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Nöthnitzer Straße 38, 01187 Dresden, Germany

(Dated:)

We study the thermodynamics of the delta-chain with competing ferro- and antifer-

romagnetic interactions in an external magnetic field which generalizes the field-free

case studied previously. This model plays an important role for the recently synthe-

sized compound Fe10Gd10 which is nearly quantum critical. The classical version of

the model is solved exactly and explicit analytical results for the low-temperature

thermodynamics are obtained. The spin-s quantum model is studied using exact

diagonalization and finite-temperature Lanzos techniques. Particular attention is

focused on the magnetization and the susceptibility. The magnetization of the clas-

sical model in the ferromagnetic part of the phase diagram defines the universal

scaling function which is valid for the quantum model. The dependence of the sus-

ceptibility on the spin quantum number s at the critical point between the ferro-

and ferrimagnetic phases is studied and the relation to Fe10Gd10 is discussed.
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FIG. 1: The delta-chain model.

I. INTRODUCTION

Low-dimensional quantum magnets on geometrically frustrated lattices have been exten-

sively studied during last years [1–3]. One of the interesting classes of such systems includes

lattices consisting of triangles. A typical example of these objects is the delta or the saw-

tooth chain, i.e. a Heisenberg model defined on a linear chain of triangles as shown in Fig. 1.

The Hamiltonian of this model has the form:

Ĥ = J1

∑
σi · (Si + Si+1) + J2

∑
Si · Si+1 −H

∑
(σzi + Szi ), (1)

where σi and Si are the apical and the basal spins correspondingly, H is the external magnetic

field, J1 and J2 are apical-basal and basal-basal interactions and a direct interaction between

the apical spins is absent.

The quantum s = 1
2

delta-chain with antiferromagnetic (AF) exchange interactions J1 and

J2 (J1, J2 > 0) has been studied extensively and it exhibits a variety of peculiar properties

[4–10]. At the same time the s = 1
2

delta-chain with ferromagnetic J1 and antiferromagnetic

J2 interaction (F-AF delta-chain) is very interesting as well and has unusual properties

depending on the frustration parameter α = J2

|J1| [11–14]. In particular, the ground state

of this model is ferromagnetic for α < 1
2

and it is believed [11] that it is ferrimagnetic for

α > 1
2
. The critical point α = 1

2
is the transition point between these two ground state

phases. The ground state properties of the model in this point are highly non-trivial. For

example, the s = 1
2

F-AF delta-chain studied in Ref. [13] has a class of localized magnon

bound states which form a macroscopically degenerate ground state manifold hosting already

half of the maximum total entropy N ln 2. The s = 1
2

F-AF delta-chain is a minimal
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model for a description of real compounds, in particular malonate-bridged copper complexes

[11, 12, 15, 16] as well as the new kagome fluoride Cs2LiTi3F12, that hosts F-AF delta-chains

as magnetic subsystems [17].

The s = 1
2

F-AF model can be extended to the delta-chain composed of two types of

spins (σi,Si) characterized by the spin quantum numbers Sa and Sb of the apical and basal

spins, respectively. The ground state of this model is ferromagnetic (F) for α < αc and

non-collinear ferrimagnetic for α > αc, where αc = Sa/2Sb. The ground state of the model

with any quantum numbers Sa and Sb in the critical point αc consists of exact multi-magnon

states as for the s = 1
2

model and has similar macroscopic degeneracy [13].

An additional motivation for the study of the (Sa, Sb) F-AF delta-chain is the existence

of a recently synthesized mixed 3d/4f cyclic coordination cluster [Fe10Gd10(Me-tea)10(Me-

teaH)10(NO3)10]20MeCN (i.e. Fe10Gd10) [18]. This cluster consists of 10 + 10 alternating

gadolinium and iron ions and its spin arrangement corresponds to the delta-chain with Gd

and Fe ions as the apical and basal spins correspondingly. As it was established in Ref. [18]

that the exchange interaction between neighboring Fe ions is antiferromagnetic (J2 ' 1.3K)

and the interaction between neighboring Fe and Gd is ferromagnetic (J1 ' −2.0K). The

spin values of Fe and Gd ions are S = 5
2

for FeIII and S = 7
2

for GdIII, respectively. The

ground state spin of this cluster is S = 60 which is one of the largest spins of a single

molecule [19]. This molecule is a finite-size realization of the F-AF delta-chain with Sa = 7
2

and Sb = 5
2
. Remarkably, according to the estimate of the values of J1 and J2 in Ref. [18]

the frustration parameter is α = 0.65, i.e. it is very close to the critical value of αc = 0.7.

Therefore, this molecule, although it is not directly at the critical point and located in the

F phase, has properties which are strongly influenced by the nearby quantum critical point.

Because the spin quantum numbers for Fe and Gd ions are rather large it seems that the

classical approximation for the (Sa, Sb) F-AF delta-chain is justified.

In our preceding work [20] we study the classical version of the F-AF delta-chain at

zero magnetic field. The ground state phase diagram of the classical model consists of the

ferromagnetic at α < αc and the ferrimagnetic at α > αc phases. Remarkably, the transition

between these phases occurs at the same frustration parameter αc as in the quantum model.

For Sa = Sb the critical point between the ferromagnetic and ferrimagnetic phases is at α =

1
2
. In Ref. [20] we have obtained exact results for the partition function, the thermodynamics

and spin correlation functions for different regions of the parameter α. It was shown that
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the classical model provides a reasonable description of thermodynamics of Fe10Gd10 down

to moderate temperatures. In Ref. [20] we have studied also quantum corrections to the

classical results which are essential at low temperature. It was shown that some properties

of the quantum spin delta-chain are correctly described by the classical model. For example,

the main features of the zero-field susceptibility χ of the quantum spin delta-chain are

reproduced by the classical model. In particular, the behavior of the susceptibility in the

F phase (at α < αc) of the classical model coincides with the quantum model in both low

and high temperature limits. The product χT per spin diverges as T−1 at T → 0 in the

infinite chain and it is proportional to N for finite system and such a dependence of χT

takes place, in particular, in Fe10Gd10. However, the results of the paper [20] are related to

the zero field case. The experimental data for Fe10Gd10 presented in Ref. [18] demonstrate

that there is a strong influence of a magnetic field on the low-temperature thermodynamics.

That is related to the massively degenerate manifold of localized magnon states having

different total magnetization. The Zeeman term will partly lift this degeneracy, this way

influencing the low-energy spectrum substantially. Therefore, it is interesting to consider

the thermodynamic behavior of the classical delta-chain in a magnetic field. In this paper

we will study the classical delta-chain in the external magnetic field. This model is more

complicated in comparison with that for H = 0. Nevertheless, it can be solved exactly

and the analytical results for the low-temperature properties are obtained explicitly. We

calculate the magnetization curve M(H) and the susceptibility and compare them with the

results for the quantum model. For example, we can quantitatively explain the experimental

result related to a maximum of MT/H vs. T for Fe10Gd10.

For simplicity and to avoid cumbersome formulas we will consider the spin-s delta-chain,

i.e. the model with Sa = Sb = s. (The extension of results for the case Sa 6= Sb can be

obtained straightforwardly). In accordance with the adopted simplification we will further

consider the F-AF delta-chain with s = 3 as a model for the Fe10Gd10 molecule.

The paper is organized as follows. In Sec. IIA we describe the ground state of the classical

model (2) in different regions of the frustration parameter α including the critical value

α = 1
2
. The partition function and the magnetization are calculated in Sec. IIB. In Sec. IIC

explicit analytical results in the low-temperature limit are presented for different regions

of the parameter α and the scaling law for α ≤ 1
2

is established. In Sec. III the quantum

effects at low temperatures will be studied by a combination of full exact diagonalization



5

(ED) using J. Schulenburg’s spinpack code [21] and the finite temperature Lanczos (FTL)

technique [22, 23] . We compare the magnetization of the classical and the quantum models

and estimate finite-size effects.

II. CLASSICAL SPIN ∆-CHAIN IN A MAGNETIC FIELD

To obtain the classical version of Hamiltonian (1) we set σi = s~ni and Si = s~ni, where ~ni

is the unit vector at the i-th site. Taking the limit of infinite s we arrive at the Hamiltonian

of the classical delta-chain

H = −
N∑
i=1

~ni · ~ni+1 + α
N/2∑
i=1

~n2i−1 · ~n2i+1 − h
N∑
i=1

nzi , (2)

where N is the number of spins. In Eq. (2) we take the apical-basal interaction as −1 and

the basal-basal interaction as α.

In this Section we use the normalized magnetic field and temperature

h = H/s (3)

t = T/s2 (4)

and the corresponding inverse temperature β = 1/t to present the thermodynamic properties

of model (2).

A. Ground state

We start our study of model (2) from the determination of the ground state. For this

aim it is useful to represent Hamiltonian (2) as a sum over triangle Hamiltonians

H =
N/2∑
i=1

H∆(i) (5)

where the Hamiltonian of i-th triangle has the form

H∆(i) = −~n2i−1 · ~n2i − ~n2i · ~n2i+1 + α~n2i−1 · ~n2i+1 − ~h · (
1

2
~n2i−1 + ~n2i +

1

2
~n2i+1). (6)

To determine the ground state of model (5) we need to find the spin configuration on each

triangle which minimizes the classical energy. It turns out that the lowest spin configuration

on a triangle is different in the regions α ≤ 1
2

and α > 1
2
. For α ≤ 1

2
the ground state is the
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FIG. 2: The ferrimagnetic ground state of classical delta-chain.

trivial ferromagnetic one with all spins on each triangle pointing in the same direction. The

global spin configuration of the whole system in this case is obviously ferromagnetic as well.

For α > 1
2

the lowest classical energy on each triangle is given by a non-collinear ferrimag-

netic configuration, where all spins of triangle ~n1, ~n2, ~n3 lie in the same plane and spin ~n2

assumes an equal angle θ0 with spins ~n1 and ~n3. The global ground state without magnetic

field of the whole system for α > 1
2

is macroscopically degenerate [24]. The magnetic field

lifts this degeneracy and stabilizes the ferrimagnetic configuration where all apical spins are

directed along the magnetic field and the basal spins are inclined by an equal angle θ0 to

the right and to the left of the field direction as shown in Fig. 2. Therefore,

~h · ~n2 = h (7)

~n1 · ~n2 = ~n2 · ~n3 = cos θ0 (8)

~n1 · ~n3 = cos (2θ0) (9)

cos θ0 =
2 + h

4α
. (10)

The magnetization of the ground state in the ferrimagnetic region is

Mgs =
2α + 1

4α
+

h

8α
(11)

for h < hsat, where the saturated field in the ground state is defined by condition θ0 = 0:

hsat = 4α− 2. (12)
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B. Partition function

The partition function Z of model (2) is

Z = (
N∏
i=1

∫
d~ni) exp (−βH) . (13)

In our previous paper [20] we used local coordinate systems associated with the i-th spin,

which substantially simplified calculations. For the system in a magnetic field this trick

does not work. Therefore, we follow a common transfer-matrix method which reduces the

calculation of the partition function in 1D systems to an integral equation [25, 26]. In our

case this integral equation is written for one triangle and has the form:∫
e−βH∆(1)ψi(~n1)d~n2d~n1 = λiψi(~n3). (14)

The eigenvalues λi define the partition function as

Z =
∑

λ
N/2
i . (15)

In the thermodynamic limit N →∞ only the largest eigenvalue λ0 survives:

Z → λ
N/2
0 . (16)

Selecting the terms containing the apical spin ~n2 in the Hamiltonian of one triangle (6)

H∆(1) = −~n2 ·
(
~n1 + ~n3 + ~h

)
+ α~n1 · ~n3 −

1

2
~h · (~n1 + ~n3) (17)

we can explicitly integrate the integral equation (14) over the apical spin ~n2∫
d~n2 exp

[
β~n2 ·

(
~n1 + ~n3 + ~h

)]
=

sinh (βha)

βha
, (18)

where ha is the effective magnetic field acting on the apical spin ~n2:

ha =

√(
~n1 + ~n3 + ~h

)2
. (19)

Then, the integral equation (14) becomes∫
R(~n1, ~n3)ψi(~n1)d~n1 = λiψi(~n3) (20)

with the kernel depending on the basal spins only:

R(~n1, ~n3) =
sinh (βha)

βha
exp

[
−βα~n1 · ~n3 +

1

2
β~h · (~n1 + ~n3)

]
. (21)



8

Eq. (20) implies that the calculation of the thermodynamics of the delta-chain is reduced to

the thermodynamics of the basal spin chain with special form of interactions, which depend

on the temperature.

Now we choose the coordinate system so that the magnetic field is directed along the Z

axis. Then, ~h = (0, 0, h), and unit vectors ~n have components (sin θ cosϕ, sin θ sinϕ, cos θ),

thus

~n1 · ~n3 = cos θ1 cos θ3 + sin θ1 sin θ3 cos (ϕ1 − ϕ3) (22)

and the effective magnetic field (19) is

ha =
√

2 + h2 + 2~n1 · ~n3 + 2h (cos θ1 + cos θ3) . (23)

Now we notice that the kernel R in Eq. (21) contains the azimuthal angles ϕ1, ϕ3 only as a

difference (ϕ1 − ϕ3). Then we substitute for the eigenfunctions:

ψi (~nj) = eimϕjφm,i (θj) (24)

and in terms of xj = cos θj the integral equation (20) becomes∫ 1

−1
Km (x1, x3)φm,i (x1) dx1 = λm,iφm,i (x3) (25)

with symmetric kernel defined by an integral over ϕ = (ϕ1 − ϕ3):

Km (x1, x3) =
∫ 2π

0

dϕ

4π
eimϕR13 (ϕ, x1, x3) . (26)

The largest eigenvalue is always given by m = 0. The states with m > 0 become rele-

vant in calculations of transverse correlation functions [25], which we do not consider here.

Therefore, below we put m = 0.

Thus, the thermodynamics of the delta-chain in the magnetic field (2) is reduced to

the integral equation (25) over one variable, which can easily be calculated numerically.

Numerical results of Eq. (25) will be discussed in the next sections.

C. Classical ∆-chain in a magnetic field at low temperature

In general, Eq. (25) completely describes the thermodynamics of spin delta-chain in a

magnetic field (2). However, in this Section we focus on the low temperature limit, where

explicit analytical results for the magnetization curve are possible.
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At t → 0 the integration in Eq. (20) can be carried out using the saddle point method.

For this aim we need to expand the kernel R in Eq. (21) near its maximum. At first we

notice that the effective magnetic field on the apical spin in the ground state is:

hgs = 2 + h, α ≤ 1

2

hgs =
1

α
+

1 + 2α

2α
h, α >

1

2
. (27)

As follows from Eq. (27), hgs is of order of unity, except the case α→∞ and h = 0, which is

not considered here. Therefore, in the low-temperature limit βha � 1 and one can neglect

the second term in sinh (βha). Similarly, the denominator in Eq. (21) can be substituted by

its ground state value, so that the kernel R in the saddle point approach is approximated as

R ≈ exp (−βH13)

2βhgs
, (28)

where

H13 = −ha + α~n1 · ~n3 −
1

2
~h · (~n1 + ~n3) . (29)

This implies that in the low-t limit the behavior of the delta chain system is described by

the special form of the Hamiltonian acting on the basal chain only:

Heff = −
∑√

2 + 2~n2i−1 · ~n2i+1 + 2h (nz2i−1 + nz2i+1) + h2 + α
∑

~n2i−1 · ~n2i+1 − h
∑

nz2i−1.

(30)

The integral equation (20) with the approximate expression for kernel (28) has the form:∫ exp (−βH13)

2βhgs
ψ (~n1) d~n1 = λψ (~n3) . (31)

The saddle point of Eq. (31) corresponds to the ground state of the local Hamiltonian H13.

Since the ground state of H13 is different in the regions α ≤ 1
2

and α > 1
2
, it is necessary to

study these cases separately.

1. Ferromagnetic region and critical point α ≤ 1
2

In the ferromagnetic region α < 1
2

including the vicinity of the critical point α = 1
2

at

low t nearest neighbor spins ~n1 and ~n3 are almost parallel. In the pure ferromagnetic case

α = 0 the angle between the neighboring spin vectors is of the order of t1/2 and the magnetic

field scales as h ∼ t2 [27]. As was pointed in Ref. [20], near the critical point the critical
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properties change so that the angle between the neighboring spin vectors is of the order of

t1/4 and as will be shown below the magnetic field scales as h ∼ t3/2 in the low-t limit. Using

these facts we expand the effective magnetic field acting on the apical spin as:

ha ≈ 2− 1

2
(1− ~n1 · ~n3)− 1

16
(1− ~n1 · ~n3)2 +

1

2
~h · (~n1 + ~n3) . (32)

This results in the following effective local Hamiltonian (29)

H13 =
(

1

2
− α

)
(1− ~n1 · ~n3) +

1

16
(1− ~n1 · ~n3)2 − ~h · (~n1 + ~n3) . (33)

Though the second term in Eq. (33) is of second order in the small parameter (1− ~n1 · ~n3),

it becomes relevant in the vicinity of the critical point when the factor
(

1
2
− α

)
at the first

order term is small.

Next, we can simplify Eq. (31) by substituting hgs = 2 from Eq. (27), and expanding the

exponent with the magnetic field term (βh� 1):

exp (βh (nz1 + nz3)) ≈ 1 + βh (nz1 + nz3) ≈ 1 + 2βhnz3 (34)

which transforms Eq. (31) to the form

(1 + 2βhnz3)
∫
e−βH(~m)ψ (~n3 + ~m) d~m = 4βλψ (~n3) , (35)

where

H (~m) =
1− 2α

4
~m2 +

1

64
(~m2)2 (36)

and

~m = ~n1 − ~n3 (37)

is a small vector of length |~m| ∼ t1/4 which can be considered as a 2D vector (m1,m2) in the

plane perpendicular to the spin vector ~n3.

Now we expand the function ψ in Eq. (35) to the second order in ~m:

ψ (~n+ ~m) = ψ (~n) +mi
∂ψ (~n)

∂ni
+

1

2
mimj

∂2ψ (~n)

∂ni∂nj
, (38)

where derivatives are taken along two orthogonal directions in the plane perpendicular to

the spin vector ~n.

The Hamiltonian (36) is a function of ~m2. Therefore, linear terms in mi and terms

∼ m1m2 in Eq. (38) vanish after integration over ~m in the integral equation (35). As a

result, the integral equation (35) becomes

(1 + 2βhnz)ψ (~n)
∫
e−βH(~m)d~m+

1

4

∂2ψ

∂n2
i

∫
e−βH(~m) ~m2d~m = 4βλψ (~n) , (39)
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where we omit the next-order terms ∼ βh~m2. Now we notice that

∂2

∂n2
1

+
∂2

∂n2
2

= −L̂2 (40)

is nothing but the angular momentum operator. Therefore, we come to the Schrödinger

equation for the quantum rotator in the gravitational field(
1

2
L̂2 − gnz

)
ψ (~n) = µψ (~n) , (41)

where the gravitational field

g =
A

B
βh (42)

depends on the Hamiltonian H (~m) via the integrals A and B:

A =
∫
e−βH(~m)d~m

B =
1

4

∫
e−βH(~m) ~m2d~m (43)

and the partition function λ is given by the lowest eigenvalue µ0 by the equation

λ =
A− 2Bµ0

4β
. (44)

The normalized magnetization is given by the scaling function M(t, h) = φ(g), where

φ(g) is determined from the ground state energy µ0 of Eq. (41) by the relation [27]

φ(g) = −dµ0

dg
. (45)

The expansion of the function φ(g) for small and large g as well as the numerical calculation

of φ(g) was obtained in Ref. [27]. It was shown in Ref. [28] that the function φ(g) is well

described by the approximate equation

g = φ(g)− 1

4
+

1

4 (1− φ(g))2 . (46)

Calculating A and B in Eq. (43) for H (~m) given by Eq. (36)) we have

g =
h

2t3/2
f(y), (47)

where

f(y) =

[
e−y

2

√
π[1 + erf(y)]

+ y

]−1

(48)
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FIG. 3: Scaling function f(y) given by Eq. (48).

is the scaling function of the scaling parameter

y =
2α− 1√

t
, . (49)

Eq. (48) represents the analytical expression for the scaling function f(y) shown in Fig. 3.

This function defines the magnetization curve and the zero-field susceptibility

χ(t, α) =
1

3t3/2
f(y). (50)

The behavior of the scaling function f(y) defines two regions with different types of ther-

modynamics. The first region corresponds to the limit y → −∞, where the scaling function

f(y) tends to the asymptotic f(y) = −2y and the gravitational field g is

g =
1− 2α

t2
h. (51)

This region is limited by the condition (1 − 2α) �
√
t and extends up to the pure fer-

romagnetic case α = 0. Therefore, we name this region as ‘ferromagnetic’ regime. The

thermodynamics in the ‘ferromagnetic’ regime is similar to that for the ferromagnetic chain.

In particular, the zero-field susceptibility behaves as χ ∼ t−2.

The second region is located near the critical point α = 1
2

and is restricted by the condition

|1 − 2α| �
√
t (|y| � 1). In this ‘critical point’ region one can take the limit f(0) =

√
π
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FIG. 4: Magnetization curve obtained by numerical solution of the integral equation (25) and

plotted as a function of the scaled magnetic gield g (47) for α = 0.2 (dotted line) and α = 0.5

(dashed line) and t = 0.1 in comparison with the scaling function φ(g) (solid line) representing the

exact result in the t→ 0 limit.

and the gravitational field becomes

g =

√
π

2t3/2
h. (52)

The thermodynamics in this region is governed by the critical point. In particular, the zero-

field susceptibility behaves as χ ∼ t−3/2. The crossover between these two regimes takes

place at the value y ' −1, or t ' t0 = (1− 2α)2.

If we study the low-t thermodynamics of the classical ∆-chain for some fixed value of α

(not far from the transition point), the above two regimes will manifest as follows. The ‘fer-

romagnetic’ regime taking place at very low temperatures t� t0 will gradually be replaced

by the ‘critical point’ regime for t� t0 (but still t� 1).

The scaling function φ(g) describes the magnetization in t → 0 limits. However, the

comparison of the exact numerical solution of Eq. (25) for α = 0.2 and α = 0.5 with the

scaling function given by Eq. (46) shows a good agreement of both results even for t = 0.1

as shown in Fig. 4.

The comparison of the classical with the experimental magnetization curves for Fe10Gd10

is shown in Fig. 5. We find a reasonable agreement. The slight differences between the
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FIG. 5: Magnetization curve obtained by numerical solution of the integral equation (25) for

α = 0.45 in comparison with the experimental data for Fe10Gd10 for T = 2 K and T = 4 K. The

real magnetic field B is converted to the normalized one h by equation h = gµBB/JskB and the

normalized temperature relates to real temperature by t = T/Js(s + 1) with s = 3 and J = 2 K

[18].

theoretical and the experimental curves can be attributed to quantum effects and to different

apical and basal spins present in Fe10Gd10.

2. Ferrimagnetic region α > 1
2

In the ferrimagnetic region the neighboring basal spin vectors form an angle 2θ0 in the

ground state as shown in Fig. 2. In the vicinity of the transition point (α− 1
2
)� 1, the angle

θ0 � 1 (Eq. (10)), so that the ground state is close to the ferromagnetic one. In this case

the approach developed in the previous subsection remains valid. This means that on the

ferrimagnetic side of the transition point (and close to it) the magnetization curve is given

by the same scaling function φ(g) with g defined by Eq. (47). The behavior of the scaling

function f(y) for y > 0 exhibits two low-t regimes. The ‘critical point’ regime discussed in

the previous subsection extends to the ferrimagnetic region and is restricted by the condition

(2α − 1) �
√
t (y � 1). In the limit y � 1 the scaling function behaves as f(y) ∼ 1/y,
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FIG. 6: Magnetization curves for α = 1 and several temperatures t = 0.03 (dashed line), t = 0.1

(dotted-dashed line), t = 0.2 (dotted line), obtained by numerical solution of the integral equation

(25). The ground state magnetization curve (11) is shown by solid line.

which means that for very low temperature t� (2α−1)2 the system is in the ‘ferrimagnetic’

regime with different thermodynamic exponents. In particular, the temperature dependence

of the susceptibility in this case is χ ∼ t−1.

We stress that the above scaling approach is valid in the vicinity of the transition point

only, where θ0 � 1. Far from the transition point the angle θ0 is no longer small, and in order

to describe the low temperature thermodynamics one needs to expand the local Hamiltonian

near the ferrimagnetic ground state configuration described by Eq. (10). The magnetization

curve in the ferrimagnetic ground state (11) and for several small values of t for α = 1 is

shown in Fig. 6. As can be seen the magnetization curves approach the ground state curve

with decreasing t. According to Fig. 6 the magnetization curves have three different scales

in the magnetic field which should be studied separately: h� t, t < h < hsat, and h ≥ hsat.

For very low magnetic field, h� t, the ground state spin configurations can be described

in terms of finite step random walk on the unit sphere in a weak gravitational field [20].

The magnetization in this case increases linearly with the magnetic field and the zero field

susceptibility was calculated in Ref. [20]:

M = χh (53)
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χ =
1

6t

2α + 1

2α− 1
. (54)

Then, for higher magnetic field t < h < hsat the magnetization approaches its ground state

value (11), and the integral equation (31) can be solved using the saddle point approximation.

For this aim we introduce small deviations δ1, δ3, ε from the ferrimagnetic ground state (10):

cos θ1 = cos θ0 + δ1

cos θ3 = cos θ0 + δ3

ϕ = π + ε. (55)

The leading terms of the expansion of the local Hamiltonian in δ1, δ3, ε is:

H13 = Egs1 + A1(δ2
1 + δ2

3) + 2B1δ1δ3 + C1ε
2, (56)

where

Egs1 = −(2 + h)2

8α
− h− α (57)

A1 =
8α3(2αh+ h+ 2)− α(h+ 2)2

[16α2 − (h+ 2)2](2αh+ h+ 2)
(58)

B1 = A1 −
αh(2α + 1)(h+ 2)2

[16α2 − (h+ 2)2](2αh+ h+ 2)
(59)

C1 =
h(2α + 1)[16α2 − (h+ 2)2]

32α(2αh+ h+ 2)
(60)

The solution of the integral equation (31) in this case is

λ = exp
(
−Egs1

t

)
πt2

hgs

√
A1C1 + C1

√
A2

1 −B2
1

. (61)

The magnetization is given by the relation:

M = t
∂ lnλ

∂h
. (62)

The magnetization curve approaches the ground state expression (11) in low-t limit by the

law:

M = Mgs − tfM (h, α) , (63)

where the explicit form of the function fM (h, α) is very cumbersome and we do not present

it here.
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FIG. 7: Magnetization curves for α = 1 and t = 0.1 obtained by numerical solution of the integral

equation (25) (solid line) and approximate equations (53), (61) and (68) in the corresponding

regions (dashed lines).

Finally, when the magnetic field is higher than the saturation one, h > hsat, the ground

state becomes ferromagnetic and the magnetization only slightly differs from its fully satu-

rated value. That means that the angles θ1 and θ3 are small and the expansion of the local

Hamiltonian becomes:

H13 = Egs2 + A2(θ2
1 + θ2

3) + 2B2θ1θ3 cosϕ (64)

Egs2 = −2 + α− 2h (65)

B2 =
1

2

(
α− 1

2 + h

)
(66)

A2 = B2 +
h− hsat

4
. (67)

In this case after some algebra the solution of the integral equation (31) yields the partition

function

λ =
1

8A2

t2

2 + h
exp

(
−Egs2

t

)(
1 +

B2
2

4A2
2

)
. (68)

As shown in Fig. 7 for α = 1 Eqs. (53), (61), (62) and (68) perfectly describe the magneti-

zation curve in the corresponding regions of the magnetic field.
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III. QUANTUM EFFECTS

In the preceding Section we represented results for the classical delta-chain in the mag-

netic field. Since the classical model corresponds to the limit s → ∞, a natural question

arises about the relation of the classical results to those of the quantum spin-s model (1). In

this respect it is important to mention Ref. [27] where it was conjectured that the magnetiza-

tion curves of the quantum and classical ferromagnetic chain coincide in the low-temperature

limit and described by an universal function φ(gF ) (Eq. (45)) of the scaling variable gF

gF =
s3H

T 2
. (69)

In this Section we will use non-renormalized temperature T = ts2 and the magnetic field

H = sh. As the ferromagnetic chain corresponds to the particular case α = 0 of our model,

the problem of ‘universality’ of the classical results for α > 0 will be in the focus of our

attention. Additional motivation to study the quantum effects to the classical results is that

Fe10Gd10 is described by the quantum model with relatively high but nevertheless finite

spin values. For the analysis of the magnetic properties of the quantum spin model we

investigate finite chains imposing periodic boundary conditions using the numerical exact

diagonalization (ED) [21] and the finite-temperature Lanczos (FTL) technique [22, 23].

A. Transition point

We start our analysis from the transition point α = 1
2
. The spin-1

2
case of quantum model

(1) at the transition point was studied in detail in Ref. [13]. It was shown that this model

has many very specific properties: a flat one-magnon spectrum, localized one-magnon states

and multi-magnon complexes, a macroscopic degeneracy of the ground state and a residual

entropy, exponentially low-lying excitations, a multi-scale structure of the energy spectrum

[14]. It turns out that all these specific properties of the spin-1
2

model carry over to the

models with higher values of spin with some inessential modifications, which we will briefly

describe below.

The ground state of the quantum delta-chain with any value of s at the critical point

α = 1
2

consists of exact multi-magnon bound states exactly like the s = 1
2

model and the
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number of the ground states, Bk
N/2, for fixed value Sz = Smax − k (Smax = sN) is [13]

Bk
N/2 = Ck

N/2, 0 ≤ k ≤ N

4
, 2Smax −

N

4
< k ≤ 2Smax

Bk
N/2 = C

N/4
N/2 ,

N

4
+ 1 ≤ k ≤ 2Smax −

N

4

where Cn
m = m!

n!(m−n)!
is the binomial coefficient.

The contribution to the partition function from only these degenerate ground states is

ZGS =
∑
k

Bk
N/2 exp(

(Smax − k)H

T
). (70)

Using a saddle-point approximation to estimate of Eq. (70) we obtain the corresponding

normalized magnetization in the form

MGS = 1− 1

2s[1 + exp(H/T )]
(71)

As follows from Eq. (71), the magnetization at the critical point for H → 0 is

MGS = 1− 1

4s
(72)

and it changes from MGS = 1
2

for s = 1
2

to MGS = 1 for the classical limit s→∞.

According to Eq. (72) the magnetization MGS is finite for H → 0, which would clearly

contradict the statement that long range order cannot exist in one-dimensional systems at

T > 0. For the correct description of M(H,T ) it is thus necessary to take into account the

full spectrum of the model. Unfortunately, such analytical calculation is impossible, and we

therefore carried out ED and FTL calculations of M(H,T ) for different values of s and N .

Corresponding results together with that for the classical model are shown in Fig. 8. As it

can be seen from Fig. 8 the behaviors of the classical and quantum model are very different.

It implies that there is no universality at the critical point. At the same time, there is one

interesting point related to the behavior of the magnetization at low magnetic field. It was

shown in Ref. [13] that the magnetization of the s = 1
2

delta-chain is M ∼ H/T γ with an

exponent γ = 1.09. On the other hand in the classical model (s → ∞) γ = 3
2

according to

Eq. (50). Therefore, it can be expected that the exponent γ is a function of s. To clarify

this point we have calculated the zero-field susceptibility χ for different s and N . The

dependencies χ(T ) are shown in Fig. 9 as log-log plot of 3χT/s(s+ 1) vs. T/s(s+ 1). The

solid lines denote from bottom to top: s = 1
2

(N = 36), s = 1 (N = 16) and s = 3
2
, 2, 5

2
, 3
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FIG. 8: Magnetization curves M(H/s) for the quantum models with s = 1
2 (N = 36), s = 1, 3

2

(N = 16), s = 2, 5
2 , 3 (N = 12) (solid lines) at the transition point α = 1

2 for T/s(s+ 1) = 0.1. The

magnetization curve of the classical model for α = 1
2 and t = 0.1 is shown by the dashed line.

with N = 12. The classical curve is shown by dashed line. As it can be seen in Fig. 9 all

curves tends to 1 in the high temperature limit, which is in accord with high-T behavior

of the susceptibility χ = s(s + 1)/3T . Then, for lower temperature all curves diverge from

each other and in a definite intermediate temperature region the curves have linear behavior

with different slope which implies a power-law dependence

χ = r(s)/T γ(s) (73)

That means that the low-field behavior of the magnetization is M ∼ H/T γ(s). The

dependence of the critical exponent on spin value γ(s) is shown in Fig. 10 and it can be

seen that γ → 3
2

in the classical limit s � 1. As further decreasing T/s(s + 1) for all solid

curves the sloping part in Fig. 9 is followed by a flat part related to finite-size effects. At

T → 0 the solid curves tend to the values determined by the contributions of the degenerate

ground states. These contributions for finite delta-chains can be found by the calculations

of the zero-field susceptibility per spin using Eq. (70), which results in

χ =
cN(s)N

T
, (74)

where cN(s) = 1
2
(s− 1

4
)2 for N � 1. We suppose that both equations (73) and (74) for χ(T )
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FIG. 9: Dependence of 3χT/s(s+1) on the normalized temperature T/s(s+1) for classical (dashed

line) and quantum spin-s (solid lines) delta-chain calculated at the critical point α = 0.5.

are described by a single finite-size scaling function which has the form [13]

χ(T ) = T−γF (cN(s)NT γ−1) (75)

For small x the function F (x) gives (74) and in the thermodynamic limit N → ∞ the

scaling function tends to the value r(s) in accord with Eq. (73). The crossover between

these two types of the susceptibility behavior occurs at x ' 1 which defines the crossover

temperature T ∗ ∼ N−1/(γ−1). At T < T ∗ finite-size effects are essential and χ is given

by Eq. (74). The crossover temperature T ∗ increases with s and the region of finite-size

behavior of χ increases.

B. Ferromagnetic phase

As was noted in the beginning of this Section, in the special case α = 0 the magnetization

curves of both quantum and classical delta-chain models coincide in the low-temperature

limit. According to the scaling hypothesis [27] the normalized magnetization M for the

infinite chain is expressed at T → 0 and H
T
→ 0 (but with fixed gF (69)) as M(T, h) =

φ(gF ) and the function φ(gF ) is obtained by calculating the eigenspectrum of the quantum

rotator Hamiltonian (41) in the gravitational field gF . As noted in Ref. [27] the hypothesis
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FIG. 10: Dependence of the critical exponent γ on the spin value s. The dashed line represents

the approximate expression γ = 3s2+2.6
2s2+2.6

.

of universality originates in the universal behavior of the spin-wave excitations above the

ferromagnetic ground state in both quantum and classical models. Similarly to the case

α = 0 one can expect that such universality remains in the ferromagnetic part of the ground

state phase diagram (α < 1
2
) with gF in Eq. (69) being replaced by

gF =
(1− 2α)s3H

T 2
. (76)

in accordance with Eq. (51) for the classical model.

The universality for α < 1
2

is partly confirmed by the fact that the leading terms of

the zero-field susceptibility at T → 0 for the classical model and that obtained in a frame

of the modified spin-wave theory [29] for the quantum model coincide [20]. Unfortunately,

modified spin-wave theory is restricted to the zero magnetic field case and it can not confirm

the universality of the magnetization curve.

However, the extension of the hypothesis of the universality for the case α 6= 0 and

especially for α close to the transition point α = 1
2

needs some comments. As it was shown

in the preceding Section the scaling parameter g in the classical model has two different forms

given by Eqs. (51) and (52) for T � T0 and T � T0, respectively, where T0 = (1 − 2α)2s2

is the temperature of the crossover. For T � T0 this parameter takes the form (76), while

for T � T0 it corresponds to that for the transition point regime, where the behavior of
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FIG. 11: Susceptibility times temperature, χT , in dependence on T for α = 0.45 obtained numer-

ically by FTL for s = 1/2 and N = 32 (dotted line), N = 36 (thick solid line). The classical curve

is shown by the dashed line. The thin solid line describes low-T asymptotic χ = (1− 2α)/24T 2.

the classical and quantum models is very different. Therefore, one can expect that there

is identical universality of the classical and quantum models in the low-temperature region

T � T0 only.

The quantum models also have different low-temperature regimes when α is close to the

transition point. As an example we show in Fig. 11 the dependence of the susceptibility for

the s = 1
2

delta-chain and α = 0.45 with N = 32 and N = 36 obtained by FTL calculations,

where for convenience we represent this dependence as log-log plot of χT (T ). At first we

note that the curves with N = 32 and N = 36 perfectly coincide for T > 0.003, which means

that they correctly describe the thermodynamic limit in this region. In the high temperature

limit the curves tend to a constant, which implies the correct asymptotic χ(T ) = 1/(4T ).

In the temperature range 0.1 <∼ T <∼ 3 the slope of the curve is very close to that obtained

for s = 1
2

at the transition point [13]: χ(T ) ∼ T−γ with γ = 1.09. Therefore, we refer this

region to the ‘critical point’ regime.

For temperatures lower than the ‘critical point’ region the slope of the curves increases

and after some crossover region the quantum curves approach the classical curve shown in

Fig. 11 by a dashed line. We name the region, where the quantum curves are close to the
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FIG. 12: Magnetization curve for α = 0.45 obtained numerically by FTL for s = 1/2, N = 36 and

three different temperatures located in the ‘ferromagnetic region’ of Fig. 11: T = 0.004 (dashed-

dotted line), T = 0.0075 (short-dashed line), T = 0.015 (long-dashed line). The data are plotted

as a function of the scaled magnetic field gF (76). The exact universal magnetization curve φ(gF )

is shown by the solid line.

classical one, 0.003 <∼ T <∼ 0.02, the ‘ferromagnetic’ one. Though the slope of the curves in

this region corresponds to γ ∼ 1.7 instead of a ‘ferromagnetic’ γ = 2, we see that all curves

converge to the ‘ferromagnetic’ low-T asymptotic χ = (1 − 2α)/24T 2, shown by the thin

solid line in Fig. 11. For T < 0.003 the quantum curves for N = 32 and N = 36 diverge from

each other and both from the classical curve, establishing the ‘finite-size effect’ region with

non-thermodynamic behavior. Looking at Fig. 11 it is natural to assume that the quantum

curve corresponding to very long chains would go further into the lower T region close to the

classical curve and both asymptotically approach the thin solid line, i.e., the ferromagnetic

law χ = (1−2α)/24T 2. This means that for the infinite delta-chain the ferromagnetic region

exists up to T = 0. Unfortunately, for α 6= 0 the quantum models can be studied only by

numerical calculations of finite delta-chains, which due to finite-size effects restrict the low

temperatures.

The magnetization curves in the ‘ferromagnetic’ temperature region for the s = 1
2

model

with N = 36 and for α = 0.45 obtained by numerical FTL calculations is shown in Fig. 12 as
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a function of the ‘ferromagnetically’ scaled field gF (76). In Fig. 12 we also show the scaling

function φ(g). As it can be seen the quantum magnetization curves tend to the scaling

function as the temperature decreases. However, the difference between these curves and

φ(g) is rather appreciable. The point is that the function φ(g) represents the leading term

in the low-temperature expansion of the magnetization. The temperatures corresponding to

the magnetization of the s = 1
2

model in Fig. 12 are about T0. At such a temperature the next

terms in the low-temperature expansion of the magnetization are of the same order as the

leading term. This appreciable difference of the initial slope of the quantum magnetization

curve and φ(g) can be also seen in Fig. 11: in the ‘ferromagnetic’ region the values χ(T )

for quantum curve is approximately two times larger than that for the asymptotic line

corresponding to the initial slope of φ(g). The comparison of the classical and asymptotic

lines in Fig. 11 shows that the difference would become ∼ 10% for T <∼ 0.0005, but in order

to avoid the finite-size effects at such low temperatures one needs to calculate very long

chains.

In the ‘finite-size’ region the correlation length ξ = (1− 2α)s2/T is much larger than the

system size (especially for α close to 1
2
) accessible in exact diagonalization (ED) (N ∼ 24) or

FTL (N ∼ 36) calculations. In this region the finite-size effects are essential and the scaling

function for the magnetization depends on two parameters φ(gF , q) [27] with

q =
(1− 2α)s2

TN
. (77)

At T → 0 and q � 1 the function φ(g, q) is given by the Langevin equation

M = φ(gF , q) = coth(x)− 1

x
(78)

with

x =
gF
q

=
NsH

T
. (79)

The magnetization calculated for the quantum delta-chain at α = 0.45 with s = 1
2

and

N = 36 well agrees with Eq. (78).

The numerical calculations of the magnetization of the quantum s = 1
2

model for temper-

atures T � T0 show significant difference from the classical scaling function φ(g). Therefore,

we conclude that the magnetization for 0 ≤ α < 1
2

is a universal function for both quantum

and classical delta-chain only in the ‘ferromagnetic’ regime (T � T0).
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FIG. 13: Comparison of quantum (solid lines) and classical (dashed line) dependenciesMT/H(s+1)

vs. T/s(s+ 1) calculated for α = 0.45 and h = 0.1.

As discussed in Secs. I and II C 1 the classical approximation for F-AF delta-chain is jus-

tified for Fe10Gd10, because the spin quantum numbers for Fe and Gd ions are rather large.

The characteristic feature related to the susceptibility of Fe10Gd10 is a maximum in the

temperature dependence of the quantity MT/H in a fixed magnetic field. The calculation

of this quantity for classical model shows good agreement with the experimental data. In

particular, the maximum (MT/H)max ∼ 720 cm3K/mol is reached at Tmax ∼ 4 K in com-

parison with experimental data (MT/H)max ∼ 745 cm3K/mol is reached at Tmax ∼ 3 K.

The temperature dependence of MT/H for quantum models with different values of spin s

is shown in Fig. 13 together with that for the classical model. As it can be seen in Fig. 13

the dependencies MT/H approach to the classical curve as s increases.

C. Ferrimagnetic phase

The ground state of the classical model is ferrimagnetic at α > 1
2
. As we noted before,

in Ref. [11] it was stated that a ferrimagnetic ground-state phase is also realized for the

s = 1
2

quantum delta-chain. At the same time the behavior of the magnetization curve of

the classical and quantum models is very different as it is shown in Fig. 14 for α = 1. It is

possible to state with certainty that there is no universality in this phase. At present it is
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FIG. 14: Comparison of the magnetization curves M(H/s) for the classical (thick solid line)

and quantum models with s = 1/2, N = 36 (dashed line), s = 1, N = 16 (dashed-dotted line),

s = 3, N = 12 (dotted line) in the ferrimagnetic region α = 1 for T/s(s + 1) = 0.1. The ground

state magnetization curve of the classical model (11) is shown by thin solid line.

not much known about the ground state phase of the quantum models with s > 1
2

and this

problem needs further study. One interesting point is the dependence of the magnetization

behavior on s. As it is shown in Fig. 14 the magnetization curves rapidly approach to the

classical one when s increases. It can be expected that the magnetization of the quantum

model in s� 1 limit will coincide with the classical curve.

IV. SUMMARY

In this paper we have studied the delta-chain with competing ferro- and antiferromagnetic

interactions J1 and J2 in the external magnetic field. At α = J2/|J1| = 1/2, this model

belongs to the class of flat-band models exhibiting a massively degenerated ground state

leading to a residual entropy. Since, a magnetic field partially lifts the degeneracy, the

influence of the field on the low-temperature physics is tremendous. Interestingly, there is a

finite-size realization of the model, namely the magnetic molecule Fe10Gd10, that has J1 and

J2 close to the flat-band point. In the present study, for the classical model exact results for

the thermodynamics are obtained. It is shown that the calculation of the magnetization for
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α ≤ 1
2

in the limit T → 0 and H
T
→ 0 reduces to the solution of the Schrödinger equation

for the quantum rotator in the gravitational field g which depends on the temperature. The

low-temperature region of the classical model consists of two regions T � T0 and T � T0

(T0 ∼ (1−2α)2s2) with different type of the g(T ) dependence. The magnetization for T � T0

is a universal function of the scaling parameter g which is valid for both classical and the

quantum models. In particular, the susceptibility behaves as χ ∼ T−2. For T � T0 the

behavior of the magnetization and the susceptibility is the same as in the critical point α = 1
2

and it is different for the classical and the quantum models. In this case the susceptibility

of the classical model behaves as χ ∼ T−3/2 while χ ∼ T−γ with γ = 1.09 for the quantum

s = 1
2

model. Generally, the value of the exponent γ depends on s and it tends to the

classical value γ = 3
2

when s increases.

We compare the obtained results with the experimental data for Fe10Gd10, which is a

finite-size realization of the considered model with α '0.45. We show that the magnetization

M(H) of both classical and quantum model with s = 3 agrees well with the experimental

magnetization curves measured at T = 2 K and T = 4 K. We also discuss the maximum in

the temperature dependence of the quantity MT/H at fixed magnetic field and show that

it agrees very well with the experimentally observed one.
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