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Metron computations of the double-slit diffraction of a particle beam are in good agreement
with quantum theory, demonstrating that wave-particle duality can be explained quan-
titatively within the framework of a deterministic particle model. Preliminary forward-
modelling computations of the structure the electron are consistent with previous metron
predictions from inverse modelling, but work on this complex numerical problem is still in
progress.

1 Introduction

In a previous four-part paper [6] (see also [7]) the metron concept of a general unified determinis-
tic theory of fields was developed. The present paper reports on recent numerical computations
of some of the basic properties of this model.

The metron model is based on the premise that, in contrast to standard quantum field theory,
particles exist as real objects. It is hypothesized that they represent non-linear soliton-type
solutions of Einstein’s gravitational equations in a higher (at least eight) dimensional matter-free
space. The metron solutions (metric solitons) are composed of a non-linear core region, which
defines the particle properties (mass, charge, spin, weak and strong coupling constants, etc.),
and a linear far-field region, which carries the classical gravitational and electromagnetic fields,
as well as a high-frequency periodic field that satisfies the de Broglie dispersion relation. The de
Broglie field alone, being oscillatory, exerts no mean force. However, mean forces are generated
through quadratic interactions of the de Broglie field with its own scattered field, produced by
interactions with other matter, thereby producing wave-like interference phenomena.

Apart from dimensional units defining the background metric (such as the velocity of light),
the vacuum Einstein equations contain no physical constants. All particle properties and other
physical constants must therefore follow from the structure of the particle solutions themselves.

In the particle rest-frame, the metron solutions are assumed to be periodic with respect to
time (x4) and the extra space coordinates (x5, . . . , x8), in accordance with the original Kaluza–
Klein method for removing the non-observed dependence of the metric on the extra-space coor-
dinates. The wave-numbers k4 and k5, . . . , k8 define the mass, electroweak and strong coupling
constants, respectively.

The bound-state metron solutions are generated through the mutual interaction between
oscillatory and mean metric field components. The oscillatory components represent eigenmodes
(and forced higher harmonics) which are trapped in the particle core by the mean metric field,
which acts as a localized wave-guide. The mean wave-guide field, in turn, is generated by
quadratic interactions (radiation stresses or currents) between the trapped eigenmode fields.

In addition to demonstrating that metron solutions exist, the metron model must resolve
a number of other fundamental issues. These were addressed in [6] using inverse modelling
methods (a more detailed summary is given in [6, Part 1]): Following the demonstration, for
a simple scalar analogue of the Einstein equations, that bound-state solutions can indeed be
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generated by the wave-mode/wave-guide trapping mechanism [6, Part 1], it was shown that for
metron solutions with appropriate polarization structures the metron model is able to

1) recover both the gravitational forces and the electromagnetic forces of charged point-like
particles, including spin, in accordance with the classical Einstein–Dirac–Maxwell system
of quantum theory [6, Part 2];

2) reproduce qualitatively, through resonant interactions between primary and secondary de
Broglie waves, the resonant Bragg scattering of particles at a periodic lattice and the basic
structure of discrete atomic spectra [6, Part 3];

3) resolve the EPR paradox, while circumventing the non-existence theorem of Bell for
hidden-variable theories (such as the metron model) by invoking the time-reversal symmet-
ry of interactions at the microphysical level, as developed by Wheeler and Feynman [11,12]
([6, Part 3]);

4) explain the symmetries of the Standard Model of Quantum Field Theory in terms of
geometrical symmetries of the metron solutions in extra space [6, Part 4].

In the present paper we extend these general results through more detailed numerical com-
putations. First, we show that the metron model is able to reproduce quantitatively the results
of the double-slit refraction experiment. We then apply the forward-modelling approach in first
steps towards computing the metron solution for the simplest possible particle, the electron
(which we have chosen rather than the more enigmatic neutrino, see [6, Part 4]). The paper
concludes with an outlook on further work.

2 The double-slit refraction experiment

Few experiments have been more intensively discussed since the conception of quantum theory
than the refraction of a particle beam at a double slit. If the beam is sufficiently weak, the
position of an individual particle can be located before and after it has passed through the slits.
It is readily understandable already from classical physics (through the uncertainties introduced
through the measurement process) that the the initial and/or final position of the particle
can not be determined with sufficient accuracy to decide through which of the two slits the
particle has actually passed. However, the positivistic Copenhagen position, that it is therefore
meaningless to state that the particle has passed through one or the other of the slits, represents
a radical departure from the classical view that physics can be described by real, existing objects.
Physicists have therefore sought alternative explanations of the wave-like interference patterns
of the double-slit experiment that are consistent with classical physics.

A well known alternative classical interpretation is the guiding- or pilot-wave model of de
Broglie [3–5] and Bohm [2], popularized also by Bell [1]. The basic concept is that the interference
patterns are generated through a guiding “pilot wave” that accompanies the particles. However,
a basic difficulty of this model is the rather nebulous origin of the pilot wave and its interaction
with the particle that it guides. The metron model offers a simple interpretation of the de
Broglie–Bohm model: the guiding “pilot wave” is none other than the de Broglie wave component
of the metron bound-state solution. Its interaction with the particle that it guides arises through
the interaction of the primary de Broglie wave with the scattered or refracted secondary wave
that is generated when the primary wave interacts with another object. Following the qualitative
application of this concept to Bragg scattering and the structure of discrete atomic spectra
in [6, Part 3], we show now that the interaction between the intrinisic primary and refracted
secondary de Broglie wave field is able to reproduce quantitatively the detailed refraction pattern
of the double-slit experiment.
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Consider a homogeneous monochromatic beam of particles travelling in the x-direction that
impinges on a screen at x = 0 that contains two slits, a/2 < |y| < a/2 + d, of width d and
separation a centred at y = 0. According to quantum theory, the incident beam is described by
a state function ψi(x, y) = exp(ikx), where k = mU/�, m is the particle mass, U the particle
velocity, and we have dropped irrelevant frequency dependent and normalization factors. In the
first-order Kirchhoff approximation, the refracted wave function is given, for y � x , by

ψr(x, y) = (2d/z) exp(ikx)[sin{(1 + α)z} − sin(αz)], (1)

where z = kdθ, θ = y/x and α = a/2d.
We compare now quantum theoretical refracted particle flux proportional to |ψr|2 with the

refracted beam computed using the metron model. An individual particle approaching the screen
on a path x = Ut, y = y0 = const (where y0 lies in one of the slits) carries with it a de Broglie field
ψ̂i = f0(x−Ut, y−y0)ψi, where ψi is the same incident field as in the quantum theoretical case,
and f0(x−Ut, y−y0) is an additional modulation factor describing the decrease of the (primary)
metron de Broglie field with distance from the particle core. For the refracted (secondary) de
Broglie field we obtain, in analogy to equation (1), the field ψ̂r(x, y) = fr(x−Ut, y−y0)ψr(x, y),
where fr(x− Ut, y − y0) is a further modulation factor describing the decrease of the refracted
field with distance from a (hypothetical) reference particle on the non-refracted particle path.
The relations for both ψr(x, y) and ψ̂r(x, y) apply in the far-field region behind the slits.

To compute the path of the refracted particle, we need to compute the force exerted on the
particle by the non-linear interaction between the primary and secondary de Broglie fields. This
is governed by a potential function Φ, which is determined by the product ψ̂rψ̂

∗
p of the refracted

secondary field ψ̂r(x, y) with the particle’s (complex conjugate) primary field ψ̂∗
p, integrated over

the core region of the particle (see [6, Parts 2 and 3]). The phase relation between the primary
and secondary fields (with respect to the periodicity in z = kdθ) depends on the path of the
refracted particle relative to its refracted field.

Assume that in passing through the near-field of the slits, the particle is deflected by the
near-field interactions into some initial direction θ0, therefore propagating first along a path
x = Ut, y = y0 + θ0Ut before entering into the far-field region. The evolution of the further
particle path y(x) in the far-field region is then determined by the path equations

dθ

dx
=
v − θ

x
,

dv

dx
= U

∂Φ
∂y

, (2)

for θ = θ(x), v = v(x), where y = θx, v = Udy/dx, with initial conditions θ(0) = θ0, v(0) = v0.
The phase of the refracted secondary de Broglie field relative to the intrinsic primary de Broglie
field of the particle depends on the point y0 at which the particle passes the slit, together with
the direction θ of the particle path. If one averages over all positions y0 in the two slits, one
obtains the same phase for the intrinsic de Broglie field as for the refraction amplitudes ψr and
ψ̂r(x, y). Taking this average phase value as a first approximation, and noting that the gradient
of the potential Φ is dominated by the oscillatory dependence on z, we find that the net force
acting on the refracted particle is proportional to ∂Φ/∂y ≈ const ∂|ψr|2/∂y. For const > 0, the
force has the effect of focussing the refracted particles towards the maximal values of |ψr|2, i.e.
into the regions of maximum refracted particle flux as given by quantum theory.

That this is indeed the case is demonstrated in Fig. 11: the metron computation agrees very
closely with the quantum-theoretical result. The average-phase approximation of the metron
computation was replaced here by a more accurate Monte Carlo computation for an ensemble
of 10,000 particles, in which the phase of the primary wave of each particle was computed
separately as a function of the point y0 at which the particle passes through one of the slits and

1Figures in colour will be available only in electronic version.
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the particle path, given the initial path values θ0, v0. The values y0 were distributed uniformly
over the two slits, while the (statistically independent) distributions of the initial values θ0, v0
were taken as Gaussian (see Fig. 1). Other adjusted model parameters were the magnitude
and rate of decrease of the modulation function fr with distance behind the slit. A finite
spectral broadening of the incident particle flux was assumed with respect to both magnitude
and direction of the particle velocities, as in the refraction experiments of Zeilinger et al [13] and
Tschernitz et al [10] using low-energy neutrons. The authors found good agreement between
quantum theory and experiment if in addition to the adjustment of these parameters a suitable
background neutron flux was fitted to the data. At the present level of accuracy, however, Fig. 1
suggests that quantum theory cannot be distinguished from the metron model.

Since the quantum theoretical and metron computation of the diffracted particle fluxes in
neutron diffraction experiments exhibit real differences in detail, an experimental distinction be-
tween the two models should become feasible, once all parameters that enter in the computations
are accurately determined. Further careful experiments on the diffraction of neutrons under dif-
ferent conditions, together with more detailed computations of the relevant metron parameters
(based on a complete representation of the metron solutions, which is presently lacking), should
ultimately lead to a clarification of which of the two models provides a more accurate description
of particle interference phenomena.

3 Numerical computation of metron solutions:
preliminary results

Metron theory hypothesizes that particles represent bound-state solutions of the Einstein va-
cuum equations

ELM = 0, (3)

where ELM is the Einstein tensor in a higher- (we assume 8-) dimensional space (L,M = 1, . . . , 8)
characterized by a background Minkowski metric ηLM = diag (1, 1, 1,−1, 1, 1, 1, 1). We seek to
construct a solution as a perturbation series

gLM = ηLM +
∑

p

g
(p)
LM , (4)

with metric perturbations g(p)
LM that are periodic with respect to time and the extra-space coor-

dinates and isotropic with respect to three-dimensional physical space,

h
(p)
LM = f (p)(r)P (p)

LM exp i
(
k

(p)
A xA

)
, (5)

where

h
(p)
LM := g

(p)
LM − 1

2
ηLM

(
ηNOg

(p)
NO

)
(6)

is the trace-reversed perturbation, r = (xixi)1/2 (i = 1, 2, 3), P (p)
LM is a constant polarization mat-

rix and the wave-numbers k(p)
4 (frequency), and k

(p)
A , A = 5, . . . , 8 (extra-space wave-numbers)

denote the fundamental and higher-harmonic components with respect to a small number (in
our application, two, in general, maximally five) base wavenumbers (where “higher harmonic”
includes the zero wave-number, kA = 0, associated with the wave-guide).

Substitution of the perturbation expansion into the Einstein equations yields a set of coupled
field equations of the general form

(
∂N∂N + en

)
φn =

{
d2

dr2
+ 2

d

dr
− ω̂2 + en

}
φn = qn, (7)
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Figure 1. Number densities of refracted parti-
cles computed for quantum theory and metron
model. Also shown is the assumed near-slit dis-
tribution for the metron case.

Figure 2. Trapped mode component h67 (repre-
senting a 4-spinor field) for the gravitational con-
stituent (k4 = 999, 55, k5 = 1000, ω̂ = 30). The
associated wave-guide components are shown in
Fig. 3. A similar form is found for the electro-
magnetic constituent, (k4 = 0, k5 = 30, ω̂ = 30),
which yields the wave-guide components shown
in Fig. 4.

where φn denotes the radial function f (p)(r) of a given constituent h(p)
LM , ω̂2 = kAk

A, and the
eigenvalue operator en and forcing term qn are nonlinear functions of the set of all constituents.
The index n distinguishes between first-harmonic (n = 1), higher-harmonic (n > 1) and wave-
guide (n = 0) components. In addition, the fields must satisfy appropriate divergence gauge
conditions.

For the lowest (cubic) interaction order, the equations for the first-harmonic constituents
(n = 1) reduce to a quasi-linear eigenvalue problem, with q1 = 0, where the operator e1 is
quadratic in the first-harmonic constituents and linear in the zero- and second-harmonic con-
stituents. The corresponding equations for the wave-guide (n = 0) and forced waves (n = 2)
are characterized by zero eigenvalue operators (en = 0) and non-zero source functions qn that
depend quadratically on the first-harmonic fields.

The challenge is to find stationary, bound-state solutions of the complete set of equations.
To search for such bound-state solutions of the Einstein vacuum equations in eight-dimensional
space, a three-layered system of programs was developed. The first program layer translates the
Einstein tensor equations into a set of 52 coupled differential equations for the different trapped-
mode, wave-guide and forced-wave constituents associated with the different wave-number base
vectors. A valuable check on the algebra of the program was the divergence condition EM

L,M = 0,
valid for any metric field. The second program layer computes the coupling coefficients for the
set of differential equations. The third layer, finally, searches for solutions of the non-linear
eigenvalue problem, using various iteration methods.

In accordance with the wave-number properties and polarization relations deduced from the
inverse modelling analysis of [6, Parts 3 and 4], the electron is characterized by two wave-number
vectors lying in the x4, x5 plane, while the first-harmonic constituents, corresponding to 4-
spinors, were represented by a non-diagonal polarization matrix component P67 in the adjacent
extra space. The search for bound-state solutions confirmed that this choice was consistent:
nonlinear interactions with the zero- and second-order harmonic fields generated no other first-
harmonic constituents of different polarization structure.

To obtain periodic far-fields that fall off approximately as r−1 rather than exponentially,
as required for a de Broglie far field that generates interference effects over large distances,
the wave-number components of one of the first-harmonic constituents must be approximately
equal: k4 ≈ k5 (so that ω̂2 ≈ 0 in (7)). We refer to this constituent as the gravitational



The Metron Model: a Unified Deterministic Theory of Fields and Particles 793

Figure 3. Wave-guide components generated by
the gravitational trapped mode shown in Fig. 2.
The gravitational (h44), electromagnetic (h45)
and spurious extra-space (h55) fields are appro-
ximately equal in magnitude.

Figure 4. Wave-guide components generated by
the electromagnetic trapped mode. There is no
electromagnetic field (h45 = 0), while the gravita-
tional (h44) and spurious extra-space (h55) fields
are of comparable magnitude. The remaining
extra-space fields do not exert forces on the par-
ticles for k6, k7, k8 = 0.

fermionic mode. However, since the strength of the forces experienced by a metron particle
is proportional to the wave-number components (k4, corresponding to mass and gravitational
coupling, and k5, corresponding to charge and electromagnetic coupling, cf. [6, Part 2]), the
great disparity (∼ 10−39) between the strengths of the gravitational and electromagnetic forces
requires that for the second first-harmonic constituent, the wave-number components must then
satisfy the inequality k4 � k5. We set k4 = 0, and refer to this constituent as the electromagnetic
fermionic mode.

As preparation for the computation of the fully coupled system, we computed first the
coupling between the first-harmonic fields and their associated zero-harmonic wave-guide and
second-harmonic forced-wave fields separately for the gravitational and electromagnetic fermio-
nic modes (Figs. 2–4). Quasi-bound states were computed through an iterative adjustment
procedure analogous to that described in [6, Part 1].

Fig. 2 shows the resulting trapped-mode field for the gravitational fermionic mode; the elec-
tromagnetic fermionic mode (not shown) has a similar form. The gravitational first-harmonic
field (with assumed wave-number vector components k4 = 999, 55, k5 = 1000, yielding ω̂2 =
k2

5−k2
4 = 302) generates gravitational (h44) and electromagnetic (h45) far fields, as well as a spu-

rious extra-space (h55) far field, all of nearly the same magnitude (Fig. 3). The corresponding
zero-harmonic wave-guide components generated by the electromagnetic fermionic mode (with
k4 = 0, k5 = 30, chosen to yield the same exponential fall off, ω̂ = 30, as the gravitational mode)
are shown in Fig. 4. The electromagnetic far-field is zero in this case. We denote nevertheless
the first-harmonic fermionic mode that produces the far fields as the electromagnetic fermionic
mode, as it carries the charge wave-number component k5 that generates the electromagnetic
forces (see [6, Part 2]). The second-harmonic fields (not shown) have similar structures and mag-
nitudes as the zero-harmonics, but decrease exponentially rather than as r−1 for large r. The
fields shown represent only quasi-converged bound states: to achieve convergence of our nume-
rical iteration scheme, the r-scales of the first-harmonic fermionic fields needed to be adjusted
by about 10–20 % relative to the scales of the forced zero- and second-harmonic fields.

The question of convergence is not critical, however, at this level of analysis, as it needs
to be addressed again for the next step: the construction of a realistic model of the electron
by combining the gravitational and electromagnetic fermionic modes and the sets of far fields
and second-harmonic fields that they generate into a single model, including the cross-coupling
between the two systems. For a realistic electron model, the coupled system must reproduce
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the 10−39 disparity in the magnitudes of the gravitational and electromagnetic forces (requiring
very small ratios of the amplitude and/or wave-number components k4 ≈ k5 of the gravitational
fermionic mode relative to the amplitude and/or wave-number component k5 of the electro-
magnetic fermionic mode) and at the same cancel the spurious h55 wave-guide far field, which
would otherwise create an additional (non-observed) force by coupling into the charge k5. (This
problem was encountered already by Kaluza [8] in his original five-dimensional generalization
of Einstein’s equations, considered later also by Klein [9] and revived fifty years later in general
higher-dimensional gravity theory.)

The determination of bound-state solutions for the coupled problem of two fermionic modes
requires more sophisticated iteration methods, still in development, than applied above. Howe-
ver, preliminary numerical experiments indicate that solutions with the required properties
appear feasible; indeed, an amplitude of the gravitational fermionic mode that is considerably
smaller than obtained in the analysis of the individual systems (cf. Fig. 3) is a prerequisite for
generating a strongly reduced spurious h55 wave-guide field by this component, that is then
able to cancel the corresponding spurious h55 field generated by the electromagnetic fermionic
mode, cf. Figs. 3 and 4 (this is also necessary to justify a perturbation approach for the wave-
guide fields generated by the gravitational fermionic mode). It is hoped that the validity of the
general metron concept explored in this paper, or possibly the need for revisions (for example,
by extension to higher dimensions, or the inclusion of higher order terms in the perturbation
expansion) can soon be decided.

4 Outlook

The demonstration that the metron model is able to reproduce the properties of the simplest
elementary particle, the electron, is clearly an essential first step in the development of the theory.
Assuming that this can be achieved, one then faces the challenge of translating the qualitative
results listed in the introduction above into quantitative analysis, using forward rather than
inverse modelling methods. However, the task is perhaps not so daunting as it appears at first
sight. The program codes developed for the analysis of the two-fermion-component electron
system are designed to be applicable also for the five-fermion-component system required to
reproduce the particle spectrum of the Standard Model, including gravitational, elecro-weak
and strong interactions.

Furthermore, all fields that arise in standard quantum field theory, as well as in quantum
theory and classical gravity, appear also in the metron model. The only difference is that
the metron model contains also a particle-core region, which acts as the source of the fields,
and that the fields represent real physical objects rather than abstract mathematical quantities
used to predict the probability outcomes of experiments. However, the nonlinear interactions
between the different field constituents are basically the same in both theories, so that most of
the computations of quantum theory and quantum field theory can be directly translated into
equivalent computations for the metron model.

It has been pointed out by Wolfgang Kundt (private communication) that the presentation
of the metron model in terms of higher-dimensional gravity can be replaced by an aesthetically
more attractive formulation in standard four-dimensional space-time. This is because all fields
in the metron model are assumed to be periodic with respect to the extra-space coordinates,
so that the only non-trivial spatial dependence is with respect to four-dimensional space-time.
The tensor components of the metric fields in higher-dimensional space can therefore be treated
as a fiber bundle dependent only on space-time. The transformation relations of the fibre-
bundle fields with respect to coordinate transformations in four-dimensional space-time inferred
from higher-dimensional gravity then ensure (for a given set of wave-number vectors) that the
extended system of Einstein equations, including all components of the fiber bundle, is invariant
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with respect to coordinate transformations in four-dimensional space-time. A reformulation of
the metron model using this terminology would be an attractive task.
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