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We consider an optomechanical cavity that is driven stroboscopically by a train of short pulses. By suitably
choosing the interpulse spacing we show that ground-state cooling and mechanical squeezing can be achieved,
even in the presence of mechanical dissipation and for moderate radiation-pressure interaction. We provide
a full quantum-mechanical treatment of stroboscopic backaction-evading measurements, for which we give
a simple analytic insight, and discuss preparation and verification of squeezed mechanical states. We further
consider stroboscopic driving of a pair of noninteracting mechanical resonators coupled to a common cavity
field, and show that they can be simultaneously cooled and entangled. Stroboscopic quantum optomechanics
extends measurement-based quantum control of mechanical systems beyond the good-cavity limit.

DOI: 10.1103/PhysRevResearch.2.023241

I. INTRODUCTION

Cavity optomechanics has proven extremely successful
in controlling nanoscale and microscale mechanical motion
at the quantum level [1]. Among the key achievements is
the demonstration of ground-state cooling [2,3], mechanical
squeezing [4–6], and mechanical entanglement [7]. Most of
these milestones have been obtained in sideband-resolved
optomechanical systems operating in the continuous-wave or
amplitude-modulated (two-tone) regime, where a notion of
stationary regime can be defined, in some suitable rotating
frame. Going beyond steady-state operation may be benefi-
cial for several reasons, e.g., it allows to circumvent stabil-
ity requirements. Sideband-resolved optomechanical systems
driven by long pulses have been considered both for con-
trolling mechanical motion [8–11] and as a model of quan-
tum interface between flying quantum carriers; for instance,
entanglement between microwave and mechanical degrees
of freedom [12], and quantum state transfer [13] have been
demonstrated in this regime.

Pulsed protocols can also lift the stringent requirement of
sideband resolution. By employing pulses much shorter than
the mechanical period, quantum state preparation and readout,
e.g., of low-entropy and squeezed mechanical states [14–20],
as well as optomechanical and all-mechanical entanglement
[21] can in principle be achieved. However, in order to neglect
nonunitary processes, coherent operations are restricted to
very short times (also less than a single mechanical cycle).
The conditional preparation of quantum states with few pulses
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also requires large interaction strengths, which has so far
prevented pulsed optomechanics to attain the quantum regime
[22]. Only very recently, pulsed operation close to the quan-
tum regime has been demonstrated in a setup based on a
photonic crystal nanobeam [23].

In this work we take a different approach and study the
conditional dynamics of an optomechanical system driven by
a train of pulses. We show that this new regime—stroboscopic
quantum optomechanics—is effective to prepare and verify
quantum states of mechanical motion beyond the sideband-
resolved regime. In particular, by suitably choosing the spac-
ing between the pulses, ground-state cooling and squeezing
of a single mechanical resonator can be achieved, as well
as collective cooling and entanglement of two nondegenerate
resonators (radiation-pressure coupled to a common cavity
mode).

Compared with single-pulse protocols, our approach has
the distinct advantage to allow for a cumulative effect of the
measurements over many mechanical cycles, thus consider-
ably relaxing the requirement on the optomechanical cou-
pling strength. This however requires including mechanical
dissipation in the description of the dynamics, as opposed
to Refs. [15–19]. Due to the competition between radiation-
pressure interaction and mechanical dissipation, the mechan-
ical system eventually settles into a steady state, albeit a
periodic one. For such a stroboscopic steady state, we provide
simple analytic expressions for the conditional state. From
this point of view, our work draws an interesting connection
between the conditional dynamics of periodically measured
systems and the Floquet theory of optomechanics [24,25].

Our study is inspired by early works in backaction-evading
(BAE) measurements, where the stroboscopic dynamics of
mechanical transducers was studied for the detection of
weak classical signals [26–30]. We provide a full quantum-
mechanical treatment of stroboscopic BAE measurements
[31,32], which was so far missing. We discuss in detail

2643-1564/2020/2(2)/023241(13) 023241-1 Published by the American Physical Society

https://orcid.org/0000-0002-8832-0927
https://orcid.org/0000-0003-4317-5030
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023241&domain=pdf&date_stamp=2020-05-28
https://doi.org/10.1103/PhysRevResearch.2.023241
https://creativecommons.org/licenses/by/4.0/


MATTEO BRUNELLI et al. PHYSICAL REVIEW RESEARCH 2, 023241 (2020)

corrections to the ideal measurement regime stemming from
thermal decoherence and the finite length of each pulse.
Notably, we show that including the latter effect, usually
considered detrimental, enables preparing pure mechanical
squeezed states and optomechanical entanglement. In short,
we show that stroboscopic quantum optomechanics bypasses
the need for strong measurements and provides an effective
and versatile tool for measurement-based quantum control of
mechanical states.

The rest of the paper is organized as follows: in Sec. II
we describe the system and derive an effective model of the
dynamics based on stroboscopic measurements. The predic-
tions of this model for stroboscopic squeezing and cooling of
mechanical motion are presented in Secs. III and IV, respec-
tively. In Sec. V we discuss engineering squeezed quantum
states in connection with stroboscopic BAE measurements of
mechanical motion. In Sec. VI we implement verification of
the conditional state via retrodiction. In Sec. VII we extend
stroboscopic quantum optomechanics to noninteracting me-
chanical resonators coupled to a common cavity field and
show that they can be simultaneously cooled and entangled.
In Sec. VIII we discuss some experimentally relevant consid-
erations for implementing our ideas. Finally, Sec. IX collects
conclusive remarks and provides an outlook.

II. A SIMPLE MODEL OF STROBOSCOPIC
CONDITIONAL DYNAMICS

We consider a standard optomechanical system where
the position x̂ of a mechanical oscillator of frequency ωm

modulates the frequency of a cavity mode â of linewidth κ

[1]. The cavity is illuminated with a train of short coherent
pulses of length τ much smaller than the mechanical period,
i.e., ωmτ � 1. The number of photons Np in each pulse is
large enough to make linearization of the optomechanical
interaction an excellent approximation, such that we have
(h̄ = 1)

ĤI (t ) = −g(t )X̂c
(
X̂m cos ωmt + P̂m sin ωmt

)
, (1)

where g is the pulsed coupling constant, X̂c = (â + â†)/
√

2,
and we expressed the mechanical position in terms of the
slowly varying quadratures X̂m, P̂m. During the interaction
time the coupling induces the unitary evolution

Û (t, t0) = T exp

{
−i

∫ t

t0

dt1ĤI (t1)

}
. (2)

For a very short pulse the harmonic motion can be neglected
and the unitary evolution can be approximated as

Û ≈ eiχ X̂mX̂c , (3)

where χ quantifies the strength of the interaction. An estimate
of the latter for a fast cavity in the adiabatic limit κ �
τ−1 yields χ = 2g0

√
Npτ/κ , where g0 is the single-photon

optomechanical coupling. As we show in Appendix A, in this
limit the interaction is defacto instantaneous, in that mixing
between the two mechanical quadratures is fully neglected.
Equation (3) realizes a quantum nondemolition (QND) gate
between the optical and mechanical amplitudes [33]: X̂c, X̂m

are left untouched and information about them is acquired
by the conjugate quadratures Û †P̂m(c)Û = P̂m(c) + χ X̂c(m). The

probability of recording a value Pc of the optical phase quadra-
ture after such interaction is given by

Pr (Pc) = Tr[|Pc〉〈Pc| ⊗ 1mÛ |0〉〈0| ⊗ �̂mÛ †]

= Trm[ϒ̂†ϒ̂�̂m], (4)

where the cavity starts off in the vacuum and the resonator
in an arbitrary state �̂m. In the second line of Eq. (4) we
have rewritten the probability by introducing the family of
Kraus operators ϒ̂ (Pc) = 〈Pc|Û |0〉, elements of the posi-
tive operator-valued measure (POVM) {ϒ̂†ϒ̂}Pc , that satisfy
ϒ̂†ϒ̂ � 0,

∫
dPcϒ̂

†ϒ̂ = 1m. An explicit expression for ϒ̂ is
given by

ϒ̂ (Pc) = 1

π1/4
e− 1

2 (Pc−χ X̂m )2
, (5)

which shows that the effect of the pulse on the mechanics is
akin to a generalized position measurement. This expression
has been first used to model momentum diffusion in
continuous weak measurements [34]. Later, it was employed
to model an optomechanical system driven by a single strong
pulse, i.e., the regime of pulsed quantum optomechanics [14].
From Eq. (5) we notice that, when acting on a pure state,
the measurement operator multiplies the wave function by
a Gaussian function of width χ−2 and centered around the
position Pc/χ ; by increasing the interaction strength χ , the
wave function thus gets increasingly localized in position.
Upon recording the outcome Pc, the mechanical density
matrix is transformed as

�̂m → 1

Pr (Pc)
ϒ̂ (Pc)�̂mϒ̂ (Pc)†, (6)

which is the conditional, or postmeasurement state.
When the pulse is off, environment-induced decoherence

is affecting the otherwise free evolution of the mechanical
resonator. The dynamics is governed by

L�̂m = −i[Ĥ0, �̂m] + γ (n̄ + 1)D[b̂]�̂m + γ n̄D[b̂†]�̂m, (7)

where n̄ and γ are the mean occupation and damping rate
of the mechanical bath and b̂ is the annihilation operator
associated with mechanical quadratures. The evolution over
a finite amount of time is given by the map 
̂th = eLt . The
pulsed interaction (6) and the free-evolution-plus-dissipation
(7) form the “unit cell” of our stroboscopic model, which
can be thought of as a repetition of these two elementary
steps; see Fig. 1(c). As we discuss below, when concatenating
many such steps one is free to choose the spacing between
two subsequent pulses. Over this time (i) the mechanical
mode picks up a phase, which determines which quadrature
is measured at the next interaction, and (ii) the mechanics ex-
changes phonons with the thermal environment. In particular,
the presence of the latter contribution—neglected in previous
studies [15–19]—competes with the measurement, eventually
leading to a nonequilibrium steady state.

From measurement-induced evolution to deterministic
completely positive maps

A great simplification comes from assuming that both the
measurement and the dissipation act on a Gaussian state, in
which case their output is a Gaussian state, too [33,35,36].
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FIG. 1. (a) An optomechanical cavity (â) is driven by a train of
short pulses. After having interacted with the mechanical resonator
(b̂), the pulses are measured in reflection. Suitably choosing the spac-
ing between the pulses, the setup implements either a stroboscopic
backaction-evading (BAE) measurement or measurement cooling.
Mechanical squeezing and ground-state cooling can be respectively
achieved, conditional on the measurement record. A second train
of pulses is used to verify the conditional state. (b) Considering
instead two mechanical modes b̂1, b̂2, mechanical entanglement and
collective cooling can be obtained. (c) Elementary sequence of the
stroboscopic protocol: an optical pulse, modeled by a generalized
position measurement, is followed by free evolution and mechanical
dissipation (see Sec. II for details). (d) For Gaussian input states both
measurement and dissipation induce a deterministic transformation
of the mechanical covariance matrix. Repeating this sequence yields
a stroboscopic steady state, which is invariant under the joint action
of measurement and dissipation.

For the case of a Gaussian measurement, such as the quadra-
ture measurement in Eq. (4), the postmeasurement state (6)
depends on the measurement outcome only through the first
moments or, equivalently, the measurement-induced evolution
of the second moments is deterministic; this is a general
feature of Gaussian measurements [37]. Therefore, the effect
of the measurement can be cast in the form of a deterministic
map Eϒ for the second statistical moments [38]. The action of
this map σ ′ = Eϒ (σ ) on the mechanical covariance matrix σ

(with variance σXm , σPm and covariance σXmPm ) is given by

σ ′
Xm

= σXm

1 + 2χ2σXm

, (8)

σ ′
Pm

= χ2

2
+ σPm + 2χ2

(
σXmσPm − σ 2

XmPm

)
1 + 2χ2σXm

, (9)

σ ′
XmPm

= σXmPm

1 + 2χ2σXm

. (10)

We explicitly see that the stochastic component of the mea-
surement (Pc) is absent from the above expressions. The first
and second expression describe the reduction of the variance
along X̂m, and the increased fluctuations of the conjugate
quadrature due to the quantum backaction, respectively.

The (commutative) action of dissipation and free evolu-
tion (7) on the covariance matrix is described by the map
Eth,φ (σ ) = e−γ tRφσRφ

T + (1 − e−γ t )σth, where σth = (n̄ +
1
2 )12 is the covariance matrix of a thermal state and Rφ is the
rotation matrix due to harmonic evolution. Equivalently, under
Eth,φ , the input state gets rotated and mixed with a thermal
state via a beam splitter of effective transmissivity η = e−γ t .

Measurement and dissipation compete over time. The for-
mer tries to reduce the uncertainty in one quadrature (at the
expense of the other), while the latter tries to restore isotropy.
Crucially, the spacing between two pulses determines the
amount of mixing between the quadratures from one mea-
surement to the next one. This consideration applies to any
sequence of equally spaced pulses; for example, one can
obtain a recursion relation σ (N ) = (Eϒ ◦ Eth,φ )σ (N−1) to model
a short train of pulses. This operation regime has recently be-
come experimentally relevant for quantum applications [23].
Here we focus on a different regime: when the action of the
measurement is undone by the dissipation there is no net
effect over a unit cell and the system reaches a stroboscopic
steady state [see Fig. 1(d)]. More formally, this state is a fixed
point of the map Eϒ ◦ Eth,φ ; namely, it satisfies σss = (Eϒ ◦
Eth,φ )σss. We stress that the two operations do not commute,
so that in general Eϒ ◦ Eth,φ �= Eth,φ ◦ Eϒ , as we shall see
below. This is a novel regime for cavity optomechanics, which
has focused either on steady-state properties of continuously
driven systems or in the finite-time dynamics, as in pulsed
optomechanics.

III. STROBOSCOPIC SQUEEZING
OF MECHANICAL MOTION

A. Stroboscopic backaction-evading measurement

The first case we consider is that of a stroboscopic BAE
measurement, for which a classical treatment is discussed
in Refs. [26,31,32]. By choosing pulses interspaced by a
multiple of half the mechanical period, we can in princi-
ple realize a QND measurement of position. Indeed, one
has [x̂(t ), x̂(t + T )] = i sin(ωmT ), so that at the stroboscopic
times T = kπ/ωm a sequence of precise position measure-
ments is possible with no fundamental limit imposed by
quantum mechanics (in the following we always take the
shortest interval k = 1). However, due to the presence of the
environment, the covariance matrix does not come back to
itself half a period later. We then look for solutions where
the combined action of the measurement and the environment
leaves the state invariant. Solving for the stroboscopic steady
state σss = (Eϒ ◦ Eth,π )σss, we get

σXm = 2n̄ + 1

1 + z +
√

1 + z2 + 2z coth
(

γ T
2

) , (11)

σPm = n̄ + 1

2
+ χ2

2(1 − e−γ T )
, (12)
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(b)

(b)

(a)

FIG. 2. Steady-state value of (a) mechanical squeezing and
(b) mechanical purity for a stroboscopic BAE measurement. Values
of the coupling are χ = 0.05 (red), χ = 0.1 (yellow), χ = 0.5
(cyan). Solid lines are for the stroboscopic steady state of the map
Eth ◦ Eϒ , while dashed lines are for Eϒ ◦ Eth. The mean phonon
number is set to n̄ = 10.

and σXmPm ≡ 0, where we set z = (2n̄ + 1)χ2. We stress that
the knowledge of such state is conditioned on the stream of
measurement results. These expressions can be considerably
simplified for large values of the mechanical quality factor
Q = ωm/γ . The leading terms in the expansion are given by

σXm =
√

2π (n̄ + 1/2)

2χ
√

Q
, σPm = n̄ + 1

2
+ Qχ2

2π
. (13)

This simple result provides a quantum-mechanical treatment
of stroboscopic BAE measurement and proves that mechani-
cal decoherence does not preclude the occurrence of squeez-
ing at long times. Indeed, uncertainty may fall below the zero-
point value, which implies a squeezed state of the resonator.
Mechanical squeezing [expressed in −10 log10(2σXm ) decibel
(dB)] is plotted Fig. 2(a). We stress that different Q entail
different characteristic times to approach the stroboscopic
steady state.

The solid lines are for the steady state relative to Eth,π ◦ Eϒ ,
while the dashed lines are for Eϒ ◦ Eth,π . Physically, they
correspond to knowledge of the conditional state directly after
or directly before the measurement. We can see discrepancies
arising due to the noncommutative character of the two maps

for low Q and large coupling values. In this parameter regime,
if we start from a thermal state, the effects of measuring first
are (partially) undone by the subsequent application of the
thermal channel. On the other hand, by reversing the order
(i.e., considering the map Eϒ ◦ Eth,π ) Eth,π acts as the identity,
so the first measurement retains more conditioning power.
The difference between the two cases thus boils down to an
extra pulse, which has significative impact for large χ and
explains the larger amount of squeezing. However, already for
moderately large quality factors the two predictions coincide.

It is interesting to compare the condition for mechanical
squeezing enforced by Eq. (13) with that required by pulsed
optomechanics, i.e., by applying a single pulse (5). For a
single pulse, values of the coupling χ > 1 are required to
obtain squeezing (independently of n̄), which has so far pre-
cluded reaching the quantum regime in pulsed optomechanics
experiments. On the other hand, with stroboscopic driving
approaching σXm < 1/2 only requires χ >

√
2π (n̄ + 1/2)/Q,

which can be considerably less demanding for large quality
factors. In terms of the multiphoton quantum cooperativity Cq

[1], the above requirement reads Cq > 8π/(κωmτ 2).
Finally, if we compare how the two variances in Eq. (13)

scale with Q, it is clear that fluctuations increase faster in
P̂m than they are reduced along X̂m. This means that, while
getting squeezed, the resonator also gets heated up. This fact
is highlighted in Fig. 2(b) where the mechanical purity μ =
Tr[�̂2

ss] for the same cases of Fig. 2(a) is shown. In the large-Q
limit the purity takes the simple form

μ = π1/4

(
Q

2n̄ + 1

)1/4√
χ

2π n̄ + Qχ2
. (14)

Larger values of squeezing are accompanied by low purity. We
will see in Sec. V that this conclusion gets drastically modified
by considering the imperfect QND regime determined by
mechanical evolution during the pulse.

B. Squeezed input pulses

Finally, we notice that the former results can be extended
to the case where squeezed pulses, rather than coherent ones,
are fed to the optomechanical cavity. In our simple model
this observation amounts to replacing the cavity vacuum
seed state σpulse = 1/2 [see Eq. (4)] with a squeezed state
σpulse = diag( er

2 , e−r

2 ) squeezed along the phase quadrature.
This determines reduced fluctuations of the (measured) op-
tical phase, which in turn enhances the conditioning effect of
the measurement. One obtains results as in Eqs. (11) and (12)
with the substitution χ → e

r
2 χ ; namely, a train of squeezed

pulses magnifies the measurement strength by an exponential
factor (in the degree of squeezing).

IV. STROBOSCOPIC GROUND-STATE COOLING

Another interesting case is obtained by spacing the pulses
by a quarter of a period. In this case the value of the variance
along X̂m and P̂m gets swapped by the free evolution, so that
the measurement reduces both variances alternately. An exact
expression for the stroboscopic steady state is available also in
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FIG. 3. Stroboscopic ground-state cooling. Steady-state value of
the mechanical purity for pulses spaced by a quarter of the me-
chanical period. Values of the coupling are χ = 0.05 (red), χ = 0.1
(yellow), χ = 0.5 (cyan). Solid lines are for the stroboscopic steady
state relative to the map Eth ◦ Eϒ , while dashed lines are for the
operations applied in reversed order. The mean phonon number is
set to n̄ = 10. In the inset we show residual asymmetry between the
two quadratures [cf. Eqs. (15) and (16)], which can result in a small
amount of squeezing.

this case, although quite cumbersome. For convenience below
we give the expansion for large Q:

σXm =
√

4 + χ4 − χ2

4
+ F (χ, n̄)

Q
, (15)

σPm =
√

4 + χ4 + χ2

4
+ G(χ, n̄)

Q
. (16)

The full expression of the functions F (χ, n̄), G(χ, n̄) is
reported in Appendix B. Unlike Eq. (13), now fluctuations in
both quadratures converge to a constant value for Q → ∞. We
also notice that there is a residual asymmetry between the two
quadratures. The leading terms therefore describe a squeezed
vacuum state, albeit one where the squeezing grows slowly
with the coupling χ . For realistic values of the coupling the
state is thus only weakly squeezed and has near-unit fidelity
with the mechanical vacuum. The conditional purification of
the mechanical state is also known as cooling by measurement
[22]. In the same spirit, we refer to this case as stroboscopic
cooling. Of course for finite values of the quality factor the
steady state will be mixed, but cooling close to the ground
state is still possible. We show these features in Fig. 3.

V. IMPROVED DESCRIPTION
AND NUMERICAL SIMULATIONS

In this section we aim to provide a more accurate descrip-
tion of the stroboscopic conditional dynamics. We focus on
the case of stroboscopic BAE measurements but the analysis
can be readily extended to the case of stroboscopic cooling.
We expand along two directions: (i) we model the measure-
ment as actually taking place outside the optical cavity and (ii)
we evaluate the effects of the mechanical free evolution during
the pulsed interaction. To this end, we consider the following

extended Hamiltonian:

Ĥ = ĤI (t ) + i
√

κ (â†âin,t − ââ†
in,t ), (17)

where, beside the term in Eq. (1), we also include an interac-
tion with the continuum of electromagnetic modes âin,t living
outside the cavity. This stream of modes interacts with the
system at time t and is otherwise uncorrelated [âin,t , â†

in,t ′ ] =
δ(t − t ′). As is customary, we assume they have the Marko-
vian correlation function 〈{âin,t , â†

in,t ′ }〉 = δ(t − t ′).
For a short pulse of length τ (for now neglecting the free

mechanical evolution) the corresponding propagator takes the
form

Û = eiχ X̂mX̂c+i
√

κτ (P̂cX̂in−X̂cP̂in ), (18)

where X̂in, P̂in are the proper (dimensionless) modes of the
environment, i.e., [X̂in, P̂in] = i, which are being measured;
homodyne detection of the phase quadrature corresponds to
projection along |Pin〉 (see Appendix C for details).

Formally, we can then proceed as in Sec. II to compute the
conditional covariance matrix of the optomechanical system,
include thermal decoherence, and enforce the stroboscopic
steady-state condition. The full expression of the conditional
state of the mechanical system is quite cumbersome, but in the
large-Q limit we get the following simple expressions

σXm = κ
√

2π (n̄ + 1/2)

4g sin2
(√

κτ

2

)√
κτQ

, (19)

σPm = n̄ + 1

2
+ g2Qτ [1 − cos(

√
κτ )]

πκ
, (20)

with g = 2g0
√

Np/(κτ ). These expressions are to be seen as
a refinement of Eq. (13); as we will show, they offer a useful
comparison with numerical simulations.

Second, we include corrections to the ideal QND limit
stemming from the mixing of the mechanical quadratures
during a pulse of finite length. The ensuing unitary evolu-
tion contains two new terms (see Appendix A for the full
expression): a squeezing term in the cavity amplitude, which
however is O(g2/ω2

m), and a spurious term ∝X̂cP̂m, which
spoils the QND nature of the interaction. The strength of this
term is 2ωm/κ times the QND part, so that the QND limit
is approximately recovered only for optomechanical systems
deep in the bad-cavity regime. It is therefore important to
address the corrections arising for finite values of the sideband
parameter, which limit the amount of conditional squeezing
attainable.

Due to the presence of quadrature mixing, a closed expres-
sion of the conditional state can no longer be found. However,
we can get a clear physical picture of the effects brought
about by non-QND terms in the following way. Consider the
effective Hamiltonian generating the optomechanical evolu-
tion, first neglecting and then including the non-QND term
(to faithfully model the measurement, we also include the
interaction with the extra-cavity modes); the corresponding
expressions are given by Eqs. (1) and (A6), respectively. We
can use them to compute the Heisenberg evolution of the
quadratures in both cases, ˙̂Xm = . . ., ˙̂Pm = . . ., and so on,
where the terms appearing on the right-hand side drive the
evolution of a given quadrature. The equations of motion
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FIG. 4. Effects of the measurement for (a) an ideal QND in-
teraction and (b) including mechanical free evolution during each
pulse. The black arrows describe how quadratures influence each
other in an ideal QND interaction [evolution according to Eq. (18)].
Measurement of the output phase quadrature both introduces back-
action and allows to extract information. (a) In an ideal stroboscopic
measurement, measurement backaction and reduction of uncertainty
take two distinct paths (the first is confined to P̂m while the second
to X̂m) which allows squeezing along X̂m. (b) Non-QND terms open
new paths (dashed arrows) where both conditioning and backaction
spread. These reduce squeezing in X̂m, but at the same time enable
acquiring information about all the quadratures, which results in
larger mechanical purities and optomechanical entanglement.

for the two cases are schematized in Figs. 4(a) and 4(b),
respectively, where an arrow connecting two terms means that
the variable at the starting point drives the evolution of that at
the ending point. Next, we incorporate the role of the measure-
ment, which has a twofold effect: on the one hand, it enables
the acquisition of information, i.e., reducing the uncertainty
about the mechanical quadrature X̂m; this acquisition happens
indirectly through the optomechanical coupling and requires
that we keep track of the stochastic component. On the other
hand, the measurement introduces disturbance, which directly
affects the conjugate quadrature (X̂in) and then, through the
dynamics, reaches the mechanical system.

In the ideal QND case [see Fig. 4(a)] these two effects fully
decouple. Fluctuations are reduced along X̂m and increased
in P̂m (backaction heating). Graphically, this corresponds to

the fact that no arrow points toward X̂m, and hence no noise
can drive it. Likewise, no arrow originates from P̂m, which
“absorbs” all the backaction. Thus backaction confinement
enables repeated measurements of the same quadrature with
no added noise, which is the working principle of BAE
measurements. When we take into account the finite mechan-
ical evolution [cf. Fig. 4(b)], the non-QND terms open new
paths (dashed arrows) for both backaction and conditioning
to spread, with the following consequences: information is
now acquired about both mechanical quadratures (and hence
fluctuations of the conditional state are reduced in both direc-
tions) which entails that (i) the measurement purifies the state.
Similarly, measurement backaction is no longer confined to
P̂m but extends to both quadratures, i.e., (ii) the amount of
squeezing is reduced with respect to the ideal case. Finally,
information is simultaneously acquired about both the cavity
and the mechanics (see multiple arrows incoming at P̂c); such
joint reduction of the uncertainty implies that (iii) correlations
between cavity and mechanics are built. Depending on the
occupancy of the mechanical bath, this may even lead to
entanglement being established between the two resonators.
We want to remark that, while the limitation (ii) posed by
non-QND terms is known, their beneficial effects (i) and (iii)
have not been previously appreciated. A similar situation is
encountered in continuous BAE measurements, where RWA
solution yields conditional squeezing with low purity, and
the inclusion of counter-rotating terms lower the amount of
squeezing but at the same time allows for larger purity and
optomechanical entanglement [39].

To check the validity of these conclusions we numerically
integrate the conditional evolution of the full optomechan-
ical system subject to stroboscopic driving and continuous
homodyne detection of the output phase quadrature (see
Refs. [36,39] for details). Free mechanical evolution during
each pulse is explicitly included in the simulation, i.e., we use
the optomechanical interaction in Eq. (1). In Fig. 5(a) we show
the numerical squeezing in the long-time limit (averaged over
one period) and compare it with the prediction of Eq. (19).
Our simple analytical formula shows excellent agreement
except for large Q, where it does not capture the saturation
of squeezing. Such saturation confirms our expectation (ii).
Indeed, for a fixed duration of the pulse, the effects of the
free mechanical evolution become more prominent for larger
Q. From Fig. 5(b) we see that a realistic stroboscopic BAE
measurement actually generates highly pure conditional
squeezed states. Mixing of the two quadratures, present for
any finite value of the sideband parameter, implies the simul-
taneous squeezing and cooling the mechanics by stroboscopic
BAE measurement, as predicted in (i). Finally, in Fig. 5(c)
the conditional optomechanical entanglement is displayed
(quantified by the logarithmic negativity) which confirms (iii).
Notice that entanglement is present in the high-temperature
regime.

VI. VERIFICATION OF THE MECHANICAL STATE:
STROBOSCOPIC TOMOGRAPHY

Essential to any conditional protocol is a verification part.
While in the previous sections we have focused on state
preparation through measurement, here we calculate how well
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(a) (b) (c)

FIG. 5. (a) Mechanical squeezing in a stroboscopic BAE measurement. Solid lines are for the numerical solution and dashed lines are for
the prediction based on Eqs. (19) and (20). The curves are for different strengths, parametrized by the number of photons Np = 106 (red), Np =
5 × 106 (yellow), and Np = 107 (cyan). Other parameters are g0 = 5 × 10−4ωm, n̄ = 1000, η = 1, κ = 15ωm, τ = 0.3ω−1

m . (b) Mechanical
purity and (c) entanglement (measured by the logarithmic negativity) between optical cavity and mechanical resonator for the same set of
parameters.

a quadrature can be measured in a train of pulses. This
is also known as retrodiction [40,41]. State verification via
retrodiction has been recently employed to verify the quantum
trajectory of a continuously driven optomechanical system
[42]. The final result of a stroboscopic measurement is a mea-
surement value with a given confidence interval. Repeatedly
preparing and measuring a state allows for full tomography.
Since it makes sense to keep measuring until the resonator
is no longer correlated with its initial state, the resonator
state at the end of the measurement is again a conditionally
squeezed state as discussed above, independent of the initial
state.

In a stroboscopic measurement of a harmonic oscillator,
its position is measured at regular intervals. This results in
a string of measurement results �y = (y0, y1, y2, . . .), which
are correlated with the actual position at that time yi = xi +
mi. The measurement errors {mi} are normally distributed
as the Kraus operator corresponding to the measurement
(5) predicts. Specifically, if the oscillator is in a position
eigenstate ρ = |x〉〈x|, the measurement probability distribu-
tion is p(Pc) = Tr[ϒ̂†ϒ̂ρ] ∝ exp[−(Pc/χ − x)2/χ−2]. Thus,
the {mi} are drawn from a Gaussian distribution of zero mean,
with variance σ 2

m = 1/(2χ2). To realize a QND measurement,
the time tn between measurements has to be an integer mul-
tiple of half a period, tn = (n + 1)π/ωm. This is because
[x̂(tn), x̂(tm)] = 0, i.e., mechanical position becomes a QND
observable at these stroboscopic times. In this regime, the
problem becomes classical, as the measurement backaction
is evaded. Here we choose the time between measurements
to be as short as possible, T = π/ωm, such that γ T = π/Q.
In between each measurement, the position of the oscillator
decays, due to damping, and gets a random contribution from
the thermal noise acting, xi = e−γ T/2xi−1 + di. The random
numbers di also follow a normal distribution of mean zero and
standard deviation σ 2

d = (n̄ + 1/2)(1 − e−γ T ) which follows
from the fluctuation-dissipation theorem (or equivalently from
the explicit discussion in Sec. II).

In Appendix D we show that, given a string of measure-
ment results �y, the conditional probability distribution inferred
from Bayes’ theorem is the normal distribution

�x ∼ N
(
�μx + Q−1

xx �y/σ 2
m, Q−1

xx

)
, (21)

where the correlation matrix Qxx is given by

[Qxx]11 = 1

σ 2
x0

+ 1

σ 2
m

+ e−γ T

σ 2
d

, (22a)

[Qxx]i,i±1 = −e−γ T/2

σ 2
d

, (22b)

[Qxx]ii = 1

σ 2
m

+ 1 + e−γ T

σ 2
d

, (22c)

[Qxx]nn = 1

σ 2
m

+ 1

σ 2
d

. (22d)

Interestingly, as the number of measurements goes to
infinity, the matrix Qxx can be inverted analytically (see
Appendix D2). The first element of the inverse, [Q−1

xx ]11,
is the variance associated with the measured value, and as
one would expect it coincides with the achieved squeezing
[Eq. (13)]. While perhaps this could have been inferred from
the results above, a very good approximation to the inverse
and thus the variance can also be found for a finite num-
ber of measurements. Furthermore, this approach yields the
weight each measurement value is associated with, although
the general expression is somewhat unenlightening (see
Appendix D). For the experimentally relevant case of small
n̄/Q, measurements are weighted by exponentially reduc-
ing factors with increasingly distant measurement times [see
Eq. (D17)]. Finally, we can also show that, when taking into
account many measurements before and after a certain point
in time, i.e., using preparation and retrodiction, the associated
variance is half of Eq. (13).

VII. COLLECTIVE ENTANGLEMENT AND COOLING
OF TWO MECHANICAL RESONATORS

In this section, we show how the previous results can
be extended to the case of two nondegenerate mechanical
resonators. To do that, we consider two mechanical resonators
of frequency ωm,1 and ωm,2 coupled to a common cavity field.
Collective BAE schemes have been proposed in this con-
figuration for continuous and two-tone driving [43–45]. We
introduce the mean and the relative mechanical frequency, re-
spectively defined as ω = (ωm,1 + ωm,2)/2 and � = (ωm,1 −
ωm,2)/2 (we assume ωm,1 > ωm,2 without loss of generality).
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We also define the collective mechanical variables

X̂± = (X̂m,1 ± X̂m,2)/
√

2, P̂± = (P̂m,1 ± P̂m,2)/
√

2, (23)

which satisfy [X̂±, P̂±] = i, [X̂±, P̂∓] = 0. When the pulse is
on, both mechanical resonators linearly couple to the common
cavity amplitude, giving

ĤI (t ) = −g(t )
∑
j=1,2

X̂c[X̂m, j cos(ωm, jt ) + P̂m, j sin(ωm, jt )]

= −
√

2g(t )X̂c(X̂ cos ωt + Ŷ sin ωt ). (24)

For simplicity, we have considered the case of equal single-
photon optomechanical couplings and in the second line we
have rewritten the interaction in terms of the rotated collective
quadratures

X̂ = X̂+ cos �t + P̂− sin �t, (25)

Ŷ = P̂+ cos �t − X̂− sin �t, (26)

which still form a conjugate pair [X̂ , Ŷ ] = i. Thanks to this
change of variables we see that Eq. (25) has the same form as
Eq. (1) and therefore we can rely on our previous analysis. In
particular, for g(t ) = gδ(t − kπ/ω) we recover the ideal case
of stroboscopic QND interaction Û ≈ ei

√
2χ X̂cX̂ (here k = 1).

This corresponds to pulsing every half of the fundamental pe-
riod 2T1T2/(T1 + T2), where Tj are the single mechanical peri-
ods. Like in the single-mode case, we also include mechanical
dissipation. For simplicity, in the following we consider equal
mechanical damping rates and the same occupancies for the
two baths. For nondegenerate mechanical modes, these condi-
tions may entail adjusting the local temperatures of the baths
to achieve the same occupancy.

From the discussion of Sec. III A we conclude that the
stroboscopic steady state is a squeezed thermal state in the
collective variables X̂ and Ŷ , with the variance reduced along
X̂ and heated up along Ŷ by the backaction. We now want to
express the state in terms of the original local variables. For
this purpose, it is useful to parametrize the steady state σss of
single-mode BAE measurements [cf. Eqs. (11) and (12)] as

σss = diag

[(
neff + 1

2

)
e−reff ,

(
neff + 1

2

)
ereff

]
, (27)

where an explicit expression of neff , reff can be obtained by
inverting Eqs. (11) and (12) (one also needs to rescale g →
g/

√
2). Next, we notice that the vector of original quadratures

Q̂ = (X̂m,1, P̂m,1, X̂m,2, P̂m,2)T and that of collective
ones Q̂′ = (X̂ , Ŷ , Ŵ , Ẑ )T are related via the following
transformation: Q̂′ = Û †

BSei�t (b̂†
1b̂1−b̂†

2 b̂2 )Q̂e−i�t (b̂†
1b̂1−b̂†

2 b̂2 )ÛBS;
here Ẑ = X̂− cos �t + P̂+ sin �t and Ŵ = P̂− cos �t −
X̂+ sin �t are the other two collective rotated quadratures and
ÛBS is a beam-splitter transformation. Note that the modes
are rotated in opposite directions before getting mixed. By
transforming state (27) accordingly we get

σss =
(

A C
CT A

)
, (28)

where A = (neff + 1
2 ) cosh 2reff12 and C = −(neff +

1
2 ) sinh 2reffσz (with σz being the z Pauli matrix), namely,
a two-mode squeezed thermal state. This state is known

to be entangled if and only if reff > ln(
√

1 + 2neff ).
Therefore, frequent measurements modeled by the pulses
may induce entanglement between the two noninteracting
resonators.

The same argument can be repeated for two-mode cooling,
which corresponds to pulsing every quarter of the fundamen-
tal period 2T1T2/(T1 + T2). Indeed, Eqs. (15) and (16) are
also in the form of a squeezed thermal state, although with
very little squeezing. Therefore the two-mode stroboscopic
steady state is still of the form (28), the difference being
that now we have neff ≈ 0 and smaller reff (compared with
the previous case). For both neff , reff ≈ 0 the steady state
has a large overlap with the vacuum of the two modes.
Notice however that for neff = 0 the state is entangled for any
value of reff > 0.

VIII. EXPERIMENTAL CONSIDERATIONS

The principal considerations for implementing strobo-
scopic optomechanics concern the appropriate hierarchy
of timescales κ−1 � τ � ω−1

m and sufficient measurement
strength χ . Low bath occupation n̄ and high quality factors Q
facilitate access to the quantum regime. However, experimen-
tal nonidealities have to be taken into account as well. These
can include subunity detection efficiency, optical absorption
heating, mechanical frequency drift, and spurious mechanical
modes, among others.

Given the recent progress with measurement-based
quantum-state preparation [42,46] with membrane-in-the-
middle optomechanical systems, we discuss this platform
first. With MHz resonance frequencies, sufficiently short
(submicrosecond) pulses are readily implemented using stan-
dard modulation techniques. Such pulses could be accom-
modated in short (L ≈ 1 mm), medium-finesse resonators
with κ/2π � 15 MHz, and the cavity output detected with
high efficiency, as previously demonstrated [42,46]. Optical
power levels tolerated in continuous-wave operation [46]
suggest χ = gτ ≈ 0.1 can be achieved without significant
device heating at a temperature of ≈10 K, or n̄ ≈ 105. Since
stroboscopic operation would lower the thermal load from
optical absorption by a factor of order ωmτ < 1, even higher
χ may be possible, provided instabilities are avoided and the
cavity lock maintained. If the experiment were implemented
with soft-clamped membrane resonators [42,46,47], very high
quality factors Q ≈ 109 are available (for comparison with
some of the results presented so far, gentle laser precooling
can be assumed to trade equivalent bath occupancy with
quality factor, leaving the ratio n̄/Q constant). With this set
of parameters, significant levels of squeezing can be achieved,
see Fig. 5.

In practice, however, other mechanical modes at harmonics
of the stroboscopic sampling frequency contribute to the mea-
sured signal, in an effect known as aliasing in the context of
periodically sampled data. This would lead to spurious noise
and interactions, and a degradation of the prepared state. In
contrast with pulsed optomechanics [14], which offers virtu-
ally no spectral discrimination of mechanical modes at all, the
stroboscopic protocols are only sensitive to spurious modes
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that coincide with a harmonic of the sampling frequency. Yet
soft-clamped membrane resonators with their high density of
states outside the band gap, in which the high-Q modes lie,
would be strongly affected by this effect. Membrane-in-the-
middle setups with mechanical systems that feature a sparser
mode spectrum, such as trampoline resonators [48,49], may
therefore be preferable, provided sufficiently high Q factors
and/or low temperatures can be achieved.

Nanophotonic structures could be an alternative platform
of interest. Their already sparse mechanical mode spectrum
could conceivably be engineered to be sufficiently anhar-
monic. Measurement strengths as high as χ ≈ 0.1 have al-
ready been demonstrated with single optical pulses much
shorter (τ = 20 ns) than the mechanical period (2π/ωm ≈
300 ns) [23]. In combination with high-efficiency readout and
efficient heat removal [50], stroboscopic optomechanics might
also allow generation of squeezed and entangled states in such
systems.

IX. CONCLUSIONS

In this work we provided a description of the condi-
tional dynamics of an optomechanical system driven by a
train of pulses. We showed that the resulting framework—
dubbed stroboscopic quantum optomechanics—provides a
versatile toolbox for measurement-based quantum control of
optomechanical systems in the bad-cavity regime, ranging
from ground-state cooling to mechanical squeezing, and ap-
plicable to single-mode as well as multimode optomechan-
ics. Crucially, it enables the generation and characterization
of measurement-based squeezing and entanglement. Strobo-
scopic driving alleviates the requirements of pulsed protocols
based on a single (or a few) pulse(s).
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APPENDIX A: DERIVATION
OF THE PULSED INTERACTION

In the following we derive the complete expression of the
unitary evolution (2) induced by the pulsed interaction and
discuss when the simple QND expression (3) is recovered.
At a formal level, the evolution Û (t, t0) can be equivalently
described by the Magnus expansion

Û (t, t0) = exp
∞∑

k=1

�̂k (t, t0), (A1)

which comes in the form of a nonordered exponential. Com-
pared with Eq. (2), the complexity of the expression has just
been shifted to the argument of the exponential. The first two
terms of the Magnus expansion are given by

�̂1(t, t0) = −i
∫ t

t0

dt1ĤI (t1), (A2a)

�̂2(t, t0) = −1

2

∫ t

t0

dt1

∫ t1

t0

dt2[ĤI (t1), ĤI (t2)], (A2b)

where ĤI (t ) is the linearized interaction in the rotating frame,
as given in Eq. (1). For concreteness, let us consider a rect-
angular pulse of length τ centered at the origin, described by
the normalized profile ε(t ) = 1√

τ
[�(t − τ/2) − �(t − τ/2)].

When the pulse drives the optomechanical cavity on reso-
nance, the evolution of the field amplitude inside the cavity
is well approximated by α̇ = − κ

2 α + √
κNpε(t ), where we

neglected the mechanical response during the short interaction
time. The solution reads

α(t ) = 2

√
Np

κτ
[ f+(t )�(t + τ/2) − f−(t )�(t − τ/2)], (A3)

where we set f±(t ) = 1 − e− κ
2 (t± τ

2 ). The expression captures
the buildup and the decay of the coherent field inside the cav-
ity. The time-dependent optomechanical coupling in Eq. (1)
is g(t ) = g0α(t ). Notice that, in the fast cavity limit, the
expression reduces to a rectangular pulse of height gad =
2g0

√
Np/(κτ ).

We can now compute the expressions (A2a) and (A2b) for
this profile. For late times t � τ we get

�̂1 = iχ X̂c

(
X̂m + 2ωm

κ
P̂m

)
, �̂2 = i

ζ

2
X̂ 2

c , (A4)

where the prefactors read

χ = 2

(
gad

ωm

)
sin

(
ωmτ

2

)
1 + 4

(
ωm
κ

)2 , (A5a)

ζ = 16

(
gad

ωm

)2 sinh2
(

κτ
4

)
(

κ
ωm

)3 + 4
(

κ
ωm

) . (A5b)

In the above expression we set gad = 2g0
√

Np/(κτ ). In the
adiabatic limit χ reduces to χad = gadτ ≡ 2g0

√
Npτ/κ , which

is the expression given in the main text. Also notice that, as
expected for the problem at hand, all the nested commutators
corresponding to higher-order �̂k�3 identically vanish. The
evolution thus takes the following exact form:

Û = ei
ζ

2 X̂ 2
c eiχ X̂cX̂m+iχ (

2ωm
κ

)X̂cP̂m . (A6)

Two extra terms have appeared compared with Eq. (3). A
single-mode operator that is responsible for squeezing of
the cavity field and an interaction term that spoils the QND
character of the quadrature X̂m. Note that both terms are
present for any length of the pulse, even though the spurious
term is suppressed by a factor 2ωm/κ . The QND limit can then
be recovered only for a vanishing sideband parameter ωm/κ .
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APPENDIX B: COMPLETE EXPRESSION FOR STROBOSCOPIC COOLING

The complete expressions of the mechanical variances at the stroboscopic steady state in the case of cooling [Eqs. (15) and
(16)], up to O(Q−1), are given by

σXm =
√

4 + χ4 − χ2

4
+

π
[ − 4n̄χ2 + 4n̄(χ4+2)+χ6+2χ4+4χ2+4√

χ4+4
− χ4 − 2χ2 − 2

]
8Qχ2

, (B1)

σPm =
√

4 + χ4 + χ2

4
+ π [2n̄(χ4 + 2) + χ4 −

√
χ4 + 4 + 2]

4Qχ2
√

χ4 + 4
. (B2)

APPENDIX C: EXTRACAVITY STROBOSCOPIC
MEASUREMENT

In this Appendix we provide more details about the
derivation of expressions (19) and (20). Our starting point
will be Eq. (17), where for simplicity we assume the ideal
QND interaction given in Eq. (3). As described in Sec. V,
we consider δ-correlated quantum noise [âin,t , â†

in,t ′ ] = δ(t −
t ′). The operators âin,t are singular and have dimension
(time)−1/2; Hermitian combinations of them thus cannot be
directly associated with observables to be measured. To rem-
edy that, it is customary to introduce the so-called quan-
tum Wiener increment, defined as �Ŵin = ∫ t+τ

t dt ′âin,t ′ . For
a short interval of time we have dŴin = âin,t dt (obtained
for τ → dt). From this expression one can define proper
dimensionless modes Âin via dŴin = Âin

√
τ , which are non-

singular [Âin, Â†
in] = 1 and can be associated with a mea-

surement. The corresponding quadrature operators are X̂in =
(Âin + Â†

in )/
√

2, P̂in = i(Â†
in − Âin )/

√
2 and are associated

with quadrature measurements of the outgoing light field.
Since the expression in Eq. (18) still contains interactions
which are bilinear, we can repeat the same analysis of Sec. II
to get the conditional covariance matrix of the optomechanical
system, now on the enlarged phase space with coordinate
(Xin, Pin, Xc, Pc, Xm, Pm).

APPENDIX D: STROBOSCOPIC TOMOGRAPHY

1. General derivation

We would like to model a series of BAE measurements on
a damped harmonic oscillator in a thermal environment. To do
so, we need to find the probability distribution of �x given some
measurement record �y, P(�x|�y), assuming that the parameters
σm, σd , γ are known.

From the description in the main text, we can determine
the conditional probability distribution for the measurement
outcomes,

P(�y|�x) =
N−1∏
i=0

1√
2πσ 2

m

exp

(
− (yi − xi )2

2σ 2
m

)
, (D1)

as well as our prior

P(�x) = 1√
2πσ 2

x0

exp

(
− x2

0

2σ 2
x0

)

×
N−1∏
i=1

1√
2πσ 2

d

exp

(
−

(
xi − e−γ T/2xi−1

)2

2σ 2
d

)
. (D2)

The initial variance for x0 could be from a thermal state.
Optionally, we could already have performed measurements
at that point, in which case the initial variance and mean are
given by the resulting state. We can thus write down the joint
probability distribution P(�x, �y) = P(�y|�x)P(�x):

P(�x, �y) = P(�x)P(�y|�x) ∝ exp

(
−1

2
(�x�, �y�)Q

(
�x
�y
))

, (D3)

where Q has entries Qyy = −Qxy = (1/σ 2
m)1, and

[Qxx]i j = −e−γ T/2

σ 2
d

(δi, j+1 + δi, j−1)

+
[

1

σ 2
m

+ 1 + e−γ T

σ 2
d

− δi,N
e−γ T

σ 2
d

+ δi,1

(
1

σ 2
x0

− 1

σ 2
d

)]
δi, j . (D4)

P(�x, �y) is a normal distribution (�x, �y) ∼ N[�μ, Σ], with
mean �μ = 0 and covariance matrix Σ = Q−1, which can be
found via block matrix inversion:

Σ =
(

Σxx Σxy

Σyx Σyy

)
, (D5)

where

Σyy = σ 2
m + Σxx, (D6a)

Σxx = (
Qxx − 1/σ 2

m

)−1 = Σxy = Σyx. (D6b)

Given this, the conditional distribution for �x can be derived
from the joint distribution

�x ∼ N
(
ΣxyΣ

−1
yy �y, Σxx − ΣxyΣ

−1
yy Σxy

)
. (D7)

For now, we are only interested in the mean and variance
of the first entry. We thus need to determine

ΣxxΣ
−1
yy = (

σ 2
mΣ−1

xx + 1
)−1 = Q−1

xx /σ 2
m, (D8)

and

Σxx − ΣxyΣ
−1
yy Σxy = Σxx

(
1 − σ−2

m Q−1
xx

) = Q−1
xx . (D9)

Note that Σxx commutes with the matrix in rounded brack-
ets. The best estimates for the positions �x can therefore be
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obtained from the measurement results by multiplying the
latter with the weights (D8) and their covariance is given
through Eq. (D9). In both cases we need to determine Q−1

xx ,
which is done in the following section.

2. Explicit calculation of the inverse of the matrix Qxx

To compute the inverse it is useful to consider the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a 0 · · · 0 0 0

a b a · · · 0 0 0

0 a b · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · b a 0

0 0 0 · · · a b a

0 0 0 · · · 0 a 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D10)

We show in Appendix D 3 that, for experimentally relevant pa-
rameters, this coincides with a rescaled version of the matrix
Qxx; namely, M = Qxx/[Qxx]11. The entries of the inverted
matrix are [51]

M−1
i j = (−1)i+ ja|i− j|

{
θi−1φ j+1/θn if i � j

θ j−1φi+1/θn if i � j,
(D11)

where θ and φ fulfill certain recurrence relations. In our case,
they are in fact the same, and we have

θi = bθi−1 − a2θi−2, θ0 = θ1 = 1,

θn = θn−1 − a2θn−2, φi = θn+1−i.
(D12)

The solution can be found from the characteristic polynomial
x2 − bx + a2 = 0, which has the roots

ξ± = b

2
±

√
b2

4
− a2. (D13)

Fitting the general solution to the boundary conditions, we
find

θi = 1√
b2 − 4a2

[ξ i
−(ξ+ − 1) − ξ i

+(ξ− − 1)], (D14)

but with θn determined by Eq. (D12) above. This allows us to
write the inverse of the above matrix in an exact analytical,
albeit unwieldy, manner

(M−1)i j = (−1)i+ ja|i− j|
√

b2 − 4a2

ν(i − 1)ν(n − j)

ν(n − 1) − a2ν(n − 2)
,

ν(i) ≡ ξ i
−(ξ+ − 1) − ξ i

+(ξ− − 1).

(D15)

This exact formula for the inverse represents the central result
of this Appendix. We consider simplifications that arise in
certain cases below.

a. Physically relevant case

The relevant case is b2/4 > a2. In this case ξ+ > ξ−, such
that, in the limit of a large number of measurements n → ∞,
the formula for the inverse turns into

(M−1)i j = (−1)i+ ja|i− j|
√

b2 − 4a2

ν(i − 1)

ξ
j−1
+ − a2ξ

j−2
+

, i < j

M ji = Mi j, i > j. (D16)

It is only exact for n → ∞ and is a good approximation if
(aξ−/ξ+)n is small. The weights for the measurement of the
initial state are the special case i = 1, i.e.,

(M−1)1 j � (−a)|1− j|

ξ
j−1
+ − a2ξ

j−2
+

. (D17)

Another useful special case is i = j, in which case Eq. (D16)
simplifies to

(M−1)ii = (ξ−/ξ+)i−1(ξ+ − 1) − ξ− + 1√
b2 − 4a2(1 − a2/ξ+)

. (D18)

On the other hand, the variance in the steady state (i → ∞
but n/i � 1), which corresponds to the variance when taking
all measurements before and after a specific point in time into
account,

lim
n→∞(M−1)n/2,n/2 = 1 − ξ−√

b2 − 4a2(1 − a2/ξ+)
. (D19)

b. Other cases

For completeness, we mention the other case b2/4 < a2,
which implies ξ− = ξ ∗

+ ≡ ξ , such that

(M−1)i j= (−1)i+ ja|i− j|
√

b2 − 4a2

2Im[ξ i−1(ξ ∗ − 1)]Im[ξ n− j (ξ ∗ − 1)]

iIm[ξ n−2(ξ ∗ − 1) − a2ξ n−1(ξ ∗ − 1)]
,

(D20)

where Im[x] denotes the imaginary part of x.
Finally, if b2/4 = a2, the matrix is not invertible.

3. Variance and measurement weights for experimentally
relevant parameters

The actual matrix we are interested in has parameters

[Qxx]11 = 1

σ 2
x0

+ 1

σ 2
m

+ e−γ T

σ 2
d

, (D21a)

[Qxx]i,i+1 = −e−γ T/2

σ 2
d

, (D21b)

[Qxx]ii = 1

σ 2
m

+ 1 + e−γ T

σ 2
d

, (D21c)

[Qxx]nn = 1

σ 2
m

+ 1

σ 2
d

. (D21d)

To use the analytical matrix inverse derived in
Appendix D 2, we define M = Qxx/[Qxx]11, which has
M11 = 1, Mnn ≈ 1, Mi,i+1 = a = [Qxx]i,i+1/[Qxx]11, and
Mii = b = [Qxx]ii/[Qxx]11. The fact that the last element of
the diagonal of M is not 1 is irrelevant if the number n of
measurements is large. We can therefore take it to be 1 for
simplicity. Technically, the matrix is still invertible without
this assumption, but it leads to cumbersome formulas that are
not very enlightening.

For stroboscopic measurements to make sense, we require
σ 2

d � 1, i.e., the state is coherent for several periods. As a
result, the term with 1/σ 2

d dominates all the elements of Qxx.
Physically, this means that the value of xi is most strongly
constrained by its neighbors xi−1 and xi+1, and much less by
the measurement or our initial guess. This is precisely the
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regime of a slowly decohering and weakly measured oscillator
that we consider here. In this limit,

b2/4 − a2 = Q−2
xx,11

[
1

4σ 2
m

+ 1 + e−γ T

2σ 2
mσ 2

d

− e−γ T

σ 4
d

]
> 0,

(D22)
such that we may use the formulas from Appendix D2a.

To leading order in σd , M is the discrete Laplace operator,
with a = 1 and b = 2, which is not invertible, so we have
to go to next order to get physical answers. Note that γ T =
σ 2

d /(nth + 1/2), such that

a = [Qxx]i,i+1

[Qxx]11
� −1 + σ 2

d

(
1

σ 2
m

+ 1

σ 2
x0

− 1

2nth + 1

)
,

(D23a)

b = [Qxx]ii

[Qxx]11
� 2 + σ 2

d

(
2

2nth + 1
− 1

σ 2
m

− 2

σ 2
x0

)
. (D23b)

Using the formulas for the inverse of the matrix derived
above, we can now calculate the variance of our measurement
of the initial state (i = 1):

Q−1
xx,11(M−1)11 =

√
π (1/2 + nth )

2Qχ2
+ O(Q−3/2), (D24)

where we have used

σ 2
m = 1/(2χ2) (D25)

for the measurement we consider. This expression coincides
with the amount of squeezing predicted in Eq. (13).

On the other hand, the variance in steady-state (i → ∞ but
n/i � 1), Eq. (D19), simplifies to

lim
n→∞(M−1)n/2,n/2 =

√
π (1/2 + nth )

8Qχ2
+ O(Q−3/2), (D26)

i.e., to leading order it is just half of Eq. (D24).
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