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Previous research shows that variation in coherence (i.e., degrees of respect for axioms
of probability calculus), when used as a basis for performance-weighted aggregation,
can improve the accuracy of probability judgments. However, many aspects of
coherence-weighted aggregation remain a mystery, including both prescriptive issues
(e.g., how best to use coherence measures) and theoretical issues (e.g., why coherence-
weighted aggregation is effective). Using data from six experiments in two earlier
studies (N = 58, N = 2,858) employing either general-knowledge or statistical
information integration tasks, we addressed many of these issues. Of prescriptive
relevance, we examined the effectiveness of coherence-weighted aggregation as a
function of judgment elicitation method, group size, weighting function, and the bias of
the function’s tuning parameter. Of descriptive relevance, we propose that coherence-
weighted aggregation can improve accuracy via two distinct, task-dependent routes: a
causal route in which the bases for scoring accuracy depend on conformity to coherence
principles (e.g., Bayesian information integration) and a diagnostic route in which
coherence serves as a cue to correct knowledge. The findings provide support for the
efficacy of both routes, but they also highlight why coherence weighting, especially
the most biased forms, sometimes imposes costs to accuracy. We conclude by sketching
a decision—theoretic approach to how aggregators can sensibly leverage the wisdom
of the coherent within the crowd.
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A theoretical divide between coherence and
correspondence theorists has long defined decision
science. Both camps share an interest in the
descriptive, normative, and prescriptive quality
of judgment (Bell et al., 1988; Hammond, 2000;
Kleindorfer et al., 1993; Mandel, 2000). However,
coherence and correspondence theorists approach
these issues differently (Dawson & Gregory, 2009;
Dunwoody, 2009). Coherence theorists (Davidson,
1986; Young, 2001, 2015) focus on the internal
consistency of judgments; correspondence theor-
ists (David, 2015; Patterson, 2003) focus on the
empirical accuracy of judgments. Given their dif-
fering interests, few studies have examined the
theoretical and empirical connections between
individual differences in judgment coherence
and correspondence.

Indeed, early studies found no consistent cor-
relation between coherence and correspondence
in several judgment tasks for differing levels of
expertise (e.g., Wright & Ayton, 1987; Wright
etal., 1988, 1994). Wright et al. (1994) concluded
that individual differences in coherence might not
predict correspondence. Such findings suggest
that the divergent histories of the coherence
and correspondence literature may not be acci-
dental. If individual differences in coherence and
correspondence are unrelated, why should it mat-
ter if the two schools pursue parallel or divergent
theoretical paths?

We believe this conclusion is premature. Wright
and colleagues’ experiments were statistically
underpowered to detect correlations at conven-
tional error rates (i.e., Type 1 = 5%, Type 2 =
20%). Furthermore, the correspondence score was
a mean-squared-error function, while the coher-
ence score used mean errors. Thus, the correspon-
dence measure summed opposing errors (e.g.,
over- and underestimation), while the coherence
measure canceled opposing errors (e.g., super- and
subadditivity). These differences obscure correla-
tions among measures of coherence and corre-
spondence. In fact, recent studies have indeed
found correlations between coherence and corre-
spondence (Weaver & Stewart, 2012; Weiss et al.,
2009), directly challenging the hypothesis that

the two are unrelated. Research has found correla-
tions between coherence and correspondence in
predicting the winner of the 2011 Major League
Baseball series (Tsai & Kirlik, 2012). Further-
more, superforecasters—elite forecasters who
scored in the top 2% of accuracy rankings in a
large geopolitical forecasting tournament—
perform better than other forecasters on measures
of logical coherence (Mellers et al., 2017).

Coherence-Based Recalibration and
Aggregation

Going beyond research that examines correla-
tions, research shows decision makers can exploit
coherence to improve correspondence. There are
two primary mechanisms to do so: recalibration
methods that “coherentize” judgments (Karvetski
et al., 2013; Mandel et al., 2018; Predd et al.,
2009) and performance-weighted aggregation
methods that use coherence as an aggregation
weight (Mannes et al., 2014; see Collins et al., in
press, for review). Predd et al. (2008) showed
that coherence-weighted aggregation improved
group forecast accuracy on sports and economic
forecasts. Studies have since generalized the
method to U.S. presidential election forecasts
(Wangetal., 2011), general-knowledge and fore-
casting questions (Fan et al., 2019; Karvetski
et al.,, 2013), and Bayesian judgment tasks
(Karvetski et al., 2020; Mandel et al., 2018).
The findings show that coherence and correspon-
dence may, in fact, be strongly related. More
importantly, decision makers can exploit knowl-
edge of the former to improve the latter.

The fact that individual differences in coher-
ence can predict correspondence is of prescriptive
theoretical interest. Performance-weighted aggre-
gation methods typically require that judges
complete an additional task or that decision
makers keep records of the judges’ past perfor-
mance (Cooke, 2015). By comparison, coherence
weighting requires neither; practitioners can apply
the strategy as long as the elicitation contains a
minimum of two logically related judgments
(Predd et al., 2008). The number of elicitations
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is comparable to popular elicitation methods such
as the construction of probability intervals (e.g.,
Mandel et al., 2020; O’Hagan, 2019; Speirs-
Bridge et al., 2010) or the estimation of other
assessors’ answers (Palley & Soll, 2019; Prelec
et al.,, 2017). Whereas Surowiecki (2004) pro-
posed that aggregators can improve accuracy by
exploiting the wisdom of crowds—namely, the
unweighted average of groups of judges—we
propose that aggregators can achieve better per-
formance by leveraging the wisdom of the
coherent.

The Present Research

The present work has several aims. One is to
systematically compare the coherence-weighted
aggregation methods used in earlier studies (e.g.,
Fan et al., 2019; Karvetski et al., 2013, 2020;
Mandel et al., 2018; Predd et al., 2008; Wang
etal.,2011) across two types of tasks where expert
judgment is commonly sought: factual queries and
statistical prediction. We examined whether the
optimal coherence-weighting methods are stable
or task-dependent (Zellner et al., 2021). The second
aim is to determine if individuals’ coherence
on one or more tasks predicts correspondence
on a different task. The third aim is to extend
coherence-weighted aggregation methods to
judgments involving conditional probabilities.
Whereas earlier studies focused on linear addi-
tivity constraints (e.g., Predd et al., 2008; Wang
etal., 2011), we applied coherence-based recal-
ibration and aggregation methods to judgments
characterized by nonlinear constraints typical of
conditional probability estimation. Finally, we
attempt to develop a theory of why (and under
what circumstances) coherence weighting can
be effective.

To pursue these aims, we reanalyzed data from
Karvetski et al. (2013) and Wu et al. (2017). The
experiments feature distinct tasks: Karvetski et al.
(2013) had participants answer general-knowledge
questions and assign probabilities that factual
claims are correct, whereas Wu et al. (2017) had
participants assess probabilities based on statistical
background information, characteristic of statisti-
cal Bayesian tasks (Mandel, 2014). These repre-
sent two broad kinds of tasks where expert
judgment is often called upon: factual queries
and conditional statistical predictions. We show
that coherence-weighting is effective for both task
domains. However, we discover that elicitation

methods that make coherence trivial, by difficulty
or by accident, reduce its efficacy. Consequently,
those tasked with optimizing judgments must con-
sider these issues when determining where and
how to elicit judgments and apply coherence
weighing. Finally, we show that coherence on
one task has a limited ability to predict correspon-
dence on other tasks.

The remainder of the article is laid out as
follows: In the Probabilistic Coherence section,
we formally define probabilistic coherence, how
to quantify incoherence, how to apply this met-
ric in performance-weighted aggregation, and
how we define and measure correspondence.
In the General-Knowledge Domain section,
we apply coherence-weighted aggregation to a
general-knowledge task (Karvetski et al., 2013).
In the Statistical-Evidence Domain section,
we apply coherence-weighted aggregation to a
statistical-evidence task (Wu et al.,, 2017).
Finally, we conclude with a General Discussion,
explaining the reasons coherence-weighting is
effective, how it may be profitably exploited,
and things to consider when choosing to utilize
the method.

Probabilistic Coherence

When people estimate the probabilities of
related events, their estimates will often be inco-
herent (Karvetski et al., 2013; Mandel, 2008;
Predd et al., 2008; Tversky & Koehler, 1994),
in that they violate the axioms of probability
calculus. Kolmogorov (1956; see also de Finetti,
1937) describes three relevant probability axioms:
nonnegativity, unitarity, and additivity. Nonnega-
tivity states that probabilities must not take on
negative values. Unitarity (also sometimes called
complementarity) states that the summed proba-
bility of elementary events must equal one. Ad-
ditivity states that any countable sequence of
mutually exclusive events Ey, E,, ..., E, must
satisfy the following condition:

P(ig E,-) - Zn:P(Ei). )
i=1

We can define probabilistic coherence as the
extent to which sets of probabilistic judgments
respect Kolmogorov’s probability constraints.
Consequently, we can measure incoherence as
the degree of such violations.
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Quantifying Incoherence: The Coherent
Approximation Principle

Researchers can empirically measure inco-
herence using the coherent approximation
principle (CAP; Osherson & Vardi, 2006;
Predd et al., 2008). The CAP is an algorithm
that takes elicited probability sets as inputs and
returns: (a) a recalibrated (or coherentized) set of
probabilities and (b) a measure of the Euclidean
distance between the elicited and recalibrated
probabilities, which we call 1. For judgments
bound by linear constraints (i.e., addition and
subtraction), the recalibrated set of probabilities
is provably unique (De Finetti, 1990; Karvetski
et al., 2013) and guarantees monotonic im-
provements in accuracy (Predd et al., 2008;
2009). More precisely, the CAP is a constrained
optimization problem focused on minimizing
the Euclidean distance between the elicited and
coherentized probabilities, expressed as:

2

for n judgments, where p is the original elicited
probability judgment and y is its coherentized
equivalent, subject to the relevant constraints and
axions. The incoherence metric, 1, is, therefore, an
objective measure of individuals’ probabilistic
coherence.! This measure serves as the input
for coherence-weighted aggregation judgments.
In the coherence-weighted aggregation functions
that we tested in the present research, the derived
aggregation weight is always a monotonically
decreasing function of 1 such that high 1 produces
low aggregation weights.

As a final note, though recalibration is not the
focus of our research, our analyses focused on
participants’ recalibrated probabilities rather
than their elicited probabilities. This was for
two reasons. First, the process for recalibration
and calculating 1 is the same. Since coherence-
based recalibration improves accuracy (De
Finetti, 1990; Karvetski et al., 2013; Mandel et
al., 2018; Predd et al., 2008, 2009), we see no
reason not to apply coherence-weighted aggre-
gation to the (improved) recalibrated judgments.
Second, by first recalibrating judgments to
remove errors due to incoherence, we isolate
improvements in aggregated judgment corre-
spondence due exclusively to weighting by

Table 1
List of Functions for Translating the Incoherence
Metric 1 Into an Aggregation Weight @

Weight function Formula
Exponential (Wang et al., 2011) w; = e xP)
Standardized linear difference ;= (m;’ﬁ?@ ">ﬁ

(Karvetski et al., 2013) b
Rank (Fan et al., 2019) o= (k)

individual differences in coherence, and not
simply because the coherence-weighted aggre-
gate converged on a coherent judgment.

Coherence Weighting Functions

There is no consensus on the “best” function
for converting 1into aggregation weights. Table 1
lists some of the functions used in prior research
(Fan et al., 2019; Karvetski et al., 2013; Wang
etal., 2011). Each converts increasing values of 1
into a monotonically decreasing weight ® with
differing properties. The exponential function
(Wang et al., 2011) converts 1 using an exponen-
tial function with Euler’s number, e, as its base.
The function is a simple mapping rule, as the
conversion is insensitive to the distribution of 1in
the opinion pool. The standardized linear differ-
ence function (Karvetski et al., 2013) calculates
the relative difference between an individuals’ 1
and the maximum 1 within the opinion pool. The
function is sensitive to the distribution but not the
size of the opinion pool; regardless of the pool
size, weights are calculated relative to the most
coherent judge. Because the “worst” judge
always receives a weight of ® = 0, it is undefined
at a group size of 1. Finally, the ranked method
(Fan et al.,, 2019) calculates an aggregation
weight that is the multiplicative inverse of its
rank. In the case of a tie, the average of their rank,
that is, three participants tied for first would

' We provide an interactive demonstration of the CAP
(Osherson & Vardi, 2006; Predd et al., 2008) in a compan-
ion application, the CAP-APP. CAP-APP demonstrates the
application of the CAP to a set of elicited probabilities
bound by the simple additivity constraint P(A) + P(B) =
P(A U B). The app is available online using either https://co
Ilinsrn.shinyapps.io/CAP-APP/ or the Open Science Frame-
work (Collins et al., 2023) and was developed using the R
programming language, R Studio, and the R Shiny frame-
work (Chang et al., 2023; R Core Team, 2022; RStudio
Team, 2022).


https://collinsrn.shinyapps.io/CAP-APP/
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receive a rank of IUA = 2. The function is
sensitive to pool size but not its variability; that
is, the second-best judge will receive a rank of 2
regardless of how much worse they are relative
to rank 1.

Two functions, the exponential function
(Wang et al., 2011) and the standardized linear
difference function (Karvetski et al., 2013),
include a practitioner-controlled parameter.
This tuning parameter used the symbol A in
Wang et al. (2011) and p in Karvetski et al.
(2013). Both are conceptually and mathemati-
cally similar, exponentiating the translation of 1
into a corresponding weight. In the present arti-
cle, we adopt the symbol convention f§ used by
Karvetski et al. (2013) for both functions. We
also parameterized the rank function (Fan et al.,
2019), raising the function to exponent f.
Regardless of function, p = 0 resolves to ® =
1 for every participant (i.e., equal-weighted
aggregation). As P increases, the penalty for
coherence violations increases, and the relative
bias toward coherent responders increases. Suf-
ficiently large values of f will reduce the contri-
bution weight of all but the most coherent
individual(s) to 0. Simply put, § tunes the bias
of the weighting function.

Regardless of the translation function, coherence-
weighted aggregation proceeds identically. For
each coherent probabilistic judgment y and by n
individuals for each ith judgment, we define an
aggregated judgment as:

b= D1 Vi X 0
i ~n .-
Zj:l @

In the present research, we consider three
values for f € {1, 10, 100}. The decision to
use discrete values rather than continuous values
was pragmatic rather than theoretically driven.
Technically, any value B > 0 is a valid choice,
with increasingly larger values behaving like a
step function that assigns ® = 1 to the most
coherent judge and ® = 0 to all others. Regardless,
an important property to note is that setting § =0
results in @ = 1 for all participants. Thus, (3)
simplifies to the equal-weighted average given by
the following equation:

1 n
-=—§ 4
Vi anIy,, 4

3)

Correspondence Metric: Mean
Absolute Error

We measured accuracy using the mean abso-
lute error (MAE):

1 k
MAE:%;b}l—le (5)

where y; is the judgment, x; is the true value, & is the
number of judgments made by the participant, and {
represents a particular judgment. Although root-
mean-square errors or Brier scores are popular
probabilistic judgment error metrics, it is important
to note there is no “correct” scoring rule. Rather, the
scoring rule should be determined by the needs of
the decision maker, namely, whether they wish to
penalize large mistakes more than small mistakes.
Furthermore, Willmott and Matsuura (2005) pro-
pose that MAE is the superior measure for com-
paring average model performance. In our case, the
use of MAE also adds information to the reanalysis
of Karvetski et al. (2013), originally scored using
the Brier score (i.e., mean squared error).

General-Knowledge Domain

Karvetski et al. (2013) investigated the effect of
coherence-based recalibration and aggregation on
truth ratings of general-knowledge questions. In
two experiments, 58 undergraduate psychology
student participants (30 in Experiment 1, 28 in
Experiment 2) rated the probability that four logi-
cally related statements were true. For each of the
60 topics, participants rated the probability that: (a)
statement A was true, P(A); (b) statement A was
false, P(A); (c) statement B was true (where A N B
€ @), P(B); and (d) either statement A or statement
B was true, P(A U B). For example: A—Neil
Armstrong was the first man to set foot on the
moon; B—Buzz Aldrin was the first man to set
foot on the moon; A€ - Neil Armstrong was NOT
the first man to set foot on the moon; and A U B—
Either Neil Armstrong or Buzz Aldrin was the
first man to set foot on the moon. Karvetski et al.
(2013) evaluated several variants of coherenti-
zation and methods for calculating 1, the most
effective of which was based on the additivity
constraint P(A) + P(B) = P(A U B), which we use
here also. In Experiment 1, participants rated one
randomly selected judgment in each topic, cycling
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through all other topics before rating the next
statement in the topic set. In Experiment 2, parti-
cipants rated the statements for a given topic
consecutively. We refer to these two experiments
as the spaced and grouped conditions, respectively.

Method

All data and R scripts described below are
available on the Open Science Framework (OSF;
Collins et al., 2023).

Incoherence Metrics

We coherentized probabilities and calculated 1
via the CAP (2) using the quadprog package
(Turlach et al.,, 2019) in R Studio (R Core
Team, 2022) running the R programming lan-
guage (RStudio Team, 2022). We calculated two
different 1 measures for use in the aggregation
model. The first, endogenous 1, is the measured
incoherence of a judge on the target judgment.
The second, exogenous 1, is the average incoher-
ence for all judgments other than the target judg-
ment. That s, for Question 1, we used the average
for each participant’s answers to Questions 2—60
as the input weight; for Question 2, the average 1
of each participant’s answers to Question 1 and
Questions 3—-60; and so on. We used this metric to
evaluate whether 1 has potential use in disposi-
tion- and history-based performance-weighting
methodologies that weight judges according to
past performance or expertise (Budescu & Chen,
2015; Cooke et al., 1988; Mellers et al., 2015) per
one of the primary aims of the study.

Correspondence Metrics

We calculated the MAE (5) across judgments
{P(A), P(B), P(A U B)} for each of the 60 ques-
tions. This error serves as the primary dependent
variable of interest. The difference between the
MAE for coherence-weighted strategies and
MAE for equal-weighted strategies will therefore
represent the mean improvement in MAE across
the 1,000 bootstrapped trials. We also examine
the proportion of bootstrapped samples (out of
1,000, described in greater detail below) in which
the coherence-weighted aggregation strategies per-
formed better than equal-weighted strategies. That
is, the proportion of times MAEcw < MAEgy,
where CW stands for coherence-weighted and EW
stands for equal-weighted, respectively. Although

ties are exceedingly rare, we treat them as losses due
to the computational burden posed by coherence-
weighting. We call this measure of performance
proportion improved (PI).

Simulation and Aggregation Method

One of our research aims was to determine the
implementations of coherence weighting that work
best. To compare the efficacy of our various
strategies, we used bootstrap sampling with the
replacement technique. Using bootstrap sampling
with replacement allows us to examine the effect of
aggregation at arbitrary group sizes not limited by
the original sample size (30 in Experiment 1, 28 in
Experiment 2). We analyzed different combina-
tions of weighting function, parameterization, and
group size. For each experimental condition
(spaced vs. grouped), and for each bootstrap, we
added a randomly selected participant to the opin-
ion pool one at a time until we achieved the
maximum group size, k = 100. Each time we
added a participant to the opinion pool, we calcu-
lated aggregated MAE across the 60 questions for
each of our different aggregation strategies. This
corresponds to a 2 (Condition: spaced, grouped) X
100 (Group Size: k = 1 — 100) x 3 (Weighting
Function: exponential, standardized linear differ-
ence, rank) X 3 (Parameter: § = {1, 10, 100}) X 2
(Item Sample: endogenous, exogenous) design.
We also include an equal-weighted function as a
baseline comparison; however, this was not
crossed with the parameter and item sample
manipulation. We completed 1,000 bootstrap si-
mulations for each condition. This approach is
conceptually like a multiverse analysis (Harder,
2020; Steegen et al., 2016), in that we can compare
different 1 weights, weighting functions, levels of
B, and group size while holding all else equal. We
use this multiverse approach to develop decision—
theoretic recommendations for ideal coherence-
weighting strategies. The final analysis included
3,800,000 data points. We collapsed across the
1,000 bootstrap samples, producing 3,800 unique
MAE values (1,900 per condition) as well as 3,600
unique PI values (1,800 per condition).

Analysis Plan

Due to the number of bootstraps, the standard
errors (SE) were extremely low in all cases. In over
99% of simulations SE <.001. The confidence
intervals were invisible on figures at conventional
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resolutions. The low SE means that virtually any
absolute differences between methods, parame-
ters, and group sizes will be statistically significant.
Combined with the sheer number of comparisons,
and the fact we had no a priori theories about
specific comparisons of interest, we relied on
visual inferences from plotted figures. Neverthe-
less, we provide full statistical and distributional
data for specific formal comparisons in the data
files on the OSF. To determine the significance of
our PI measure, we compared this metric to the
99% confidence interval for a binomial distribution
with 1,000 events (lower bound = .459, upper
bound = .541). A PI higher than the upper bound
indicates greater than chance levels of performance
improvements. Conversely, a PI lower than the
lower bound indicates greater than chance levels of
performance decrements. We suggest that this is
the appropriate benchmark, as even small, reliable
gains in aggregated accuracy have the potential to

Figure 1

COLLINS, MANDEL, KARVETSKI, WU, AND NELSON

be highly consequential. The PI metric is like the
probability of superiority (Grissom & Kim, 2005;
Mandel et al., 2018; Ruscio & Mullen, 2012;
Vargha & Delaney, 2000) and provides a measure
of the reliability and consistency of accuracy im-
provements by employing coherence weighting.

Results

Figures 1-4 show the results of the coherence-
weighted aggregation for MAE and PI for each of
endogenous 1 and exogenous 1, respectively, as a
function of k and p. We scaled group size k on the
x-axis logarithmically (base 10). Aggregation
performance at k = 1 is equal to the sample
MAE regardless of aggregation strategy. A cor-
ollary of this statement is that PI = 0 at k = 1
because MAEcw = MAEgw. Further, because the
correct probability of a verifiable factis either O or 1,
participant responses cannot bracket the correct
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Figure 2

Proportion Improved in the General-Knowledge Domain Using the

Endogenous Metric
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probability. Consequently, the error of the equal-
weighted judgment is strictly equivalent to the
average error of the judges (Larrick & Soll, 2006).
In other words, equal-weighted aggregation is
ineffective at reducing MAE for any value of k.
This contrasts with mean squared error, which
decreases as k increases due to noise reduction
(see Karvetski et al., 2013). Thus, MAE allows us
to focus on improving the signal and reducing the
distance from the resolution values.

Endogenous 1

MAE. The MAE results for endogenous 1 are
shown in Figure 1. Each coherence-weighted
aggregation method reduced MAE compared to
equal-weighted aggregation when k > 2. Two
results are noteworthy. First, increasing k beyond

2 reduced MAE in most cases. However, the
improvements afforded by an additional judge
diminished as & increased, such that the addition
of new assessors had a negligible effect for k > 10.
Nevertheless, accuracy continued to improve past
these thresholds, albeit at a much lower rate per
additional judge. An exception to this was the
standardized linear difference function at p = 1, for
which performance worsened for k > 4.

Second, increasing  consistently improved
MAE for each of our methods. These improve-
ments were larger in the spaced condition than in
the grouped condition. Increasing  was also
associated with diminishing returns regardless
of condition. The largest improvements occurred
between f = 1 and p = 10. Third, comparing
our different methods, the standardized linear
difference function performed best in the spaced
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Figure 3
Mean Absolute Error in the General-Knowledge Domain Using the Exogenous
Metric
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condition at p = 1 and where k < 5. In all other
cases, the MAE for the rank function was equal to
or better than the standardized linear difference
and exponential function. Notably, all MAE
functions converged as both k and f increased
such that performance is nearly identical for all
conditions where k > 4 and § = 100.

PI. The Plresults for endogenous 1 are shown
in Figure 2. Each coherence-weighted aggregation
method dramatically improved upon the equal-
weighted MAE most times in both experimental
conditions. In the spaced condition, PI > .82 atk =
2 for each method, converging at PI=1atk =11
for every method. In the grouped condition, per-
formance was worse, starting at PI > .59 atk =2 for
each method and converging at PI=1 at k=27 for
all methods. In contrast to increasing k, increasing
f decreased PI. This was more pronounced in the
grouped condition than in the spaced condition.
When comparing the weighting functions, the

— Rank

standardized linear difference function performed
worse at lower group-size values, while the expo-
nential and rank functions perform similarly.

Exogenous 1

MAE. Figure 3 shows MAE results when
using exogenous 1. For the spaced condition, there
were three important findings. First, as with
endogenous 1, increasing  improved MAE for
each function. Second, increasing k had nuanced
effects on MAE in the spaced condition, particu-
larly for § > 10. MAE improved up to k =5, had
inconsistent effects for 5 < k < 20, and steadily
improved again for k > 20. Third, as with the
endogenous 1, the standardized linear difference
function performed best at § = 1 and where k < 5.
For all other combinations of k and at 3, the rank
function performed as well as or better than either
the exponential or standardized linear difference
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Figure 4
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function. Finally, weighting by exogenous 1 pro-
duced almost no consistent or reliable improve-
ments in the grouped condition.

PL. Figure 4 shows PI results when using
exogenous 1. For the PI measure, coherence
weighting was typically effective in both condi-
tions. The exceptions were k < 4 for some functions
and parameter levels. This confirms that coherence
weighting consistently improved MAE in the
grouped condition, albeit only slightly. Regardless,
the magnitude of improvement was small. Beyond
this, there were three important findings. First, if
=1, increasing k had either no effect or a negative
effect on PI for each function and value k. Second,
increasing k again had a similarly nuanced effect.
For lower values of at f = 1, increasing & tended to
improve PI. However, as  increased, each func-
tion conformed to a similar shape as observed with

MAE: first improving, then worsening slightly,
and then improving again. Third, no function is
superior, although PI for the exponential function
was highest in most cases.

Discussion

The aggregation results confirm that coherence-
weighted aggregation is an effective tool in the
general knowledge domain, reducing MAE by as
much as 21.4% in the best-case scenario relative to
equal-weighted equivalents (using endogenous
weight, and the rank function at p = 100 and
k =100; see Figure 1). However, there are caveats
to this conclusion. Regarding our primary aim to
identify the best-performing coherence-weighted
aggregation strategies, there are several important
observations. Increasing group size k improves
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aggregated accuracy but with diminishing returns
(Figures 1-4). We saw the greatest variability
among aggregation methods between 1 < k <
10, with performance converging at larger group
sizes. Coherence-weighting presented a slight
risk-reward trade-off: increasing § improved accu-
racy (Figures 1 and 3) but decreased PI slightly
(Figures 2 and 4). The reason is that large values
of B often converged on “coherent and certain”
probabilities, like an extremization procedure.
This was most often correct; however, in the rarer
case that an individual is equally coherent and
certain but incorrect, divergent answers with large
penalties to accuracy will occur.

Although there is no unambiguously superior
weighting function—each converged at high k
and p—we believe there are reasons to prefer the
exponential function. First, compared to the stan-
dardized linear difference function, the exponen-
tial function is unambiguously superior in terms
of PI (Figures 2 and 4) and did not worsen MAE
when we increased k (Figures 1 and 3), in part
because the standardized linear difference func-
tion always zeros out the least coherent forecaster
and thus the exponential function has the advan-
tage of keeping this extra forecaster within the
aggregation. Second, compared to the rank func-
tion, however, the exponential function was less
biased (i.e., it did not penalize incoherence as
much) and less effective at p = 1. It is conceivable
that this more modest weighting strategy may be
desirable and effective in certain contexts. Thus,
the added flexibility of lower coherence weight is
potentially useful. We also suggest the translation
of 1 into corresponding weights ® is more intui-
tive, predictable, and useful for the exponential
function than for the other functions.

Our second aim was to determine whether
individual differences in average levels of coher-
ence are useful predictors of correspondence. We
found limited supporting evidence. Compared to
endogenous 1, exogenous 1 was much more error-
prone. Weighting according to exogenous 1 only
produced numerical improvements in the spaced
condition (Figures 3 and 4). This demonstrates
important constraints on the advantages of coher-
ence weighting reported in Karvetski et al. (2013).
Moreover, even within the spaced condition,
changes in both group size and weighting strategy
had inconsistent effects when using exogenous 1.
Nevertheless, each of our functions improved
over the equal-weighted average in most cases

(Figures 3 and 4). This suggests that aggregators
have little to gain from employing the method—in
both absolute and relative terms—but also little to
lose. Even small gains in empirical accuracy have
the potential to be highly consequential.

Finally, the results shed light on why coher-
ence weighting is effective in the general knowl-
edge domain. Unsurprisingly, like Karvetski
et al. (2013), we saw that coherence weighting
was most effective in the spaced condition
(Figures 1-4). This is counterintuitive, as the sig-
nificant gaps between related judgments make it
difficult to remain coherent. Certainly, participants
who diligently respect coherence constraints
would have to remember the truth probability
they provided at least 60 questions ago! One
explanation for this effect relies on the fact that
correct responses are, by definition, coherent
(Hammond, 2000). When coherence is difficult
to maintain, true experts who know the correct
response will nevertheless be coherent. By con-
trast, the poor mental availability of prior esti-
mates will make it difficult for nonexperts to
be coherent unless coherence is an incidental
byproduct of suboptimal response strategies, for
example, a midlined .50 response to every prompt
is coherent for complementary probability judg-
ments. In other words, spacing responses do not
affect the rate of true positives (i.e., individuals
who are correct and coherent) but it reduces
the rate of false positives (i.e., individuals who
are coherent but not correct). However, another
potential source of false positives is overconfi-
dent, false experts who are certain that the incor-
rect response is accurate, who will also be both
coherent and incorrect.

The importance of this balance between true and
false positives was clear in a Bayesian judgment
experiment (Karvetski et al., 2020): coherence-
weighted aggregation performed best when the
aggregation pool had a small number of primar-
ily coherent judges. The results suggest that
coherence-weighted aggregation does not exploit
a direct relationship between the probabilistic
numeracy required for coherence and the knowl-
edge required for correspondence. Rather, individ-
ual aggregators can exploit individual differences
in coherence to diagnose potential experts for
factual queries. This diagnostic process benefits
from spacing logically related judgment queries
farther apart so that: (a) coherence does not
misdiagnose “mere” awareness of the logical
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constraints, and (b) coherence does not misdiag-
nose “overconfidence” as expertise. Both are
unlikely to be reliable indicators of accurate world
knowledge.

Statistical-Evidence Domain

Wu et al. (2017) investigated how information
presentation influenced the accuracy of probability
judgments. Across four experiments, 2,858 parti-
cipants completed the Turtle Island task. The
fictional scenario in the task concerned an island
populated by two turtle species (i.e., Bayosians
and Freqosians). The species were visually identi-
cal, identifiable only by differentiating two genes:
the DE gene or the LM gene. Each gene has two
forms (D or E for DE; L or M for LM). The rate of
expression for each form of each gene differed
between species. Wu et al. (2017) provided parti-
cipants in different conditions with different back-
ground information: half of the participants
received the Bayesian prior and likelihood (PL)
probabilities; the other half received the Bayesian
marginal and posterior (MP) probabilities. Parti-
cipants used this information to judge the remain-
ing, missing probabilities. That is, participants in
the PL condition used the information to judge the
MP; participants in the MP condition used the
information to judge the PL. Ceritically, using
Bayes’ theorem (or intuitive reasoning consistent
with Bayes’ theorem), it was possible to calculate
these probabilities precisely. Therefore, coher-
ence and correspondence depended on reasoning
consistent with Bayes’ theorem.

Method

The R scripts and aggregated data described
below are available on the OSF (Collins et
al., 2023).2

Incoherence Metrics

Whereas Karvetski et al. (2013) examined sets
of probabilities constrained to Kolmogorov’s
axioms, the estimates elicited in the Turtle Island
task concerned sets of probabilities constrained to
Bayes’ theorem:

P(x) x P(ylx)
P(y)

where x and y in this case refer to distinct events
or classes. The formula consists of the following

P(xly) = (6)

components: the prior, P(x), an unconditional
probability describing the chance that x will
occur; the likelihood, P(y|x), a conditional prob-
ability describing the chance that y will occur
given that x occurred; the marginal, P(y), an
unconditional probability describing the chance
that y will occur; and the posterior, P(x|y), a
conditional probability describing the chance
that x will occur given that y occurred.

In the Turtle Island experiments, the labeling of
the underlying probabilities was randomized. For
simplicity, we canonized the probabilities as
follows: (a) P(B) is the prior probability that a
turtle was a Bayosian turtle; (b) P(E) is the
marginal probability that a turtle had the E
form of the DE gene and, similarly, P(L) is the
marginal probability that a turtle possessed the L
form of the LM gene; (c) P(E|B) and P(E|F) are
the likelihood probabilities that a Bayosian and
Freqosian turtle expressed the E form of the DE
gene, respectively, and similarly, P(L|B) and
P(L|F) are the likelihood probabilities that a
Bayosian or Freqosian turtle expressed the L
form of the LM gene, respectively; and (d)
P(B|E) and P(B|D) are the posterior probabilities
that a turtle with the E or D form of the DE gene
was a Bayosian turtle, respectively, and similarly,
P(B|L) and P(B|M) are the posterior probabilities
that a turtle with the L or M form of the LM gene
was Bayosian, respectively. The researchers con-
strained the probability of binary complements
such that P(F’), the prior probability that a turtle
was Freqosian, was equal to 1 — P(B). Partici-
pants input probabilities using a visual analog
slider; if, for example, P(B) was set to 20%, then
P(F)would automatically be set to 80%, and both
probabilities were visually apparent.

To the best of our knowledge, no practitioner
has yetapplied the CAP to conditional probability
estimates with nonlinear constraints such as
Bayesian probabilities. To make the problem
computationally manageable, we coherentized
and aggregated participants’ unconditional and
conditional probability estimates separately. The
inequality constraints were identical between
conditions and judgments, that is, 0 < P < 1
for all judgments. By contrast, the equality con-
straints differed between condition and judgment.
To construct the equality constraints for the

2 For the participant-level raw and coherentized data sets,
please contact coauthor Charley M. Wu (charley. wu@uni-tue
bingen.de).
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unconditional and conditional judgment tasks in
each condition, we rearranged and substituted
terms in Bayes’ Formula (6) to solve for zero
using only the given information and judged
probability. For example, for unconditional prob-
ability judgments in the PL condition, partici-
pants judged marginal probabilities P(E) and
P(L). For both judgments, we solved for 0 using
a combination of the marginal judgment and the
prior P(B), the likelihoods P(E|B) and P(E|F) or
P(L|B) and P(L|F). We provide the full set of
judgment constraints in the Appendix and the
code on the OSF.

We applied the CAP using the “NlcOptim”
package in R (Chen & Yin, 2019). The optimiza-
tion procedure required three user-set tolerance
parameters that controlled the criterion and stop-
ping rules for the aggregation procedure. A com-
plete description of these tolerances and their
functions can be found in the package documen-
tation. Due to the limited precision afforded to
participant responses, ostensibly coherent re-
sponses could receive a score of 1 = .01 due to
rounding errors. To compensate for this rounding-
induced incoherence, each of our tolerances was
set to .01. In practice, this treated any score as
coherent if both equality constraint violations and 1
were less than .01. For aggregation, we treated all
values of 1 < .01 as if they were 1 = 0. For the
exogenous 1, we used the 1 calculated for the
opposite component: for the unconditional proba-
bility estimates, we weighted participant responses
using the conditional probability estimate 1, and
vice versa.

Correspondence Metrics

We calculated the MAE (5) for the uncondi-
tional probability estimates and the conditional
probability estimates separately before averaging
the two. The MAE reflected the error across both
the given and judged probabilities. As with the
general-knowledge domain, we also calculated
PI. Finally, because the only difference between
the four experiments in Wu et al. (2017) is the
values of the canonized environmental probabil-
ities, we collapsed across the four experiments for
our analyses.

Simulation and Aggregation Method

We compared the effectiveness of our aggrega-
tion methods using a method identical to that
described in the general-knowledge domain

with one exception. Because the Turtle Island
experiments had different probabilities for the
priors, likelihoods, MP probabilities, we had to
aggregate each experiment separately. This cor-
responds to a 2 (Condition: prior and likelihood,
marginal and posterior) X 4 (Experiment: 1-4) X
100 (Group Size: k = 1 — 100) x 3 (Weighting
Function: exponential, standardized linear differ-
ence, rank) X 3 (Parameter: § = {1, 10, 100}) X 2
(Item Sample: endogenous, exogenous) design.
Again, we included an equal-weighted function
for a baseline comparison. Excluding redundant
combinations of conditions, the final analyses
consisted of 15,200,000 unique data points. We
collapsed across the 1,000 bootstrap samples and
four experiments to calculate 3,800 MAE values
(1,900 per condition) as well as 3,600 PI values
(1,800 per condition).

Analysis Plan

We approached the analysis similarly to the
general-knowledge domain. Although SE was
typically higher in this experiment, the largest
was still SE < .002 and the majority were SE <
.001. Thus, we will again rely on visual inferences
from the graphs for MAE comparisons. For our
PI, we used the 99% confidence interval corre-
sponding to the binomial distribution for random
chance of 4,000 events (lower bound = .480,
upper bound = .520).

Results

Figures 5-8 show the results of the coherence-
weighted aggregation for MAE and PI for endoge-
nous 1 and exogenous 1, respectively, as a function
of kand . Again, we scaled the x-axis for group size
k logarithmically (base 10). As in the prior study,
aggregation performance at group size k = 1 was
equal to the sample MAE. Unlike the prior study,
participants’ responses can bracket the correct
answer, and simple equal-weighted aggregation
reduced error (Larrick & Soll, 2006).

Endogenous 1

MAE. Figure 5 shows MAE results when
using endogenous 1. Each coherence-weighted
aggregation method was effective at reducing
MAE compared to the equal-weighted average,
with some noteworthy exceptions. First, increas-
ing k tended to improve MAE in most cases,
but these improvements were associated with



IMPROVING CORRESPONDENCE THROUGH COHERENCE

73

Figure 5
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diminishing returns. Again, the largest numerical
improvements occurred between 1 < k < 10,
regardless of function or f value. However, unlike
the general-knowledge domain, there was a criti-
cal point for each of our functions beyond which
increasing k worsened accuracy slightly. There is
a noticeable worsening of accuracy when com-
paring k = 25 with k = 100 in the PL condition,
though this trend does not revert the aggregated
accuracy to that of equal-weighted aggregation.
Second, increasing 3 improved MAE up to a
certain point, after which accuracy worsened.
This worsening was more pronounced for larger
group sizes and with the rank function. Unlike
aggregated accuracy in the general-knowledge
domain, the coherence-weighted functions did
not converge.

PL. Figure 6 shows PI results when using
endogenous 1. Each of our methods improves
upon the equal-weighted MAE most of the
time. There are three important results. First,

increasing k improved PI to a critical point, after
which PI would plateau or even decrease slightly
depending on the function and p. Second, increas-
ing f led to a decrease in P/ for each function and
k value. Third, comparing our different strategies,
the exponential function, once again, performed
best most of the time. The results of the MAE and
PI analyses show that, given these data and the
weighting strategies we considered, the best re-
sults occurred with group size in the low double-
digits and moderate to strongly biased (i.e., f > 10)
weighting strategies.

To better understand why performance ap-
peared to worsen between k = 25 and k = 100
in the PL condition where § = 100, we examined
the distribution of bootstrapped MAE values
(Figure 7). As the histogram shows, increasing
k from 25 to 100 produces a slight increase in
cases where MAE is between .00 and .05, but a
larger increase in the number of cases where MAE
was between .20 and .25. An inspection of the raw
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Figure 6
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datarevealed that four participants across three of
the experiments answered .50 for every estimate.
This response tendency produced an incidentally
coherent judgment with an MAE = .25. These
incidentally coherent cases explain the second peak
in the histogram. That is, coherence-weighting
strategies assigned a high weight to these inciden-
tally coherent but inaccurate judges. Although rarer
than coherent and accurate judges, larger group
sizes increased the chance that the algorithm
selected at least one of these individuals, reduc-
ing the accuracy of the aggregated judgment.

Exogenous 1

Figures 8 and 9 show the results of the
coherence-weighted aggregation for MAE and

PI, respectively. As with the general-knowledge
domain, the exogenous 1 weighting strategy was
much less effective than the endogenous 1 weight-
ing strategy, both in terms of MAE and PL
Similarly, improvements were also subject to
diminishing returns. Nevertheless, coherence
weighting improved MAE in most instances,
both in absolute terms and relative to the
equal-weighted average. Otherwise, the results
followed the broad patterns established with
endogenous 1, including the slight worsening of
MAE for large group sizes at p = 100. The results
show that the best performance occurred with a
combination of moderate-to-large group size
combined with a moderate to severely biased
combination of weighting function and tuning
parameter.
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Discussion

The results demonstrate that aggregators can
apply coherence efficaciously to the statistical-
evidence domain with nonlinear optimization con-
straints. The strategy reduced MAE by as much as
38.0%; endogenous 1 and standardized linear dif-
ference function at § = 10 and k£ = 100 relative to
equal-weighted equivalent (Figures 1 and 2). In
applying the CAP to a set of probabilities bound by
nonlinear constraints (Appendix and Formula 6),
we generated a metric 1 that was an effective basis
for coherence-weighted aggregation. This shows
that practitioners can efficaciously apply the CAP
to complex conditional probability estimates with
nonlinear constraints.

Regarding what worked best, as with the
general-knowledge domain, the exponential func-
tion often produced the best results (in terms of
lower MAE) and behaved more predictably in
response to changes in k and P. This function
worked best with large group sizes and moderate
weighting (f = 10) or moderate group sizes (10 <
k < 25) and severe weighting (B = 100). Incre-
mental changes were minimally positive and
sometimes negative for k > 10, reflecting strongly
diminishing returns (Figures 5, 6, 8, and 9).

The finding that increasing group size past a
critical point worsened accuracy (Figures 5, 6, 8,
and 9) is particularly interesting. In general, the
addition of information should not worsen accu-
racy. However, coherence weighting restricts the
pool of information to a smaller set of coherent
individuals, resulting in some information loss.

Our findings show this sometimes results in the
selection of a coherent but inaccurate assessor
(Figure 7). These individuals are conceptually
like the false positives in the general-knowledge
domain: they are coherent not because of mathe-
matical rigor or internal consistency (as with frue
positives). Rather, they are coherent due to sub-
optimal response biases that incidentally produce
coherent responses (Bruine de Bruin et al., 2002;
Fischhoff & Bruine de Bruin, 1999). In fact, this is
why Karvetski et al. (2013) found that excluding
the complementarity constraint from coherence-
weighting schemes improved accuracy; judges
who expressed epistemic uncertainty by respond-
ing .5 to both P(A) and P(A) would otherwise be
incidentally coherent. Unfortunately, coherence-
weighted aggregation cannot discriminate between
false positives and true positives. We return to this
issue in the General Discussion.

Regarding our aim of evaluating the useful-
ness of exogenous coherence weighting, we find
that exogenous 1 provided an effective basis for
coherence-weighted aggregation. Promisingly,
weighting by exogenous 1 improved MAE most
of the time in most cases in both the PL. and MP
conditions (Figures 8 and 9). Again, combina-
tions of the exponential function with medium
group size and severe weighting or large group
size and moderate weighting performed best.
This is intuitive, given that the knowledge
required to produce one coherent Bayesian esti-
mate is intricately related to the knowledge
required to produce another coherent Bayesian
estimate.
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General Discussion

The present investigation contributes to our
understanding of prescriptive and descriptive the-
oretical issues concerning coherence-weighted
aggregation. First, we provided a proof of concept
that coherence-weighting can be effective in two
dissimilar task domains where expert judgment is
frequently relied on: general-knowledge tasks and
statistical-evidence tasks. Coherence-weighting
reduced MAE relative to equal-weighting by as
much as 21.4% in the general-knowledge domain
(Figure 1), and 38.0% in the statistical-evidence
domain (Figure 5). These are large and reliable
improvements, comparable to other contemporary
performance-weighted aggregation methods such
as Cooke’s classical method and the contribution
weighted method (Budescu & Chen, 2015; Cooke
et al., 1988). Second, we showed that the ideal
group size and parameterization are task-

dependent. Third, we found the exponential func-
tion to be the most intuitive and flexible weighting
function. Fourth, we show that out-of-sample
exogenous 1 holds some promise of predicting
correspondence on tasks (Figures 3, 4, 8, and 9),
particularly in the statistical-evidence domain.
Fifth, we show that the CAP (Osherson & Vardi,
2006; Predd et al., 2008) can be efficaciously
applied to sets of probabilities characterized by
nonlinear coherence constraints. Importantly, these
types of problems are frequently encountered in
forecasting where conditional probabilities must be
considered (Mandel, 2014). Finally, our results
indicate that there are at least two potential reasons
that coherence-weighting is effective. For some
tasks, coherence and correspondence are scored
on similar bases, in which case coherence may be a
causal determinant of accuracy. For other tasks,
aggregators can simply exploit the fact that correct
answers are, by definition, coherent, and therefore
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Figure 9
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coherence diagnoses potential experts in a crowd.
Whether aggregators exploit the causal or diag-
nostic relationship has consequences for elicitation
and aggregation strategies.

Next, we will discuss these theoretical issues
in greater detail before revisiting the issues of
ideal implementation with these theoretical
developments in mind. We first examine why
coherence weighting is effective in The Wis-
dom of the Coherent: Why Does Coherence
Weighting Work? section, then discuss how
to best exploit the wisdom of the coherent in
the Exploiting the Wisdom of the Coherent
section, then conclude with a discussion of the
decision—theoretic framework applying coherence
weighting in the Toward a Decision—Theoretic
Framework for Optimizing Probability Judgment
section.

The Wisdom of the Coherent: Why Does
Coherence Weighting Work?

We have proposed that there are two relation-
ships between coherence and correspondence
that aggregators can capitalize on to exploit the
“Wisdom of the Coherent.” The first, and most
straightforward, is the causal relationship. In
these cases, the judgment task requires the appli-
cation of coherence-based rules of information to
reach the correct answer. For instance, in the
experiments by Wu et al. (2017) and other Bayes-
ian inference tasks (Mandel, 2014), participants
received statistical information (e.g., base rates
and diagnostic probabilities) that was sufficient to
correctly produce the target judgments using
Bayes’ theorem. One might say that knowledge
of Bayes’ theorem (6) suffices to yield both
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coherent and accurate judgments. However, this
obscures the fact that coherence is the basis for
scoring accuracy in such cases.

The second relationship we described occurs
when coherence diagnoses experts in the opinion
pool. Consider the general-knowledge task we
examined here (see also Karvetski et al., 2013),
which centered on the first man to step foot on the
moon. A true expert will be certain that Neil
Armstrong was the first person to set foot on
the moon, P(A) = 1. This expert will be equally
certain that Buzz Aldrin was not the first person to
set foot on the moon, P(B) = 0, and also that one of
either Neil Armstrong or Buzz Aldrin was the
first man to step on the moon, P(A U B) = 1. This
combination of responses is both correct and
coherent, even though the assessor may not
even understand the coherence principles applied.
Rather, the exploitable relationship here leverages
the fact that correct answers are, by definition,
coherent.

From a decision—theoretic standpoint, it is
important for aggregators and decision makers
seeking to improve judgment accuracy to consider
which relationship they intend to exploit. The two
relationships were dissociable in the present
research, but they are neither mutually exclusive
nor task-specific. For instance, knowledge of
Kolmogorov’s axioms suffices to yield perfect
accuracy in the general-knowledge domain if
the participants are certain about at least one
query: Neil Armstrong was the first man to step
on the moon, therefore Buzz Aldrin must not be.
Conversely, an expert of a real-life Turtle Island
might simply know, as a matter of fact, the
different environmental probabilities without nec-
essarily applying Bayes’ theorem to arrive at the
answer. Thus, a mixture of signals likely exists in
all tasks to some degree.

Critically, forecasting is a good example of
where both types of bases for exploiting coher-
ence may be present. For instance, accurate fore-
casting may demand knowledge of factors that are
shaping the outcome as well as the statistical
knowledge to coherently combine this informa-
tion. Nevertheless, the nature of the relationship
practitioners hope to exploit has implications for
how best to extract the wisdom of the coherent
among the crowd. This includes the ideal elicita-
tion process before aggregation, the potential
utility of exogenous 1, and the optimal aggregator
function and group size. Next, we examine these
issues in greater detail.

Exploiting the Wisdom of the Coherent

Elicitation Method

The coherence—correspondence relationship
aggregators wish to exploit may affect decisions
about the elicitation process. Take, for instance,
the decision to structure elicitations in ways
that mitigate incoherence or inaccuracy, for exam-
ple, using pairwise estimates (Por & Budescu,
2017), evaluation frames (Williams & Mandel,
2007), increasing the proximity of related items
(Karvetski et al., 2013), using information presen-
tation formats that make logical relations salient
(Wu etal., 2017), consider-the-opposite strategies
such as dialectical bootstrapping (Herzog &
Hertwig, 2014), and eliciting confidence intervals
to improve best estimates (Hemming et al., 2018;
cf. Mandel et al., 2020). If aggregators wish to
exploit the causal route, it is best to make the
elicitation process as easy as possible: any elicita-
tion method that serves to improve coherence
should also improve accuracy. Those who under-
stand the probabilistic axioms can capitalize on
information clarity and achieve low 1. Those who
do not understand the relevant probabilistic calcu-
lus are unaffected—for better or worse—by the
difficulty of the elicitation process.

If aggregators wish to exploit the diagnostic
route, however, it may be useful to let individual
differences in incoherence “flourish.” Aggregators
can exploit these differences through coherence-
weighted aggregation. In Karvetski et al. (2013)
and our reanalyses, maximally spacing logically
related judgments made coherence principles,
such as additivity, less mentally accessible. This
elicitation strategy allows aggregators to harness
the wisdom of the coherent more efficiently. The
idea of spacing judgments to increase incoherence
might seem to be a perverse and counterintuitive
strategy. However, when considered alongside
recalibration and aggregation methods, its advan-
tages become clear. The reasoning is that the
relationship between coherence and correspon-
dence could be incidental or diagnostic. For
grouped judgments, it is more likely that a judge
is coherent because they understand and accept the
relevant principle. If they understand and accept
additivity, for instance, they will try to provide
additive judgments even if they do not know the
correct answer. For spaced judgments, it is less
likely that judges will be aware of the logical
constraints on the set of probabilities. In this
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case, coherent assessors are more likely to be
coherent simply because they know the correct
answer. Accordingly, weighting by coherence will
separate the wheat from the chaff.

Interestingly, several methods hold promise
for capitalizing on both causal and diagnostic
relationships. For instance, one study showed
that allowing judges to opt in to (or out of)
judgments improved aggregated accuracy
(Bennett et al., 2018). The researchers suggested
that metacognitive assessments of one’s exper-
tise can predict accuracy. For the diagnostic
signal, much of the benefit came from coherent
and certain individuals (e.g., probabilities of
exactly 0 and 1), exploiting a similar principle.
For the causal route, we might expect judges
with no knowledge of Bayes’ theorem to simply
opt out, and where opting out is not an option,
elicitation procedures should attempt to distin-
guish coherence due to understanding (or at least
implementing) coherence principles versus inci-
dental coherence that arrives incidentally via
response biases such as straight-lining or respond-
ing .5 to convey one’s utter epistemic uncertainty.
Aggregators must also consider the prevalence
of false experts within the opinion pool who may
be bullish and overconfident about incorrect re-
sponses, also achieving incidental coherence
(Tetlock, 2005).

Because a function cannot distinguish between
these false experts and true experts, and because
apparently lazy midlined responses might, in fact,
be epistemically justified, future research on
coherence-weighting could profitably focus on
elicitation procedures that reduce confounds of
the coherence signals. As we have shown, failure
to identify the cases and the conditions where
incidentally coherent responses are common could
impose costs to accuracy. For example, informa-
tion about response consistency (reliability) can
improve accuracy through repeated elicitation
Miller & Steyvers, 2017). For the diagnostic
route, reliability is a proxy for certainty and exper-
tise. For the causal route, reliability is a proxy for
the correct application of relevant probabilistic
axioms and theories. In both cases, false positives
are likely to be minimized. Regardless of the signal
practitioners wish to exploit, they should take care
not to structure their elicitation processes such that
incidental coherence is trivial to achieve, such as
with the midlined responses in Wu et al. (2017)
or the complementary constraint in Karvetski
et al. (2013).

Although we have emphasized the utility of
coherence-weighting as a tool that can be used
even in data-poor environments, nothing prevents
decision makers from combining it with other
techniques to further improve the accuracy of
aggregated estimates such as other performance-
weighted methods (Bolger & Rowe, 2015;
Budescu & Chen, 2015; Clemen & Winkler,
1999; Collins et al., in press; Himmelstein et al.,
2021). Furthermore, practitioners can combine
ensembles of methods such as competitive
(Lichtendahl et al., 2013) or structured (Fraser et
al., 2023) elicitation methods; enhancing the
salience of private versus public information
(Larrick et al., 2012), choosing smaller, wiser
crowds (Soll et al., 2010); trimming opinion pools
to account for under- and overconfidence (Jose et
al.,, 2014; Yaniv, 1997); up-weighting assessors
who update estimates frequently in small incre-
ments (Atanasov et al., 2020); or extremizing
judgments (Baron et al., 2014; Hanea et al.,
2021; Satopad & Ungar, 2015) to further improve
accuracy. The latter is particularly appealing in
general-knowledge tasks where the “outcomes”
are, by definition, extreme. Unlike history- and
disposition-based methods, these methods do not
require a more data-rich environment than ones
where coherence methods may be applied.

The Utility of Exogenous 1

The distinction between 1 that diagnoses accu-
racy versus 1 as a causal determinant of accuracy
has the benefit of explaining the exogenous 1
results intuitively. To the extent that coherence
is a causal determinant of accuracy on a task, it is
not surprising that 1 on that task would be a useful
indicator of correspondence on a closely related
task. For instance, the ability to derive coherent
and accurate Bayesian probabilities on one
Bayesian task (e.g., one involving the estimation
of likelihoods) is a useful indicator of the ability
to derive coherent and accurate probabilities on
another Bayesian task (e.g., judging posterior
probabilities). By comparison, where coherence
diagnoses accuracy, itis not surprising that1on one
topic does not strongly predict correspondence on
another topic. Rather, its utility may depend on two
factors: (a) a clear and uncontaminated diagnostic
signal (i.e., the spaced condition), and (b) how
closely related 1 is to the task at hand. This
implies that a topic-specific conceptualization of
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exogenous 1 could be particularly effective, which
is an issue that future research could investigate.

Finally, although our present aggregation mod-
els cannot account for its effect, the variance of
exogenous 1 may have the potential for identify-
ing experts. Homogeneity in coherence (or inco-
herence) may indicate someone who does (or
does not) understand the relevant probabilistic
axioms. By contrast, heterogeneity—ajudge who
is sometimes coherent and sometimes not—may
represent an individual who is sometimes certain
and coherent and, in other cases, strategically
incoherent, for example, midlining responses to
express uncertainty or changing one’s mind part-
way through elicitation. This aspect of exogenous
1 deserves further investigation.

Choosing the “Best” Function and Group Size

The present research compared the efficacy of
several functions used in previous studies (Fan
et al., 2019; Karvetski et al., 2013; Wang et al.,
2011; see Table 1). The present findings clarify,
unsurprisingly, that there is no single “best”
method. Weighting functions, the tuning param-
eter B, and group size k interacted in complex
ways that affected MAE and PI in both task
domains. Nevertheless, we draw the following
lessons from these findings. First, both the
weighting function and f work in tandem to
determine how quickly the aggregation weight
approaches zero as 1 increases. In much the same
way that p = 100 is more biased than = 10, the
rank function is more biased than the standardized
linear difference function. As we have seen in our
reanalysis of Wu et al. (2017), the most biased
weighting strategies are not always optimal. In
fact, across both reanalyses we conducted, more
biased strategies often resulted in lower PI. In this
way, the exponential function is more flexible
than either the rank or standardized linear differ-
ence function given that its responsiveness to
changes in B allows it to achieve a more modest
weighting strategy if required by the practitioner.
Providing further evidence for this recommenda-
tion, we observed suboptimal behavior in both the
rank function and standardized linear difference
function in both studies. The rank function was
occasionally too biased by default, whereas the
standardized linear difference function exhibited
nonmonotonic improvements.

Curiously, regarding the standardized linear
difference function, across both domains and at

low levels of p the function would achieve peak
accuracy at low group sizes but worsen thereafter.
This is because the function will always assign a
weight of ® = 0 to the most incoherent judge,
reducing the effective size of the opinion pool
by 1. This has a proportionally large biasing effect
for small group sizes, equivalent to a step function
atk=2(i.e., choose the most coherent responder).
That much of the benefits of coherence-weighting
are the result of excluding incoherent judges in
the opinion pool suggests that aggregators might
efficaciously combine small (or select) crowd
aggregation strategies (Mannes et al., 2014)
with coherence-weighting. Aggregators could
employ a select crowd with a step function that
assigns a weight of 1 to judges that suffices a
coherence criterion (e.g., 1= 0) and a weight of 0
to those that do not. In other words, aggregating
only those judges that were coherent or coherent.
Given its bias, the performance of such a model is
similar to our ranked function where = 100.
Future research should investigate the efficacy of
this “chasing the coherent” strategy and the poten-
tial accuracy tradeoffs of permitting small coher-
ence violations (i.e., critical values where 1 > 0).
Regarding group size, we find that a larger
crowd is generally better. However, gains in
accuracy were associated with diminishing re-
turns, similar to other studies of aggregation (Han
& Budescu, 2019; Mandel et al., 2018). Beyond a
small-to-moderate group size of about 10 judges,
the addition of a single extra participant often
produced minimal benefits. This is in line with
research showing that small-to-medium-sized
groups are ideal during aggregation (Han &
Budescu, 2019; Mannes et al., 2014; Navajas
et al.,, 2018). The results of Turtle Island also
show that large groups increased the risk of select-
ing at least one “false positive”—an individual
who was incidentally coherent. Indeed, incidental
coherence also diluted the effectiveness of
coherence-weighted aggregation in the general-
knowledge domain (Karvetski et al., 2013). We
believe the present results are in line with conven-
tional wisdom suggesting well-selected medium-
sized groups often perform better than either small
or large groups. Simple procedures such as scan-
ning for straight-liners and omitting their judg-
ments could mitigate the problem, though this is
likely to be insufficient. Rather, we stress that
practitioners who wish to employ coherence-
weighting elicitation adopt a priori steps to reduce
incidental coherence at the elicitation stage.
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Toward a Decision—Theoretic Framework for
Optimizing Probability Judgment

The foregoing discussion provides a proof of
concept for the efficacy of coherence-weighted
aggregation in two distinct domains where expert
judgment is frequently called upon. It also pro-
vides the basis for sketching a decision—theoretic
framework for optimizing probability judgments.
Central to this framework is the view that deci-
sions about judgment optimization strategies must
focus broadly on ensembles of relevant factors,
which include, but are not restricted to, the selec-
tion of: (a) format for information presentation, (b)
methods for eliciting judgments, (c) methods for
recalibrating or otherwise transforming judgments
either before or after aggregation, and (d) methods
for aggregating judgments (Karvetski et al.,
2020). The alternative—narrowly considering
the effect of one of these factors on its own—is
unlikely to reveal important lessons for judgment
accuracy optimization that are robust and gener-
alizable. From a methodological perspective, a
focus on ensembles entails a greater degree of
complexity in experimental variables. Research-
ers must better understand how the pillars of
optimization—information representation, judg-
ment elicitation, and postjudgment recalibration
and aggregation—interact amongst themselves
and task characteristics (Zellner et al., 2021). Cur-
rently, few studies take this multi-interventionist
approach, and we encourage further research along
these lines.
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(£y1renbo) uersoAeg/resurjuoN (ala)d (dla)d
15> {(mled (119)d “(ala)d @g)d “(411)d “(@l1d “(412)d (@l2)d “(@)d} > 0 (ala)d (gla)d
(Anenbaur) spunoq/K)ane3ouuoN JOLIRISO] pooyIyIT
{JDd x[(@)d = 1] + (GT)d x (g)d} — (T)d =0
{dla)d x [(a)d — 1] + (@la)d x (@)d} = (@)d =0
(Anenba) uersoAeg/IeauIjuoN (Dd
SA{UlDd (@D (dla)d “(@a)d (1d “(@)d (@)} > 0 (Dd (@d
(Anrenbaur) spunoq/Ayane3ouuoN [euISIRIN Ioud POOYI[AYI] pue IoLJ
Sjurensuo)) QAL UDAID) uonipuo)

sayewnsy A)N[IqeqoJ UBISIABY S[ENPIAIPU] UO SJUIBIISUO)) JO ISI']

xipuaddy
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