Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The molecular basis for the pH-dependent calcium affinity of the pattern recognition receptor langerin

MPG-Autoren
/persons/resource/persons220662

Zhang,  Heng-Xi
Christoph Rademacher, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121753

Rademacher,  Christoph
Christoph Rademacher, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Joswig, J.-O., Anders, J., Zhang, H.-X., Rademacher, C., & Keller, B. G. (2021). The molecular basis for the pH-dependent calcium affinity of the pattern recognition receptor langerin. The Journal of Biological Chemistry, 296: 100718. doi:10.1016/j.jbc.2021.100718.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-9A12-6
Zusammenfassung
The C-type lectin receptor langerin plays a vital role in the mammalian defense against invading pathogens. Langerin requires a 2++ co-factor, the binding affinity of which is regulated by pH. Thus, 2++ is bound when langerin is on the membrane, but released when langerin and its pathogen substrate traffic to the acidic endosome, allowing the substrate to be degraded. The change in pH is sensed by protonation of the allosteric pH-sensor histidine H294. However, the mechanism by which 2++ is released from the buried binding site is not clear. We studied the structural consequences of protonating H294 by molecular dynamics simulations (total simulation time: about 120 μs) and Markov models. We discovered a relay mechanism in which a proton is moved into the vicinity of the 2++-binding site without transferring the initial proton from H294. Protonation of H294 unlocks a conformation in which a protonated lysine side-chain forms a hydrogen bond with a 2++-coordinating aspartic acid. This destabilizes 2++ in the binding pocket, which we probed by steered molecular dynamics. After 2++-release, the proton is likely transferred to the aspartic acid and stabilized by a dyad with a nearby glutamic acid, triggering a conformational transition and thus preventing 2++-rebinding. These results show how pH-regulation of a buried orthosteric binding site from a solvent-exposed allosteric pH-sensor can be realized by information transfer through a specific chain of conformational arrangements.