means smaller beam shift distance in Y-axis is required for a stable
rotation about the X-axis. This leads to a very fast response of less than 0.2 s retardation when
the rotation axis is changed back from Y- to X-axis (Fig. 10(g)).

The quality of the cell control is strongly dependent on the quality of the intensity control,
which again is affected by the robustness of the calibration. The calibration strongly affects
the portion of modulated intensity, which is projected into the trapping region. In this paper,
the calibration relied on a transmission geometry, which requires optical access to both fiber
ends. In-situ calibration and monitoring could be implemented by a calibration procedure we
introduced in [38] to compensate drifts, temporal and bending phase distortion without access
to both fiber tips. Alternatively, recent work demonstrates a novel twisted MCF, that shows a
performance independent of the fiber bending [50]. In addition, switching the laser source to the
near-infrared range with an appropriate MCF can further decrease the risk of photodamage on
cells.

With the capability of robust real-time control, the PAOM opens up new perspectives for 3D
cell-manipulation in a dual-beam trap. One important application of our work is 3D refractive
index tomography, which requires stable sample rotation about two perpendicular axes for full
spatial frequency information [31,51,52]. The PAOM can have broader applications beyond the
tomography due to the robustness and reproducibility. For instance, the PAOM paves the way to
contactless cell surgery [53]. Real-time stable control of cell’s orientation about an arbitrary axis
in 3D enables laser processing on any desired area on the cell by high-power short-pulse laser.
Besides, due to the rather small diameter of 350um, the PAOM can be easily integrated into the
lab-on-a-chip systems. Moreover, it has to be noted that the optical stretching [19] can also be
realized in the PAOM by increasing the power of both beams.

4. Conclusion

We presented a novel and powerful fiber-based dual-beam optical manipulator named PAOM,
which rotates the biological cell about all 3 axes in 3D and enables cell-rotation about any 3D
arbitrary axis. For the first time, the rotation axis and the orientation of the cells is controlled
in real-time by holographic modulated light through a commercially available MCF, the phase
modulation can be generated and delivered to the trapping region with latency less than 0.1 s for
a conventional PC. DOPC compensates the phase distortion, enabling precise wavefront shaping
through the MCF. The rather small size of the optical fibers facilitates their implementations in lab-
on-a-chip systems providing high throughput measurements. Our work opens new perspectives
for fiber-based dual-beam traps, eliminating the need for any mechanical misalignment for
cell manipulation. This work provides very high flexibility for wider applications in advanced
microscopy techniques beyond 3D refractive index tomography, for example, Brillouin microscopy
[54] to sort the origin of diseases or future cell surgery with the nanoscale precision.
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