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Abstract

Cellular analysis of developmental processes and toxicities has traditionally
entailed bulk methods (e.g., transcriptomics) that lack single cell resolution or
tissue localization methods (e.g., immunostaining) that allow only a few genes
to be monitored in each experiment. Recent technological advances have
enabled interrogation of genomic function at the single-cell level, providing
new opportunities to unravel developmental pathways and processes with
unprecedented resolution. Here, we review emerging technologies of single-
cell RNA-sequencing (scRNA-seq) to globally characterize the gene expression
sets of different cell types and how different cell types emerge from earlier cell
states in development. Cell atlases of experimental embryology and human
embryogenesis at single-cell resolution will provide an encyclopedia of genes
that define key stages from gastrulation to organogenesis. This technology,
combined with computational models to discover key organizational princi-
ples, was recognized by Science magazine as the “Breakthrough of the year”
for 2018 due to transformative potential on the way we study how human cells
mature over a lifetime, how tissues regenerate, and how cells change in dis-
eases (e.g., patient-derived organoids to screen disease-specific targets and
design precision therapy). Profiling transcriptomes at the single-cell level can
fulfill the need for greater detail in the molecular progression of all cell line-
ages, from pluripotency to adulthood and how cell-cell signaling pathways
control progression at every step. Translational opportunities emerge for eluci-
dating pathogenesis of genetic birth defects with cellular precision and
improvements for predictive toxicology of chemical teratogenesis.
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1 | INTRODUCTION

A major goal of developmental biology is to understand
the detailed molecular progression of all embryonic cell
lineages, from pluripotency to adulthood, and how cell-
cell signaling pathways control lineage choices at every
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step of differentiation. Technologies for profiling regula-
tion of the embryonic transcriptome with single-cell reso-
lution have emerged as a key research area for this
purpose, and consequently set the stage for a mechanistic
understanding of developmental defects. The symposium
on “Single-cell Revolution: Embryogenesis at High-Resolu-
tion” presented at the 60th Annual Meeting of the Society
of Birth Defects Research and Prevention covered some of
the main concepts in single-cell profiling, how the emerg-
ing technology is shaping our understanding of embryo
development, and opportunities and challenges for eluci-
dating teratological mechanisms with single cell precision
(https://www.birthdefectsresearch.org/meetings/2020/).
Next-generation sequencing (e.g., RNA-seq) made
possible through advances in the genomic sciences have
put molecular profiling at the forefront of understanding
how the embryo reacts to physiological queues imposed
during developmental processes and toxicities. Bulk tis-
sue analysis averages these effects within a cell popula-
tion and thereby masks the cellular resolution needed to
pinpoint the response. Spatial localization techniques
such as in situ hybridization and immunohistochemistry
can localize these responses but for only a few genes or
proteins at a time. Single cell transcriptomics (SCRNA-
seq) enables a comprehensive understanding of gene
expression dynamics that program or reflect individual
cell states in response to genetic signals, to physiological

adaptation to toxicological stress. This enables compre-
hensive analysis at the fundamental unit of tissue organi-
zation - the cell, where each has its own unique lineage,
state dynamics, and microphysiology. Combining
scRNA-seq with other single-cell modalities (e.g., in toto
imaging, CRISPR/Cas9) and reconstructive computa-
tional biology is a powerful new approach to understand
the molecular cartography of patterning systems during
embryogenesis and pathogenesis (Cao et al., 2019; Chan
et al., 2019; Keller, Schmidt, Wittbrodt, & Stelzer, 2008;
McDole et al, 2018; McKenna & Gagnon, 2019;
Megason, 2009; Pijuan-Sala et al., 2019; Sladitschek
et al., 2020).

2 | SINGLE-CELL
TRANSCRIPTOMICS WORKFLOW

First introduced in 2009, scRNA-seq now has over
385 approaches (as of March 2019) to predict cell fates in
differentiation (Leuken & Theis, 2019; Ziegenhaein
et al., 2017). A typical workflow is shown (Figure 1).

2.1 | Sample preparation

Some form of cell dissociation is needed to liberate and

queues in the microenvironment, and/or cellular  capture thousands of cells. A key issue is knowing how
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FIGURE 1

Single-cell RNA-seq reconstruction of gene expression dynamics during embryogenesis. Time-variant experimental tissue

samples are prepared by various dissociation methods with microfluidics to isolate and capture individual cells for individual cDNA barcoding.

After multiplex RNA-seq analysis, gene X cell matrices are normalized and processed to identify differentially expressed genes (DEGs). Those

highly variable genes (HVGs) are then selected for deconvolution by analytical methods such as t-SNE (t-distributed neighbor embedding) that

cluster cells by their individual HVG profile and subsequently reconstruct cell lineage and cell state relationships in pseudotime
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well different cell types and their transcriptomes survive
preparation protocols required to generate isolated cells
from an intact tissue. Different capture methods include
microwell plates (microwell-seq) (Han et al., 2018), high-
throughput droplet encapsulation (Drop-Seq, inDrops)
(Klein et al., 2015), or single cell combinatorial indexing
(sci-seq) (Cao et al., 2017). Micro-drop methods use
microfluidics to register a sample into thousands of tiny
droplets that contain single cells. In practice, this is typi-
cally a Poisson distribution- many droplets have 0, some
1, and a few 2 cells. Individual cells are lysed and mRNA
are reverse transcribed for multiplex sequencing.

2.2 | Sequencing

Complementary DNA (cDNA) libraries are barcoded
with various labels that allow assignment to the original
cell. This allows pooling of individual cell transcriptomes
after reverse transcription for multiplex sequencing. The
barcodes identify individual mRNAs transcribed from the
same genomic sequence. The barcoding may also include
labeling with unique molecular identifiers that serve to
distinguish sequencing reads off the same mRNA tran-
script from separate mRNAs transcribed off the same
gene. Protocols are tuned to optimize desired tradeoffs in
throughput, read length, sequencing depth, and cell cov-
erage (Leuken & Theis, 2019).

2.3 | Data processing

A gene x cell read count matrix is constructed by aligning
reads to a reference genome or transcriptome. For quality
control, several metrics are analyzed including the number
of counts per barcode (count depth), number of genes per
barcode (thresholds), and the fraction of counts from mito-
chondrial genes per barcode (a sign of broken plasma
membrane). Different approaches can be used to filter out
technical artifacts (e.g., dying cells, doublets), batch effects,
PCR errors, and over-sequencing that can generate artifi-
cial cell clusters. This is a major area for current develop-
ment of bioinformatics, especially for studies where the
cost associated with sequencing depth might be reduced
by focusing on specific targets (https://www.biorxiv.org/
content/10.1101/551762v2). Expression levels of different
genes are typically normalized so highly expressed genes
do not overwhelm the signal of low expressed genes. The
normalized gene x cell count matrix is the starting point
for dimensionality reduction (Leuken & Theis, 2019). Dif-
ferentially expressed genes (DEGs) are further identified to
focus on highly variable genes (HVGs) (Klein et al., 2015).
In this way, the biological manifold on which cellular

expression trajectories lie can be sufficiently described by
HVGs. An important tradeoff is to distinguish HVGs from
sequencing artifacts.

2.4 | Deconvolution

Two common visualization techniques to cluster cells are
t-distributed stochastic neighbor embedding (t-SNE) and
Uniform Manifold Approximation and Projection
(UMAP). A t-SNE plot, for example, maps cells to indi-
vidual clusters based on nearest neighbor correlation in
HVG expression profiles, conceptually similar to the way
BLAST finds the closest match in a sequence database.
Clusters can then be annotated based on what marker
genes they contain (Kiselev, Andrews, & Hemberg, 2019).
Although widely used, t-SNE is best thought of as a
coarse visualization tool. It is limited by the loss of large-
scale information on inter-cluster relationships, slow
computation time and inability to meaningfully represent
very large datasets. UMAP preserves more data structure
than t-SNE and with a shorter run time (Becht
et al., 2019). This provides more coverage and resolution
of transitional states between main cell clusters. Cells
unassigned to a main reference cluster have great poten-
tial for understanding cellular dynamics as they may
reflect previously unrecognized or novel states that reflect
continuous changes in the transcriptome otherwise
undetected in bulk tissue analysis. Lineage and state
diversification can be inferred as a developmental contin-
uum with dynamic models of gene expression (trajectory
inference) that maps cellular densities across
“pseudotime.” The concept of pseudotime in a single cell
manifold is to reconstruct temporal relationships
between cell states profiled in real time (see Saelens, Can-
noodt, Todorov, & Saeys, 2019).

As continuum gene expression manifolds reduce the
dimensionality of cell-cell distances to virtual
pseudotime state trajectories, the question arises as to
how we apply the scRNA-seq to better understand devel-
opmental processes and pathogenesis. For this purpose, a
number of technical challenges must be considered
beyond the usual quality-control considerations for a
conventional microarray study: assessing how well the
individual cell transcriptomes survive tissue dissociation
protocols to generate isolated cells from a composite sys-
tem; retaining individual cell provenance while deep-
sequencing thousands of cells in parallel; distinguishing
highly variable genes (HVGs) from technical noise
(e.g., PCR artifacts and over-sequencing); and computa-
tional reconstruction of the composite system from indi-
vidual cell clusters for definitive lineage progression and
transitional states.
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3 | ANALYSIS OF SIMPLE
INVERTEBRATE MODEL
ORGANISMS

Comprehensive “cell atlases” built with scRNA-seq data
for simple model organisms (SMOs) demonstrate unique
advantages in mapping developmental trajectories during
embryogeny. For example, the SMOs Caenorhabditis
elegans, Planaria, and Drosophila are amenable to direct
cell lineage analysis and demonstrate the fundamental
principle of conservation of cell signaling (Cao
et al., 2017; Karaiskos et al., 2017; Plass et al., 2018).

3.1 | C.elegans

Notable for classical developmental lineage analysis in an
anatomically simple organism, the complete cell lineage
history of all 959 somatic cell nuclei in the roundworm is
well characterized; however, knowledge of each cell's
molecular state is fragmentary. The scRNA-seq profiles of
50,000 fixed cells captured at the L2 larval stage
(762 somatic cells per larva) yielded 42,035 barcoded
transcriptomes at a sequencing depth of ~20,000 reads
per cell, averaging 431 HVGs per cell. The t-SNE plots
formed 29 distinct cell clusters ranging from 131 to

13,205 (31.4% of the population) cells (Figure 2a). At least
10 cell types could be annotated using known marker
genes, and several novel states were identified (Cao
et al., 2017).

3.2 | Planaria

The flatworm is an interesting SMO for its ability to
regenerate body parts from a population of pluripotent
stem cells in the adult that can differentiate into the full
complement of cell types and tissues. A comprehensive
cell atlas built from scRNA-seq data reconstructed a tree-
like lineage structure indicating the relationships
(Figure 2b). This sets the stage for further studies to
reverse-engineer cellular reprogramming of the regenera-
tive lineage tree (Plass et al., 2018).

3.3 | Drosophila

As one of the quintessential animal models for develop-
mental genetics and molecular patterning, the characteri-
zation of gene expression dynamics at a single-cell level
in the fruit fly provides novel insight into the genetic
organizing principles that shape the body plan (Karaiskos
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FIGURE 2

Reconstruction of spatial-temporal dynamics of gene expression defined by scRNA-seq profiling in SMO systems. (Upper

left) Caenorhabditis elegans decomposed into 29 main clusters at the L2 larval stage (Cao et al., 2017); (upper right) decomposition of adult

planaria (regenerative) into multiple cell states and computational reassembly of divergent lineages in a globally regenerative system (Plass
et al., 2018); and (bottom) Drosophila, patterning in a digital embryo visualized during segmentation (Karaiskos et al., 2017)
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et al., 2017). Drop-seq characterized >10,000 cells at a
read depth of >8,000 genes per cell and tSNE plots anno-
tated 84 cell clusters representing 87% cells in the
embryo. Because many of the key transcription factors
and signal-receptor gradients that drive cell cluster iden-
tity have been digitally mapped by conventional whole-
mount in situ hybridization (ISH), the HVGs from t-SNE
plots could be spatially reconstructed by “virtual ISH” to
digitally visualize and computationally predict their
developmental trajectories (Figure 2c).

4 | EXPERIMENTAL
EMBRYOLOGY

Comprehensive cell atlases are built for modeling gene
expression dynamics as cells acquire specified fates dur-
ing morphogenesis and differentiation. Essentially, we
need to understand how HVGs define, in pseudotime, the
“developmental grammar” in more anatomically complex
species often wused for experimental embryology
(e.g., Ascidian, Danio, Xenopus).

41 | Ascidian

The tunicate is an interesting SMO because it develops a
notochord and dorsal hollow nerve cord, but not meta-
meric patterning (e.g., it is an invertebrate Chordate), and
it has a relatively simple cell lineage. Using scRNA-seq,
the complete gene expression history was determined for
each cell at every division up to gastrulation (2- to 64-cell
stage) yielding 6.65 billion scRNA-seq reads on 1,042 cells
of 58 embryos (>8 K genes per cell); furthermore, the
physical position of each cell was visualized by digital
light-sheet microscopy (Sladitschek et al., 2020). The
combination of lineage tracing and in foto imaging pro-
duced an online “digital embryo” library where individ-
ual genes can be selected and visualized by vISH in a
dynamic simulation as the axial body plan is established
(http://digitalembryo.org). An example is shown in
Figure 3a for two genes (chordin, nodal) that instruct
early patterning of the notochord. Quoting the authors,
“The ability to track systematically, quantitatively, and in
a spatially resolved manner the genome-wide changes of
gene expression of every cell at each cell division in
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FIGURE 3

Gene expression dynamics during early development in Chordate models. (Top) Ascidian, showing dynamic vISH for two

patterning genes selected and viewed dynamically from the vegetal pole (left image) and animal pole (right image). Simulated expression of
chordin (top) and nodal (bottom) are represented in red shading between the 4- and 64-cell stage in pseudotime executed from the http://
digitalembryo.org cell atlas (Sladitschek et al., 2020). (Bottom) Zebrafish developing between 4- and 24-hpf stage (Wagner et al., 2018). Left
panel: a comprehensive map of lineage and state with cell diversification trajectories for 10° individual cells. Middle panel: canalization plot
colored by trans-specification potential. Right panel: classical Turing-like representation of canalized cell trajectories for normal and chordin
CRISPR/Cas9 injection; chordin crispants showed no new cell types but displayed a change in abundance of different cell types (from the
work of Megason, Wagner, and Klein)
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embryos will usher in a new era in developmental biol-
ogy” (Sladitschek et al., 2020).

4.2 | Danio

Two landmark studies in zebrafish set the stage for
understanding the robustness of growth and form with
single-cell imaging and sequencing. In one study, Drop-
seq was used to build a tree-like lineage from 38,731 cells
captured from 694 embryos across 12 stages, spanning
from 3.3 hr post-fertilization (hpf) (blastula, just after the
onset of zygotic transcription when most cells are plurip-
otent) to 12 hpf (pharyngula, 6 somite stage when many
cells have acquired differentiated fates) (Farrell
et al., 2018). Because the pharyngula stage is phylotypic,
for example, when conservation of cell signaling is most
apparent in establishment of the Vertebrate body plan,
the organizing principles are likely to be conserved as
well. The lineage tree recapitulated the developmental
trajectories for 25 cell clusters. Most of the annotated cell
types were known from classical embryology; however,
the study revealed transitional states in the progression,
consistent with a continuum in the pseudogene manifold.
The other landmark zebrafish study mapped the gene
expression landscape using inDrops scRNA-seq on
>92,000 cells across seven stages to generate a compre-
hensive map of cell state trajectories and cell lineage in
zebrafish development through the first 24 hpf (Wagner
et al., 2018). Different algorithms built for inferring
expression landscapes identified critical branch points for
at least 10 cell types in a continuous state manifold over
time. When the scRNA-seq data was stitched into a force-
directed layout colored by time, virtual fate map recon-
struction revealed alternate pathways with different
degrees of overlap between various trajectories. The
authors assigned a “canalization score” to formally repre-
sent the robustness of trajectories and off-tree connec-
tions (Figure 3b).

Canalization (after the Turing model) refers to the
tendency for development of a specific genotype to follow
the same trajectory under different conditions
(Hallgrimsson, Willmore, & Hall, 2002). Most develop-
mental trajectories were weakly canalized (e.g., neural
plate, somitic mesoderm) but a few were medium (noto-
chord) or strongly canalized (germ line). Therefore, in sil-
ico fate-mapping along branches of the cell lineage
manifold implied discordance with cell state progression
(Wagner et al., 2018). To more closely evaluate how cell
state evolved over time, they used “TracerSeq” lineage
barcoding with Tol2 transposon to evaluate the same
cells across the manifold. The authors found that cells
can be close in state but farther in lineage, displaying

non-binary contiguity with broad continua of state space,
complex branching patterns, and loops. The complex
lineage-state architecture of gene expression dynamics
reinforces the paradigm that some cells retain a multi-
fate potential and can trans-specify from one develop-
mental trajectory to another.

A selective advantage of canalization may be to con-
trol proper cell number during cell fate acquisition (boo-
tstrapping) and a determinant of developmental
behaviors of the system when perturbed by genetic or
environmental factors (buffering). A comparison of tra-
jectories from zebrafish (Wagner et al., 2018) to Xenopus
(Briggs et al., 2018) revealed that orthologous genes
showed variable cell state-specific expression overall (30%
conserved) and that transcription factors were the most
conserved. This indicates “function over sequence” where
transcriptional control in the gene regulatory network
and physiological genes are co-opted into pathways for
specific cell signaling, metabolism, and homeostasis.

5 | MAMMALIAN EMBRYOLOGY
The vast majority of cell lineages in mammals derive
from the epiblast layer of the early embryo during gastru-
lation and early organogenesis (embryonic days E6.5-
E8.5 in mouse, Days 14-17 post-fertilization in humans).
The body's fundamental blueprint is also decoded during
this period through formation of the primitive streak that
defines the anterior—posterior (e.g., head to tail) axis.

5.1 | Cell diversification

In mouse, gastrulation commences at the egg cylinder
stage (E6.25) when cells from the posterior epiblast con-
verge at the midline and undergo an epithelial-
mesenchymal transition. The primitive streak advances
anteriorly and culminates with formation of posterior
regions by the headfold stage (E8.5). A t-SNE plot was
developed from 116,312 cells captured for scRNA-seq at
nine time points between E6.5 and ES8.5, from
pluripotency toward all major embryonic lineages
(Pijuan-Sala et al., 2019). These authors annotated
37 main clusters based on known biomarker genes for
molecular diversification of cells in the embryo proper
and associated extraembryonic membranes (Figure 4a).
Inferences on complex signaling were based on an inno-
vative analysis of chimeric embryos. Embryos deficient in
the transcription factor TAL1 die at E9.5 due to defects in
mesodermal diversification that lead to severe anemia;
however, the developmental fates of Tall(—/-) cells can
be tracked in chimeric embryos generated from
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microinjection of labeled embryonic stem cells into the
Tall(+/+) blastocyst that form otherwise healthy
embryos (Pijuan-Sala et al., 2019). An scRNA-seq evalua-
tion of labeled and unlabeled cells sorted from chimeric
embryos at the headfold stage (E8.5) confirmed that the
mutant cells do not contribute to the hematopoietic line-
age; furthermore, the reverse experiment showed that
labeled Tall(+/+) cells do contribute to the hematopoi-
etic lineage when injected to host Tall(-/-) embryos.
Combining temporal and transcriptional information can
illuminate gene function.

At E8.5, the headfold stage embryo transitions to
organogenesis, expanding from hundreds-of-thousands
to over ten-million cells as it forms nearly all major
organ system rudiments between E9.5 and E13.5. This
period was evaluated by combinatorial indexing based
single cell RNA seq of isolated nuclei (paraformalde-
hyde-fixed) from 61 snap-frozen C57BL/6J embryos col-
lected at five daily intervals (Cao et al., 2019). Their
capture methodology, which did not require physical
isolation of cells, yielded barcoded libraries where each
cell could be indexed by its originating embryo. Across
26,183 DEGs, they identified 2,863 -cell-type-specific
marker genes and this enabled annotation of 38 main
cell clusters (Figure 4b).

The corresponding Mouse Organogenesis Cell Atlas
(MOCA, (http://atlas.gs.washington.edu/mouse-rna/)
sets the stage for conducting “virtual experiments” to
gain deeper analysis of cell state landscapes. From the
38 main cell type clusters produced by t-SNE plots of
mouse embryos collected E9.5-E13.5, the deeper analysis
based on the various state trajectories produced 655 sub-
clusters (Cao et al., 2019). For example, pseudo-temporal
ordering of Apical Ectodermal Ridge (AER) cells based
on 710 DEGs connected to the known markers for AER-
specific expression discriminated a trajectory distinct
from general epithelium, where this transitory cell type
increased to peak frequency on E10.5-E11.5 (Cao
et al., 2019). The cell state landscape in the mouse
embryo, like zebrafish, did not strictly align with the cell
lineage map.

5.2 | Cardiogenesis

Congenital heart defects (CHDs) can arise following dis-
ruption of cardiac progenitor cells or multipotent neural
crest cells. In mouse, for example, Hand2 genetic defi-
ciency result in CHDs but linking pathogenesis to pro-
genitor cell types that are affected by such mutations has

Gastrulation (E6.5— 8.5)
(Pijuan-Sala et al., 2019)
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Profiling cell developmental trajectories in the mouse embryo using scRNA-seq. (Left) Gastrulation-early organogenesis

when most cell lineages of the embryo proper emerge; t-SNE lineage identified 37 main clusters staged from 116,312 cells epiblast (E6.5) to
headfold (E8.5), graphed in pseudotime by cell frequency (Pijuan-Sala et al., 2019). (Right) composite t-SNE annotated for 38 main cell
clusters during organogenesis, the period when most organ systems form; pseudotime representation is superimposed on the composite
t-SNE structure for the 151 K cells recorded on E9.5, 370 K cells on E10.5, 603 K cells on E11.5, 468 K cells on E12.5, and 435 K cells on

E13.5 (Cao et al., 2019)
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remained a challenge. Single-cell profiling captured
36,000 cells from the cardiogenic region of mouse
embryos at three developmental landmarks: cardiac cres-
cent (E7.75); heart tube (E8.25); and heart loop (E9.25)
(de Soysa et al., 2019). Single cell transcriptomics identi-
fied Hand2 as a critical lineage specifier of myocardial
cells, consistent with defects of the outflow tract and
severe hypoplasia of the right ventricle observed in
Hand2-deficient mice (Figure 5). Unexpectedly, however,
this dysregulation applied only to specification of myo-
cardial progenitor cells destined for the cardiac outflow
tract and not the right ventricle.

To better understand the discordance between single
cell lineage analysis and observed phenotype (e.g., failure
to link right ventricular hypoplasia to deficient Hand2
expression in wild-type embryos), scRNA-seq analysis
was performed on the secondary heart field from Hand2-
null embryos. This confirmed transcriptional dys-
regulation with loss of Hand2 function in the heart loop
at E7.75, well prior to overt dysmorphogenesis, and fur-
thermore revealed dysregulation of all-trans retinoic acid
(ATRA) signaling as the primary basis of right ventricular
hypoplasia. This was linked mechanistically to ATRA-
induced posteriorization of the prospective right ventricle

_Head
P fold

T Cardiac
crescont

Second
Heart Field
S —
FIGURE 5 Profiling early €2.5
cardiogenic trajectories in the
mouse embryo. (Top) Stages of (a)

cardiogenesis depicted in the
mouse embryo at the cardiac

crescent (E7.5), heart loop
(ES8.5), and outflow tract/
secondary heart field stage
(E9.5) (from http://www.ibdm.
univ-mrs.fr/equipw/genetic-

control-of-heart-devlopment/) Pseudotime
(Bottom) scRNA-seq profiling of

the heart in pseudotime (C)
comparing cell cluster sizes in

wild-type and Hand2-null

embryos. Pseudotime trajectory

for the anterior heart field

(AHF), outflow tract (OFT), and

right ventricle (RV) at E8.25

' % Pseudotime

colored by cluster identity (a),

Pseudotime

genotype (b), and cell state
(c) (de Soysa et al., 2019)

into a more anterior (atrial-like) fate (de Soysa
et al., 2019). This is one of the few examples that shows a
single cell data set of a frank birth defect and highlights
the potential application of the approach.

5.3 | Pluripotency

Molecular profiling studies have shown that pluripotent
mESCs most closely resemble the epiblast, which is the
precursor of almost all cell lineages in the embryo (Cheng
et al.,, 2019; Han, Chen, et al., 2018; Klein et al., 2015;
Pijuan-Sala et al., 2019). Ahead of gastrulation, scRNA-seq
was used to build a molecular roadmap that highlights epi-
blast cells transiting through pluripotency states as they
acquire the propensity for primitive streak formation
(Cheng et al., 2019). The epiblast responds to signals from
extraembryonic tissues, gradually exits from the ground-
state pluripotency, and is primed for multi-lineage specifi-
cation. Mouse stem cell lines derived from the embryoblast
(mESCs) and epiblast (EpiSCs) are functionally and mor-
phologically distinct from one another and are in vitro
counterparts in a distinct developmental progression from:
(1) naive pluripotency (ground-state) represented by
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preimplantation inner cell mass and cultured mESCs;
(2) intermediate epiblast-like cells (pregastrula); and
(3) primed-pluripotency (mid-late gastrulation). Cheng
et al. (2019) used scRNA-seq of 1,724 cells collected from
28 embryos at E5.25, E5.5, E6.25, and E6.5 (pre-streak) to
track molecular states as the epiblast undergoes its puta-
tive pluripotency continuum. From 3,000 HVGs, t-SNE
mapped three main cell clusters: epiblast (768 cells cluster-
ing in the Pouf5f1 domain); visceral endoderm (671 cells
clustering in the Amn domain), and extraembryonic ecto-
derm (EXE, 285 cells clustering in the Bmp4 domain).

54 | mESCs

InDrop barcoding has been applied to mESCs as a model
for assessing the challenges in parallel processing of
thousands of cells and comprehensive mRNA capture
(Klein et al., 2015). Here, they compared mESCs + LIF
(Leukemia inhibitory factor, a cytokine that maintains
pluripotency) withdrawal for >10,000 barcoded cells and
3,034 randomly sampled mESCs differentiating over
7-days. For 935 mESCs, HVGs were enriched for tran-
scriptional regulation and pluripotency, with most
reflecting  heterogeneity = between @ ICM  (high
pluripotency) and epiblast (low pluripotency) states. Con-
sistent with this, t-SNE plots showed a high- to low-
pluripotency state continuum upon LIF withdrawal
reflecting predominantly epiblast and primitive endo-
derm lineages thereby recapitulating the inner cell mass
(embryoblast) in vivo. They found little evidence of pat-
terning at 0-day, weak patterning at 2-day, strong pat-
terning at 4-day, and resolving at 7-days. Therefore,
mESCs are in a “ground-state” of naive pluripotency that
can be maintained with LIF. Soon after implantation
(in vivo) or LIF withdrawal (in vitro), the ICM or mESC
population, respectively, progresses into a “primed-state”
of lineage specification characterized by promiscuous
gene expression that becomes further refined as
pluripotency is progressively lost during overt differentia-
tion. While stem cell lines can be derived from the
postimplantation EpiSCs, they are lineage-primed
(e.g., low pluripotency). Human induced pluripotent
stem cells (iPSCs) have the molecular and functional
identity of post-implantation lineage primed EpiSCs.

5.5 | hESCs

Embryoid bodies (EB) derived from human embryonic
stem cells (hESCs) in vitro recapitulate embryonic ecto-
derm and mesoendoderm. Single H9 hESCs (n = 4,822)
were captured for scRNA profiling at a read depth of 5,000

genes per cell at naive (n = 1,491), primed (n = 695), and
EB (n = 2,636) stages (683 cells at Day 4, 1953 cells at Day
8) (Han, Chen, et al., 2018). They report four main clus-
ters: two (naive, primed) relatively homogeneous and two
(EB-ectoderm and EB-mesendoderm) heterogeneous due
to spontaneous differentiation. Based on DEGs, they
mapped the cellular landscape for primed EB lineages
showing weak heterogeneity on Day 4 versus Day
8 (as might be expected); in this case, however, they
defined three progenitor lines on EB-4 (unspecified, neu-
ral, mesendodermal) and six progenitor lineages on EB-8
(muscle, stromal, endothelial, neural, epithelial, liver).
Construction of an early differentiation trajectory of EB-8
in pseudotime revealed two main branches (neuro-
ectoderm, mesoendoderm), similar to in vivo development
of primed EPI into embryonic ectoderm + primitive streak
(embryonic mesoderm and endoderm). These authors
(Han, Chen, et al., 2018) also showed that the transitional
states are interconvertible under certain conditions
in vitro. For example, primed H9 hESCs can be stably reset
to the naive state 15-20 days in culture with commercial
“RSeT” medium (Han, Chen, et al.,, 2018). This system
provides a model to build “reset trajectories” in
pseudotime during H9 culture Day 0 to Day 20.

6 | SEXDIFFERENTIATION

6.1 | Gonad specification

Recent studies have applied single-cell profiling to later
developmental processes such as sex differentiation.
Gonadal assembly from somatic cells in the male and
female involves dimorphic cell lineage divergence from
a sexually indifferent gonadal rudiment. This involves
gonadal support cells (pre-Sertoli cells in the male, pre-
granulosa cells in the female) and steroidogenic cells
(Leydig cells, Theca cells). To deconvolute lineage spec-
ification in the mouse embryo, scRNA-seq analysis was
performed (Stevant et al., 2019). Commitment to the
supporting cell lineage involves a common intermediate
differentiation step before the emergence of pre-Sertoli
or pre-granulosa cells. A non-sex-specific trans-
criptomic program was identified as these supporting
cells acquire their identity. In chick embryos, scRNA-
seq analysis showed that pre-Sertoli cells and pre-
granulosa cells were not derived from the coelomic
epithelium but rather from a novel mesenchymal popu-
lation (Estermann et al., 2020). These studies raise
questions on the identity of the signals or factors that
control the specification toward either the supporting
or the steroidogenic fates during evolution and
development.
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6.2 | Germline differentiation

Single-cell RNA-seq analysis was performed on 2,167
germ cells and their gonadal niche cells from 29 female
and male human embryos between 4 and 26 weeks of
gestation (Li et al., 2017). t-SNE analysis clearly identified
17 clusters of which four clusters had germline-specific
biomarkers for the female germline: mitotic phase, reti-
noic acid signaling-responsive phase, meiotic prophase,
and oogenesis phase. They identified three clusters for
the male germline: migrating phase, gonadal mitotic
phase, and mitotic arrest phase. They observed reciprocal
signaling interactions between germline cells and their
respective gonadal niche cells, including activation of the
bone morphogenic protein (BMP) and Notch signaling
pathways. For example, male gonadal somatic cells spe-
cifically express Anti-Mullerian Hormone (AMH), and
female gonadal somatic cells specifically express bone
morphogenetic protein 2 (BMP2), whereas subpopula-

tions of germline express the cognate receptor
(BMPR1B).

7 | IMPLICATIONS FOR
TERATOGENESIS

Although developmental toxicology has yet to experience
scRNA-seq profiling in the next-generation blueprint for
chemical testing (Thomas et al. 2019), these studies offer
new insights into novel mechanisms as to how specific
compounds might perturb early embryonic development.
An example is shown for the effects of nicotine on gene
expression dynamics in hESCs (Guo et al., 2019). Preg-
nant rodent studies have shown developmental toxicity
with nicotine exposure. Guo et al. (2019) performed
microdroplet RNA-seq on embryoid bodies from hESCs
exposed to 10 pM nicotine (5,646 single cells) and control
cultures (6,847 single cells). From ~3,000 median genes
per cell, they identified six main progenitor cell lineages
at Day 21 (muscle, hepatic, neural, stromal, epithelial,
and endothelial). Interestingly, nicotine exposure
increased genes for ligand-receptor pairs indicating the
potential to increase cell-to-cell communication lines
broadcast between specific cell types (Figure 6).

With recent breakthroughs in single cell technologies,
a watershed of opportunity now exists to advance scien-
tific understanding of functional cell states, paving the
way to deeper knowledge of developmental processes and
toxicities and opening new insights into when, where,
and how developmental defects arise and the steps
needed to reliably model human developmental toxicity
(Scialli et al., 2018). One is to help map human develop-
mental physiology from the molecular to the organism

level at a level of detail fit for the purpose of toxicity test-
ing. Cell atlases built with scRNA-seq and spatial map-
ping data are contributing to The Human Cell Atlas
(HCA) project (www.humancellatlas.org) (Behjati, Lind-
say, Teichmann, & Haniffa, 2018) that can be directly
compared for a number of embryonic cell types cat-
alogued with the Mouse Cell Atlas (MCA) (Han
et al., 2018). The capacity to spatially dissect a target field
by similarity in cell-level transcriptome response queried
against MCA-HCA provides baseline information on
gene expression dynamics as cells acquire specified fates
during morphogenesis and differentiation and can facili-
tate the use of mouse models for human developmental
defects.

Another opportunity from Scialli et al. (2018) is to
integrate existing chemistry and toxicity knowledge
(e.g., identify the major modes of action of human devel-
opmental toxicity, map the integrated Adverse Outcome
Pathways (AOPs) for the purpose of toxicity testing, iden-
tify rate-limiting biological key events and related bio-
markers, and design biomarker-related test systems). The
use of scRNA-seq data in a dose response evaluation can
provide important cell-level information concerning
“sentinel cell” states that would predict toxicity prior to
widespread organ or organism damage, where bulk aver-
aging methodology would mask small, sentinel changes
even in a seemingly homogeneous tissue or cell line. The
power of scRNA-seq is to disentangle heterogeneous cell
populations in close spatial proximity that have histori-
cally proven difficult to characterize transcriptionally
using manual tissue dissection or reporter-gene based
isolation.

Analyses of developmental trajectories reveal prospec-
tive cell types long before they become morphologically
distinct. This can enhance building and testing of compu-
tational tools for toxicity prediction (integrate quantitative
test output into an AOP network model, define thresholds
of adversity at the integrated model level) (Scialli
et al., 2018). Computational biology and simulation will
inevitably play an essential role in translating cell-state
dynamics into disease progression on a cell-by-cell and
interaction-by-interaction basis. Computational algorithms
for pseudo-temporal ordering of early development in
SMOs and differentiating ESCs have started to define the
developmental grammar through which pluripotent cells
acquire their fates (e.g., programming, canalization; Cao
et al., 2019; Wagner et al., 2018). Transitional cell states
extracted from scRNA-seq data in pseudotime would
essentially assign a time stamp to each cell in a heteroge-
neous population following a physiological stimulus or
perturbation. Progression in a differentiation trajectory is
asynchronous/discontinuous and can reveal critical bifur-
cation points foreshadowing developmental toxicity. For
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FIGURE 6 Profiling cell developmental trajectories in the ESCs using scRNA-seq. (Top) t-SNE plots from hESC-derived embryoid
bodies on Day 21 of culture; control condition (n = 6,847 individual cells) and 10 pM nicotine. (Bottom) Nicotine exposure increased specific
cell-to-cell communication pathways; directed acyclic graph connects ligands to receptors for target cell populations for ligand-receptor pairs
(line thickness reflects ligand# in the coupled population) (Guo et al., 2019). See, for example, the thickness increase in pathways for ECs
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developmental and reproductive toxicity, it has been a
challenge to identify key events during normal develop-
ment as well as to track impacted cells and processes along
an altered developmental trajectory. Continuum gene
expression manifolds reduce the dimensionality of cell-cell
distances to virtual pseudotime state trajectories. This can
embed toxicodynamic models within overall risk assess-
ment paradigms.

8 | TRANSLATABILITYTO
HUMAN RISK ASSESSMENT

Human health risk assessment is the process by which we
collect scientific information on how chemicals, agents or
events can impact human health. In risk assessment, there

is the need for both exposure information and hazard
information (toxicity). For developmental toxicity, this
information is needed prior to conception, during gesta-
tion and postnatally throughout puberty in order to under-
stand implications for children’s health. Single cell
transcriptomics offers a unique opportunity to understand
impacts on specific target cells at different times in devel-
opment. It provides a new way to track alterations in spe-
cific cells at specific locations and at specific stages of
differentiation. And, it provides an unprecedented insider’s
view of cell behavior and contributions to organ and
organism development. When temporal gene expression is
linked with morphological location, these techniques will
have tremendous power to answer questions about the
sensitivity of specific cells to toxicant exposure in specific
organs and in specific species, and their relevance to
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prediction of human health effects. For example, are target
cells present in only specific locations or are impacts only
seen in specific species?

Although here in this review we focused on
gastrulation-organogenesis, recent studies have applied
single-cell profiling to later developmental processes such
as lung maturation and brain development. For example,
the airways of the lung are the primary sites of disease in
asthma and cystic fibrosis. An scRNA-seq analysis of the
cellular composition and hierarchy of the mouse tracheal
epithelium and in vivo lineage tracing at 6-12 weeks of
age identified a novel, specialized ionocyte as the major
source of transcripts of the cystic fibrosis transmembrane
conductance regulator in both mouse (Cftr) and human
(CFTR) whereas previously it was thought that CFTR
was expressed throughout the lung epithelium (Montoro
et al., 2018; Plasschaert et al., 2018). As part of a forward
strategy to resolve cell-type-specific spatial organization
of the brain (Cembrowski, 2019), scRNA-seq has been
used to characterize transcriptional dynamics in the neu-
rogenic stem cell niche and cell-type-specific dysfunc-
tions underlying impaired neurogenesis (Zywitza, Misios,
Bunatyan, Willnow, & Rajewsky, 2018), reveal distinct
transitional states during specification of neural and glial
progenitors (Weng et al., 2019), assess transitional states
in microglia activation during neuroinflammation (Sousa
et al., 2018), and identify putative therapeutic targets for
tumor progression in patient-specific cerebral organoid
models (Krieger et al., 2020). These examples also show
how single-cell profiling can allow improved compari-
sons of in vitro versus in vivo trajectories enhancing our
knowledge of developmental timing and trajectories and
thus informing experimental design and time of treat-
ment for developmental toxicity testing.

A March 2019 workshop by the National Academy of
Sciences recognized the unprecedented resolution and
innovation of single cell profiling to examining biological
systems and their perturbation by chemicals (Zhang
et al., 2019). For precision toxicology, the concept of
single-cell profiling has obvious appeal based on the sen-
sitivity and specificity shown from its applications in
developmental biology. However, for risk assessors inter-
ested in identifying levels of exposure for human
populations without adverse effects, the detail in the
scRNA may be overwhelming. Integration of scRNA-seq
data into AOP-based frameworks can be useful to identify
specific target cells and stages.

In conclusion, technological advances have now set
the stage for single-cell profiling in the field of birth
defects research and prevention for: (1) defining trajecto-
ries of developmental processes driving differentiation
and function; (2) characterizing similarities/dissimilar-
ities in cell types and functional states across species,

tissues, and organs; (3) providing important information
for establishing and testing data for relevant AOP frame-
works; (4) qualifying in vitro data and in silico models for
new approach methodologies that aim for less reliance
on animal testing; and (5) improving our ability to iden-
tify early events and track disease trajectories with
greater relevance to human development. Of course,
some of the current limitations of single cell profiling
technologies, such as very high costs, the sparsity of the
data, the challenging computational analysis, and scal-
ability point to the continued needs for technology devel-
opment so that many experiments can be run in parallel.
Like any rapidly evolving method, scRNA-seq faces chal-
lenges for science and technology development and with
regards to knowing which application to use for these
purposes and relevant quality control measures for trans-
parency and reproducibility. An explosion of different
processing and analytical methods have emerged in
recent years and we anticipate improved understanding
of which approaches might be better fit for one purpose
or another in unraveling complex cell state trajectories
during developmental processes and toxicities.
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