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WAVE MODEL FITTING USING THE ADJOINT TECHNIQUE

G. Barzel, R. B. Long, S. Hasselmann and K. Hasselmann .
Maz-Planck Institut fiir Meteorologie, Hamburg, Germany

Abstract. The global wave model WAM solves the transport equation for wind generated
waves. The model performance can be improved by adjusting free parameters in the source’
terms against data. The adjoint technique was used to assimilate data obtained from growth
rates into a one-dimensional WAM model. Two sets of data have been used: One from the
JONSWAP expenment another from a reanaly51s of fetch limited growth data by Kahma and
Calkoen.

. The growth rates computed with the new values for the free parameters show, in contrast
to the WAM model (cycle 3 and 4), ar almost linear energy growth for small fetches ‘which
gives a better agreement with data.

1 Introduction

The purpose of this paper is to demonstrate the use of data assimilation by
the adjoint method to improve the performance of a numerical wave model,
specifically, a one-dimensional version of the WAM cycle 4 model currently being
‘run operationally at ECMWF. The modet is fitted to observations consisting
of experimentally determined growth curves using the adjoint procedure, and
improved parameter sets for the source terms of the wave model are derived.

. In Part 1 below, we outline the operation of the adjoint method and present
some technical remarks on how we implemented it in this application. In Part
2, the basic equations of the wave model are presented, the cost function quan-
txfylng the model/data misfit is defined, and the data briefly described. Part
3 discusses results obtained for different sets of free parameters in the model -
source terms for wind input and wave dissipation. Finally, Part 4 offers some
closing remarks. '

2 What is an ‘Adjoint Model’?

2.1 THE BASIC IDEA

Data assimilation by the adjoint method operates by mlmmlzmg a cost function
J which measures the mismatch between available observations (data) and their
model counterparts. Any quantity that is measurable and can also be computed
from model results may be used as data, e.g., in the case of wave models, total
energy, peak frequency, one or two dimensional wave spectra, etc. The cost
function is generally defined as J = (d°P — dm"d) D~ 1(d°" — d™9) where
d°b, d™°9 are vectors of observed data and their model equivalents, respec-:
tively, and D is the observation error covariance matrix (or some appropriate,

approximation thereof). ‘ |

For the purpose of exposmon we can regard the model as a numencal al-
gonthm that starts with a set (for notational convenience, a vector) of con--
trol variables @ = {gb] }J e M then evaluates a set of intermediate variables
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¥ = {¢i};~1...n then terminates in a value for the cost function J. The ¢;
may be initial conditions, the wind field, or any kind of input parameters, such
as, e.g., free parameters in the source terms. The intermediate variables 1; are
taken to be indexed by their subscripts ¢ in the order in which they are evaluated
in the numerical algorithm.

Through thie Thodel equations, all intermediate variables and the cost func-
tion are completely determined by the values assumed by the control variables
¢;. We seek the minimum of 7 in the space spanned by these variables. This
occurs where the gradient V. J = 3ar 9_7J (®) = 0. Typically, the dependence of
J on the ¢ is expressed in the mo&el through the hierarchy of intermediate
variables t;, making it difficult to compute the components of V7 directly.
This difficulty is avoided by elevating the intermediate variables to indepen-
dent status, then seeking a constrained minimum in this much larger space.
The constraints are imposed by constructing a Lagrange function in which the
model equations 3; = E(®,{t;};<i) appear as constraints, each multiplied by
a Lagrange undetermined multiplier A;: ,

LAE,®) =T - (F-E) = J—i&- (zb,-—Ee (@,{¢j}j<,-)) - (1)

The saddle point of the Lagrange function in the space spanned by the control
variables, intermediate variables, and Lagrange multipliers can be shown to be
the same as the minimum of the cost function in the space of the control variables
alone. We find the saddle point by setting partial derivatives of L(A, ¥, ®) with
respect to each of its indicated arguments to zero, then solving the resulting
equations simultaneously. The vanishing of partial derivatives with respect to
the A; yields the model itself as the first set of equations to be satisfied. The
vanishing of partial derivatives with respect to the mtermedzate varlables W;
yields the so-called adjoint equations,

oL =0——>)\N:—a—‘7— and —8—£:0-—§ Ap =

== A " for k < N
dbn oYN oYy, Z ;R

a’tpk 1=k+1 ( )
2

Finally, taking partial derivatives with respect to the control variables yields
the gradient equations,

%k =9 Z 3

(the first equality holding under the condition that the model and adjoint equa-
tions are satisfied). These must also vanish at the minimum of the cost. In
practice, values of the control variables are estimated and the model and ad-
Joint equations solved; the results are then used in the gradient equations to
compute the gradient of the cost at the assumed values of the controls. This is
then used in a gradient-descent algorithm toi improve the estimate of the controls
and to iteratively seek out the cost minimum. :
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The collection of adjoint equations is sometimes referred to as the ‘adjoint
model’ because it superficially resembles a linearized version of the model itself.
Note that the ‘adjoint model’ in a sense runs backward, starting with the evalua-
tion of the Lagrange multiplier Ay, related to the last calculated model variable
1w, and then calculating the A;<n recursively. Because of the role played by
the derivatives of the cost function in the adjoint equations, the adjoint model
appears to be ‘driven’ by the mismatch between observations and their model
counterparts. A

2.2 IMPLEMENTATION OF AN ADIJOINT MODEL

- Constructing the adjoint of a complicated numerical model can be a tedious
task. In the past, the usual approach has been to identify the intermediate vari-
ables 1; with the state variables of the numerical model. The partial derivatives
appearing in the adjoint and gradient equations were then computed analyti-
cally, using the chain rule as necessary, and the resulting expressions converted
into computer code.

In contrast, our approach has been to construct the adjoint code directly
from the model code, treating every assignment statement in the model code as
a constraint equation defining a model variable (excluding statements defining

' constants, flags, input/output parameters, and other quantities which are not
variables of the model). Thus, every variable has its multiplier and can be
treated as independent in taking the required partial derivatives. In outline, the
procedure is as follows: -

Knowing that the multipliers must be evaluated in the reverse order to that
of the model variables, we erect the framework of the adjoint code from begin-
ning to end by tracing backward through the model code from end to beginning,
generating an adjoint subroutine, branch, and loop for every such structure in
the model. The adjoint subroutines will be called and the branches and loops
traversed in reverse order to that in the model. Within these structures, individ-
ual lines of adjoint code are generated from the corresponding line of model code
by regarding each assignment statement in the model code as a constraintto be
multiplied by a Lagrange multiplier identified with the left-hand-side variable.
The right-hand-side is then differentiated with respect to each of the interme-
diate and control variables appearing there, treating all others as independent
in the process. Each such derivative represents one of the terms in the sum-
mation appearing in the adjoint or gradient equations derived above, whence is
generated a line of adjoint code which accumulates this contribution into the
appropriate sum. Care must be taken whenever the assignment statement is not
strictly a mathematical equation (e.g., when it has the form z = =z +...), and
it is necessary to initialize the variables in which the contributions are to be ac-
cumulated at the appropriate places in the code. But there are no fundamental
difficulties in carrying out this program, and the resulting code is clean, mirrors
the structure of the model, and exhibits a one-to-few correspondence between
individual lines of code in the model and in the adjoint that makes mainte-
nance and modification of the code easy and uncomplicated: The procedure is
so straightforward that it is possible to automate it, so that adjoint code could
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be generated by the computer. An ‘Adjoint Model Compiler’ which operates
on similar principles has been developed at MPI (Giering and Ma,xer-Rexmer,
1996). -

For the present application, once the model and adjoint routines were written
they were linked into an umbrella subroutine (the model), which returns a value
of the cost function when called, and another (the adjoint), which returns a
value for the cost gradient when called. These were then linked with NAG
library routine EQ4DGE, which uses the cost function and gradient evaluations
in a sophisticated, iterative grad;ent descent algorithm to find the values of the
control variables that minimize the cost.

3 The Model Physics and the Data

3.1 Basic EQUATIONS OF THE MODEL

The global third generation wave model WAM is described in WAMDI Group
(1988), Komen et al. (1994) and Giinther et al. (1992). Thus we give only the
equations relevant to understanding the optimization we performed. The basic
equation to be solved by the wave model is the energy transport equation:

gtF %f+é'g{7'F=Sjn+Sds+Sm+~-- with F F(k ) (4)
where F' is the 2-D wave spectrum and ¢ is the group velocity. We use a
so-called ‘one-dimensional’ version which considers only the fetch-limited case,
i.e. a constant wind blowing offshore perpendicular to a straight coastline.
The water is assumed to be deep and the wind constant both in dlrectlon and
magnitude.

For the integration of eq.(4) we use an implicit finite-difference scheme (WAMDI
Group, 1988). The source terms on the right hand side are: the input by the
wind, Sj,, the dissipation due to whitecapping, S4s, and the nonlinear transfer
between resonant waves, S;;. In the implementation of WAM cycle 4 the follow-
ing expressions are used (note that the wind input (Janssen, 1991) takes into
account the effect of the waves on the wind, and the dissipation (0r1g1nal form:
Komen et al. (1984)) has been adjusted to bala,nce this wind input):

Sin(£,6) = max[0, alues D] & FULO);  Sanl£,0) = —1as(E5)0 F(£,0) (5
with

2
Yin(us,8) = Wiy '—?2—% i (In(p) )4 max [O, (:* ) cos(8 — OW)] (6)

wea = muew () ((-2) (2 2(2)) o

and w = 2r f, p, (pw) is the density of air (water), vy, is the phase velocity, f,
@ denote frequency and direction in k-space, 8y, is the wind direction. In the
wind input term & = 0.41 is von Karman’s constant, p is a function depending
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on the roughness length, 29, and # = 1.2 and u, = 0.011 have been obtained by
tuning (Janssen, 1991). The mean frequency, @, is calculated as inverse of the
mean period, and o = w*€/g? is an integral wave steepness parameter. appy
is the theoretical value of « for a Pierson-Moskowitz spectrum, £ is the total
energy and g the gravitational constant. cgs is a constant obtained by tuning.

We have introduced five free parameters into the source terms for wind input
and dissipation. Two of them, Wys and Djyy, serve as overall coeflicients that
balance these two source terms. In addition, Wp influences the directional
term of the wind input while Ds and D determine the functional form of the
dissipation function. Setting all parameters to 1.0 yields the original WAM cycle
4 forms.

The nonlinear transfer is represented in the model by the so-called ‘discrete
interaction approximation’ which provides a good estimate of the exact Boltz-
mann integral expression (Hasselmann et al., 1985).

3.2 Data AND CosT FuNcCTION

As data we use dimensionless energy, £ = (g%/uip)E, peak frequency fo =
(¢10/9)fp, and Phillips’ parameter a. For nondimensionalizing we use the wind
at 10m height, uyq, since the friction velocity, ., is a model output, hence
. no longer suitable as a scaling parameter. In the growth region the data are
obtained from JONSWAP fetch laws (Hasselmann et al., 1973) and reanalysis of
several fetch limited experiments by Kahma and Calkoen (1992). For the fully
developed sea we use the data given by Pierson and Moskowitz (1964) in the
nondimensional form obtained by scaling with u, (Komen et al., 1984). These
values are made dimensional again with u,, calculated from the Wu formula,
and then rescaled by ujg. The cost function is defined as:

| Nobs ' 2 _ » 5
(g fp,a) — ‘/]1'/ Z w; (8 ~gobs) 4+ w w] (fp fp,obs) +wia(a aobs) .

gobs p,obs Qobs
| . ‘ (8)

where W = 3 [wF + w{ + wi].

4 Results of the Optimization

Table I shows the results of several assimilations in which different sets of pa-
rameters were varied and different growth curves used as data. Benchmark
values of the cost were computed by running the model with all parameters at
their WAM cycle 4 values (1.0) and computing the cost using growth curves
from JONSWAP and from Kahma and Calkoen (1992). The cost is less for the
JONSWAP data than for Kahma and Calkoen because the model was originally
tuned to the JONSWAP observations. In the first experiment, we used only the
coefficients Das and Wy in eqgs.(6), (7) as free parameters, obtaining only a
slight reduction of the cost. This was also true when only the wind parameters
Whas and Wp were varied. Varying all three dissipation parameters or all five
wind and dissipation parameters together gave cost reductions of about 30%
and, in the case of the data summarized by Kahma and Calkoen (1992), param-
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Fig. 1. Energy and peak frequency nondimensionalized with #10 and Phillips’ parameter a
as functions of the dimensionless fetch . Solid lines indicate the ‘observation’ points obtained
by using Kahma and Calkoen’s fetch laws in the growth region and Pierson-Moskowitz data
for the fully developed sea.
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eter values that are significantly different from their nominal values of 1.0. Fig.
1 shows the improvement we obtained for the five-free-parameter assimilation
using the Kahma and Calkoen formula in the growth region. Note that the large
change in the energy growth is due to Kahma and Calkoen’s data, the original
parameters in the source terms having been tuned to JONSWAP fetch laws.

. TABLE 1
Results of optimizations for different parameter sets.
Dissipation Wind input : Cost
Dy Dp Dg Wt Wp JONSWAP Kahma & Calkoen
Original 1.00 1.00 1.00 1.00 1.00 0.0311 0.0533
Dy, Whae 1.04 1.00 1.00 0.926. 1.00 0.0272 —_
Wi, Who - 1.00 1.00 1.00 0932 0923 ¢.0250 —
Dy, Dp,De - 105 0.995 1.14 1.00 1.00 0.0202 —_
All (JONSWAP) 1.03 0.997 1.07 30.949 0.976  0.0228 ' —
All (Kahma & Calkoen) 1.06 0.721 1.13 0.878 1.05 —_ 0.0095

5 Conclusions and Outlook

While the adjoint method is not new, the procedure by which we have con-
structed the adjoint code is new. By assigning a Lagrange multiplier to every
variable defined in the model code (which avoids the necessity for frequent and
potentially painful application of the chain rule), it becomes possible to con-
struct the adjoint code, line by line, directly from the model code. The proce-
dure is straightforward and produces adjoint code that is as transparent as the
model code, and is easy to maintain or modify. It also lends itself to automatic
generation of adjoint code; a prototype ‘adjoint model compiler’ based on simi-
lar principles already exists at MPI and was used to verify some of our manually
developed programs.

In this paper, we have demonstrated the application of the adjoint method
for the fine-tuning of a complicated numerical wave prediction model. Improved
parameterizations of the wind input and wave dissipation source terms were ob-
tained, These new parameters will be tested in the global WAM model and, if
results justify it, adopted in a future cycle.

Integrated quantities such as total wave energy and peak frequency contain a
limited amount of information. Therefore, the next steps will include the use of
more detailed data (2-D spectra) and the extension of the adjoint to two space
dimensions plus time.
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