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Phase space crystal vibrations: Chiral edge states with preserved time-reversal symmetry
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It was recently discovered that atoms subject to a time-periodic drive can give rise to a crystal structure
in phase space. In this work, we point out that the atom-atom interactions give rise to collective phonon
excitations of phase space crystal via a pairing interaction with intrinsically complex phases that can lead
to a phononic Chern insulator, accompanied by topologically robust chiral transport along the edge of the
phase space crystal. This topological phase is realized even in scenarios in which the time-reversal trans-
formation is a symmetry, which is surprising because the breaking of time-reversal symmetry is a strict
precondition for topological chiral transport in the standard setting of real space crystals. Our work has
also important implications for the dynamics of two-dimensional charged particles in a strong magnetic
field.
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I. INTRODUCTION

The quantum Hall current in a two-dimensional (2D) elec-
tron gas pierced by a magnetic flux is insensitive to weak
disorder because it is carried by chiral edge states that do
not have a counterpropagating counterpart [1,2]. With the
proposal of the quantum anomalous Hall effect (QAHE) [3],
Haldane showed that the key ingredient to engineer chiral
edge states is not a net magnetic field flux, but rather the
breaking of the time-reversal symmetry (TRS) itself. This
insight has opened the way to the current focus on topolog-
ical transport of neutral excitations such as photons [4–6],
magnons [7,8], phonons [9,10], and cold atoms [11,12].

In this work, we introduce a conceptually different way
to generate robust chiral phonon transport, without requir-
ing a breaking of the TRS. A single quantum particle
moving on a closed path in phase space acquires a Berry
phase [13–16]. Therefore, when one considers the quantum
motion in an extended periodic phase space potential, the
resulting matter wave band structure supports nontrivial Chern
numbers [15,17,18]. However, so far it has been unclear how
this could lead to the most important consequence of such
Chern numbers, namely chiral edge channels, since it is not
straightforward to produce a boundary of such a phase space
potential. Here we consider a different scenario, demonstrat-
ing a new mechanism that occurs already in the classical
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domain, but only if one considers an interacting many-particle
system. When the particles arrange themselves in the extrema
of the underlying phase space potential, this gives rise to
a so-called phase space crystal [15]. We will show that the
phase space crystal vibrations acquire a topologically nontriv-
ial band structure, due to the combination of interactions and
symplectic phase space geometry. In contrast to the single-
particle case, the boundary of the finitely extended phase
space crystal naturally supports chiral edge channels in phase
space, which are now of a phononic (collective) nature. We
show that these chiral edge channels can arise even when
the driving preserves the time-reversal symmetry. Finally, we
explore the implications of our work for the crystal phase
of 2D charged particles confined in the lowest Landau level
(LLL) in the presence of a strong magnetic field.

Similar to Floquet approaches for topology [19,20], we
will be employing time-dependent driving, but in our case the
drive itself need not break TRS to generate chiral transport,
as a consequence of the nonlocal nature of the time-reversal
operation in phase space. Our construction produces topo-
logical channels in a 2D phase space, starting from 1D real
space. This is reminiscent of synthetic dimensions [21–23],
but unlike that concept, no extra controlled degree of freedom
is needed, we automatically get chiral motion, and besides in
synthetic dimensions it is very challenging to create nontrivial
lattice structures [24] or local and isotropic interactions [22],
in contrast to the present approach.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a model for a kicked harmonic oscil-
lator. Our model allows us to engineer any arbitrary lattice
Hamiltonian in phase space by selecting an appropriate kick-
ing sequence. We present the time-reversal-invariant kicking
sequence that generates a honeycomb lattice Hamiltonian in
phase space. In Sec. III, we investigate the atom-atom in-
teractions for an ensemble of atoms confined in our phase
space lattice. Starting from the full phase space many-body
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FIG. 1. (a) Sketch of our model: particles (blue) confined in a static harmonic potential (red) and driven by stroboscopic lattices (green).
(b) Experimental implementation of our model with a cloud of cold atoms (blue) confined in quasi-1D tubes by two orthogonally polarized
lasers (pink) and subject to a tuneable stroboscopic lattice formed by two lasers (green) intersecting at angle θ . (c) Density plot of single-particle
Hamiltonian Hs(X, P) for δω = 0 and � = 0, with X, P in a rotating frame. The honeycomb lattice sites are occupied by atoms (blue), forming
a disk-shaped crystal in phase space. (d) Sketch of coupling between the atoms’ vibrations. The arrow indicates hopping of a vibrational
excitation. The pink dumbbell-like shapes indicate pairwise creation (annihilation) of excitations. (e) Sketch of the pairing-interaction-induced
hopping (left panel) and the resulting effective magnetic field (right panel). The induced nonreciprocal hopping pathway (dashed arrow)
interferes with a direct hopping pathway (solid arrow), leading to a weak staggered magnetic flux of order ∼γ /ω0; see more discussion in
Appendix B 3.

Hamiltonian, we derive an effective quadratic Hamiltonian for
the small vibrations about a phase space crystal equilibrium
configuration. In Sec. IV, we study the resulting bulk band
structure and show that it supports a topological band gap with
a nonzero Chern number, even though our model is symmetric
under time-reversal transformation. In Sec. V, we investigate
the phase space crystal vibrations in the presence of physical
boundaries. We compare our phase space Chern insulator with
standard real space Chern insulators and explain why the
breaking of the time-reversal symmetry is not a precondition
for robust chiral transport in phase space. In Sec. VI, we show
that the disk-shaped phase space crystal of finite size supports
chiral edge states, and we discuss how to observe the ensuing
robust transport in a cold-atom experiment. In Sec. VII, we
explore the connection between our phase space dynamics and
an important condensed-matter scenario: the 2D real space
dynamics of charged particles in an intense magnetic field.
In particular, we discuss the implications of our work for the
dynamics of the guiding centers of an ensemble of particles
frozen in the LLL. In Sec. VIII, we summarize our results and
give an overview of possible future research directions.

II. PHASE SPACE LATTICE

A. Honeycomb lattice in phase space

Consider cold atoms trapped in a quasi-1D elongated har-
monic potential with the axial trapping frequency ωax and
the transverse trapping frequency ωtr � ωax. The atoms are
driven stroboscopically by multiple optical lattices with kick-
ing frequency ωax/τ , where τ is the dimensionless kicking
period. We sketch our model and the experimental implemen-
tation in Figs. 1(a) and 1(b). The single-atom Hamiltonian is
given by

H̃s = 1

2
(x2 + p2) +

∑
n∈Z

∑
q

Kq cos(kqx − φq)δ
( t

τ
− θq − n

)
.

(1)

Here, we have rescaled the coordinate, momentum, time,
and energy by k−1, mωax/k, ω−1

ax , and mω2
ax/k2, respectively,

where m is the mass and k is the typical wave vector of
the stroboscopic lattices. This model is a generalization of
the well-known kicked harmonic oscillator [25–30] in that it
allows for pulses with different wavelengths kq.

For weak near-resonant driving (|Kq| � 1, τ/2π ≈ 1), the
single-particle dynamics is dominated by fast harmonic oscil-
lations with slowly changing quadratures (X, P):

x(t ) = P sin

(
2πt

τ

)
+ X cos

(
2πt

τ

)
,

p(t ) = P cos

(
2πt

τ

)
− X sin

(
2πt

τ

)
. (2)

Within the rotating-wave approximation (RWA) this leads to a
time-independent Hamiltonian (see Appendix A for a detailed
derivation)

Hs(X, P) = 1

2
δω(P2 + X 2) +

∑
q

Kq cos[kq(P sin 2πθq

+ X cos 2πθq) − φq], (3)

where δω ≡ 1 − 2π/τ is the detuning between driving and
harmonic frequencies. The extrema of Hs(X, P) represent sta-
ble points. In the standard kicked harmonic oscillator [25–30]
and for an appropriate choice of the parameters, the stable
points can form a square or triangular Bravais lattice. Our
more general model allows for more flexibility in the design
of Hs(X, P) and, in particular, to realize any arbitrary phase
space lattice (see Appendix A for additional details).

For concreteness, in the remainder of the paper we focus on
a scenario in which Hs(X, P) supports a honeycomb lattice of
stable points. By superposing 15 kicks that are equally spaced
on the 12 points of the driving period as shown in Fig. 2,
we have the following single-particle Hamiltonian (up to a
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FIG. 2. Kicking protocol for the honeycomb lattice. Top: Kick-
ing parameters table. Bottom: Kicking sequence. The kicks listed in
the first three lines lead to the parity-symmetric honeycomb lattice
Hamiltonian, i.e., the second term in Eq. (4). The kicks in the fourth
line induce the parity–symmetry-breaking Hamiltonian, i.e., the third
term in Eq. (4).

constant 3
/2):

Hs(Z) = 1

2
δω|Z|2 − 16

9
ω0

3∏
n=1

sin2

(
1

2
vn · Z

)

− 2�√
3

3∑
n=1

sin(vn · Z). (4)

Here, we have defined the vector Z ≡ (X, P) and three
ancillary vectors v1 = ( 2

√
3

3 , 0), v2 = (−
√

3
3 , 1), and v3 =

(−
√

3
3 ,−1). For δω = 0 and � = 0, the minima of Hs(Z) form

a honeycomb lattice; cf. Fig. 1(c). The frequency of small vi-
brations about these stable points ω0 = −9
 can be obtained
by the linear expansion of Eq. (4). The last term in the Hamil-
tonian (4) breaks the inversion symmetry of the honeycomb
lattice, and thus allows for different on-site energies of the
two sublattices ωL = ω0 ± 2�. We note that [X, P] = iλ with
the effective Planck constant λ = h̄k2/mωax, which is twice
the square of the Lamb-Dicke parameter [31]. The condition
λ � 1 ensures that the quantum fluctuations are small com-
pared to the phase space distance between neighboring stable
points. In the remainder of this paper, we will focus on this
parameter regime.

B. Symmetries in phase space

Next, we analyze how the time and space symmetries of
the full laboratory-frame Hamiltonian Eq. (1) are reflected
into the phase space symmetries of the RWA Hamiltonian
Eq. (3). For concreteness, we focus on the special case of
our honeycomb lattice Hamiltonian Eq. (4). For the train of
pulses displayed in Fig. 2, the full Hamiltonian Eq. (1) has
period τ/3, H̃s(t + τ/3) = H̃s(t ). This is one-third of the ro-
tation period τ of the frame of reference Eq. (2) in which the
RWA Hamiltonian is defined. This discrete time-translational
symmetry leads to a threefold rotational symmetry of the
Hamiltonian Eq. (4) in phase space.

In addition, the Hamiltonian Eq. (1) has time-reversal sym-
metry H̃s(−t ) = H̃s(t ), cf. the kicking sequence displayed
below the parameter table in Fig. 2. The time-reversal symme-
try leads to a mirror-symmetry in phase space, Hs(X,−P) =
Hs(X, P). Because of the threefold rotational symmetry,
the Hamiltonian Hs(X, P) has actually three different mir-
ror planes. Each such plane corresponds to two different
reference times for the time-reversal symmetry H̃s(−t +
nτ/3) = H̃s(t + nτ/3) and H̃s(−t + nτ/3 + τ/2) = H̃s(t +
nτ/3 + τ/2), with n = 0, 1, 2 for the three different planes.

For the special case in which the pulses in the last row of
the table in Fig. 2 have zero amplitude (corresponding to � =
0), the Hamiltonian Eq. (1) has also parity symmetry H̃s(x) =
H̃s(−x). The parity symmetry leads to an additional mirror
plane in phase space, Hs(−X, P) = Hs(X, P). Combined with
the time-reversal symmetry Hs(X,−P) = Hs(X, P), it leads
to the twofold rotational symmetry, Hs(−X,−P) = Hs(X, P).
Thus, our phase space crystal (for � = 0) has the full point-
group symmetry C6ν (sixfold rotations and six mirror planes)
of the underlying triangular Bravais lattice.

III. PHASE SPACE CRYSTAL

A. Phase space interaction

The interaction of neutral cold atoms in a tight 1D
trap is captured by an effective two-body contact poten-
tial [32], V (xi − x j ) = γ δ(xi − x j ). Since atoms that are
localized about distant phase space points will still col-
lide in the course of their laboratory-frame trajectories, the
laboratory-frame contact interaction gives rise to an effective
long-range interaction in the rotating frame [15,33–36]. For
λ � 1, the interaction is Coulomb-like [15,35], U (Zi − Z j ) =
γπ−1|Zi − Z j |−1. Thus, we arrive at the many-body Hamilto-
nian

H =
∑

i

Hs(Zi ) + γ

π

∑
i< j

1

|Zi − Z j | . (5)

By introducing the phase space force Fi ≡ −∇iH with ∇i ≡
(∂/∂Xi, ∂/∂Pi ) and the unit direction vector n̂ perpendicular
to the phase space plane, we can rewrite Hamilton’s canonical
equations as

d

dt
Zi = n̂ × Fi. (6)

As a result, the phase space force causes a displacement of
the atoms perpendicular to the force direction in phase space,
which is similar to the Lorentz force.

In the presence of dissipation, the stable points become
attractors [37]. In other words, a noninteracting atom tends to
relax toward the closest stable point. Introducing a sufficiently
strong repulsive interaction (γ > 0) and initially preparing the
atoms close to the origin will thus give rise to a disk-shaped
crystal; see Fig. 1(c).

It is important to keep in mind that in a finite geometry,
the atom-atom interactions tend to distort the equilibrium
configuration. We now want to discuss how to mitigate this
undesired effect. In a mean-field approximation, the effective
electrostatic potential experienced by an atom at phase space
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position Zi (induced by the remaining atoms) can be approxi-
mated by the Coulomb potential for a uniformly charged disk,

U (Zi ) = 2πσR

[
1−

∑
l=0

(2l+ 1)

[
(2l− 1)!!

(2l+ 2)!!

]2( |Zi|
R

)2l+2
]
.

(7)

Here, σ = γ /
√

3π3 is the effective charge density, and we
have assumed that the disk of radius R is centered about the
origin of phase space. We note that the leading-order term
(l = 0) in the above effective potential represents a harmonic
potential U (Zi ) ∼ −σπR−1|Zi|2/2. We can further improve
the fitting of U (Zi ) to a parabolic potential (and thus partially
taking into account the high-order lth terms) by adjusting the
curvature

U (|Zi|) ∼ −1.35
σπ

2R
|Zi|2.

This effective parabolic potential can be easily counter-
balanced by a laser-generated potential, thereby strongly
reducing the lattice distortion. In practice, this can be
achieved simply by choosing the appropriate detuning δω =
1.35σπR−1 in Hamiltonian (4) instead of resonant driving; cf.
Fig. 5(a).

B. Dynamics of crystal vibrations

Each atom oscillates around its equilibrium position, i.e.,
ZL(t ) = Z0

L + uL(t ), where uL = (uX
L , uP

L ) is the displacement
on the lattice site L. The equilibrium points are determined
by ∂H/∂uα

L = 0 (α ∈ {X, P}). By expanding the Hamiltonian
Eq. (5) up to second order, we rewrite it in terms of the classi-
cal variable αL ≡ 1√

2λ
(uX

L + iuP
L ) (see the detailed derivation

in Appendix B 2),

H =
∑

L

ωLα∗
LαL + 1

2
gLα∗2

L + 1

2
g∗

Lα2
L

− γ

4π

∑
L �=L′

α∗
LαL′ + 3ei2ϕLL′ α∗

Lα∗
L′

|Z0
L − Z0

L′ |3 + H.c. (8)

Here ωL are the on-site quasienergies with ωL − ω0 ∼ O(γ ),
and ϕLL′ is the angular coordinate of Z0

L − Z0
L′ , cf. Fig. 1(d),

defined via

XL − XL′ = RLL′ cos ϕLL′,

PL − PL′ = RLL′ sin ϕLL′ . (9)

The Hamiltonian Eq. (8) describes phonons propagating in
our honeycomb phase space crystal. It is reminiscent of the
tight-binding model for electrons in graphene, but with two
qualitatively new features: (i) Our phase space phonons can
hop between any two arbitrarily distant sites reflecting the
long-range nature of the atom-atom interaction, as indicated
by the blue arrow in Fig. 1(d); and (ii) the excitation number
is not conserved, because a phonon pair can be created or
annihilated on any pair of sites.

It is important to highlight an important qualitative feature
of our model for the phase space vibrations: the complex
phases ϕLL′ of the anomalous pairing interaction have a
geometrical interpretation as the angular coordinate of the
link connecting two sites; cf. Eq. (9) and Fig. 1(d). The same

FIG. 3. Bulk band structures for weak interaction strength
γ /ω0 = −0.2 (a) and strong interaction γ /ω0 = 102 (b). Topolog-
ical phase diagram (c) with Chern number C (the Chern number of
the lowest band) as a function of interaction strength γ and on-site
detuning �, which lifts the degeneracy at the K (K ′) symmetry
points.

interpretation will still hold for any arbitrary phase space
single-particle Hamiltonian Hs(Z) and atom-atom interaction
U (Zi − Z j ) (see Appendix B 2 for a more detailed discussion)
and thus is to be viewed as a general property of vibrations
in phase space. This is in stark contrast to the nonreciprocal
phases of tight-binding Hamiltonians in 2D real space, which
can be tuned without displacing the lattice sites. Below, we
show that these complex phases lead to a topological phase
transition.

IV. TOPOLOGICAL BAND STRUCTURE

A. Connection to QAHE

To better distinguish the effects of the (long-range) hop-
ping and the pairing interaction, it is instructive to first
consider a regime where the latter is suppressed. This will be
the case if the creation of phonon pairs is far off-resonant,
for γ � ω0. The band structure in this regime is shown in
Fig. 3(a). While the long-range hopping strongly modifies it
compared to its graphene counterpart, its main distinguish-
ing feature is still on display: it supports two Dirac cones
at the high-symmetry points K and K ′, with the tips of the
cones separated by a small gap. We note that the Dirac
cones are symmetry-protected (they should be gapless if the
Hamiltonian has sixfold rotational symmetry and real hopping
amplitudes). Thus, the small band gap must be induced by
the complex amplitudes of the pairing perturbation. In 2D
real space, the appearance of such complex amplitudes would
be interpreted as being induced by the breaking of the time-
reversal symmetry and is well known to lead to a topological
band gap [3].
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This can be further substantiated by observing that, in the
off-resonant regime, the main effect of the pairing interaction
is to induce effective hopping transitions with nonreciprocal
phases; cf. the left subfigure in Fig. 1(e). Thus, a phonon
propagating on a closed loop L(·) will acquire a geometrical
Berry phase �(L(·)). These geometrical phases are similar to
the Aharonov-Bohm phases acquired by charged particles in
a magnetic field and are thus often referred to as synthetic
magnetic fluxes. In fact, we can derive an effective particle-
conserving description from a perturbation theory in γ /ω0.
That is to say, the pairing term ∝ α∗

Lα∗
L′ in the Hamiltonian (8)

can be canceled and replaced by a hopping term h̃LL′α∗
LαL′

with a pairing-induced hopping rate given by (see the detailed
derivation in Appendix B 3)

h̃LL′ ≈ −
(

3γ

2π

)2 ∑
L̄

2

ωL̄

1

R6
LL̄

ei2(ϕLL̄−ϕL′ L̄ ). (10)

In Fig. 1(e), we show the geometric angle ϕ̃ ≡ ϕLL̄ − ϕL′L̄
and the resultant phase exponent 2iϕ̃ of the complex pairing-
induced hopping rate. This differs from the well-known
Haldane model for the anomalous quantum Hall effect [3]
only in that it includes long-range hopping transitions. As for
the Haldane model, the nonreciprocal hopping phases can be
viewed as being induced by an effective staggered magnetic
field, cf. the right subfigure in Fig. 1(e), and can open a
small topological gap of width ∼γ 2/ω0 and with band-gap
Chern number C = −1; cf. Fig. 3(a). We emphasize that this
synthetic staggered magnetic field for phonons is a purely
classical effect and is not to be confused with the uniform
synthetic magnetic field that can be introduced to describe the
motion of a single quantum atom in a noncommutative phase
space [13–15,15–18].

B. Strong interaction regime

In the strong interaction regime, |γ | � |ω0|, the phonon
number is not even approximately conserved due to the pair-
ing interactions in Hamiltonian (8), and it is thus not possible
to employ a single-particle description. The physics is also
different compared to superconducting systems [38] (with
fermionic pairing-interactions): for bosons, there is no limit
to the occupation number of single-particle states, which can
lead to the amplification of fluctuations and even to instabili-
ties [8,39,40].

In the stable regime, the Hamiltonian (8) can be di-
agonalized via a bosonic Bogoliubov transformation (see
Appendix C). For the bulk, H = ∑

k,n=1,2 ωk,n|βk,n|2, where
k = (kX , kP ) is the quasimomentum, ωk,n is the band structure,
and βk,n are the normal modes,

β∗
k,n =

∑
s=A,B

un,s(k)α∗
k,s + vn,s(k)α−k,s,

with αk,s ≡ 1√
N

∑
l αl,se−ik·Z0

l,s (N is the number of prim-
itive cells). The band Chern number is defined by (see
Appendix C 2)

C = 1

2π

∫
BZ

(∇k × A1(k)) · ẑ, (11)

where

A1(k) = i
∑

s

[u∗
1,s(k)∇ku1,s(k) − v∗

1,s(k)∇kv1,s(k)] (12)

is the Berry connection for the lower band. Note that the
definition of the Berry connection Eq. (12) has to be mod-
ified compared to the standard definition to account for the
bosonic nature of our excitations [8]. In a classical setting,
the Chern number quantization as well as the other usual
properties of the Chern number (including the bulk-boundary
correspondence [41]) follow from the conservation of the
Poisson brackets {β∗

k′,n′ , βk,n} = iδn,n′δk′,k (or, equivalently,∑
s |un,s|2 − |vn,s|2 = 1).
The band structure for a comparatively strong interaction

is shown in Fig. 3(b). In this case, the Chern number C = −1
remains the same as in the weak-interaction limit. We note
that close to the K and K ′ points (as labeled in the figure), the
lowest band approaches zero quasienergy. In the presence of
bosonic pairing interactions, the quasienergy can be viewed
as the energy cost of producing a pair of Bogoliubov excita-
tions. When this hits zero for a critical threshold γ +

c ≈ 115ω0

or γ −
c ≈ −20ω0, the phase space crystal becomes unstable,

leading to a disordered gas phase.

C. Topological phase diagram

We have systematically investigated our phase space crys-
tal by varying the interaction strength but also allowing for
different on-site quasienergies, ωL ≡ ω0 ± 2�, for the two
honeycomb sublattices; cf. Eq. (4). The on-site detuning
�, which is engineered using additional stroboscopic lasers,
breaks the inversion symmetry, allowing a trivial band gap.
The ensuing topological phase diagram is shown in Fig. 3(c).
For � = 0, the phase space crystal has Chern number C = −1
for a broad range of attractive and repulsive interactions, but it
can also switch to C = 2 for negative interactions before be-
coming unstable. The C = 2 topological phase is not present
in the Haldane model [3]. In the region of weak interactions,
the band edge is cone-shaped and the band gap scales as
γ 2/ω0 for � = 0. In this regime, the gap determines how far
the topological region extends into the � �= 0 region.

V. TOPOLOGICAL BOUNDARY STATES
AND TIME-REVERSAL SYMMETRY

In two-dimensional real space, the time-reversal trans-
formation changes the chirality of trajectories, e.g., from
clockwise to anticlockwise. For this reason, robust chiral
edge states—without a time-reversed partner with opposite
chirality—can be implemented in 2D real space only after
breaking the TRS. However, this constraint does not ap-
ply to phase space crystals because the chirality of motion
in phase space remains unchanged under a time-reversal
transformation. Indeed, because of the complex phases ϕLL′ ,
Hamiltonian (8) does not support any local antiunitary sym-
metry. This is, in fact, the standard formal precondition for
nontrivial Chern numbers and chiral edge states [42,43]. For
phase space crystals, it can be fulfilled even though the time
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FIG. 4. Topological edge states. (a) Strip-shaped phase space crystal with two topological edge states propagating on the boundaries. The
inset shows the atoms’ orbits (circles) and vibration energy (color). The upper figure represents the 1D system in real space. (b),(c) Topological
transport on the edge of 2D real space Chern insulators (b), and time-reversal symmetric topological insulators (c). The two insets indicate
the typical topological band structures of the strip for each case. (d) Band structures of the strip-shaped phase space crystal for interaction
strengths γ /ω0 = 25 (left), γ /ω0 = −8.0 (middle), and γ /ω0 = −18.5 (right). The color indicates the average P of each eigenstate, the insets
in the middle and right figures are the zoomed-in band structures around the energy gap, and a = 4π/

√
3 is the lattice constant in the X

direction of the strip. For 2D real-space Chern insulators (b), the edge states do not have a time-reversed partner leading to chiral transport. For
time-reversal symmetric topological insulators (c), each edge state has a time-symmetric partner colocalized on the same boundary but with
opposite spin (or out-of-plane mirror symmetry) and propagation direction. This leads to helical transport. Also for our phase space crystal
(a), an edge state has a time-reversed partner (in the ideal case of two open separated boundaries). However, the two edge states (without any
internal degree of freedom) have the same chirality and are not colocalized in phase space.

reversal remains a symmetry, because this symmetry rear-
ranges the phase space crystal in a nonlocal fashion, i.e.,
(Xi, Pi ) → (Xi,−Pi ) for all the atoms.

It is interesting to investigate how this unusual status of the
time-reversal symmetry bears on the topological edge states
of a phase space crystal. For concreteness, we initially focus
on the conceptually simple scenario of a strip. For simplicity,
we neglect the small deformations of the lattice equilibrium
configurations induced by the atom-atom interactions.

In Fig. 4(a), we display two edge states for vibrations
about an equilibrium configuration that is invariant under
time-reversal symmetry (the amplitude of the vibrations is
encoded using two different color scales to distinguish the two
different states). In addition, we show the band structure for
three different values of the system parameters in the topolog-
ical phases C = −1 and C = 2; cf. Fig. 4(d). We note that for
any energy inside the band gap, the net number of topological
edge states (the difference between anticlockwise movers and
clockwise movers) on each of the boundaries is equal to the
band-gap Chern number as predicted by the bulk-boundary
correspondence [20]. According to this correspondence, the
edge states on opposite phase space boundaries have the

same chirality and thus opposite propagation directions; cf.
Fig. 4(a).

For the special case considered here, where the time re-
versal is a symmetry, the edge states on the two boundaries
are obtained one from the other by applying the time-reversal
transformation. We note that the two states are colocalized
in real space; cf. the upper figure in Fig. 4(a). In spite of
this, their coupling is exponentially suppressed with the phase
space separation (in this geometry, the width of the strip),
leading to topologically robust transport. This is in stark con-
trast to time-reversal symmetric topological insulators [44,45]
whose time-reversal partner edge states have opposite chiral-
ity, do not have any spatial separation, and remain decoupled
only as long as the time-reversal symmetry is not broken
by the disorder; cf. Fig. 4(c). Our situation is also different
compared to standard Chern insulators, which do not support
any time-reversed partner solution; cf. Fig. 4(b). This con-
clusion holds true also for Chern insulators of systems with
one real and one synthetic dimension [21,22]: these systems
will support counterpropagating edge states that are colocal-
ized in the single real dimension but are not time-reversal
partners.
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FIG. 5. Chiral transport on the edge of a disk-shaped phase space crystal. (a) One edge channel wave packet at different temporal instants.
(b) Energy spectrum with arrows indicating the energy level centers for constructing the wave packet in (a) by the Gaussian superposition of
eigenstates around them. (c1),(c2) Spacetime plot of a wave packet projected on the spatial X dimension. The central frequencies ωc of wave
packets in (c1) and (c2) are indicated by the red and blue arrows in (d), respectively. (c3) Vibration |aL (t )|2 of the atom marked by a red circle
in (a). (c4) Finite-time-window power spectrum S(ωc, t ) of a collective signal from all the atoms. (d) Detection of chiral direction. Left: At
stroboscopic time steps t = nτ with n ∈ Z, an array of detectors are placed along the 1D system in real space to measure the distribution
of vibrations over the 1D real space. Right: At earlier time moments t = (n − 1/4)τ , the atoms (marked with red and blue circles) that are
close in real space at the stroboscopic time moment become separated at the two ends of the 1D system in real space and thus can be detected
independently. [Parameters: interaction γ = 25ω0 for all figures; disk radius R = 8π and δω = 1.35σπR−1; time window �t = 10 × 2πω−1

0

for (c4)].

VI. TOPOLOGICAL TRANSPORT

We now turn to a realistic disk-shaped crystal with a ran-
domly shaped boundary [Fig. 5(a)]. Here, we fully take into
account the atom-atom interaction that deforms the equilib-
rium configuration. As discussed above, one can reduce the
deformation using a finite laser detuning δω = 1.35σπR−1

in Eq. (4); cf. the discussion about Eq. (7). In Fig. 5(a), we
illustrate the chiral transport by tracking the time evolution of
a wave packet with average quasienergy ωc in the middle of
the band gap; cf. the blue arrow in Fig. 5(b). It can be readily
observed that the transport is robust against the boundary
defects [46]. In Figs. 5(c1) and 5(c2), we compare the nonchi-
ral and chiral transports by projecting the evolution of the
wave packet onto the coordinate X in the rotating frame. The
time evolution of a single atom’s vibrational energy likewise
reveals the periodicity of the packet traversing the disk’s cir-
cumference; cf. Fig. 5(c3). However, in any real experiment,
it might be easier to obtain a collective signal from all the
atoms, for example by light scattering: I (t ) = ∑

j cos[ksXj (t )]
obtained by using a stroboscopic optical lattice for detection.
One can extract the finite-time-window power spectrum

S(ω, t ) ∝ |〈(I (t ) − 〈I〉)eiωt 〉�t |2,
where 〈 · · · 〉�t represents the time average over a finite time
window. In Fig. 5(c4), we plot the power spectrum S(ωc, t ) (at
ks = 9.95) as a function of time. The periodic temporal peaks
of S nicely indicate the chiral motion of the wave packet.

The parameters used for Figs. 5(a)–5(c) could be obtained
in an experiment with ultracold 87Rb atoms. An appropri-
ate experimental setup involves eight lasers (four for the
static trapping, two for the stroboscopic trapping, and two for
the optomechanical detection); see the sketch by Fig. 1(a).
Assuming a realistic longitudinal trapping frequency ωax =
2π × 50 Hz and ω0 = 0.1 (to guarantee slow vibrations in
the rotating frame), the wave packet’s time of flight during

a round trip along the disk edge would be approximately
2π × 50/(ωaxω0) ≈ 10 s, shorter than the typical lifetime of
the atom cloud [47–49]. With k−1 = 45 μm, one works in
the semiclassical regime (λ = 0.04). In the experiment, the
transverse trapping frequency can reach up to ωtr ≈ 2π ×
1.0 MHz [32]. To avoid exciting the transverse mode during
collisions, there is a restriction for the radius of the phase

space crystal, R < k
√

h̄ωtr
mω2

ax
≈ 9.2π ; cf. Appendix D 4. Tak-

ing into account the 3D scattering length a = 5.3 nm for
87Rb atoms, the 1D dimensionless interaction strength is γ =
2h̄ωtrak3/(mω2

ax) ≈ 1.25, which can be further tuned by Fes-
hbach resonance, cf. Appendix D 3, or by adjusting k.

A. Detection of chiral direction

Measurement traces as in Figs. 5(c2) (time trace of a
quadrature) or 5(c3) (vibrational amplitude of a single atom)
would demonstrate the existence of robust chiral motion.
However, they do not yet allow us to detect its chirality (clock-
wise or anticlockwise). To infer the time trace of a quadrature
as displayed in Fig. 5(c2), one could measure the local vibra-
tions, as in Fig. 5(c3), by placing detectors at the atom cloud,
as illustrated by Fig. 5(d). This seems to lead to an ambiguity:
since the disk-shaped cloud is actually one-dimensional in
real space, it seems that any local measurement could not
distinguish between atoms that are close in real space but have
different momentum, e.g., the two atoms marked by the red
and blue circles in the left panel of Fig. 5(d). Without the
ability to distinguish these opposite phase space configuration,
it is also not possible to determine the direction of the chiral
motion. However, it is important to keep in mind that the
fixed equilibrium position of the atoms in the rotating frame
should be viewed as the result of taking a series of snapshots
of the atom cloud at the stroboscopic time steps t = nτ , with
n ∈ Z and τ being the stroboscopic time step. On the other
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FIG. 6. Real-space implementation for ions or semiconductor
electrons—vibrations of cyclotron guiding centers in a strong mag-
netic field B. Cyclotron orbital centers (upper panel) in LLL
subjected to an external honeycomb lattice potential φs(X,Y ) (lower
panel).

hand, in the laboratory-frame continuous time picture, the
whole phase space crystal structure rotates clockwise in phase
space as indicated by the arrows in Fig. 5(d). Importantly,
the same experimental setup allows us to monitor the motion
for different stroboscopic time series, e.g., with one-quarter
of a stroboscopic period earlier, t = (n − 1/4)τ , n ∈ Z. The
resulting measurement trace allows us to distinguish the atoms
marked by the red and blue circles. Thus, by comparing the
two traces taken with a different stroboscopic time series, one
could deduce the chiral direction from the delay between the
vibrational peaks. This is even possible if the motion is only
monitored close to the boundaries of the cloud (which should
be experimentally easier); cf. the right panel of Fig. 5(d).

VII. IMPLICATIONS FOR REAL SPACE MOTION

The phase space dynamics investigated here could also
be realized in 2D real space using ions in a magnetic field.
In an out-of-plane magnetic field B = Bn̂, the motion of the
ions can be decomposed into the cyclotron motion and the
drift of the cyclotron guiding center. The two guiding center
coordinates Z = (X,Y ) constitute an effective phase space
due to [X,Y ] = −ih̄/qB in quantum mechanics [50]. If all
the relevant energy scales are much smaller than the cyclotron
energy h̄ωc = h̄|q|B/m, the motion is frozen into the lowest
Landau level (LLL). The classical dynamics of the guiding
center is governed by

d

dt
Zi = (qB)−1Fi × n̂, (13)

similar to the phase space dynamics given by Eq. (6). Consid-
ering that the phase space interaction Eq. (5) has the Coulomb
form, our model is implemented in the 2D external electro-
static potential φs(Z) ∝ Hs(Z); cf. Eq. (4). We illustrate the
real-space implementation for ions or semiconductor elec-
trons in Fig. 6.

We note that for filling factors ν ≡ 2πnh̄/eB (where n is
the density) below a critical threshold νw ∼ 1

7 , the ground
state of the ions is expected to be a crystal even without
any external confining potential [51,52], a so-called Wigner
crystal [53,54]. However, in this case the guiding centers are
known to be arranged on a simple Bravais triangular lattice,
leading to a single trivial phonon band [54–56]. Our work
shows that when the guiding centers are rearranged on a hon-
eycomb lattice by an external electrostatic potential φs(X,Y ),
the crystal vibrations become topological. In this context, it
is instructive to revisit our results in Fig. 3. The presence of
topological phases with different signs of the Chern number
C indicates that the chirality of the vibrations can be reversed.
Counterintuitively, for C = 2 corresponding to strong repul-
sive interactions γ , the chirality of the phonon edge states is
opposite compared to the chirality of the cyclotron orbits; cf.
Fig. 5(d).

VIII. SUMMARY AND OUTLOOK

In summary, we have investigated the vibrational modes
of phase space crystals formed by atoms that are periodically
arranged in phase space. We provided a general method for
generating arbitrary lattice structures in phase space. We have
shown that the small vibrations of this type of crystal struc-
tures can display gapless topologically robust chiral motion,
even when the time reversal is a symmetry. These topological
phases are encoded in the symplectic Chern numbers of the
bulk bands. Formally, the nonzero Chern numbers are induced
by complex amplitudes of the two-mode pairing interactions.
Interestingly, the complex phases of these amplitudes have
a geometrical interpretation as the angular coordinate of the
line connecting two atoms, and they cannot be eliminated by
a transformation that is local in phase space. In addition, we
have presented a realistic implementation of our phase crystal
and also discussed a scheme to detect the chiral vibrations.
Finally, we explored the nontrivial implication of our inves-
tigation for the classical motion of charged particles in 2D
real space under a strong magnetic field and an additional
electrostatic potential.

There are several possible research directions in the fu-
ture beyond the present work. Robust topology produced by
the combination of symplectic phase space geometry and
interactions represents a versatile concept that can be imple-
mented in many physical platforms. For atoms with spin, one
would obtain nonlocal spin-dependent interactions in phase
space [15,57], coupling spin waves to topological phase space
phonons. Long-range real space interactions permit the ex-
ploration of higher-dimensional generalizations of the physics
discussed here in one dimension. More complex driving can
be used to synthesize arbitrary phase space potentials [58],
and single-shot measurements of multiatom configurations
will allow the observation of additional effects such as non-
linear evolution.
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APPENDIX A: ARBITRARY PHASE SPACE LATTICE

1. General form

We discuss how to synthesize arbitrary lattice structures
in phase space via multiple stroboscopic lattices. We start
from the following generalized model of a kicked harmonic
oscillator:

Hs = 1

2
(x2 + p2) +

∑
n∈Z

∑
q

Kq cos(kqx − φq)δ
( t

τ
− θq − n

)
.

(A1)
Here q represents the kicking sequence of stroboscopic lat-
tices whose intensity Kq, wave vector kq, and phase φq can be
tuned at different time instances t = τ (n + θq) with n ∈ Z. To
simplify the discussion, we first consider a single kick,

Hs = 1

2
(x2 + p2) + Kq cos(kqx − φq)δ

( t

τ
− θq − n

)
. (A2)

We transform the above Hamiltonian into a rotating frame
with kicking frequency 2π/τ using the generating function
of the second kind,

G2(x, P, t ) = xP

cos(2πt/τ )
− 1

2
x2 tan

(
2π

τ
t

)

− 1

2
P2 tan

(
2π

τ
t

)
. (A3)

The corresponding canonical transformation is given by

p = ∂G2

∂x
, X = ∂G2

∂P
,

which results in the transformation of phase space coordinates

x = P sin

(
2πt

τ

)
+ X cos

(
2πt

τ

)

p = P cos

(
2πt

τ

)
− X sin

(
2πt

τ

)
. (A4)

and the transformed Hamiltonian

Hs(X, P, t ) = Hs(x, p, t ) + ∂G2

∂t

= 1

2
δω(X 2 + P2)

+ Kq cos

[
kq

(
P sin

2πt

τ
+ X cos

2πt

τ

)
− φq

]

× δ
( t

τ
− θq − n

)
. (A5)

Here, we have defined the global detuning parameter δω ≡
1 − 2π/τ between kicking and harmonic oscillation. For
weak resonant driving (|Kq| � 1, δω = 0), the single-particle
dynamics can be separated by the fast harmonic oscillation
and the low motion of its quadratures (X, P). The effective
slow dynamics of quadratures (X, P) is given by the lowest-
order Magnus expansion, i.e., the time average of Hs(X, P, t )
in one kicking time period,

Hs(X, P) = 1

τ

∫ τ

0
Hs(X, P, t )dt

= Kq cos[kq(P sin 2πθq + X cos 2πθq) − φq].

(A6)

The above derivation is for classical dynamics. For quantum
dynamics, the result has the same form with replacing X and
P by their operators [15,59]. Extending the result for a single
kick to all kicks in Eq. (A1), we obtain the general form of a
phase space lattice Hamiltonian,

Hs(X, P) =
∑

q

Kq cos[kq(P sin 2πθq + X cos 2πθq) − φq].

(A7)

In principle, any arbitrary lattice Hamiltonian in phase space
can be synthesized by multiple stroboscopic lattices.

2. Honeycomb phase space lattice

For the honeycomb lattice considered in our work, we
can get the desired driving parameters by decomposing the
honeycomb lattice into a series of cosine functions and com-
paring the series expansion to Eq. (A7). It is straightforward
to check that the kicking sequence given by the first three lines
of parameter table in Fig. 2 generates the honeycomb lattice
Hamiltonian in the form of

Hs(Z) = −16

9
ω0

3∏
n=1

sin2

(
1

2
vn · Z

)
− 3

2

, (A8)

where we have defined the vector Z ≡ (X, P) and three
ancillary vectors v1 = ( 2

√
3

3 , 0), v2 = (−
√

3
3 , 1), and v3 =

(−
√

3
3 ,−1). The extrema of Hs(X, P) represent stable points

of the classical dynamics. The small vibrations about these
stable points have frequency ω0 = −9
 from the linear ex-
pansion of Eq. (A8). The two sublattices of the phase space
honeycomb lattice Hamiltonian (A8) have the same vibration
frequency at their lattice sites.

One can also tune the on-site frequencies of two sublattices
with the following phase space lattice Hamiltonian:

H�
s = −2�√

3

3∑
n=1

sin(vn · Z) = 2�√
3

3∑
n=1

cos

(
vn · Z − 3π

2

)
,

(A9)

which can be implemented by additional stroboscopic lattices
with kicking parameters Kq = 2�/

√
3, kq = 2/

√
3, and φq =

3π/2 for θq = 1/12, 5/12, 9/12 as listed by the fourth line of
the parameter table in Fig. 2. The on-site frequencies of two
sublattices are then ω0 ± 2� with the on-site detuning param-
eter �. The total single-particle Hamiltonian of a honeycomb
lattice is

Hs(Z) = 1

2
δω|Z|2 − 16

9
ω0

3∏
n=1

sin2

(
1

2
vn · Z

)

− 2�√
3

3∑
n=1

sin(vn · Z). (A10)

Here we have also included the global detuning δω introduced
in Eq. (A5).
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APPENDIX B: MANY-BODY HAMILTONIAN

We consider many interacting particles trapped in the same
1D harmonic potential. The interaction V (xi − x j ) induces
an effective interaction of two particles on their quadra-
tures [15,33–35]. The general method to extract this effective
interaction in phase space has been developed in Refs. [15,35].
The interaction of cold atoms due to the s-wave scattering is
a pointlike contact interaction V (xi − x j ) = γ δ(xi − x j ). The
effective phase space interaction potential is a Coulomb-like
interaction U (Ri j ) = γπ−1R−1

i j , where

Ri j ≡
√

(Xi − Xj )2 + (Pi − Pj )2 = |Zi − Z j |

is the phase space distance between two atoms i and j. The
effective phase space interaction is valid for well-separated
atoms, which is the case of phase space crystals considered in
this work [15,35]. Finally, we have the many-body Hamilto-
nian for this work,

H =
∑

L

Hs(XL, PL ) + 1

2

∑
L �=L′

U (RLL′ ) ≡ T + �. (B1)

Here, we have relabeled the atoms by the subscript L = (l, s)
representing the lth atom in the s ∈ {A, B} sublattice. T ≡∑

L Hs(XL, PL ) is the total single-particle contribution, and
� ≡ 1

2

∑
L �=L′ U (RLL′ ) is the total interaction part.

1. Equilibrium configuration

In the presence of the lattice potential and their effective
interaction, the atoms have an equilibrium configuration in
phase space. The equilibrium points of atoms Z0

L = (X 0
L , P0

L )
are determined by the condition

∂H

∂XL

∣∣∣∣∣
(X 0

L ,P0
L )

= 0,
∂H

∂PL

∣∣∣∣∣
(X 0

L ,P0
L )

= 0, (B2)

where H is the many-body Hamiltonian (B1). For the periodic
boundaries in both X and P directions, the interactions from
symmetric directions cancel each other, and the equilibrium
points are given by the honeycomb lattice sites. The periodic
boundary is helpful for theoretical study. In the real exper-
imental setup, however, the equilibrium positions of atoms
will deviate from the lattice sites due to the open boundary
of phase space crystal. In fact, the atoms tend to relax to-
ward the stable points and concentrate about the origin of the
phase space due to the presence of dissipation. By introducing
a relatively strong repulsive interaction (γ > 0), the atoms
will spread over the phase space and form a disk-shaped
crystal state as shown by Fig. 1(c) in the main text. Note
that the interaction of the atoms on the disk will tend to
distort the honeycomb equilibrium configuration. There is a
mean-field potential induced by the interaction. The effective
potential generated by the disk crystal in phase space can
be approximated by the Coulomb potential on a uniformly
charged disk plane given by Eq. (7), and it can be signifi-
cantly counterbalanced by choosing the appropriate detuning
δω = 1.35σπR−1 in the single-particle Hamiltonian (A10) as
discussed in Sec. III A.

2. Linearized Hamiltonian

We expand the total many-body Hamiltonian (B1) around
the equilibrium positions of atoms, i.e., ZL(t ) = Z0

L + uL(t ),
where uL = (uX

L , uP
L ) is the displacement on the lattice site L.

To the second order, the many-body Hamiltonian is given by
(up to a constant)

H = 1

2

∑
α,β

∑
L,L′

ηLL′
αβ uα

Luβ

L′ (B3)

with the matrix ηLL′
αβ given by

ηLL′
αβ = ∂2H

∂uα
L∂uβ

L′

∣∣∣∣∣
0

= T LL′
αβ + �LL′

αβ . (B4)

We call ηLL′
αβ the phase space force matrix, which means the

resultant force along the α direction exerted on the Lth atom
due to the unit displacement along the β direction of the
L′th atom. The contribution to ηLL′

αβ from the single-particle
Hamiltonian (A10) is

T LL′
αβ = ∂2Hs

∂uα
L∂uβ

L′

∣∣∣∣∣
0

= ∂2Hs

∂uα
L∂uβ

L

∣∣∣∣∣
0

δLL′

= T LL
αβ δLL′ = (ω0 ± 2�)δαβδLL′ . (B5)

The contribution from the interaction part can be obtained by
calculating the derivative of the interaction potential,

∂�

∂Zα
L

=
∑
L′ �=L

U ′(RLL′ )

RLL′
[(XL − XL′ )δXα + (PL − PL′ )δPα].

(B6)

For two different atoms at different lattice sites (L �= L′), we
have the second derivative

�LL′
αβ = ∂2�

∂Zα
L ∂Zβ

L′
= U ′(RLL′ )

RLL′
(−δXαδXβ − δPαδPβ )

+ U ′′(RLL′ )RLL′ − U ′(RLL′ )

R3
LL′

× [−(XL − XL′ )δXβ − (PL − PL′ )δPβ]

× [(XL − XL′ )δXα + (PL − PL′ )δPα]. (B7)

For the atom at the single lattice site (L = L′), we have the
second derivative

�LL
αβ = ∂2�

∂Zα
L ∂Zβ

L

=
∑
L′ �=L

U ′(RLL′ )

RLL′
(δXαδXβ

+ δPαδPβ ) + U ′′(RLL′ )RLL′ − U ′(RLL′ )

R3
LL′

× [(XL − XL′ )δXβ + (PL − PL′ )δPβ]

× [(XL − XL′ )δXα + (PL − PL′ )δPα]

=
∑
L′ �=L

(−1) × ∂2�

∂Zβ

L′∂Zα
L

. (B8)

We introduce the complex field at each lattice site aL(t ) ≡
1√
2λ

[uX
L (t ) + iuP

L (t )], where λ = h̄k2/mωax is the dimension-
less Planck constant, and we obtain the Hamiltonian from
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Eq. (B3),

H/λ =
∑
L,L′

hLL′a†
LaL′ + 1

2
gLL′a†

La†
L′ + 1

2
g∗

L′LaLaL′ . (B9)

Here, hLL represents the on-site energy of one excitation on
the Lth lattice site, hLL′ (L �= L′) represents the hopping coef-
ficient from the L′th lattice site to the Lth lattice site, and gLL′

represents the pairing coefficient of creating or annihilating
two phase space phonons on the Lth and L′th lattice sites.
These coefficients are given by the phase space force matrix

hLL′ ≡ 1
2

(
ηLL′

XX + ηLL′
PP

) + i 1
2

(
ηLL′

PX − ηLL′
XP

)
,

gLL′ ≡ 1
2

(
ηLL′

XX − ηLL′
PP

) + i 1
2

(
ηLL′

PX + ηLL′
XP

)
. (B10)

From the property ηLL′
αβ = ηL′L

βα , we have hLL′ = h∗
L′L and

gLL′ = gL′L. Note that, compared to the Hamiltonian Eq. (8)
in the main text, we have replaced the variable αL by aL =
αL/

√
λ in the Hamiltonian Eq. (B9). In the linearized regime,

these two descriptions are equivalent to each other, but the
Hamiltonian Eq. (B9) here has the advantage that it can be
directly translated into the second-quantized description by
taking aL as the ladder operator on the Lth lattice site, which
makes the connection to other models, specifically the Hal-
dane model [3], more transparent.

Below, we calculate the explicit form of hLL′ and gLL′ for
the case of Coulomb-type interaction U (RLL′ ) = γπ−1R−1

LL′ .
For the off-site (L �= L′) coefficients, we have the hopping
coefficients

hLL′ = −U ′(RLL′ )

RLL′
− 1

2

U ′′(RLL′ )RLL′ − U ′(RLL′ )

RLL′

= −1

2

U ′′(RLL′ )RLL′ + U ′(RLL′ )

RLL′

= − γ

2πR3
LL′

(B11)

and the pairing coefficients

gLL′ = −1

2

U ′′(RLL′ )RLL′ − U ′(RLL′ )

R3
LL′

× [(XL − XL′ )2 − (PL − PL′ )2

+ i2(XL − XL′ )(PL − PL′ )]

= −1

2

U ′′(RLL′ )RLL′ − U ′(RLL′ )

RLL′
ei2ϕLL′

= − 3γ

2πR3
LL′

ei2ϕLL′ , (B12)

where the phase parameter ϕLL′ is defined via

XL − XL′ = RLL′ cos ϕLL′,

PL − PL′ = RLL′ sin ϕLL′ . (B13)

For the on-site (L = L′) coefficients, we have the on-site en-
ergy

ωL ≡ hLL

= 1

2

(
T LL

XX + T LL
PP

) − 1

2

∑
L′ �=L

(
�LL′

XX + �LL′
PP

)

= 1

2

(
T LL

XX + T LL
PP

) + 1

2

∑
L′ �=L

U ′′(RLL′ )RLL′ + U ′(RLL′ )

RLL′

= 1

2

(
T LL

XX + T LL
PP

) +
∑
L′ �=L

γ

2πR3
LL′

(B14)

and the squeezing rates

gL ≡ gLL = 1

2
(T LL

XX − T LL
PP ) + iT LL

PX +
∑
L′ �=L

3γ

2πR3
LL′

ei2ϕLL′ .

(B15)

The above expressions are valid for any boundary condition
and arbitrary single-particle Hamiltonian. Finally, we obtain
the Hamiltonian of phase space lattice waves

H
λ

=
∑

L

ωLa†
LaL + 1

2
gLa†2

L + 1

2
g∗

La2
L

− γ

4π

(∑
L �=L′

a†
LaL′ + 3ei2ϕLL′ a†

La†
L′

|Z0
L − Z0

L′ |3 + H.c.

)
. (B16)

For the honeycomb single-particle Hamiltonian (A10) and
periodic boundary conditions, we have the simplified results
of on-site coefficients,

ωL = ω0 ± 2� +
∑
L′ �=L

γ

2πR3
LL′

, gL = 0, (B17)

where the summation in Eq. (B15) disappears due to the
honeycomb lattice symmetry. The Hamiltonian Eq. (B16) de-
scribes phonons propagating in our honeycomb phase space
crystal. It is reminiscent of the tight-binding model for elec-
trons in graphene, but our phase space phonons can hop
between any two arbitrarily distant sites reflecting the long-
range nature of the atom-atom interaction.

3. Pairing-induced staggered magnetic field

To better distinguish the effects of the (long-range) hop-
ping and the pairing interaction, it is instructive to first
consider a regime where the latter is suppressed, i.e., the
creation of phonon pairs is far off-resonant |γ | � |ω0|. In
this case, we can cancel the pairing-interaction terms in the
Hamiltonian (B9) using the following unitary transformation:

U ≡ exp

⎛
⎝∑

L̄,L̄′

ξL̄L̄′a†
L̄
a†

L̄′ − ξ ∗̄
L′L̄aL̄aL̄′

⎞
⎠ ≡ eY . (B18)

It can be checked that U † = e−Y and thus U †U = 1. Using the
following identities:

[a†
LaL′ , a†

L̄
a†

L̄′ ] = a†
La†

L̄′δL′L̄ + a†
La†

L̄
δL′L̄′,

[a†
LaL′ , aL̄aL̄′ ] = −aL̄′aL′δLL̄ − aL̄aL′δLL̄′,

[a†
La†

L′ , aL̄aL̄′ ] = −a†
LaL̄′δL′L̄ − a†

LaL̄δL′L̄′

− aL̄′a†
L′δLL̄ − aL̄a†

L′δLL̄′,

[aLaL′ , a†
L̄
a†

L̄′ ] = aLa†
L̄
δL′L̄′ + aLa†

L̄′δL′L̄

+ a†
L̄′aL′δLL̄ + a†

L̄
aL′δLL̄′, (B19)
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we obtain

[a†
LaL′ ,Y ] =

∑
L̄

ξ̃L̄L′a†
La†

L̄′ + ξ̃ ∗̄
LLaL̄aL′ ,

[a†
La†

L′ ,Y ] =
∑

L̄

ξ̃ ∗̄
LL′a

†
LaL̄ + ξ̃ ∗̄

LLaL̄a†
L′ ,

[aLaL′ ,Y ] =
∑

L̄

ξ̃L̄L′aLa†
L̄

+ ξ̃L̄La†
L̄
aL′ , (B20)

where we have defined ξ̃L̄L′ ≡ ξL̄L′ + ξL′L̄ with ξ̃L̄L′ = ξ̃L′L̄.
The Hamiltonian transformed by U to the leading order

U †HU/λ = H/λ + [H/λ,Y ] + · · · , (B21)

where we have used the Hausdorff expansion

e−YHeY = H + [H,Y ] + 1

2!
[[H,Y ],Y ] + · · · .

The leading-order correction is[
H/λ,Y

] =
∑

L;L′;L̄

hLL′ξL̄L′a†
lsa

†
L̄′ + hLL′ξ ∗̄

LLaL̄aL′

+ 1

2
gLL′ ξ̃ ∗̄

LL′a
†
LaL̄ + 1

2
gLL′ ξ̃ ∗̄

LLaL̄a†
L′

+ 1

2
g∗

L′L ξ̃L̄L′aLa†
L̄

+ 1

2
g∗

L′L ξ̃L̄La†
L̄
aL′

=
∑
L;L′

h̃LL′a†
LaL′ + 1

2
g̃LL′a†

La†
L′ + 1

2
g̃∗

L′LaLaL′ .

(B22)

Neglecting constants from aLa†
L = a†

LaL + 1 and using the
symmetry property gLL′ = gL′L, we have the coefficients

h̃LL′ =
∑

L̄

g∗̄
LL′ ξ̃L̄L + gLL̄ ξ̃ ∗̄

LL′ ,

g̃LL′ =
∑

L̄

hLL̄ ξ̃L̄L′,

g̃∗
L′L =

∑
L̄

hL̄L′ ξ̃ ∗̄
LL. (B23)

To cancel the pairing terms in the Hamiltonian (B9), we must
have gLL′ + g̃LL′ = 0, i.e.,

gLL′ = −
∑

L̄

hLL̄ ξ̃L̄L′ . (B24)

We make the assumption that the on-site energy is much larger
than the off-site hopping terms, i.e., ωL ≡ hLL � hLL̄ with
L �= L̄, which results in

ξ̃LL′ ≈ −gLL′

ωL
�⇒ ξLL′ = ξL′L = − gLL′

2ωL
.

Finally, we have the pairing-induced hopping rate

h̃LL′ ≈ −
∑

L̄

2

ωL̄
gLL̄g∗̄

LL′ . (B25)

Note that the pairing-induced hopping is proportional to the
square of interaction strength |h̃LL̄| ∝ γ 2/ω0. Considering the
case beyond NN interaction, there is a direct real-valued hop-
ping rate between lattice sites L and L̄, which is proportional

to the interaction strength hLL̄ ∝ γ . As a result, the pairing-
induced nonreciprocal hopping pathway h̃LL̄ interferes with a
direct hopping pathway hLL̄, which leads to a weak staggered
magnetic flux of the order � ∼ γ /ω0. This is the essential
ingredient of the Haldane model [3], which introduces a
staggered magnetic field breaking the time-reversal symmetry
inside each unit cell but leaving the total net flux through the
unit cell zero.

Our model recovers the anomalous quantum Hall effect
similar to the Haldane model only in the weak off-resonant
interaction regime. Our effective particle-conserving descrip-
tion (which is derived from a perturbation theory in γ /ω0)
differs from the Haldane model in that it includes long-range
hopping transitions. For sufficiently strong interaction (non-
perturbative regime), our model has some new features that
do not appear in the Haldane model, e.g., a new topological
phase regime and a loss of stability.

APPENDIX C: TOPOLOGICAL BAND STRUCTURE

1. Periodic boundary condition

For periodic boundaries in both the X and P directions, we
Fourier-transform the linearized Hamiltonian (B9) using

al,s = 1√
N

∑
k

ak,s exp
(
ik · Z0

l,s

)
,

a†
l,s = 1√

N

∑
k

a†
k,s exp

( − ik · Z0
l,s

)
, (C1)

where k = (kX , kP ), Z0
l,s is the equilibrium position of atom

L = (l, s), and N is the total number of unit cells. The opera-
tors from an inverse Fourier transformation

ak,s = 1√
N

∑
l

al,s exp
( − ik · Z0

l,s

)
,

a†
k,s = 1√

N

∑
l

a†
l,s exp

(
ik · Z0

l,s

)
, (C2)

satisfy the commutation of bosons, i.e.,

[ak,s, a†
k′,s′ ] = δkk′δss′ , [ak,s, ak′,s′ ] = 0. (C3)

The hopping terms in the Hamiltonian (B9) become∑
l,l ′

h(l,s),(l ′,s′ )a
†
l,sal ′,s′

= 1

N

∑
k,k′

a†
k,sak′,s′

×
∑
l,l ′

h(l,s),(l ′,s′ )e
−ik·(Z0

l,s−Z0
l′ ,s′ )−i(k−k′ )·Z0

l′,s′

≡
∑

k

hs,s′ (k)a†
k,sak,s′ (C4)

with the definition of hopping coefficients in reciprocal k =
(kX , kP ) space

hs,s′ (k) ≡
∑

l

h(l,s),(l ′,s′ ) exp
[−ik · (

Z0
l,s − Z0

l ′,s′
)]

. (C5)
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We find the property h∗
s,s′ (k) = hs′,s(k) using the identity

h(l,s),(l ′,s′ ) = h∗
(l ′,s′ ),(l,s) and the discrete translational lattice

symmetry. Similarly, the pairing terms in the Hamilto-
nian (B9) become

∑
l,l ′

g(l,s),(l ′,s′ )a
†
l,sa

†
l ′,s′

= 1

N

∑
k,k′

a†
k,sa

†
k′,s′

×
∑
l,l ′

g(l,s),(l ′,s′ )e
−ik·(Z0

l,s−Z0
l′ ,s′ )−i(k+k′ )·Z0

l′ ,s′

=
∑

k

gs,s′ (k)a†
k,sa

†
−k,s′ (C6)

with the definition of pairing coefficient in reciprocal k =
(kX , kP ) space

gs,s′ (k) ≡
∑

l

g(l,s),(l ′,s′ ) exp
[ − ik · (

Z0
l,s − Z0

l ′,s′
)]

. (C7)

We find the property gs,s′ (−k) = gs′,s(k) using the identity
g(l,s),(l ′,s′ ) = g(l ′,s′ ),(l,s) and the discrete lattice translational
symmetry. As a result, the Hamiltonian in reciprocal space is
given by

H/λ =
∑
k,s,s′

hs,s′ (k)a†
k,sak,s′

+ 1

2
gs,s′ (k)a†

k,sa
†
−k,s′ + 1

2
g∗

s,s′ (k)a−k,s′ak,s

=
∑

k

AT
k HkAk, (C8)

where we have defined the vector Ak ≡ (ak,A, ak,B, a†
−k,A,

a†
−k,B)T and the Bogoliubov–de Gennes (BdG) Hamiltonian

Hk ≡

⎛
⎜⎜⎜⎝

hA,A(k) hA,B(k) 1
2 gA,A(k) 1

2 gA,B(k)

hB,A(k) hB,B(k) 1
2 gB,A(k) 1

2 gB,B(k)
1
2 g∗

A,A(k) 1
2 g∗

A,B(k) hA,A(−k) hA,B(−k)
1
2 g∗

B,A(k) 1
2 g∗

B,B(k) hB,A(−k) hB,B(−k)

⎞
⎟⎟⎟⎠.

From the Heisenberg equation

−i
d

dt
ak,s = 1

λ
[H, ak,s]

=
∑

s′
−hs,s′ (k)ak,s′

− 1

2
gs,s′ (k)a†

−k,s′ − 1

2
gs′,s(−k)a†

−k,s′ ,

we have the EOM for the ladder operator Ak as follows:

i
d

dt
Ak = D(k)Ak. (C9)

Here D(k) is the dynamical matrix defined by

D(k)

≡

⎛
⎜⎜⎝

hA,A(k) hA,B(k) ḡA,A(k) ḡA,B(k)
hB,A(k) hB,B(k) ḡB,A(k) ḡB,B(k)

−ḡ∗
A,A(k) −ḡ∗

B,A(k) −h∗
A,A(−k) −h∗

A,B(−k)
−ḡ∗

A,B(k) −ḡ∗
B,B(k) −h∗

B,A(−k) −h∗
B,B(−k)

⎞
⎟⎟⎠

with the symmetric pairing coefficients defined by

ḡs,s′ (k) ≡ 1
2 [gs,s′ (k) + gs′,s(−k)].

The eigensolutions of EOM (C9) can be obtained by diag-
onalizing the dynamical matrix D(k). We label the frequency
spectrum by ωk,n, where n = 1, 2, 3, 4 is the index of four
bands. For each given k and band index n, the eigenstate is a
four-component vector |k, n〉 = (un,A, un,B, vn,A, vn,B). Then,
the Hamiltonian can be cast into a diagonal form of

H/λ =
∑
k,n

ωk,nb†
k,nbk,n, (C10)

where the normal modes are given by a Bogoliubov transfor-
mation in the form of

b†
k,n =

∑
s=A,B

un,s(k)a†
k,s + vn,s(k)a−k,s.

From the property ḡs,s′ (k) = ḡs,s′ (−k), the dynamical matrix
has particle-hole symmetry expressed by

�D(k)�−1 = −D(−k). (C11)

The particle-hole operator is an anti-unitary operator defined
via � = τxK and satisfies �2 = +1, where

τx =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, (C12)

and K is the complex conjugation. It follows that each eigen-
mode at frequency ω(k) has a partner eigenmode at −ω(−k),
i.e., creating a quasiparticle in the state ω(k) has the same ef-
fect as removing one (creating a hole) from the state −ω(−k).
Therefore, we label the two upper bands (n = 1, 2) as particle
bands and the two lower bands (n = 3, 4) as hole bands. From
the bosonic commutation relationship [bk′,n′ , b†

k,n] = δn,n′δk′,k,
the eigenmodes have to follow the orthonormal condition

〈k, n′|�z|k, n〉 ≡
∑

s

u∗
n′,sun,s − v∗

n′,svn,s = ±δn,n′ , (C13)

where �z ≡ diag(1, 1,−1,−1) is a 4 × 4 diagonal matrix,
and the positive (negative) sign corresponds to particle (hole)
bands.

2. Symplectic Chern number

Different from the particle-conserving case, the ground
state of the BdG Hamiltonian Hk is a multimode squeezed
state with nonzero phonon/photon number. By regarding the
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k = (kX , kP ) as an external adiabatic parameter, we calcu-
late the Berry phase accumulated by a single Bogoliubov

quasiparticle in a specific nth band along a closed loop cover-
ing the whole Brillouin zone (BZ), i.e.,

�n = i
∮

BZ
〈Sk|bk,n∇kb†

k,n|Sk〉 · dk

= i
∮

BZ
〈Sk|[bk,n∇kb†

k,n]|Sk〉 · dk + i
∮

BZ
〈Sk|∇k|Sk〉 · dk

= i
∮

BZ

[∑
s

u∗
n,s(k)∇kun,s(k) − v∗

n,s(k)∇kvn,s(k)

]
· dk + i

∮
BZ

〈Sk|∇k|Sk〉 · dk

≡
∮

BZ
An(k) · dk + φn. (C14)

Here, |Sk〉 is the ground state (Bogoliubov vacuum state) of Hk, and in the second line we have used bk,n|Sk〉 = 0 by the definition
of the vacuum state. Because of the unusual orthonormalization (C13), we have updated the definition of the Berry connection
by [8,39]

An(k) = i〈k, n|�z∇k|k, n〉. (C15)

Note that the Berry connection defined here for the bosonic many-body second-quantized Hamiltonian is different from the
Berry connection for the single-particle Hamiltonian. The Bogoliubov vacuum |Sk〉 depends on k and could possibly accumulate
a Berry phase, i.e., φn ≡ i

∮ 〈Sk|∇k|Sk〉 · dk �= 0. However, the Berry phase of our interest is the additional Berry phase
accumulated by the quasiparticle, i.e., the difference of the Bogoliubov vacuum Berry phase and that associated with a single
quasiparticle excitation. We thus update the definition of the Chern number by [8,39]

Cn = 1

2π

∫
BZ

(∇k × An(k)) · n̂ ∈ Z, (C16)

where n̂ is the unit vector normal to the k-plane. Due to the additional element �z in the Berry connection (C15), the quantity
given by Eq. (C16) is also called the symplectic Chern number. Since the quantum states come back to themselves along a closed
loop, the quantities �n and φn are integer multiples of 2π , and thus the symplectic Chern number is also an integer.

As there is no net geometric phase (total flux of synthetic magnetic field) in our model, the sum of the Chern numbers over
the particle bands must be zero. The Chern number of an individual band may change after a phase transition where two or more
bands touch each other, but their sum does not change. For this reason, we define the Chern number of the lowest band as the
Chern number of our system, C = C1.

3. Strip boundary condition

For the periodic boundary in the X direction but an open boundary in the P direction (strip boundary condition), we can only
perform Fourier transformation in the X direction,

al,s = 1√
NX

∑
kX

akX ,(lP,s) exp
(
ikX X 0

l,s

)
,

a†
l,s = 1√

NX

∑
kX

a†
kX ,(lP,s) exp

(−ikX X 0
l,s

)
, (C17)

where NX is the number of unit cells in the X direction, and (lP, s) labels the position of atoms in the P direction. Then, the
hopping terms in the Hamiltonian (B9) become

∑
l,l ′

h(l,s),(l ′,s′ )a
†
l,sal ′,s′ = 1

NX

∑
l,l ′

∑
kX ,k′

X

a†
kX ,(lP,s)ak′

X ,(l ′P,s′ )h(l,s),(l ′,s′ )e
−ikX

(
X 0

l,s−X 0
l′ ,s′

)
−i(kX −k′

X )X 0
l′ ,s′

=
∑
lP,l ′P

∑
kX

h(lP,s),(l ′P,s′ )(kX )a†
kX ,(lP,s)akX ,(l ′P,s′ ) (C18)

with the Fourier transformation of hopping coefficients

h(lP,s),(l ′P,s′ )(kX ) ≡
∑

lX

h(l,s),(l ′,s′ )e
−ikX ·

(
X 0

l,s−X 0
l′ ,s′

)
, (C19)
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which has the property h∗
(l ′P,s′ ),(lP,s)(kX ) = h(lP,s),(l ′P,s′ )(kX ) using the identity h(l,s),(l ′,s′ ) = h∗

(l ′,s′ ),(l,s) and discrete translational
symmetry in the X -direction. Similarly, the pairing terms in the Hamiltonian (B9) become∑

l,l ′
gs,s′ (l − l ′)a†

l,sa
†
l ′,s′ = 1

NX

∑
l,l ′

∑
kX ,k′

X

a†
kX ,(lP,s)a

†
k′

X ,(l ′P,s′ )g(l,s),(l ′,s′ )e
−ikX

(
X 0

l,s−X 0
l′ ,s′

)
−i(kX +k′

X )X 0
l′ ,s′

=
∑
lP,l ′P

∑
kX

g(lP,s),(l ′P,s′ )(kX )a†
kX ,(lP,s)a

†
−kX ,(l ′P,s′ ) (C20)

with the Fourier transformation of pairing coefficients

g(lP,s),(l ′P,s′ )(kX ) ≡
∑

lX

g(l,s),(l ′,s′ )(l − l ′)e−ikX ·
(

X 0
l,s−X 0

l′ ,s′
)
,

which has the property of g(lP,s),(l ′P,s′ )(−kX ) = g(l ′P,s′ ),(lP,s)(kX ) using the identity g(l,s),(l ′,s′ ) = g(l ′,s′ ),(l,s) and discrete translational
symmetry in the X -direction. Therefore, the Hamiltonian in momentum space is

H/λ =
∑
lP,l ′P

∑
kX

h(lP,s),(l ′P,s′ )(kX )a†
kX ,(lP,s)akX ,(l ′P,s′ ) + 1

2
g(lP,s),(l ′P,s′ )(kX )a†

kX ,(lP,s)a
†
−kX ,(l ′P,s′ ) + 1

2
g∗

(lP,s),(l ′P,s′ )(kX )akX ,(lP,s)a−kX ,(l ′P,s′ ).

From the Heisenberg equation

−i
d

dt
akX ,(lP,s) =

∑
l ′P,s′

−h(lP,s),(l ′P,s′ )(kX )akX ,(l ′P,s′ ) − 1

2
[g(lP,s),(l ′P,s′ )(kX ) + g(l ′P,s′ ),(lP,s)(−kX )]a†

−kX ,(l ′P,s′ ), (C21)

we have EOM for the operator Alp (kX ) ≡ (akX ,(lP,A), akX ,(lP,B), a†
−kX ,(lP,A), a†

−kX ,(lP,B) )
T ,

i
d

dt

⎛
⎜⎜⎜⎜⎜⎝

A1
...

Al ′P
...

ANP

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

D(lP=1,l ′P=1) · · · D(lP=1,l ′P ) · · · D(lP=1,l ′P=NP )
...

. . .
...

...
...

D(lP,l ′P=1) · · · Dl ′P,lP · · · D(lP,l ′P=NP )
...

...
...

. . .
...

D(lP=NP,l ′P=1) · · · D(lP=NP,l ′P ) · · · D(lP=NP,l ′P=NP )

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

A1
...

Al ′P
...

ANP

⎞
⎟⎟⎟⎟⎟⎠,

where the block matrix element is given by

D(lP,l ′P )(kX ) ≡

⎛
⎜⎜⎝

h(lP,A),(l ′P,A)(kX ) h(lP,A),(l ′P,B)(kX ) ḡ(lP,A),(l ′P,A)(kX ) ḡ(lP,A),(l ′P,B)(kX )
h(lP,B),(l ′P,A)(kX ) h(lP,B),(l ′P,B)(kX ) ḡ(lP,B),(l ′P,A)(kX ) ḡ(lP,B),(l ′P,B)(kX )

−ḡ∗
(lP,A),(l ′P,A)(−kX ) −ḡ∗

(lP,A),(l ′P,B)(−kX ) −h∗
(lP,A),(l ′P,A)(−kX ) −h∗

(lP,A),(l ′P,B)(−kX )
−ḡ∗

(lP,B),(l ′P,A)(−kX ) −ḡ∗
(lP,B),(l ′P,B)(−kX ) −h∗

(lP,B),(l ′P,A)(−kX ) −h∗
(lP,B),(l ′P,B)(−kX )

⎞
⎟⎟⎠

with the modified pairing coefficient

ḡ(lP,s),(l ′P,s′ )(kX ) ≡ 1
2 [g(lP,s),(l ′P,s′ )(kX ) + g(l ′P,s′ ),(lP,s)(−kX )]. (C22)

By extending the definition of operator τx in Eq. (C12) to all the matrix elements of D(kX ) labeled by (lP, l ′
P ) and using the

property ḡ(lP,s),(l ′P,s′ )(kX ) = ḡ(lP,s),(l ′P,s′ )(−kX ), the dynamical matrix D(lP,l ′P )(kX ) has particle-hole symmetry expressed by

�D(lP,l ′P )(kX )�−1 = −D(lP,l ′P )(−kX ), (C23)

where the particle-hole operator is defined via � = τxK and satisfies �2 = +1. Again, we should diagonalize the dynamical
matrix D(kX ), instead of the Hamiltonian, to solve EOM and obtain the eigenmodes.

APPENDIX D: EXPERIMENTAL CONDITIONS

1. Quasi-1D trapping potential

To create a quasi-1D harmonic potential for the cold atoms,
one can start from a small Bose-Einstein condensate (BEC) in
a magnetic trap [60]. Then, the BEC is loaded into a 2D opti-
cal potential along the y and z directions, as shown by Fig. 1(b)
in the main text, by superimposing two orthogonal standing
waves on top of the BEC. Each standing wave is formed by
two counterpropagating Gaussian laser beams. Supposing the
laser light has wavelength (wave vector) λL (kL = 2π/λL),
the lattice potential has the form of V (x, y, z) = V0(sin2 ky +

sin2 kz) with the potential depth V0 laser intensity. As a result,
an array of 1D quantum gases confined to narrow potential
tubes is created. For a sufficiently strong potential depth (laser
intensity), the tunnel coupling and particle exchange between
different tubes are exponentially suppressed [32]. The Gaus-
sian profile of the laser beams also leads to axial confinement
of the quasi-1D gases. The resulting transverse (in the y-z
plane) trapping frequency ωtr and the axial trapping frequency
ωax are given by [61]

ωtr = 2Er

h̄

√
V0

Er
, ωax = λL

πw0
ωtr, (D1)
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where Er = h̄2k2
L/2m is the recoil energy of an atom with

mass m, and w0 is the Gaussian beam waist, which sets the
length of the 1D harmonic trap.

2. Stroboscopic lattice potential

In our stroboscopic driving scheme, we need to control the
stroboscopic lattice constant, which is usually much longer
than the wavelength of laser lights. For this purpose, one can
superimpose two equally polarized laser beams of wavelength
λD intersecting at an angle θ as shown by Fig. 1(b) in the main
text. The result is a standing-wave optical dipole potential
with a spatial period of [62]

d = λD

2 sin(θ/2)
. (D2)

As discussed in Eq. (A10), we need three stroboscopic lattices
with the ratio of lattice constants

d1 : d2 : d3 = 1

2
:

√
3

4
:

√
3

2
to create the honeycomb lattice. This can be achieved by either
adjusting the angle θ of the same laser light or choosing three
laser lights with different wavelengths λD.

3. Interaction

At the low temperature in ultracold atom experiments, the
collision of cold atoms is dominated by the s-wave scattering
process. The two-body interactions of ultracold gases in 3D
can be described by a pseudopotential in the form of a contact
function [32],

V3D(r) = 4π h̄2a

2m
δ(r), (D3)

where a is the s-wave scattering length. The scattering length
a can be further tuned by the Feshbach resonance with a
magnetic field B, i.e.,

a(B) = abg

[
1 − �B

B − B0

]
. (D4)

Here, abg is the off-resonant background scattering length,
while �B and B0 describe the width and position of the
resonance.

In the quasi-1D trap, the strength of contact interaction can
be modified by the transverse mode. The effective pseudopo-
tential is described by an interaction of the form [32]

V1D(x) = 2h̄ωtra

1 − Aa/ltr
δ(x) ≈ 2h̄ωtraδ(x), (D5)

where the constant A = 1.036, and ltr = √
h̄/mωtr is the char-

acteristic length of transverse motion. The approximation
comes from the fact that the scattering length a is usually
much shorter than the trapping length ltr.

4. System size

During the collision, the kinetic energy of two atoms
should not excite the transverse mode. This sets a restriction
for the size (radius R) of phase space crystal,

2 × 1

2
mω2

ax

(
d

2π
R

)2

< h̄ωtr, (D6)

which results in the condition

R <
2π

d

√
h̄ωtr

mω2
ax

= 2π

d

√
h̄πw0

mλLωax
. (D7)
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