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Abstract: The set of local gauge invariant quantities for linearized gravity on the Kerr
spacetime presented by two of the authors (Aksteiner and Bäckdahl in Phys Rev Lett
121:051104, 2018) is shown to be complete. In particular, any gauge invariant quantity
for linearized gravity on Kerr that is local and of finite order in derivatives can be ex-
pressed in terms of these gauge invariants and derivatives thereof. The proof is carried out
by constructing a complete compatibility complex for the Killing operator, and demon-
strating the equivalence of the gauge invariants from Aksteiner and Bäckdahl (Phys Rev
Lett 121:051104, 2018) with the first compatibility operator from that complex.

1. Introduction

It is a fundamental principle of general relativity that physically measurable quantities
are gauge invariant, in the sense that physical phenomena should not depend on the
coordinates used to describe them. In the modelling of gravitational radiation emis-
sion from the binary inspiral and merger of two compact objects, such as black holes
and neutron stars, one of the most important outcomes is the waveform extracted near
infinity, which is what can be detected in gravitational wave observatories. Thus it is
imperative to represent such a waveform in terms of gauge invariant quantities. Even
in fully numerical approaches to waveform computation, a waveform can typically be
described as a perturbation away from some asymptotically flat (reference) background
spacetime. Thus, gauge invariant asymptotic waveforms can actually be obtained by
analyzing perturbations.

In this paper, we investigate local gauge invariants for first order perturbations of the
Kerr spacetime background, and describe a set which is complete in a sense that wemake
clear. Ours is not the first attempt to describe perturbative gauge invariants on black hole
spacetimes. See [2,18,20,23,26,27,34,38] and references therein for earlier work. See
also [36] for a discussion of coordinate and tetrad gauge dependence. Here we shall rely
on the methods introduced in [23], applied to the Kerr geometry. Proofs of completeness
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of a set of gauge invariants are a relatively recent development. They have been given
for a small number of other spacetime reference backgrounds including the spherically
symmetric Schwarzschild spacetime and the conformally flat Friedmann–Robertson–
Walker spacetimes [17,18,23]. Nevertheless, this paper is the first to fully demonstrate
completeness for a set of gauge invariants for the Kerr spacetime. See [29,30] for work
on related problems.

In order to solve the problem of classifying all local gauge invariants for linearized
gravity on the Kerr spacetime, it has been necessary to apply techniques and results
that are not in common use in general relativity. Although the construction of the gauge
invariants uses methods that have previously been applied in the literature on black
hole perturbations, cf. [2] and Remark 11 below for further explanation, a proof of
their completeness requires the application of techniques and results from the theory of
differential complexes.

The analysis of gauge invariant quantities is particularly important from the point of
view of applications in gravitational wave analysis, partly because most compact binary
mergers result in a Kerr black hole, and partly because, in the case of a binary with
an extreme mass ratio, it is not yet known how to express the waveform representing
gravitational wave emission. Current efforts to tackle this problem require evaluating
the (covariant but gauge dependent [7,32]) gravitational self-force to second order in the
mass ratio, and it is anticipated that the gauge invariants introduced in [2] and shown here
to be complete will prove useful in that evaluation (just as the mode-decoupled gauge
invariants of [38] have proved useful at first order [39]). We mention that the previously
considered set of gauge invariants for linearized gravity on the Kerr spacetime, presented
in [2], includes the set of gauge invariants in [27] as a strict subset.

Motivation and background Several problems have served asmajormotivations for the
development of black hole perturbation theory during the last half-century. Among these
are the self-force problem mentioned above and the closely related black hole stability
problem. The Teukolsky scalars, which are two of the gauge invariants for linearized
gravity on the Kerr background under consideration here, play a central role in the recent
proof of linear stability of the Kerr black hole [4].

Let (M, gab) be a member of the Kerr family of stationary, rotating vacuum space-
times and let K denote the Killing operator,

(Kv)ab = Lvgab = ∇avb + ∇bva . (1.1)

Due to the covariant nature of theEinstein equations, given a solution hab of the linearized
Einstein equations on (M, gab), the perturbation

h′
ab = hab + (Kv)ab (1.2)

is also a solution. Any twometric perturbations are equivalent up to gauge when they dif-
fer by the image of the Killing operator, and in particular represent physically equivalent
states. The linearized metric hab is highly gauge dependent. Therefore, in order to ex-
tract the physical information of hab, it is necessary to either introduce gauge conditions
(which introduces further ambiguity), or to find gauge invariant quantities.

By a gauge invariant quantity, we here mean a compatibility operator for the Killing
operator, i.e. a covariant linear differential operator Q on symmetric 2-tensors (1.2)
satisfying

Qh′ = Qh. (1.3)
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Equivalently in operator form it can be formulated as

Q ◦ K = 0. (1.4)

In general, we consider compatibility operators taking values in suitable vector bundles,
and thereforewemay view the components ofQ as a list of scalar compatibility operators
Q = (Q1, . . . ,QN ).

A compatibility operatorQ is complete if it contains the complete information of hab
modulo gauge, i.e. if

Qh = 0 (1.5)

only if hab is locally pure gauge, i.e. if hab is locally in the image of the Killing operator,

hab = (Kv)ab (1.6)

for some vector field v.
It is a remarkable fact that a complete set of gauge invariants on the Kerr background

not only exists, but is finite and can be given by explicit formulas of manageable com-
plexity. In fact, a candidate complete list was recently announced for the first time in [2].
In this work, we prove its completeness using the methods of [23]. More precisely, we
construct a compatibility operator K1 for K such that any other compatibility operator L
factors through it, i.e. there exists an L′ such that

L = L′ ◦ K1. (1.7)

The two notions of completeness, from (1.5), (1.6) and from (1.7), are equivalent for K
the Killing operator on Kerr since it falls into the regular finite type class, explained in
[23]. In the language of the theory of over-determined partial differential equations,K1 is
a complete compatibility operator for theKilling operatorK0 = K, cf.Definition 1 below.
In addition, we show that the components of K1 themselves factor through the gauge
invariants (i.e. the compatibility operator) K̃1 introduced in [2], thus proving that K̃1 is
also complete. In the course of the proof,we construct a sequence of differential operators
Kl , which successively compose to Kl ◦ Kl−1 = 0, hence a complex of differential
operators. In fact, each Kl will be a complete compatibility operator forKl−1, l > 0, that
is, a compatibility complex for the Killing operator K, and moreover a full one, meaning
that it cannot be extended (though the operators degenerate to zero after finitely many
steps).

An analogous construction arises when, instead of considering the linearized Einstein
equations, we consider Maxwell’s equations, where it is well known that pure gauge
modes are given by the exterior derivative Aa = (dφ)a . So the analog of K0 is the
exterior derivative d on 0-forms. Then the role ofK1 is played by the field strength tensor
Fab = (dA)ab, namely the exterior derivative d on 1-forms. This sequence extends
to the de Rham complex of exterior derivatives d on forms of higher degrees as the
full compatibility complex of the exterior derivative d on 0-forms. This compatibility
complex is the same on both flat and curved backgrounds, since the exterior derivative
dφ depends only on the differential structure. This is no longer the case for the Killing
operator K, which strongly depends on the background metric and the compatibility
complex has to be computed anew for each background, making its construction much
more challenging.

As an example of the usefulness of the higher compatibility operators Kl>1, consider
again the de Rham complex. Just as the exterior derivatives d on higher degree forms
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appear in the definition of the Hodge wave operators � = δd + dδ on differential forms,
which satisfy the convenient identities �d = d�, we expect the K1 and K2 operators to
appear in a similar formula for a suitable wave-like equation satisfied by the components
of K1[h] when h solves the linearized Einstein equations. Extending such wave-like
operators to higher nodes of the compatibility complex ofK gives this complex a structure
reminiscent of Hodge theory in Riemannian geometry. This Hodge-like structure will
be considered in future works, where it could have applications to the reconstruction
problem, i.e. the problem of constructing the solution to the inhomogeneous equation
K1[h] = f , and to the computation of the cohomologies H∗(Kl)with causally restricted
supports or regularity properties. In the context of constant curvature backgrounds (e.g.,
de Sitter spacetime), these applications have been illustrated in [21,22].

Remarks on methodology While we have already explained the motivation for and
the importance of our results, it remains to justify our methods, which unfortunately
carry two types of technical complications. The first is the introduction of notions from
homological algebra and the formal study of overdetermined PDEs, which are not com-
monly known in the mathematical relativity literature. The second is the complexity of
the formulas needed to present our main result. The justification is simple: despite its
technical complexity, our method is the simplest one known to us to demonstrate our
main results on the completeness of gauge invariants.

There are alternative approaches to prove such completeness. One approach is in
fact an algorithmic way to construct a complete compatibility operator K1 and is well-
known in the literature on overdetermined PDEs [35]. It has even been implemented in
computer algebra [8]. However, its use requires all differential operators to be explicitly
expressed in coordinates and in components, which unfortunately highly obfuscates any
geometric structure inK1 and, more often than not, results in extremely long expressions
of doubtful utility. A semi-algorithmic version of this approach has been pursued in the
recent papers [29–31] and has yet to arrive at a full expression for a compatibility operator
K1, let alone one as compactly expressed as in [2]. Another drawback of this approach is
that the completeness of K1 is proved by virtue of its algorithmic construction. Anyone
interested in verifying the completeness for themselves is forced to rerun the algorithm,
which is not always practical. The advantage of the approach in [23], which is related but
alternative, and on which the proofs in this paper are based, is that it allows the freedom
to avoid explicit component computations, while reducing the proof of completeness
to the existence of a clearly structured set of identities, whose structure is motivated
by homological algebra. While the presentation of these identities in Sect. 4 may be
daunting, its complexity is necessary, as the spinor calculus of [1,3] actually provides
the most compact way known to us of expressing them.

Another potential approach to the construction of a complete compatibility operator
K1 relies on representation theory. So-called BGG complexes [9,11] may be constructed
and proven to be complete compatibility complexes in a purely representation-theoretic
way on spacetimes with a transitive isometry group. An example where this method is
successful for theKilling operatorK0 is the de Sitter background [9,11,22]. The isometry
orbits on 4-dimensional Kerr are only 2-dimensional, meaning that the symmetry is
definitely not transitive. Unfortunately, in such a case, the BGG construction gives a
sequence of operatorsKi that fail to compose to zero, that is,Ki+1◦Ki �= 0 in general, i.e.,
they fail to form a complex. In addition, there is no known systematic way of correcting
this sequence to a true compatibility complex that is different from the algorithmic
approach described in the previous paragraph. The BGG construction is an interesting
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starting point, but it is currently an open question whether it can be used to construct
even a complete K1 while respecting the geometric structure of the Kerr background.

Overview of this paper Section 2 introduces the basic notions in the theory of com-
patibility complexes, and states some basic facts which shall be needed. In Sect. 3 we
introduce some notations and definitions which shall be used for the proofs, including
spinor calculus and characterizations of the Kerr spacetime. Section 4 contains the state-
ment and proof of our main result, and Sect. 5 contains a discussion of the relationship
between the gauge invariants constructed in Sect. 4 and those introduced in [2]. The
longer equations of these relations are given in appendix A. A discussion of the dif-
ferences in the number of invariants and their differential order, between different sets
of invariants, is given in Sect. 6. Finally, a brief discussion of the significance of these
results, applications, and future directions, is given in Sect. 7.

2. Compatibility Operators

We briefly recall here some definitions and results from [23], which will be referred to
in Sect. 4, where our main results will be presented.

Whenever speaking of differential operators, we will specifically mean a linear dif-
ferential operator with smooth coefficients acting on smooth functions. More precisely,
we will consider differential operators that map between sections of vector bundles, say
V1 → M and V2 → M , on some fixed manifold M , K : �(V1) → �(V2). The source
and target bundle of a differential operator, V1 → M and V2 → M respectively in the
last example, will be considered as part of its definition and will most often be omitted
from the notation. We will denote the composition of two differential operators L and K
by L ◦K, or simply by LK, if no confusion is possible. A local section of a vector bundle
V → M is a section of the restriction bundle V |U → U for some openU ⊂ M . A local
section v that solves the differential equation Kv = 0 on its domain of definition is a
local solution.

Definition 1. Given a differential operator K, any composable differential operator L
such that L ◦ K = 0 is a compatibility operator for K. If K1 is a compatibility operator
for K, it is called complete when any other compatibility operator L can be factored
through L = L′ ◦K1 for some differential operator L′. A complex of differential operators
Kl , l = 0, 1, . . . is called a compatibility complex for K when K0 = K and, for each
l ≥ 1, Kl is a complete compatibility operator for Kl−1.

Logically speaking, what we have defined should be called a complete compati-
bility complex (a sequence of compatibility operators, where each is complete), but
we follow standard usage where the adjective complete is implied [37, Def.1.2.4]. It
seems the possible distinction of meanings was not important in the original literature
on overdetermined PDEs.

Definition 2. Given a (possibly infinite) complex of differential operators
Kl , l = lmin, . . . , lmax, we say that it is locally exact at a point x and node l when,
for every pair ( fl ,U ) of an open neighborhood U 
 x and a smooth section fl defined
onU such thatKl fl = 0, there exists a smooth section gl−1 defined on a possibly smaller
open neighborhood V 
 x such that fl = Kl−1gl−1. Locally exact without specifying a
point x means locally exact at every x , and without specifying l means locally exact for
every lmin < l ≤ lmax.
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Our convention is that exactness does not apply at a finite end node of a complex
(initial or final, if they exist). That way, a truncated exact complex remains exact. Of
course, a finite complex can always be extended by zero maps to any desired length, but
that might change its exactness properties.

Definition 3. A(possibly infinite) composable sequenceKl of linearmaps, l = lmin, . . . ,

lmax, such that Kl+1 ◦ Kl = 0 for each allowed l, is called a (cochain) complex. Given
complexes Kl and K′

l a sequence Cl of linear maps, as in the diagram

· · · • • • • · · ·

· · · • • • • · · ·

Kl−1

Cl−1

Kl

Cl

Kl+1

Cl+1 Cl+2

K′
l−1 K′

l K′
l+1

, (2.1)

such that its squares commute, that is K′
l ◦ Cl = Cl+1 ◦ Kl for each allowed l, is called

a cochain map or a morphism between complexes. A homotopy between complexes Kl
and K′

l (which could also be the same complex, Kl = K′
l ) is a sequence of morphisms,

as the dashed arrows in the diagram

· · · • • • • · · ·

· · · • • • • · · ·

Kl−1

Cl−1

Kl

ClHl−1

Kl+1

Cl+1Hl
Cl+2Hl+1

K′
l−1 K′

l K′
l+1

. (2.2)

The sequence of maps Cl = K′
l−1 ◦ Hl−1 + Hl ◦ Kl is said to be a morphism induced

by the homotopy Hl . An equivalence up to homotopy between complexes Kl and K′
l is

a pair of morphisms Cl and Dl between them, as in the diagram

• • • •

• • • •

H̃lmin−1

Klmin

Clmin

· · ·
Hlmin

Kl

Cl

· · ·

Cl+1

Hl

Klmax

Clmax+1

Hlmax

H̃lmax+1

H̃′
lmin−1 K′

lmin

Dlmin

· · ·
H′
lmin

K′
l

Dl

· · ·

Dl+1
H′
l

K′
lmax

Dlmax+1
H′
lmax

H̃′
lmax+1

, (2.3)

such that Cl and Dl are mutual inverses up to homotopy (Hl and H′
l ), that is

Dl ◦ Cl = id − Kl−1 ◦ Hl−1 − Hl ◦ Kl , (2.4a)

Cl ◦ Dl = id − K′
l−1 ◦ H′

l−1 − H′
l ◦ K′

l , (2.4b)

with the special end cases

Dlmin ◦ Clmin = id − H̃lmin−1 − Hlmin ◦ Klmin , Klmin ◦ H̃lmin−1 = 0, (2.5a)

Clmin ◦ Dlmin = id − H̃′
lmin−1 − H′

lmin
◦ K′

lmin
, K′

lmin
◦ H̃′

lmin−1 = 0, (2.5b)

Dlmax+1 ◦ Clmax+1 = id − Hlmax ◦ Klmax − H̃lmax+1, H̃lmax+1 ◦ Klmax = 0, (2.5c)

Clmax+1 ◦ Dlmax+1 = id − H′
lmax

◦ K′
lmax

− H̃′
lmax+1, H̃′

lmax+1 ◦ K′
lmax

= 0, (2.5d)

where the H̃maps are allowed to be arbitrary, as long as they satisfy the given identities.
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Again, our convention allows the operators constituting a homotopy or an equiva-
lence up to homotopy between two complexes to satisfy the same definition when the
complexes are truncated.

Definition 4. A (linear) connection D on a vector bundle V → M is a first order linear
differential operator D : �(V ) → �(T ∗M ⊗M V ) that satisfies the Leibniz rule in the
sense that D( f v) = d f ⊗ v + fDv, for any scalar f and v ∈ �(V ). Inductively, a
connection D uniquely gives rise to a sequence of twisted exterior derivatives

dDl : �(�l T ∗M ⊗M V ) → �(�l+1T ∗M ⊗M V ), l = 0, 1, . . . , n, . . . , (2.6)

with dD0 = D and degenerating to dDl = 0 for l ≥ n, that satisfy the Leibniz rule in the
sense that dDl+1(α∧w) = dα∧w−α∧dDl w for any 1-formα andw ∈ �(�l T ∗M⊗M V ).
The connection is flat when dD1 d

D

0 = 0, in which case the operators dDl form a complex
called the (D-)twisted de Rham complex. A section f satisfying D f = 0 is said to be
parallel with respect to D.1

Remark 5. The above definition can be made much more explicit if we (locally) choose
coordinates (xa) and a frame ei ∈ �(V ), so that an arbitrary section of v = νi ei ∈ �(V )

can be represented as a linear combination of the frame ei with scalar coefficients νi .
Expressing everything in components,

Da[νi ei ] =
[
(Da)

j
i νi

]
ei =

[
∂aνi − (ϒa)

j
i ν j

]
ei , (2.7)

where the matrix valued 1-forms (ϒa)
j
i are known as the corresponding connection

coefficients. The flatness condition dD0 d
D

1 = 0 is then equivalent to the commutativity of

Da components as matrix differential operators for different form indices, [Da,Db] ji =
(Da)

k
i (Db)

j
k − (Db)

k
i (Da)

j
k = 0. In components, the twisted exterior derivatives act on

νi,a1...al e
i ∈ �(�l T ∗M ⊗M V ) simply as

(dDl [νi ei ])a1...al+1 = (l + 1)
[
(D[a1|)

j
i ν j,|a2...an ]

]
ei . (2.8)

If, as in the above Remark, the frame is chosen to be parallel with respect to D,
Daei = 0, which for a flat connection is always possible locally, then the corresponding
connection coefficients vanish, (ϒa)

j
i = 0. Note though that the vanishing of the (ϒa)

j
i

is a frame-dependent property, while the property of being flat is completely frame
independent. However, using a flat frame, we can see that the twisted de Rham complex
is locally equivalent to several copies of the usual de Rham complex, and hence, applying
appropriate versions of the Poincaré lemma to each copy, we get

Proposition 6 ([37]2). Given a flat connection D, the corresponding twisted de Rham
complex dDl , l = 0, 1, . . . , n, . . . is locally exact and is also a compatibility complex for
D = dD0 .

1 Parallel sections are also known as flat sections.
2 Propositions 1.2.13, 1.2.39 and 1.2.41.
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Proposition 7 ([23, Lem.4]). Consider two complexes of differential operators Kl and
K′
l , for l = 0, 1, . . . , n − 1, and an equivalence up to homotopy between them, as in the

diagram

• • • • •

• • • • •

K0

C0

H0

K1

C1

· · ·

C2

H1

Cn−1

Kn−1

Cn

Hn−1

K′
0

D0

H′
0

K′
1

D1

· · ·

D2

H′
1

Dn−1

K′
n−1

Dn

H′
n−1

,

(2.9)

where for simplicity we are assuming that the H̃−1, H̃′−1, H̃n, H̃′
n are all zero.

(a) If K′
l is a compatibility complex for K′

0, then Kl is a compatibility complex for K0.
(b) If K′

l is locally exact, then Kl is locally exact.

3. Preliminaries and Notation

Unless otherwise stated we work in a Lorentzian 4-dimensional spacetime of signature
+−−−, using the 2-spinor formalism following the notations and conventions of [28].
In particular, indices are lowered and raised with εAB = −εBA and its inverse according
to the rules

κB = εABκ A, κ A = εABκB . (3.1)

Analogously, on the primed spin space, indices are shifted with ε̄A′B′ and its inverse.
These isomorphismswill be used throughout this section, for example to identify vectors
with 1-forms. The identity map on a vector space Vk is denoted idk .

3.1. Spinor calculus. We make use of the fact that any tensor can be decomposed into
a set of symmetric spinors. Let Sk,l be the space of symmetric valence (k, l) spinors. In
abstract index notation, elements are of the form φA1...Ak A′

1...A
′
l
∈ Sk,l . Sometimes it is

convenient to suppress the valence and/or indices and we write e.g. φ ∈ S or φ ∈ Sk,l .
Furthermore, for collections of symmetric spinors we use the shorthand Sk,l = (k, l).
For example the decomposition of a symmetric 2-tensor is an element of

[
(2, 2)
(0, 0)

]
, (3.2)

with the trace-free symmetric part as first element and the trace as second element. For
readers less familiar with the spinor formalism, it is worth noting that for spinors with
even numbers of indices it is possible to identify each of the spinor spaces used in this
paper with complexified tensor spaces according to the following table:
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spinor (0, 0) (1, 1) (2, 2) (2, 0) (0, 2) (4, 0) (0, 4)

tensor C, , 0 + i∗ − i∗
0
+ i∗

0 0
− i∗

0

scalar,
4-

form

vector,
3-

form

symmetric
traceless
2-tensor

anti-
self-
dual

2-form

self-
dual

2-form

anti-
self-
dual
Weyl

self-
dual
Weyl

Recall that Young diagrams, which we have used in the above table, represent tensor
spaces obtained by filling each box with an index, then symmetrizing along the rows and
finally antisymmetrizing along the columns [28, vol.I, p.143]. The 0 subscript further
denotes the traceless part, while ∗ denotes the Hodge dual against the antisymmetric
indices from the first column of the diagram. The usual 4-dimensional identifications by
Hodge duality are also included.

It is convenient to introduce the following product between symmetric spinors.

Definition 8. Let i, j, k, l,m, n be integers with i ≤ min(k,m) and j ≤ min(l, n). The
symmetric product is a bilinear form

i, j� : Sk,l × Sm,n → Sk+m−2i,l+n−2 j . (3.3)

For φ ∈ Sk,l , ψ ∈ Sm,n it is given by

(φ
i, j� ψ)

A′
1...A

′
l+n−2 j

A1...Ak+m−2i
= φ

(A′
1...A

′
l− j−1|B1...Bi B′

1...B
′
j |

(A1...Ak−i−1
ψ

A′
l− j ...A

′
l+n−2 j )

Ak−i ...Ak+m−2i )B1...Bi B′
1...B

′
j
. (3.4)

This operation involves i contractionswith εAB (and/or its inverse) and j contractions
with ε̄A′B′ (and/or its inverse) as indicated in (3.1).

Definition 9 ([3, §2.1]). The four fundamental spinor operators are the differential op-
erators

D : Sk,l → Sk−1,l−1, C : Sk,l → Sk+1,l−1,

C † : Sk,l → Sk−1,l+1, T : Sk,l → Sk+1,l+1

defined via

Dϕ = (∇ 1,1� ϕ), C ϕ = (∇ 0,1� ϕ), C †ϕ = (∇ 1,0� ϕ), T ϕ = (∇ 0,0� ϕ).

(3.5)

The operators are called respectively the divergence, curl, curl-dagger, and twistor op-
erators.

The irreducible decomposition of a covariant derivative of a symmetric spinor ϕ ∈
Sk,l can be written as

∇A
A′

ϕA1...Ak
A′
1...A

′
l = (T ϕ)AA1...Ak

A′A′
1...A

′
l − l

l+1 ε̄
A′(A′

1(C ϕ)AA1...Ak
A′
2...A

′
l )

− k
k+1εA(A1(C

†ϕ)A2...Ak )
A′A′

1...A
′
l + kl

(k+1)(l+1) εA(A1 ε̄
A′(A′

1(Dϕ)A2...Ak )
A′
2...A

′
l ).

(3.6)
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Note that in contrast to [3] we suppress valence indices on the operators. With respect
to complex conjugation, the operators satisfy D = D , T = T , C = C †, C † = C , but
note that Sk,l = Sl,k . Commutation formulas for the fundamental operators are given in
[3, §2.2].

In this notation, the Weyl spinor � ∈ S4,0, the trace-free Ricci spinor � ∈ S2,2 and
the Ricci scalar � ∈ S0,0 are related by the Bianchi identity

C †� = C�, D� = − 3T �. (3.7)

3.2. Kerr geometry. The main feature of the Kerr geometry is encoded in the Killing
spinor κ ∈ S2,0 found in [40], satisfying

T κ = 0 (3.8)

In a principal dyad the Killing spinor takes the simple form

κAB = − 2κ1o(AιB), (3.9)

with κ1 ∝ �
−1/3
2 and �2 being the only non-vanishing component of the Weyl spinor.

Note that κ1 and �2 can be expressed covariantly via the relations

κABκ AB = −2κ1
2, �ABCD� ABCD = 6�2

2 . (3.10)

Hence,we can allow κ1 and�2 in covariant expressions. The tensor product of κAB with a
symmetric spinor has atmost three different irreducible components. These involve either
zero, one or two contractions and symmetrization. For these operations we introduce the
K-operators (c.f. [1, Definition II.4])

Definition 10. Given theKilling spinor (3.9), define the operatorsKi : Sk,l → Sk−2i+2,l ,

i = 0, 1, 2 via

(K0ϕ) := 2κ−1
1 (κ

0,0� ϕ), (K1ϕ) := κ−1
1 (κ

1,0� ϕ), (K2ϕ) := − 1
2κ

−1
1 (κ

2,0� ϕ).

(3.11)

Note that the complex conjugated operators act on the primed indices in the analogous
way. To compare to results in the literature in Sect. 5 we define an algebraic projection
operator on S4,0 by

P2 :=K1K1K1K1 − 1
16K

0K1K1K2, (3.12)

cf. [1]. In a principal dyad, P2ϕ has components (ϕ0, 0, 0, 0, ϕ4). It follows from (3.8)
that

ξAA′ := (C †
2,0κ)AA′, (3.13)

is a Killing vector field, which is real after suitably normalizing κAB . The second Killing
vector follows from contraction with the Killing spinor and its complex conjugate, or
equivalently a Killing tensor, via

ζAA′ := 9
2

(
κAB κ̄A′B′ + 1

4εAB ε̄A′B′(κCDκCD + κ̄C ′D′ κ̄C ′D′
)
)
ξ BB′

. (3.14)
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Another important vector field is defined by

UAA′ := − κABξ B
A′

3κ2
1

= −∇AA′ log(κ1). (3.15)

Although our treatment is independent of coordinate choices, we get κ1 = −(r −
ia cos θ)/3, ξ = ∂t and ζ = a2∂t + a∂φ in standard Boyer–Lindquist coordinates. Note
that ξaζa �= 0.

As an example of the irreducible spinor notation used in this paper, the de Rham
complex is given by

[
(0, 0)

] [
(1, 1)

] [
(0, 2)
(2, 0)

] [
(1, 1)

] [
(0, 0)

][
T

]
[
C †

C

]
[
C −C †

] [
D

]

. (3.16)

Here 3-forms are identified with vectors via Hodge duality, see the table at the beginning
of this section for more details about the spinor representation.

3.3. Linearized curvature. Wewill describe the linearized curvature operators in spinor
form using the operator ϑ introduced in [5]. On a Kerr background the linearized cur-
vature spinors

⎡
⎣

ϑ�

ϑ�

ϑ�

⎤
⎦ :

[
(2, 2)
(0, 0)

]
→

⎡
⎣

(0, 0)
(2, 2)
(4, 0)

⎤
⎦ (3.17)

take the form

⎡
⎣

ϑ�

ϑ�

ϑ�

⎤
⎦ =

⎡
⎢⎣

− 1
24DD 1

32DT
1
6T D + 1

2C
†C + 1

2�2 − 3
4�2K

0K2 − 1
8T T

1
2CC − 3

32�2K
0K0

⎤
⎥⎦ . (3.18)

4. Killing Compatibility Complex on Kerr

In this section we present our main results, which constitute a proof of the completeness
of the set of local gauge invariants on Kerr spacetime, which were introduced in [2]. In
addition, we construct the full compatibility complex Kl , l = 0, 1, 2, 3, for the Killing
operator K = K0 on Kerr. That is, the components of Kl identify a complete list of
differential relations between the components of Kl−1. As will be shown in Sect. 5, the
operator K1 and the invariants from [2] factor through each other, thus confirming their
completeness.

The proof relies in an essential way on the material reviewed in Sects. 2 and 3.
Namely, the fundamental spinorial objects and differential operators used to give explicit
formulas for the compatibility complex Kl , as well as its equivalence up to homotopy to
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an auxiliary complex K′
l = dDl ,

V0 V1 V2 V3 V4

V ′
0 V ′

1 V ′
2 V ′

3 V ′
4

C0

K0

C1

K1

H0

C2

K2

H1

C3

K3

H2

C4

H3

D0

K′
0

D1

K′
1

H′
0

D2

K′
2

H′
1

D3

K′
3

H′
2

D4

H′
3

,

(4.1)

which happens to be the twisted de Rham complex corresponding to the unique flat
connection D defined on the 2-dimensional sub-bundle V ′

0 ↪→ V0 = T ∗M spanned by
local solutions of the Killing equation K[ν] = 0 such that the Killing vectors themselves
are parallel with respect to D. If we choose to write an arbitrary section of V ′

0 as v =
αξ +βζ , where α, β are arbitrary scalar functions and the 1-forms ξ , ζ constitute a basis
of the 2-dimensional space of solutions of the Killing equation on Kerr, then this flat
connection simply acts as

D[v] = (dα)ξ + (dβ)ζ, (4.2)

where d is the ordinary exterior derivative. That is, if we choose to parametrize the V ′
0

bundle using the (ξ, ζ )-frame, then the connection coefficients of D vanish identically
and the complex K′

l simply corresponds to the direct sum of two copies of the ordinary
de Rham complex (3.16). However here we choose the frame

e1
a := ξa, e2

a := ζ a, e3
a := κ1

2κ̄1′Ua, e4
a := e3a, (4.3)

for V0 with the co-frame ei a defined to satisfy ei ae j a = δij . Note that e1 and e2 are
orthogonal to e3 and e4, as can be seen from (3.15) in Boyer–Lindquist coordinates,
and we use e1 and e2 as a frame for V ′

0.
3 In this 2-dimensional frame, the connection

coefficients of D are non-vanishing, but it turns out to be preferred for computations in
Sect. 5.2. The twisted connection is given by the four real 1-forms

ϒ i
j := (−2e j

1,1�T ei ), i, j = 1, 2, (4.4)

3 By definition, e1(ξ) = 1 = e2(ζ ) and e1(ζ ) = 0 = e2(ξ), so the difference from the frame used in (4.2)
is essentially due to the non-orthogonality of ξ and ζ .
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and the twisted de Rham complex is given by two copies of the de Rham complex (3.16),
but with non-vanishing connection, via

K′
0 :=

⎡
⎣T • −ϒ1

1
0,0�• −ϒ2

1
0,0�•

−ϒ1
2
0,0�• T • −ϒ2

2
0,0�•

⎤
⎦ , (4.5a)

K′
1 :=

⎡
⎢⎢⎢⎢⎢⎣

C † • −ϒ1
1
1,0�• −ϒ2

1
1,0�•

C • −ϒ1
1
0,1�• −ϒ2

1
0,1�•

−ϒ1
2
1,0�• C † • −ϒ2

2
1,0�•

−ϒ1
2
0,1�• C • −ϒ2

2
0,1�•

⎤
⎥⎥⎥⎥⎥⎦

, (4.5b)

K′
2 :=

⎡
⎣C • −ϒ1

1
0,1�• −C † • +ϒ1

1
1,0�• −ϒ2

1
0,1�• ϒ2

1
1,0�•

−ϒ1
2
0,1�• ϒ1

2
1,0�• C • −ϒ2

2
0,1�• −C † • +ϒ2

2
1,0�•

⎤
⎦ , (4.5c)

K′
3 :=

⎡
⎣D • −ϒ1

1
1,1�• −ϒ2

1
1,1�•

−ϒ1
2
1,1�• D • −ϒ2

2
1,1�•

⎤
⎦ . (4.5d)

The flatness of the connection, as evident in (4.2), is equivalent to

Cϒ i
j = −

2∑
k=1

ϒ i
k
1,0�ϒk

j , Dϒ i
j = 0 (4.6)

and the complex conjugate relations.

Remark 11. The construction of the complex Kl is heavily patterned on the analogous
construction for the Schwarzschild spacetime carried out in [23, Sec.3.3]. As such,
we do not reproduce a fully detailed discussion of the construction, but only give the
final result and enough information to show that the construction is correct, namely
that all the identities implicit in the diagram (4.1) hold true. However, we can briefly
summarize the intuition behind the construction. The resulting K1 operator consists of
two groups of invariants, K′

1C1 and P1�(id − K0H0), evident in the notation of (4.26b)
below. The construction of each group mimics a well-known pattern, both of which
can be conveniently found in the work of Martel & Poisson [26], which reviews the
construction of mode-level gauge invariants on the Schwarzschild background.

The pattern for P1�(id − K0H0) is as follows. In [26], whose equations we will
prefix by MP for clarity, after mode decomposition, Equations (MP4.6–9) show the
explicit gauge transformations of the various even metric components hab, ja , K and
G. Then (MP4.12) identifies εa as a differential operator on metric components that
transforms exactly by the vector part ξa of the gauge parameters; for us that operator
is H0. The gauge invariant variables h̃ab (MP4.10) are then constructed by subtracting
from the corresponding metric components a differential operator acting on εa to exactly
cancel their transformation by the gauge parameter ξa ; for us this subtraction takes the
form id−K0H0,with the projectionP1� pickingout precisely thosemetric components for
which the cancellation of the gauge parameter dependence is complete. The same pattern
is explicitly recognized in the construction of the gauge invariant scalars {I1, I2, I3} in
Section II of [27].
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The pattern for K′
1C1 also appears in [26], but somewhat implicitly. After mode

decomposition, Equations (MP5.5–6) show the explicit gauge transformations of the
odd metric components ha and h2, where the former can be rewritten h′

a/r
2 = ha/r2 −

∇a(ξ/r2), where r is the standard Schwarzschild radial coordinate. What is crucial here
is that the dependence on the gauge parameter ξ appears through the gradient of ξ/r2;
for us the analogous identity is C1K0 = K′

0C0, where C0 is analogous to the rescaling
of the gauge parameter ξ , C1 is analogous to the projection onto the rescaled metric
components ha/r2, and K′

0 is analogous to the gradient. Then the unnumbered formula
in Section V.C of [26] shows that the gauge invariant Cunningham–Price–Moncrief
scalar can be defined as �odd ∼ εab∇a(hb/r2). What is crucial here is the appearance
of the curl of ha/r2, which precisely kills the gauge transformation of ha/r2 by the
gradient of ξ/r2, which for us is analogous to the composition K′

1C1, where K′
1 plays

the role of the higher dimensional curl.

If one strips away all the layers of abstraction from the results of Sect. 2, the remaining
core result is that a judicious application of the two patterns from the remark above is
sufficient to construct a complete set of linear gauge invariant observables (on geometries
where the number of independent Killing vectors is locally constant).

Returning to the construction, the differential operators Kl and K′
l act between func-

tions valued in the vector spaces Vi and V ′
i , which are composed of symmetric spinors

as follows

V0:=
[
(1, 1)

]
, V1:=

[
(2, 2)
(0, 0)

]
, V2:=

⎡
⎢⎣

V ′
2

(0, 0)
(0, 0)
(0, 0)

⎤
⎥⎦ , V3:=

⎡
⎢⎣

V ′
3

(0, 0)
(0, 0)
(0, 0)

⎤
⎥⎦ , V4:=V ′

4,

(4.7a)

V ′
0:=

[
(0, 0)
(0, 0)

]
, V ′

1:=
[
(1, 1)
(1, 1)

]
, V ′

2:=
⎡
⎢⎣

(0, 2)
(2, 0)
(0, 2)
(2, 0)

⎤
⎥⎦ , V ′

3:=
[
(1, 1)
(1, 1)

]
, V ′

4:=
[
(0, 0)
(0, 0)

]
.

(4.7b)

Due to the geometry of Kerr spacetime there are certain distinguished subspaces of
Vi , V ′

i . These subspaces are analogous to those identified in the construction of the com-
patibility complex on Schwarzschild [23, Sec.3.3]. Before we discuss the differential
operators for the complex, let us describe subspaces for V0, V1, V ′

1. V0 naturally decom-
poses into the two dimensional space V‖, spanned by the Killing vectors ξ, ζ , and its
orthogonal complement V⊥, with corresponding mappings

V0 = [
(1, 1)

] [
(0, 0)
(0, 0)

]
= V‖ ∼= V ′

0

P0‖

P‖
0

, (4.8)

V0 = [
(1, 1)

] [
(0, 0)
(0, 0)

]
= V⊥

P0⊥

P⊥
0

. (4.9)
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The projection operators in the frame (4.3) take the explicit form

P0‖ :=
⎡
⎣e1

1,1� •
e2

1,1� •

⎤
⎦ , P‖

0 :=
[
e1

0,0� • e2
0,0� •

]
,

P0⊥ :=
⎡
⎣e3

1,1� •
e4

1,1� •

⎤
⎦ , P⊥

0 :=
[
e3

0,0� • e4
0,0� •

]
, (4.10)

and satisfy

P0‖P
‖
0 = id‖, P0⊥P⊥

0 = id⊥, P0‖P⊥
0 = 0, P0⊥P

‖
0 = 0, P‖

0P
0‖ + P⊥

0 P
0⊥ = id0.

(4.11)

The space of symmetric 2-tensors, V1, incorporates a 3-dimensional subspace V�
spanned by the 33, 34 and 44 frame components. It is distinguished due to the non-
trivial background curvature �2 and characterized by the maps

V1 =
[
(2, 2)
(0, 0)

] ⎡
⎣

(0, 0)
(0, 0)
(0, 0)

⎤
⎦ = V�

P1�

P�
1

, (4.12)

where

P1� :=
⎡
⎣
P1
33

P1
34

P1
44

⎤
⎦ , with P1

i j :=
[
ei

1,1� e j
1,1� • 1

4ei
1,1� e j

0,0� •
]
, i, j = 3, 4

(4.13)

P�
1 :=

⎡
⎣e3

0,0� e3
0,0� • 2e3

0,0� e4
0,0� • e4

0,0� e4
0,0� •

e3
1,1� e3

0,0� • 2e3
1,1� e4

0,0� • e4
1,1� e4

0,0� •

⎤
⎦ . (4.14)

They satisfy

P1�P�
1 = id�. (4.15)

A 1-dimensional subspace Va of V ′
1 is defined by the anti-symmetric 1, 2 component of

the product of the two vector representations and the corresponding maps are given by

V ′
1 =

[
(1, 1)
(1, 1)

] [
(0, 0)

] = Va
P1′
a

Pa
1′

,

where

Pa
1′ :=

⎡
⎣ e2

0,0� •
−e1

0,0� •

⎤
⎦ , P1′

a := 1

2

[
e2

1,1� • −e1
1,1� •

]
. (4.16)

They satisfy

P1′
a P

a
1′ = ida . (4.17)
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A 7-dimensional subspace Vs ⊂ V ′
1 is defined as the image of P1

s given by

V1 =
[
(2, 2)
(0, 0)

] [
(1, 1)
(1, 1)

]
= V ′

1

P1
s

Ps
1

, (4.18)

where

Ps
1 :=

⎡
⎣e1

0,0� • e2
0,0� •

e1
1,1� • e2

1,1� •

⎤
⎦ , P1

s :=
[
id0 − 1

2P
‖
0P

0‖ 0

0 id0 − 1
2P

‖
0P

0‖

] ⎡
⎣2e1

1,1� • 1
2e1

0,0� •
2e2

1,1� • 1
2e2

0,0� •

⎤
⎦ .

(4.19)

We find

P1
sP

�
1 = Ps

1P
a
1′ = P1�Ps

1 = P1′
a P

1
s = 0, Ps

1P
1
s + P�

1 P
1� = id1, P1

sP
s
1 + Pa

1′P1′
a = id1′ .
(4.20)

We also have the identity

Ps
1P

1
sP

s
1 = Ps

1. (4.21)

To present the operators of the complex in a compact form, define the intermediate
operators

L0 := [
l0 l0

]
, with l0 := e3

0,0� 2κ12κ̄1′

3�2
K2K2,

L1 := [
l1 l1

]
, with l1 := e1

1,1� e2
1,0� 2

3�2
K1K2,

W :=
[
ϑ�

ϑ�

]
, with ϑ� := [

1
2CC − 3

32�2K
0K0

]
,

WA:=
[
ϑ� A

ϑ� A

]
, with ϑ� A :=

[
− 3

4�2K
0K1e1

0,1� • − 3
4�2K

0K1e2
0,1� •

]
,

WD :=
[
ϑ�D

ϑ�D

]
, with

ϑ�D := [
0 p1 0 p2

]
, pi := − 1

2e
i 0,1� T • − 1

4e
1 0,1� ϒ i

1
0,0� • − 1

4e
2 0,1� ϒ i

2
0,0� •,

(4.22)

defined on the spaces

L0 : W → V0, L1 : W → Va, W : V1 → W, WA : V ′
1 → W, WD : V ′

2 → W,

(4.23)

where

W :=
[
(4, 0)
(0, 4)

]
(4.24)

is equivalent to the space of 4-tensors with Weyl symmetries.
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Lemma 12. The operators defined in (4.22) satisfy the following identities

L0WK0 = P⊥
0 P

0⊥, (4.25a)

WPs
1 = WA +WDK′

1, (4.25b)

L0W
A = 0, (4.25c)

P1
sP

s
1 − Pa

1′L1W
A = id1′ , (4.25d)

P0‖L0 =0 (4.25e)

Proof. The operator L0WK0 applied to a vector yields the gauge dependence of ϑ�2

multiplied by e3
0,0� 2κ12κ̄1′

3�2
and its complex conjugate. The gauge dependence is given by

the 3 and 4 components of the vector and hence given by the right hand side of (4.25a).
For (4.25b), the projector Ps

1 is commuted through the linearized Weyl operatorW. Part
of it factors through K′

1 and WD is defined as the operator acting on it. The algebraic
remainder is collected in WA. On S2,0 we have K2K2K0 = 0. This together with
the complex conjugate version on S0,2 gives (4.25c). Commuting K operators shows
L1W

A = −P1′
a with P1′

a given in (4.16). Then (4.25d) is the decomposition of id1′ ,
given in (4.20). (4.25e) follows directly from (4.11). ��

Now we are prepared to define the remaining operators for the complex (4.1).

Definition 13. The operators in the first square of (4.1) are defined by

C0 :=P0‖, D0 :=P‖
0, K0 :=

[
T
D

]
, H0 := L0W, H′

0 := 0. (4.26a)

The operators in the second square are defined by

C1 :=
(
P1
s − Pa

1′ L1W
)

(id1 − K0H0) , D1 :=Ps
1, K1 :=

[
K′
1C1

P1�(id − K0H0)

]
,

(4.26b)

H′
1 :=

(
P1
s − Pa

1′ L1W
)
K0L0W

D + Pa
1′ L1W

D, H1:=
[
0 P�

1

]
. (4.26c)

The operators in the third square are defined by

C2:=
[
id2′ 0

]
, D2:=

[
id2′ − K′

1H
′
1−P1�K0L0W
D

]
, K2:=

⎡
⎣

K′
2C2

P1′
a (H′

1C2 − C1H1)

P0⊥(H0H1 + L0W
DC2)

⎤
⎦ ,

(4.26d)

H′
2 := 0, H2 :=

[
0 K′

1P
a
1′ K′

1P
1
sK0P⊥

0
0 0 P1�K0P⊥

0

]
. (4.26e)

The operators in the fourth square are defined by

C3 := [
id3′ 0 0

]
, D3 :=

⎡
⎣
id3′
0
0

⎤
⎦ , K3 :=K′

3C3, H′
3 := 0, H3 := 0. (4.26f)

The operator between V4 and V ′
4 are defined by

C4 := id4′ , D4 := id4′ . (4.26g)
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We are now ready to state and prove our main result.

Theorem 14. The differential operators Kl , l = 0, 1, 2, 3, defined in (4.26) constitute a
compatibility complex for the Killing operator K = K0 on the Kerr spacetime. The Kl
complex is also locally exact.

Proof. The operators defined in (4.26) constitute an equivalence up to homotopy of the
complex Kl with the auxiliary complex K′

l , which is the twisted de Rham complex (4.5),
c.f. Definition 3 and 4. All the relevant identities follow from repeated application of
projection identities and Lemma 12 as shown below. Due to Proposition 6, K′

l is known
both to be a compatibility complex and to be locally exact. Hence both of these properties
also hold for the complex Kl by Proposition 7. The compositions of K′ operators yield

K′
1K

′
0 = 0, K′

2K
′
1 = 0, K′

3K
′
2 = 0, (4.27)

due to commutators and (4.6). Next we present explicit derivations of all required oper-
ator identities.

1. id0 = D0C0 + H0K0:

D0C0 + H0K0 = P‖
0P

0‖ + L0WK0 = P‖
0P

0‖ + P⊥
0 P

0⊥ = id0 by (4.26a,4.25a,4.11)

2. id0′ = C0D0 + H′
0K

′
0:

C0D0 + H′
0K

′
0 = P0‖P

‖
0 = id0′ by (4.26a,4.11)

3. K0D0 = D1K′
0:

K0D0 =
⎡
⎣T (e1

0,0� •) T (e2
0,0� •)

D(e1
0,0� •) D(e2

0,0� •)

⎤
⎦

=
⎡
⎣(T e1)

0,0� • + e1
0,0� (T •) (T e2)

0,0� • + e2
0,0� (T •)

(De1)
0,0� • + e1

1,1� (T •) (De2)
0,0� • + e2

1,1� (T •)

⎤
⎦

= D1K′
0

In the last step we used T ei = −∑2
l=1 e

l
0,0� ϒ i

l , Dei = 0 and ei
1,1� ϒ j

k = 0 for
i, j, k = 1, 2 and the definition (4.5).

4. C1K0 = K′
0C0:

C1K0 =
(
P1
s − Pa

1′L1W
)

(id − K0H0)K0 by (4.26b)

=
(
P1
s − Pa

1′L1W
)
K0 (id − H0K0)

=
(
P1
s − Pa

1′L1W
)
K0D0C0 by 1.
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=
(
P1
s − Pa

1′L1W
)
Ps
1K

′
0C0 by 3., (4.26b)

=
(
P1
sP

s
1 − Pa

1′L1W
A − Pa

1′L1W
DK′

1

)
K′
0C0 by (4.25b)

= K′
0C0 by (4.25d), (4.27)

5. id1′ = C1D1 + H′
1K

′
1 + K′

0H
′
0:

C1D1 + H′
1K

′
1 + K′

0H
′
0 =

(
P1
s − Pa

1′L1W
)

(id − K0L0W)Ps
1 by (4.26)

+
(
P1
s − Pa

1′L1W
)
K0L0W

DK′
1 + Pa

1′L1W
DK′

1

= P1
sP

s
1 − Pa

1′L1W
A by (4.25b),(4.25c)

= id1′ by (4.25d)

6. id1 = D1C1 + H1K1 + K0H0:

D1C1 + H1K1 + K0H0 = Ps
1

(
P1
s − Pa

1′L1W
)

(id − K0H0)

by (4.26b),(4.26c)

+ P�
1 P

1� (id − K0H0) + K0H0

= id1 by (4.20)

7. K′
1C1 = C2K1 by (4.26b),(4.26d)

8. K1D1 = D2K′
1:

D2K′
1 =

[
K′
1(id − H′

1K
′
1)−P1�K0L0W

DK′
1

]
by (4.26d)

=
[

K′
1C1D1

−P1�K0L0WD1

]
by 5., (4.25b), (4.25c), (4.26b)

= K1D1 by (4.26b), (4.20), (4.26a)
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9. id2′ = C2D2 + H′
2K

′
2 + K′

1H
′
1 by (4.26d),(4.26e)

10. id2 = D2C2 + H2K2 + K1H1:

D2C2 + K1H1 + H2K2 =
[

(id − K′
1H

′
1)C2

−P1�K0L0W
DC2

]
+

[
K′
1C1H1

P1�(id − K0H0)H1

]

+

⎡
⎣K′

1P
a
1′P1′

a (H′
1C2 − C1H1) + K′

1P
1
sK0P⊥

0 P
0⊥(H0H1 + L0W

DC2)

P1�K0P⊥
0 P

0⊥(H0H1 + L0W
DC2)

⎤
⎦

=
⎡
⎣K′

1(P
a
1′P1′

a − id)(H′
1C2 − C1H1) + K′

1P
1
sK0P⊥

0 P
0⊥(H0H1 + L0W

DC2) + C2

P1�K0(P⊥
0 P

0⊥ − id)(H0H1 + L0W
DC2) + P1�H1

⎤
⎦

=
[
K′
1P

1
s (K0L0W

DC2 + H1 − K0H0H1) + K′
1P

1
sK0(H0H1 + L0W

DC2) + C2

P1�H1

]

=
[−K′

1P
1
sH1 + C2

P1�H1

]
= id2

Here we used (4.26), (4.11), (4.25e), (4.20).
11. K2D2 = D3K′

2:

K2D2 =
⎡
⎢⎣

K′
2C2D2

P1′
a (H′

1C2D2 − C1H1D2)

P0⊥(H0H1D2 + L0W
DC2D2)

⎤
⎥⎦ by (4.26d)

=
⎡
⎢⎣

K′
2(id − K′

1H
′
1)

P1′
a (H′

1(id − K′
1H

′
1) − C1H1D2)

P0⊥(H0H1D2 + L0W
D(id − K′

1H
′
1))

⎤
⎥⎦ by 9.

=
⎡
⎢⎣

K′
2

P1′
a ((id − H′

1K
′
1)H

′
1 + C1P�

1 P
1�K0L0W

D)

P0⊥(−H0P�
1 P

1�K0L0W
D + L0W

D − L0W
DK′

1H
′
1)

⎤
⎥⎦

by (4.27), (4.26c), (4.26d)

=
⎡
⎢⎣

K′
2

P1′
a (C1D1H′

1 + C1P�
1 P

1�K0L0W
D)

P0⊥(−H0P�
1 P

1�K0L0W
D + L0W

D − L0WPs
1H

′
1)

⎤
⎥⎦ by 5., (4.25b), (4.25c)

=
⎡
⎣

K′
2

P1′
a C1(Ps

1P
1
s + P�

1 P
1�)K0L0W

D

P0⊥(−H0P�
1 P

1�K0L0W
D + L0W

D − L0WPs
1P

1
sK0L0W

D)

⎤
⎦

by (4.26c), (4.20)
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=
⎡
⎢⎣

K′
2

P1′
a C1K0L0W

D

P0⊥(−H0K0L0W
D + L0W

D)

⎤
⎥⎦ by (4.20), (4.26a)

=
⎡
⎢⎣

K′
2

P1′
a K

′
0C0L0W

D

P0⊥D0C0L0W
D

⎤
⎥⎦ =

⎡
⎣
K′
2
0
0

⎤
⎦ = D3K′

2 by 1., 4., (4.25e), (4.26a)

12. K′
2C2 = C3K2 by (4.26d), (4.26f)

13. id3′ = C3D3 + H′
3K

′
3 + K′

2H
′
2 by (4.26e), (4.26f)

14. id3 = D3C3 + H3K3 + K2H2:

D3C3 + K2H2 =
⎡
⎣
id 0 0
0 0 0
0 0 0

⎤
⎦ +

⎡
⎢⎣

K′
2C2H2

P1′
a (H′

1C2H2 − C1H1H2)

P0⊥(H0H1H2 + L0W
DC2H2)

⎤
⎥⎦

by (4.26d), (4.26f)

=
⎡
⎢⎣
id K′

2K
′
1P

a
1′ K′

2K
′
1P

1
sK0P⊥

0

0 P1′
a H

′
1K

′
1P

a
1′ P1′

a (H′
1K

′
1P

1
sK0P⊥

0 − C1P�
1 P

1�K0P⊥
0 )

0 P0⊥L0W
DK′

1P
a
1′ P0⊥(L0W

DK′
1P

1
sK0P⊥

0 + H0P�
1 P

1�K0P⊥
0 )

⎤
⎥⎦ by (4.26)

=
⎡
⎢⎣
id 0 0
0 P1′

a (id − C1D1)Pa
1′ P1′

a ((id − C1D1)P1
s − C1P�

1 P
1�)K0P⊥

0

0 P0⊥L0WPs
1P

a
1′ P0⊥(L0WPs

1P
1
s + H0P�

1 P
1�)K0P⊥

0

⎤
⎥⎦

by (4.27), 5, (4.25b)

=
⎡
⎢⎣
id 0 0
0 id −P1′

a C1K0P⊥
0

0 0 P0⊥H0K0P⊥
0

⎤
⎥⎦ =

⎡
⎢⎣
id 0 0
0 id −P1′

a K
′
0C0P⊥

0

0 0 P0⊥(id − D0C0)P⊥
0

⎤
⎥⎦ = id3

by (4.26), (4.20), (4.17), 4., 1., (4.11)

15. K3D3 = D4K′
3 by (4.26f), (4.26g)

16. K′
3C3 = C4K3 by (4.26f), (4.26g)
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Compositions of K operators yield

K1K0 =
[

K′
1C1K0

P1�(id − K0H0)K0

]
=

[
K′
1K

′
0C0

P1�K0D0C0

]
=

[
0

P1�Ps
1K

′
0C0

]
= 0,

K2K1 =
⎡
⎢⎣

K′
2C2K1

P1′
a (H′

1C2K1 − C1H1K1)

P0⊥(H0H1K1 + L0W
DC2K1)

⎤
⎥⎦

=
⎡
⎢⎣

K′
2K

′
1C1

P1′
a (H′

1K
′
1C1 − C1H1K1)

P0⊥(H0H1K1 + L0W
DK′

1C1)

⎤
⎥⎦

=
⎡
⎢⎣

0
P1′
a C1(id − D1C1 − H1K1)

P0⊥H0(H1K1 + D1C1)

⎤
⎥⎦

=
⎡
⎢⎣

0
P1′
a C1K0H0

−P0⊥H0(K0H0 − id)

⎤
⎥⎦ =

⎡
⎢⎣

0
P1′
a K

′
0C0H0

P0⊥D0C0H0

⎤
⎥⎦ = 0,

K3K2 = K′
3C3K2 = K′

3K
′
2C2 = 0.

��

5. Equivalence of Invariants

Here we discuss the equivalence ofK1 and the operators appearing in the set of invariants
of [2] which we denote collectively by K̃1. Recall that K̃1 consists of the quantities4

ϑ� : V1 → (2, 2), (5.1a)

ϑ� : V1 → (0, 0), (5.1b)

P2ϑ� : V1 → (4, 0), (5.1c)

IV : V1 → (0, 0), for V ∈ {ξ, ζ }. (5.1d)

The explicit forms of the operators are given in (3.18) and by

P2ϑ� := [
1
2P

2CC 0
]
, (5.2a)

IV := I
D
VW + I

A
V , (5.2b)

with P2 given in (3.12) and

I
A
V := 81

2 �2κ1
3
[
(V

1,1� ξ
1,1� K0K2 • −V

1,1� ξ
1,1� •) 1

4V
1,1� ξ

0,0� •
]
, (5.3a)

I
D
V := [

I
D1
V I

D2
V

]
, (5.3b)

4 There is a typo in the GHP form of Iζ given in equation (26) of [2]. In two instances the factor p+ p−
should be replaced by (p2 + p̄2).
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I
D1
V := −81V

1,1�K1T (κ1
4K2K2•) − 81

2 κ1
4(K2C V )K2K2 • −27κ1

3V
1,1�ξ

1,0�K1K2•,

(5.3c)

I
D2
V := − 81

2 κ̄1′4(K
2
C †V )K

2
K

2 • +27κ̄1′3V
1,1�ξ

0,1�K
1
K

2 • . (5.3d)

Applied to a linearizedmetric, ϑ� and ϑ� are the trace-free and trace parts of linearized
Ricci,P2ϑ� are the linearized extremeWeyl components (Teukolsky scalars), cf. (3.18).
IV are two third order complex scalar invariants.

Neither the number of components nor the differential order of the two sets of invari-
ants coincide and we refer to Sect. 6 for more details. Next we show that K̃1 and K1 can
be factored through each other, thereby proving the completeness of K̃1.

5.1. Factorization of K̃1 through K1. In this subsection we show that K̃1 = D̃2 ◦K1 for
some operator D̃2. Following [23, Lemma 4], assume we have K̃1 ◦ D1 = F ◦ K′

1, for
some operator F, then

K̃1 = K̃1 ◦ (D1 ◦ C1 + H1 ◦ K1 + K0 ◦ H0)

= F ◦ K′
1 ◦ C1 + K̃1 ◦ H1 ◦ K1

= (F ◦ C2 + K̃1 ◦ H1) ◦ K1 (5.4)

Hence, we can choose D̃2 = F ◦ C2 + K̃1 ◦ H1. Now we compute F.

Definition 15.

ϑ�D:=
[
k1 k1 k2 k2

]
, with

ki := 1
6e

i 0,0�C • − 1
4e

i 0,1�T • − 1
8e

10,1�ϒ i
1
0,0� • − 1

8e
20,1�ϒ i

2
0,0� • + 1

12e
10,0�ϒ i

1
0,1�•

+ 1
12e

20,0�ϒ i
2
0,1�•, (5.5a)

ϑ�D:=
[
r1 r1 r2 r2

]
, with

r i := − 1
24e

i 1,1�C • − 1
48e

11,1�ϒ i
1
0,1� • − 1

48e
21,1�ϒ i

2
0,1� • . (5.5b)

Lemma 16. The operator K̃1 composedwithD1 factors throughK′
1 via K̃1◦D1 = F◦K′

1,
where

F =

⎡
⎢⎢⎢⎢⎢⎣

ϑ�D

ϑ�D

P2ϑ�D

I
D
ξ WD

I
D
ζ WD

⎤
⎥⎥⎥⎥⎥⎦

(5.6)

Proof. The relations ϑ�D1 = ϑ�DK′
1 and ϑ�D1 = ϑ�DK′

1 are commutators of the
linearized trace-free Ricci operator and linearized Ricci scalar operator (3.18) with the
algebraic operator D1. For the Weyl components ϑ� we use P2ϑ� A = 0 so that the
factorization P2ϑ�D1 = P2ϑ�DK′

1 follows from (4.25b). For IV we find

I
A
VD1 = I

D
VW

A = 0, for V ∈ {ξ, ζ }, (5.7)

so that (5.2b) with (4.25b) leads to IVD1 = I
D
VW

DK′
1 for V ∈ {ξ, ζ }. ��
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5.2. Factorization of K1 through K̃1. In this subsection we show that K1 = C̃2 ◦ K̃1 for
some operator C̃2. For the second component of K1 we find the relation

P1�(id − K0H0)

[
G
/G

]
= − 2κ̄1′2

729�2κ1

⎡
⎢⎣

Iξ

(Iζ+Iζ )

9κ1κ̄1′
+

(Iξ+Iξ )(κ̄1′ 2+κ21 )

4κ1κ̄1′
Iξ

⎤
⎥⎦ . (5.8)

The expansion of the first component ofK1 in terms of K̃1 required a long computation
and the result is displayed in appendix A.

6. Counting Invariants

The conclusion from Sect. 5 is that the components of both operators K1 (computed
using the methods of [23]) and K̃1 in (5.1) each constitute a complete set of local first
order gauge invariants for metric perturbations of Kerr. Yet the two operators look quite
different: K1 is of 4th differential order5 and has 15 real components, while K̃1 is of
3rd differential order and has 18 real components. So neither the degree nor the number
of components is a stable quantity for a complete set of invariants under the kind of
equivalence considered in Sects. 2 and 5. A natural question to ask is the following: is
there any stable way to assign either an order or a number of components to a complete
set of invariants, perhaps under some condition of minimality?

Practically speaking, the higher order of K1 is what allows it to get away with fewer
components than K̃1. Taking differential linear combinations of the high order compo-
nents ofK1 it is possible to cancel the highest order coefficients, leaving behind the extra
lower order components that are present in K̃1 but not in K1. It is also easy to see how,
even without changing the number of components, the order of either K1 or K̃1 could be
artificially inflated by mixing a high order derivative of one component with another, in
an invertible way. The ambiguity in the order and in the number of components lies in
the subtle interplay between the leading and sub-leading order coefficients in the gauge
invariants.

This issue is verywell known in the literature on overdetermined PDEs, where a set of
relevant homological invariants has been identified, so-called Spencer cohomologies of a
differential operator [19,33,35]. These invariants are stable under the kind of equivalence
considered in Sects. 2 and 5 , and the dimensions of certain Spencer cohomologies can
be combined to give the order and the number of components of the differential operator,
provided it is in so-called involutive andminimal form. Minimality is a simple condition
on the principal symbol, while involutivity is a more sophisticated condition involving
both the principal and sub-principal parts of the operator.

The classical principal symbol σp(K) of an operator K (the coefficients of highest
differential order, contracted with covectors p ∈ T ∗M instead of partial derivatives) is
most useful when every component of K has the same order. For operators of mixed
orders, it is more useful to work with the graded symbol [25,33], which is essentially
the same as the weighted symbol of [13]. Using the same notation, the graded symbol
σp(K) is a matrix of homogeneous polynomials in the covector p ∈ T ∗M , possibly of
different orders but obeying some simple bounds, and it satisfies the convenient identity

σp(LK) = σp(L)σp(K), (6.1)

5 The linearized Weyl operator composed with the Killing operator,WK0 reduces (in any geometry) from
differential order 3 to 1 by using commutators. Therefore K1 as defined in (4.26b) reduces from order 6 to 4.
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even if the right-hand side is zero. The operator K is minimal6 when the rows of its
symbol σp(K) are linearly independent with respect to p-independent coefficients. And
K is involutive7 when any admissible matrix of homogeneous polynomials λp satisfying
λpσp(K) = 0 can be extended to a differential operator L (that is, σp(L) = λp) such
that LK = 0.

Minimality is easy to check, as it follows from maximality of numerical rank when
σp(K) is evaluated on a generic value of p. On the other hand, in general, it is much easier
to show thatK is not involutive (meaning that its degree or number of components has no
invariant meaning) than the opposite. As an illustration, let us consider the involutivity
of the Killing operator K0 on Kerr. Due to the fact that ϑ�2 is gauge invariant in the
Minkowski case, we have

σp(ϑ�2)σp(K0) = 0. (6.2)

However, it can be shown that, on Kerr, there is no second order operator L with symbol
σp(ϑ�2) such that LK0 = 0, and hence K0 fails to be involutive. It was rightly noted
in [29,30] that constructing a full compatibility operator for an involutive version of K0
is much easier. However, we point out that our K0 is tied to the fixed notion of gauge
symmetry and gauge invariance in linearized gravity, hence we are not free to replace it
with its involutive prolongation. Preliminary analysis also indicates that neither K1 nor
K̃1 is involutive.We do suspect that enlarging K̃1 by�Â3 and�Â4 defined inAppendixA
is sufficient to achieve involutivity. However, a full analysis of involutivity goes beyond
the scope of this paper.

7. Discussion

In this paper we have given for the first time a proof of completeness for a set of gauge
invariants for first order metric perturbations of the Kerr spacetime, where we have
interpreted gauge invariants as compatibility operators for the Killing operator K on
this background. In Sect. 4, we have constructed an operator K1 following the methods
of [23],which guarantee that the components ofK1 are a complete set of gauge invariants,
even if their explicit expressions turn out to be somewhat cumbersome. In Sect. 5, we
have shown that the operators K1 and K̃1 factor through each other, where the K̃1 consist
of the concise set of gauge invariants introduced in [2], thus confirming the completeness
of the components of K̃1 that was stated in [2]. With little extra effort, the construction
of Sect. 4 also yielded a full compatibility complex Kl for K0 = K, terminating after
l = 0, 1, 2, 3.

There exists a non-linear analog of the problemof constructing a complete set of linear
gauge-invariants on a given background spacetime (M, gab). Namely, a so-called IDEAL
characterization [12,14–16] of a given spacetime consists of a list of tensors {Ti [g]} co-
variantly built from the metric, Riemann tensor and covariant derivatives such that the
conditions Ti [g] = 0 are sufficient to guarantee that (M, gab) is locally isometric to the
given reference spacetime.Aswas pointed out in the recentworks [10,24], where IDEAL
characterizations were given for cosmological FLRW and Schwarzschild-Tangherlini
black hole spacetimes, one can use the tensors {Ti [g]} to construct linear gauge invari-
ants on the characterized spacetime. In particular, the identityLvTi [g] = Ṫ g

i [Kg[v]] [36]
6 This usage is compatible with the notion of a minimal resolution in commutative algebra [33].
7 The traditional definition of the notion of involutivity of a differential operator or a PDE is rather technical.

Ours is simplified and synthesized from the relation between traditional involutivity and commutative algebra
elaborated in [25,33].
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guarantees that the linear operator Ṫ g
i [h] is a gauge invariant whenever Ti [g] = 0 (or

even more generally when Ti [g] is a combination of Kronecker-deltas with constant co-
efficients). Conversely, any linear metric perturbation hab that leaves the local isometry
class must violate the IDEAL characterization equalities, {Ti [g+h + · · · ]} �= 0, which is
equivalent to {Ṫ g

i [h]} �= 0, unless some Ti vanish to a high order on the space of all met-
rics along some directions approaching the reference metric g. Thus, the operators {Ṫ g

i }
have a good geometric interpretation and provide a good candidate for a complete set of
linear gauge invariants on the reference spacetime geometry. Checking their equivalence
with a systematically constructed complete set of linear gauge invariants can accomplish
a double goal: provide the complete gauge invariants with a geometric interpretation,
and show that the set {Ṫ g

i } is indeed complete. Such an exercise has already been suc-
cessfully carried out for a class of FLRW geometries [18]. It would be worth while to
complete the comparison, already initiated in [2], of the K̃1 operator with the linearized
IDEAL characterization of the Kerr spacetime given by Ferrando and Sáez [15].

It is well-known that the construction of Hodge–de Rham Laplacians on a Rieman-
nian manifold uses in an essential way the structure of the de Rham complex as a
compatibility complex. Similarly, it was observed in [22] that the compatibility complex
Kl on a maximally symmetric Lorentzian spacetime can be endowed with a Hodge-like
structure, producing a sequence of wave-like (normally hyperbolic [6]) operators �l ,
obeying the commutativity relations Kl�l = �l+1Kl . The �l operators have several
applications: (a) Providing a “Hodge theory” for the cohomology of the compatibil-
ity complex H∗(Kl) [21]. (b) Providing a propagation equation �1K1[h] directly for
the gauge invariants of perturbations h satisfying the linearized Einstein equations. (c)
Providing a reconstruction of the metric perturbation h from its invariants ψ = K1[h],
formally h = �−1

0 δ1[ψ] = δ1[�−1
1 ψ], where �l = δl+1Kl+1 + Klδl . Alternatively, the

metric reconstruction problem could be locally reduced to an application of the Poincaré
lemma to the K′

l complex. It would be interesting to identify such a “Hodge-like struc-
ture” also for our Kl compatibility complex on Kerr.

InSect. 6,wehavediscussed thenotionof involutivity andminimality for a differential
operator. Although it appears thatK0,K1, K̃1 fail to be involutive, it would be interesting
to find an involutive and minimal version of the full compatibility complex Kl , for l ≥ 1,
for instance by completing K̃1 to involutivity as suggested at the end of Sect. 6 and lifting
the rest of theKl operators in an involutiveway.Workingwith an involutive compatibility
complex can simplify the search for a “Hodge-like structure” mentioned above. In the
absence of involution, the differential orders of the operators δl are not a priori bounded
from the known orders of the Kl and the expected orders of the �l operators.

Although the Schwarzschild spacetimes are part of the Kerr family, the fact that they
have a larger number of independent Killing vectors means that some of the discussion
from this paper and the earlier paper [2] do not apply to them, so they need to be handled
as special cases. In fact, the analogous construction of the compatibility complex for
Schwarzschild spacetimes was already carried out in [23, Sec.3.3]. Also, in analogy
with [2] forKerr, a number of convenient sets of linear gauge invariants for Schwarzschild
were given in [34]. It would be interesting to check whether any of these sets is complete
by comparing them to the complete set of gauge invariants obtained in [23, Sec.3.3].

Finally, another application of the methods used in this paper would be the con-
struction of a complete set of linear gauge invariants, as well as a corresponding full
compatibility complex, for the Kerr–Newman charged rotating black hole spacetime. In
the Kerr–Newman case, the compatibility complex must start with a more complicated
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operator K0 that incorporates both the linearized diffeomorphisms and the electromag-
netic gauge transformations.
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Appendix A. Component form of ˜C2

For the frame (4.3) define the connection

γ i
jk := ea j eb

i∇ae
b
k . (A.1)

Define the spinors Â ∈ S1,1, /P ∈ S0,0, P ∈ S2,2 and Q ∈ S3,1 via

Â :=K1T κ1
4K2K2ϑ� − 1

4�2κ1
3ξ

0,0� /G + 2
3κ1

3ξ
1,0�K1K2ϑ� − 1

2�2κ1
3ξ

1,1�K0K2G,

(A.2a)

/P :=DÂ + 1
2κ1

3�2Lξ /G, (A.2b)

P := 1
2�2κ1

3LξG +T Â, (A.2c)

Q :=C †P2ϑ� + 5
6K

0K2Cϑ� − K1K1Cϑ�. (A.2d)

Also define tensor versions of P , Q and κ via

Pab := 1
4gab /P + PABA′B′σa

AA′
σb

BB′
, (A.3a)

Qabc := − σ AA′
cσ

BB′
aσ

C
B′bQABCA′κ1

3, (A.3b)

Yab := σ AA′
aσ

BB′
bε̄A′B′κAB κ̄1′, (A.3c)

where σa
AA′

is the soldering form. Due to equations (56) and (58b) in [1] we get the
relations

P = C †(κ1
4K1Q) + 3�2κ1

4K1ϑ� − 2
3T (κ1

4K2Cϑ�), (A.4a)

/P = − 4
3κ1

3K2K2ξ
0,1�Cϑ�. (A.4b)
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The definition of Â only differs by a ϑ� term compared toA in [1]. From an argument in
that paper one finds that �Â is gauge invariant. The components of �Â can be expressed
algebraically in terms of Iξ , Iζ and P via

�Iξ = − 81�Â1, �Iζ = − 81�Â2, (A.5a)

P11 − P̄11 = iM�Â4

3κ1κ̄1′3
+
iM�Â3

3κ13κ̄1′
− 2

81 i∂1�Iξ , (A.5b)

P12 − P̄12 = − 3iM�Â4(κ1
3 + κ1κ̄1′2 − 2κ̄1′3)

4κ12κ̄1′3
− 3iM�Â3(−2κ13 + κ1

2κ̄1′ + κ̄1′3)

4κ13κ̄1′2

− 1
81 i∂1�Iζ − 1

81 i∂2�Iξ . (A.5c)

Hence, we can conclude that any component of �Â, P or Q can be expressed in terms
of K̃1.
For symmetric 2-spinors φ,ψ , set

⎡
⎢⎢⎣

φ̄

φ

ψ̄

ψ

⎤
⎥⎥⎦ = K′

1C1 (A.6)

and define the real 2-forms

Gab := σa
AA′

σb
BB′

(ε̄A′B′φAB + εAB φ̄A′B′) (A.7a)

Hab := σa
AA′

σb
BB′

(ε̄A′B′ψAB + εABψ̄A′B′). (A.7b)

A long computer algebra calculation reveals that this operator factors through K̃1 with
components (5.1) via

MG12 = −54(P12 + P̄12) − 2
3∂1�Iζ − 2

3 ∂2�Iξ + 108iγ 3
12�Â3 − 108iγ 4

12�Â4, (A.8a)

MG13 = 2
9Y1

a(∂aIξ + 162P1a − 2γ 2
1aIζ − 2γ 1

1aIξ ), (A.8b)

MG23 = +2
9Y1

a(162P2a + ∂aIζ − 2iγ 2
2a�Iζ − 2iγ 1

2a�Iξ − 54(Q12a + Q̄12a)
)

− 4
9Y2

a(γ 2
1a�Iζ + γ 1

1a�Iξ ) − 4
9 i�Iξ (γ 3

2aY3
a − γ 4

2aY4
a), (A.8c)

MG34 = −36iY4
a∂1�Âa + 108i(γ 3

34 − 3γ 4
33)�Â3 − 108i(3γ 3

44 − γ 4
34)�Â4

−36(Q341 + Q̄341), (A.8d)
MH12 = −27(P22 + P̄22) − 2

3∂2�Iζ + 54iγ 3
22�Â3 − 54iγ 4

22�Â4, (A.8e)

MH13 = 2
9Y2

a(162P1a + ∂aIξ − i(γ 1
1a + γ 2

2a)�Iξ − 27Q1a1
) − 18Q231

−18(Q123 + Q̄123) − 2
9

(
2γ 2

2aIζ + 2γ 1
2aIξ − i(γ 1

1a + γ 2
2a)�Iζ

)
Y1

a, (A.8f)

MH23 = − 2
9Y2

a(−162P2a − ∂aIζ + γ 2
2a(2Iζ − i�Iζ ) + iγ 1

1a�Iζ
+γ 1

2a(2Iξ + i�Iξ ) + 27Q1a2

+27(Q12a + Q̄12a)
) − 4

3 iγ
1
23�Iζ − 18Q232 − 2

9 i�Iξ (γ 3
22Y3

1 − γ 4
22Y4

1), (A.8g)

MH34 = 18Ȳ2
a P̄a3 − 18Y2

a Pa4 − 2
9 iY4

1∂1�Iζ + 2
9 iY4

1∂2�Iξ
+36i�Â3(γ

1
2aȲ1

a − γ 1
1aȲ2

a + γ 4
2aȲ4

a)

+36i�Â4(γ
1
2aY1

a − γ 1
1aY2

a + γ 3
2aY3

a)
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−9Q234 + 27Q243 − 27Q342 − 9Q̄234 − 9Q̄243 − 9Q̄342

−81Q144κ1κ̄1′ + 81Q̄133κ1κ̄1′

+
81

8κ1κ̄1′
(Q̄144 − Q133)(κ1

2 + κ̄1′ 2)2 + (−81Q134 + 567
4 Q143 − 81Q341 − 81Q̄134

+ 81
4 Q̄143 − 81

4 Q̄341 − 9Q233

2κ1κ̄1′
+
9Q̄244

2κ1κ̄1′
)(κ1

2 + κ̄1′ 2). (A.8h)

Here M = 27�2κ1
3 is the mass parameter of the Kerr solution.
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