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Abstract: Discovering dynamical models to describe underlying dynamical behavior is essential
to draw decisive conclusions and engineering studies, e.g., optimizing a process. Experimental
data availability notwithstanding has increased significantly, but interpretable and explainable
models in science and engineering yet remain incomprehensible. In this work, we blend machine
learning and dictionary-based learning with numerical analysis tools to discover governing dif-
ferential equations from noisy and sparsely-sampled measurement data. We utilize the fact that
given a dictionary containing huge candidate nonlinear functions, dynamical models can often be
described by a few appropriately chosen candidates. As a result, we obtain interpretable and par-
simonious models which are prone to generalize better beyond the sampling regime. Additionally,
we integrate a numerical integration framework with dictionary learning that yields differential
equations without requiring or approximating derivative information at any stage. Hence, it is
utterly effective in corrupted and sparsely-sampled data. We discuss its extension to governing
equations, containing rational nonlinearities that typically appear in biological networks. More-
over, we generalized the method to governing equations that are subject to parameter variations
and externally controlled inputs. We demonstrate the efficiency of the method to discover a
number of diverse differential equations using noisy measurements, including a model describing
neural dynamics, chaotic Lorenz model, Michaelis-Menten Kinetics, and a parameterized Hopf
normal form.

Keywords: Artificial intelligence, machine learning, dictionary learning, nonlinear dynamical
systems, differential equations

Novelty statement: This work combines machine learning (dictionary-based) with a numer-
ical integration scheme, namely a Runge-Kutta scheme to discover governing equations using
corrupted and sparsely-sampled data. The method does not require the computation of deriva-
tive information to discover governing equations. Hence, it holds a key advantage when data
are corrupted and sparsely sampled.

1 Introduction

Data-driven discovery of dynamic models has recently picked up much attention as there are revolutionary
breakthroughs in data science and machine learning [22,29]. With the increasing ease of data availability and
advances in machine learning, we can delve into analyzing data and identifying patterns to uncover dynamic
models that faithfully describe the underlying dynamical behavior. Though inferring dynamic models have
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been intensively studied in the literature, drawing conclusions and interpretations from them still remains
strenuous. Moreover, extrapolation and generalization of models are limited beyond the training regime.

The sphere of identifying models using data is often referred to as system identification. For linear systems,
there is an extensive collection of approaches [26, 42]. However, despite several decades of research on
learning nonlinear systems [23, 25, 39], it is still far away from being as mature as linear systems. Inferring
nonlinear systems often require a prior model hypothesis by practitioners. A compelling breakthrough
towards discovering nonlinear governing equations appeared in [3, 37], where an approach based on genetic
programming or symbolic regression is developed to identify nonlinear models using measurement data. It
provides interpretable analytic models that accomplish a long-standing desire to the engineering community.
A parsimonious model is determined by examining the Pareto font that discloses a tread-off between the
identified model’s complexity and accuracy. In a similar spirit, there have been efforts to develop sparsity
promoting approaches to discover nonlinear dynamical systems [5, 6, 31,32,43]. It is often observed that the
dynamics of physical processes can be given by collecting a few nonlinear feature candidates from a high-
dimensional nonlinear function space, referred to as a feature dictionary. These sparsity-promoting methods
are prone to discover models that are interpretable and parsimonious. Significant progress in solving sparse
regression [16,20,40] and compressed sensing [7,8,14,41] support developments of these approaches. Although
all these methods have gained much popularity, the success of these methods largely depends on the feature
candidates included in the dictionary and the ability to accurately approximating the derivative information
using measurement data. A derivative approximation using sparsely sampled and noisy measurements impose
a tough challenge though there are approaches to deal with noise, see, e.g., [10] We also highlight additional
directions explored in the literature to discover nonlinear governing equations, which include discovery of
models using time-series data [11], automated inference of dynamics [3, 12, 38], and equation-free modeling
[24,32,46].

In this work, we re-conceptualize the problem of discovering nonlinear differential equations by blending
sparse identification with a classical numerical integration tool. We here focus on a widely known integration
scheme, namely Runge-Kutta 4th-order [1]. In contrast to previously studied sparse identification approaches,
e.g., [3,5,43], our approach would not require direct access or approximation of temporal gradient information.
Therefore, we do not commit errors due to a gradient approximation. The approach becomes an attractive
choice when the collected measurement data are sparsely sampled and corrupted with noise. We mention
that numerical integration-inspired (e.g., Runge-Kutta) neural network architecture designs have also studied
in the literature and have observed their supreme performances in deep learning, see, e.g., [18,19], and from
the perspective of dynamical modeling, see, e.g., [33–35]. These methods yield black-box models, thus
interpretable and generalization of these models are ambiguous.

What is more, we discuss an essential class of dynamic models that typically explains the dynamics of
biological networks. It is also witnessed that regulatory and metabolic networks are sparse in nature, i.e., not
all components influence each other. Furthermore, such dynamic models are often given by rational nonlinear
functions. Consequently, the classical dictionary-based sparse identification ideology is not applicable as
building all possible rational feature candidates is infeasible. To deal with this, the authors in [28] have
recast the problem as finding the sparsest vector in a given null-space. However, computing a null space
using corrupted measurement data is a non-trivial task though there is some work in the direction [17]. In this
work, we instead characterize identifying rational functions as a ratio of two functions, where each function is
identified using dictionary learning. Hence, we inherently retain the primary principle of sparse identification
in the course of discovering models. In addition to these, we discuss the case where a dictionary contains
parameterized candidates, e.g., eαx, where x is dependent variables, and α is an unknown parameter. We
extend our discussion to parametric and controlled dynamic processes.

The organization of the paper is as follows. In Section 2, we briefly recap the Runge-Kutta 4th-order
scheme that is typically used to integrate differential equations. After that, we propose a methodology to
discover differential equations by synthesizing the integration scheme with sparse identification. Furthermore,
since the method involves solving nonlinear and non-convex optimization problems that promote sparse
solutions, Section 3 discusses algorithms inspired by a sparse-regression approach in [5, 40]. In Section 4,
we examine a number of extensions to other classes of models, e.g., when governing equations are given
by a ratio of two functions and involve model parameters and external control inputs. In the subsequent
section, we illustrate the efficiency of the proposed methods by discovering a broad variety of benchmark
examples, namely the chaotic Lorenz model, Fitz-Hugh Nagumo models, Michaelis-Menten Kinetics, and
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parameterized Hopf normal norm. We extensively study the performance of the proposed approach even
under noisy measurements and compare it to the approach proposed in [5]. We conclude the paper with a
summary and high-priority research directions.

2 Discovering Nonlinear Governing Equations using a Runge-Kutta
Inspired Sparse Identification

In this section, we are determined to discover nonlinear governing equations using sparsely sampled measure-
ment data. These may be corrupted using experimental and/or sensor noise. We establish approaches by
combining a numerical integration method and dictionary-based learning of the gradient field. As a result,
we develop methodologies that allow us to discover nonlinear differential equations without the explicit need
for derivative information, unlike the approach proposed in [5, 12, 43]. In this work, we utilize the widely
employed approach to integrate differential equations, namely Runge-Kutta 4th-order (RK4) scheme, which
is briefly outlined in the following.

2.1 Runge-Kutta 4th order scheme

The RK4 scheme is a widely-used method to solve an initial value problem. Let us consider an initial value
problem as follows:

ẋ(t) = f(x(t)), x(t0) = x0, (2.1)

where x(t) :=
[
x1(t),x2(t), . . . ,xn(t)

]
with xj(t) being the jth element of the vector x(t). Assume that we

aim at predicting x(tk+1) for a given x(tk), where k ∈ {0, 1, . . . ,N}. Then, using the RK4 scheme, x(tk+1)
can be given as a weighted sum of four increments, which are the product of the time-step and gradient field
information f(·) at the specific locations. Precisely, it is given as

x(tk+1) ≈ x(tk) +
1

6
hk (k1 + k2 + k3 + k4) , hk = tk+1 − tk, (2.2)

where

k1 = f(x(tk)), k2 = f

(
x

(
tk + hk

k1

2

))
, k3 = f

(
x

(
tk + hk

k2

2

))
, k4 = f (x (tk + hkk3)) .

The RK4 scheme as a network is illustrated in Figure 2.1(a). The local integration error due to the RK4 scheme
is of O(h5

k); hence, the approach is very accurate for smaller time-steps. Furthermore, if we integrate
the equation (2.1) from the time t0 to tf , we can take N steps with time-steps hk, k ∈ {1, . . . ,N} so

that tf = t0 +
∑N
i=0 hk. In the rest of the paper, we use a short-hand notation for the step in (2.2) by

FRK4 (f ,x(tk), hk), i.e.,
x(tk+1) = x(tk + hk) ≈ FRK4 (f ,x(tk), hk) . (2.3)

Lastly, we stress a point that the RK4 scheme readily handles integration backward in time, meaning that
hk in (2.2) can also be negative. Hence, we can predict both y(tk+1) and y(tk−1) using y(tk) very accurately
using RK4 scheme.

2.2 Discovering nonlinear dynamical systems

Next, we develop a RK4-inspired sparse identification approach to discover governing equations. Precisely,
we aim at disclosing the most parsimonious representation of the gradient field f(x(t)) in (2.1) using only
a time-history of x(t). Assume that the data is sampled at the time instances {t0, . . . , tN } and let us
define time-steps hk := tk+1 − tk. Furthermore, for simplicity of notation, we assume that the data follows
RK4 exactly, but the method is not limited to it. Consequently, we form two data matrices:

X :=




x(t2)
x(t3)

...
x(tN )


 =




x1(t2) x2(t2) · · · xn(t2)
x1(t3) x2(t3) · · · xn(t3)

...
...

. . .
...

x1(tN ) x2(tN ) · · · xn(tN )


 and XF (f) :=




FRK4 (f ,x(t0), h1)
FRK4 (f ,x(t1), h2)

...
FRK4 (f ,x(tN−1), hN )


 . (2.4)
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The next important ingredients to sparse identification is the construction of a huge symbolic dictionary Φ,
containing potential nonlinear features. So, the function f(·) can be given by a linear combination of few
terms from the dictionary. For example, one can consider a dictionary containing, polynomial, exponential,
and trigonometric functions, which, for any given vector v :=

[
v1, . . . ,vn

]
can be given as:

Φ(v) =
[
1,v, vP2 , vP3 , . . . , e−v, e−2v, . . . , sin(v), cos(v), . . .

]
(2.5)

in which vPi , i ∈ {2, 3} denote high-order polynomials, e.g., vP2 contains all possible degree-2 polynomials
of elements of v as:

vP2 =
[
v2

1,v1v2, . . . ,v
2
2,v2v3, . . . ,v

2
n

]
(2.6)

Each element in the dictionary Φ is a potential candidate to describe the function f . Moreover, depending
on applications, one may take the help of experts and include empirical knowledge to construct a meaningful
feature dictionary.

Having paradise of an extensive dictionary, one has many choices to choose candidates from the dictio-
nary. However, our goal is to choose as few candidates as possible, describing the nonlinear function f in
(2.1). Hence, we set up a sparsity-promoting optimization problem to pick few candidate functions from the
dictionary, e.g.,

fk(x(t)) = Φ(x(t))θk, (2.7)

where fk : Rn → R is the kth element of f , and θk a sparse vector; hence, selecting appropriate candidates
from the dictionary determines governing equations. As a result, we can write the function f(·) in (2.1) as
follows:

f(x) =
[
f1(x), f2(x), . . . , fn(x)

]
=
[
Φ(x)θ1,Φ(x)θ2, · · · ,Φ(x)θn

]
= Φ(x)Θ, (2.8)

where Θ =
[
θ>1 , . . . ,θn

]
. This allows to articulate our optimization problem that aims at discovering

governing equations – that is to find the sparsest Θ, satisfying

X = XF (f) , where f(x) = Φ(x)Θ. (2.9)

Once we identify Θ or {θ1, . . . ,θn}, the dynamic model can be given as
[
x1(t), x2(t), . . . , xn(t)

]
=
[
Φ(x)θ1, Φ(x)θ2, . . . ,Φ(x)θn

]
.

We referred to the proposed approach as Runge-Kutta inspired sparse identification (RK4-SINDy). We depict
all the essential steps for RK4-SINDy to discover governing equations in Figure 2.1 through the Fitz-Hugh
Nagumo model (details of the model are provided later).

We take the opportunity to stress imperative advantages of RK4-SINDy. That is – to discover nonlinear
differential equations, we do not require derivative information of x(t) at any step. We only hypothesize that
the gradient field can be given by selecting appropriate features from a dictionary containing a vast number of
possible nonlinear features. Consequently, we expect to discover good quality models when data are sparsely
collected and/or are corrupted, and this is what we manifest in our results in Section 5. Interestingly, the
approach readily handles irregular time-steps.

When the data are corrupted with noise or does not follow RK4 exactly, then we may need to regularize
the above optimization problem. Since the l1-regularization promotes sparsity in the solution, one can solve
an l1-regularized optimization problem:

min
Θ
‖X−XF

(
Φ(·)⊗Θ

)
‖+ λ ‖Θ‖l1 . (2.10)

As discussed in Subsection 2.1, the RK4 scheme can accurately predict both x(ti+1) and x(ti−1) using
x(ti). Therefore, the following also holds:

Xb = Xb
F (f) ,

where

Xb :=




x(t0)
x(t1)

...
x(tN−1)


 =




x1(t0) x2(t0) · · · xn(t0)
x1(t1) x2(t1) · · · xn(t2)

...
...

. . .
...

x1(tN−1) x2(tN−1) · · · xn(tN−1)


 and Xb

F (f) :=




FRK4 (f ,x(t1),−h1)
FRK4 (f ,x(t2),−h2)

...
FRK4 (f ,x(tN ),−hN )


 .
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...
...

x1(ti), . . . ,xn(ti)
...

...




:= X

Φ
(X
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x
1
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..
,ξ

x
n

]

Φ
( X̃
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) [
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..
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n

]

Φ
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) [
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..
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...
...

x1(ti+1), . . . ,xn(ti+1)
...

...


≈

Symobolic dictionary of functions

Φ
(
X̃
)
=




...
...

1, X̃, X̃P2 , X̃P3 , . . . , sin(X̃), cos(X̃), . . . ,
...

...


Sparse coefficients to describe dynamics[

ξx1
, . . . , ξxn

]

Fitz-Hugh Nagumo model

v̇ = v − w − v3/3 + 0.5

ẇ = 0.040v − 0.028w + 0.032

time

0
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600

v

2
1

0
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0.5

1.0

data
Data




...
...

v(ti),w(ti)
...

...


 RK4


Φ

([
·
])
,




...
...

ξv, ξw
...

...










...
...

v(ti+1),w(ti+1)
...

...


≈

Φ







...
...

v(ti),w(ti)
...

...





 =




...
...

...
...

...
...

...
...

1 v(ti) w(ti) v(ti)
2 v(ti)w(ti) w(ti)

2 · · · w(ti)
5

...
...

...
...

...
...

...
...




′′ ξv ξw
1 [0.499] [0.032]
v [0.998] [0.040]
w [−0.998] [−0.028]
v2 [ 0] [ 0]
vw [ 0] [ 0]
w2 [ 0] [ 0]
v3 [−0.333] [ 0]
... [ 0] [ 0]

w5 [ 0] [ 0]

M
o
d
el

Identified model

v̇(t) = Φ([v,w])ξv

ẇ(t) = Φ([v,w])ξvtime

0
200

400
600

v

2
1

0
1

2

w

0.0

0.5

1.0

Discovered model

Dictionary of nonlinear functions

(a)

(b)

Figure 2.1: In (a), we show the RK4 scheme to predict variables at the next time-step as a network. It
resembles a residual-type network with skip connections. In (b), we present a systematic illustration of RK4-
SINDy approach to discover governing equations using the Fitz-Hugh Nagumo model. In the first step, we
collect a time history of variables v(t) and w(t). Next, we build a symbolic feature dictionary Φ, containing
potential features. It is followed by solving a nonlinear sparse regression problem to pick the right features
from the dictionary (encoded in sparse vectors ξv and ξw). Here, we presume that variables at the next
time steps are given by following the RK4 scheme. The non-zero entries in vectors ξv and ξw determine the
right-hand side of the differential equations. As shown, we pick the right features from the dictionary upon
solving the optimization problem, and corresponding coefficients are 0.1% accurate.

Therefore, we can have a more involved optimization by including both forward and backward predictions
in time. This helps particularly in noisy measurement data. In the next subsection, we discuss an efficient
procedure to solve the optimization problem (2.9).

3 Algorithms to Solve Nonlinear Sparse Regression Problems

Several methodologies exist to solve linear optimization problems that yield a sparse solution, see ,e.g.,
LASSO [16, 40]. However, the optimization problem (2.9) is nonlinear and likely non-convex. There are
some developments in solving sparsity-constrained nonlinear optimization problems; see, e.g., [2,45]. Though
these methods enjoy many nice theoretical properties, they typically require a priory the maximum number of
non-zero elements in the solutions, which is often unknown to us. Also, they are computationally demanding.

Here, we propose two simple gradient-based sequential thresholding schemes, similar to the one discussed
in [5] for linear problems. In these schemes, we first solve the nonlinear optimization problem (2.9) using a
(stochastic-) gradient descent method to obtain Θ1, followed by applying a thresholding to Θ1.

3.1 Fix cutoff thresholding

In the first approach, we define a cutoff value λ and set all the coefficients smaller than λ to zero. We
then update the remaining non-zero coefficients by solving the optimization problem (2.9) again, followed
by employing the thresholding. We repeat the procedure until all the non-zero coefficients are equal to or
larger than λ. This procedure is efficient as the current value of non-zero coefficients can be used as an initial
guess for the next iteration, and the optimal Θ can be found with a little computational effort. Note the
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Algorithm 1 Fix Cutoff Thresholding Procedure

Input: Measurement data {x(t0),x(t1), . . . ,x(tN )} and the cutoff parameter λ.

1: Solve the optimization problem (2.9) to get Θ.
2: small idx = (|Θ| < λ) . Determine indices at which coefficients are less λ
3: Err = ‖Θ (small idx) ‖
4: while Err 6= 0 do
5: Update Θ by solving the optimization problem (2.9) with the constraint Θ (small idx) = 0
6: small idx = (|Θ| < λ) . Determine indices at which coefficients are less λ
7: Err = ‖Θ (small idx) ‖

Output: The sparse Θ that picks right features from the dictionary.

Algorithm 2 Iterative Cutoff Thresholding Procedure

Input: Measurement data {x(t0),x(t1), . . . ,x(tN )}.
1: Construct X using measurement data as in (2.4).
2: Solve the optimization problem (2.9) to get Θ.
3: E := ‖X−XF (Φ(·)Θ) ‖, where XF is defined in (2.4).
4: while E ≤ tol do
5: Determine the smallest non-zero coefficient of abs(Θ), denoted by λsmall.
6: small idx = (|Θ| < λsmall) . Determine indices at which coefficients are less λ
7: Update Θ by solving the optimization problem (2.9) with the constraint Θ (small idx).
8: E := ‖X−XF (Φ(·)Θ) ‖.

Output: The sparse Θ that picks right features from the dictionary.

cutoff parameter λ is important to obtain a suited sparse solution, but it can be found using the concept of
cross-validation. We sketch the discussed procedure in Algorithm 1.

3.2 Iterative cutoff thresholding

In the fix cutoff thresholding approach, we need to pre-define the cutoff value for thresholding. A suitable
value of it needs to be found by an iterative procedure. In our empirical observations, applying fix thresholding
at each iteration does not yield the most sparse solution in many instances. To circumvent this, we propose
an iterative way of thresholding – that is as follows. In the first step, we solve the optimization problem (2.9)
for Θ. Then, we determine the smallest non-zero coefficients of |Θ| followed by setting all the coefficients
smaller than this to zero. Like the previous approach, we update the remaining non-zero coefficients by
solving the optimization problem (2.9). We repeat the step of finding the smallest non-zero coefficient of the
updated |Θ| and setting it to zero. We iterate the procedure until the loss of data fidelity is less than a given
tolerance. Visually, it can be anticipated using the curve between the data-fitting and number of non-zero
elements in Θ, which typically exhibit an elbow -type curve. We shall see in our result section (Section 5).
We sketch the step of the procedure in Algorithm 2.

We note that the successive iterations converge faster to the optimal value after the first thresholding as
we choose the coefficients after applying thresholding as the initial guess. Moreover, in our experiments, we
observe that this thresholding approach yields better results, particularly when data are corrupted with noise.
However, it may be computationally more expensive than the fixed cutoff thresholding approach as it may
need more iterations to converge. Therefore, an efficient approach combining fixed and iterative thresholding
approaches is a worthy future research direction.
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4 A Number of Possible Extensions

In this section, we discuss several extensions to the methodology proposed in Section 2, generalizing to a
large class of problems. First, we discuss the discovery of governing differential equations given by a ratio
of two functions. Next, we investigate the case in which a symbolic dictionary is parameterized. This is of
particular interest when governing equations are expected to have candidate features, e.g., eαx(t), where α is
unknown. We further extend our discussion to parameterized and externally controlled governing equations.

4.1 Governing equations as a ratio of two functions

There are many instances, where the governing equations are given as a ratio of two nonlinear functions. Such
equations frequently appear in the modeling of biological networks. For simplicity, we here examine a scalar
problem; however, the extension to multi-dimensional cases readily follows. Consider governing equations of
the form:

ẋ(t) =
g(x)

1 + h(x)
, (4.1)

where g(x) : R → R and h(x) : R → R are continuous nonlinear functions. Here again, the observation
is that the functions g(·) and h(·) can be given as linear combinations of a few terms from corresponding
dictionaries. Hence, we can cast the problem of identifying the model (4.1) as a dictionary-based discovery
of governing equations. Let us consider two symbolic dictionaries:

Φ(g)(x) =
[
1,x,x2,x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), . . .

]
, (4.2)

Φ(h)(x) =
[
x,x2,x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), . . .

]
. (4.3)

Consequently, the functions g(·) and h(·) can be given by

g(x) = Φ(g)(x)θg, (4.4)

h(x) = Φ(h)(x)θh, (4.5)

where θg and θh are sparse vectors. Then, we can readily apply the framework discussed in the previous

section by assuming f(x) :=
g(x)

1 + h(x)
in (2.1). We can determine sparse coefficients θg and θh by employing

the thresholding concepts presented in Algorithms 1 and 2. These are possible because the algorithms are
gradient-based and we only need to compute gradients with respect to θg and θh.

Furthermore, we notice that it is worthwhile to consider governing equations of the form:

ẋ(t) = k(x) +
g(x)

1 + h(x)
. (4.6)

Indeed, the model (4.6) can be rewritten in the form considered in (4.1). But it is rather efficient to consider
the form (4.6). We illustrate it with the following example:

ẋ(t) = −x(t)− x(t)

1 + x(t)
, (4.7)

which fits to the form considered in (4.6). In this case, all nonlinear functions k(·),g(·) and h(·) are of
degree-1 polynomials. On the other hand, if the model (4.7) is written in the form (4.1), then we have

ẋ(t) =
−1− x(t)− x(t)2

1 + x(t)
. (4.8)

Thus, the nonlinear functions g(·) and h(·) in (4.1) are of degrees 2 and 1, respectively. This gives a hint
that if we aim at learning governing equations using sparse identification, it might be efficient to consider
the form (4.6) from the complexity of the dictionary. It becomes even more adequate in multi-dimensional
differential equations. To discover dynamic model of the form (4.6), we extend the idea of learning nonlinear
functions using dictionaries. Let us construct three dictionaries as follows:
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Φ(k)(x) =
[
1,x,x2,x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), . . .

]
, (4.9)

Φ(g)(x) =
[
1,x,x2,x3, · · · , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), · · ·

]
, (4.10)

Φ(h)(x) =
[
x,x2,x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), · · ·

]
. (4.11)

Then, we believe that the nonlinear functions in (4.6) can be given as a sparse linear combination of the
dictionaries, i.e.,

k(x) = Φ(k)(x)θk, g(x) = Φ(g)(x)θg, h(x) = Φ(h)(x)θh. (4.12)

To determine the sparse coefficients {θk,θg,θh}, we can employ the RK4-SINDy framework, and Algorithms 1
and 2. We will illustrate this approach to discover an enzyme kinetics in Section 5.4 that is given as a rational
function.

4.2 Discovering of parametric and externally controlled equations

The RK4-SINDy immediately embraces the discovering of governing equations that are parametric and ex-
ternally controlled. Let us begin with an externally controlled dynamic models of the form:

ẋ(t) = f(x(t),u(t)), (4.13)

where x(t) ∈ Rn and u(t) ∈ Rm are state and controlled input vectors. The goal here is to discover
f(x(t),u(t)) using the state trajectory x(t) generated using a controlled input u(t). We aim at discovering
governing equations using dictionary-based identification. Like discussed in Section 2, we construct a symbolic
dictionary Φ of possible candidate features using x and u, i.e.,

Φ(x,u) =
[
1,x>,u>,

(
xP2

u

)>
,
(
xP3

u

)>] , (4.14)

where
(
xPi

u

)>
consists polynomial terms of degree-i, i.e.,

(
xP2

u

)>
contains degree-2 polynomial terms including

cross terms: (
xP2

u

)>
=
[
x2

1, . . . ,x
2
n,u

2
1, . . . ,u

2
m,x1u1, . . . ,xnu1,x1u2, . . . ,xnum

]
, (4.15)

where ui is the i-th element of u. Using measurements of x and u, we can cast the problem exactly as done
in Section 2 by assuming that f(x(t),u(t)) can be determined by selecting appropriate functions from the
dictionary Φ(x,u). Similarly, system parameters can also be incorporated to discover parametric differential
equations of the form:

ẋ(t) = f(x(t), µ), (4.16)

where µ ∈ Rp is the system parameters. It can be considered as a special case of (4.13) since a constant
input can be thought of as a parameter in the course of discovering governing equations. We illustrate
RK4-SINDy for discovering parametrized Hopf normal form using measurement data (see Subsection 5.5).

4.3 Parameterized dictionary

The success of the sparse identification highly depends on the quality of a constructed feature dictionary.
In other words, the dictionary should contain right features in which governing differential equations can be
given as a linear combination of few terms from the dictionary. However, it becomes a challenging task when
one aims at including, for instance, trigonometry or exponential functions (e.g., sin (ax), e(bx)), where {a, b}
are unknown. In an extreme case, one might think of including sin(·) and e(·) for each possible value of a
and b. This would lead to the dictionary of infinite dimension, hence becomes intractable. To illustrate it,
we consider the governing equation as follows:

ẋ(t) = −x(t) + exp(−1.75x(t)). (4.17)

Let us assume that we concern about discovering the model (4.17) using a time history of x(t) without
any prior knowledge except that we expect exponential nonlinearities. It may be gathered with the help of
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experts or from empirical knowledge. For instance, an electrical circuit modeling containing diode components
typically involves exponential nonlinearities, but the corresponding coefficient is unknown.

We conventionally build a dictionary containing exponential functions using several possible coefficients as
follows:

Φ(x) =
[
1,x,x2,x3, . . . , ex, e−x, e2x, e−2x . . . , sin(x), cos(x), . . .

]
. (4.18)

However, it is impossible to add all infinitely exponential terms with different coefficients in the dictionary.
As a remedy, we discuss the idea of a parameterized dictionary that was also discussed in [9]:

ΦΞ(x) =
[
1,x,x2,x3, . . . , sin(η1x), cos(η2x), sin(η3x

2), cos(η4x
2), . . . , eη5x, eη6x2

, . . . ,
]

(4.19)

where Ξ = {ξ1, ξ2, . . .}. In this case, we do not need to include all frequencies for trigonometric functions
and coefficients for exponential functions. However, it comes at the cost of finding suitable coefficients {ηi}’s,
along with a vector, selecting right features from the dictionary. Since we solve optimization problems, e.g.,
(2.9) using a gradient descent, we can easily incorporate the parameters ηi’s along with θi’s as learning
parameters and can readily employ Algorithms 1 and 2 with a little alteration.

5 Results

Here, we demonstrate the success of RK4-SINDy to discover governing equations using measurement data
through a number of examples of different complexity1. In the first example, we consider simple illustrative
examples, namely, linear and nonlinear damped oscillators. Using the linear damped oscillator, we perform a
comprehensive study under various conditions, i.e., the robustness of the approach to sparsely sampled and
highly corrupted data. We compare the performance of our approach to discover governing equations with
[5]; we refer to it as Std-SINDy2. In the second example, we study the chaotic Lorenz example and show
that RK4-SINDy determines the governing equations, exhibiting the chaotic behavior accurately. In the third
example, we discover neural dynamics from measurement data using RK4-SINDy. As the fourth example,
we illustrate the discovery of a model that describes the dynamics of enzyme activity and contains rational
nonlinearities. In the last example, we showcase that RK4-SINDy also successfully discovers the parametric
Hopf normal form from collected noisy measurement data for various parameters.

5.1 Two-dimensional Damped Oscillators

As simple illustrative examples, we consider two-dimensional damped harmonic oscillators. These can be
given by linear and nonlinear models. We begin by considering the linear one.

5.1.1 Linear damped oscillator

Consider a 2D linear damped oscillator whose dynamics is given by:

ẋ(t) = −0.1x(t) + 2.0y(t), (5.1a)

ẏ(t) = −2.0x(t)− 0.1y(t). (5.1b)

To infer governing equations from measurement data, we first assume to have clean data at a regular time-
step dt. We then build a symbolic dictionary containing polynomial nonlinearities up to the degree of 5.
Next, we learn governing equations using RK4-SINDy (Algorithm 1 with λ = 5 ·10−2) and observe the quality
of inferred equations for different dt. We also present a comparison with Std-SINDy.

The results are shown in Figure 5.1 and Table 5.1. We notice that RK4-SINDy is impressively robust
with the variation in time-step as compared to Std-SINDy, and discovers the governing equations accurately.
We also emphasis that for large time-steps, Std-SINDy fails to capture dynamics; in fact, for a time-step
dt = 5 · 10−1, Std-SINDy even yields unstable models, see Figure 5.1d.

1Most of all examples are taken from [5]
2We use the Python implementation of the method, the so-called PySINDy [13].
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(a) Time step dt = 1 · 10−2.
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(b) Time step dt = 1 · 10−1.
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(c) Time step dt = 3 · 10−1.
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(d) Time step dt = 5 · 10−1.

Figure 5.1: Linear 2D model: Identified models using data at various regular time-step.

Time step RK4-SINDy Std-SINDy

1 · 10−2
ẋ(t) = −0.100x(t) + 2.000y(t)

ẏ(t) = −2.001x(t)− 0.100y(t)

ẋ(t) = −0.100x(t) + 2.000y(t)

ẏ(t) = −2.000x(t)− 0.100y(t)

1 · 10−1
ẋ(t) = −0.100x(t) + 2.001y(t)

ẏ(t) = −2.001x(t)− 0.100y(t)

ẋ(t) = −0.098x(t) + 1.987y(t)

ẏ(t) = −1.988x(t)− 0.098y(t)

3 · 10−1
ẋ(t) = −0.101x(t) + 2.002y(t)

ẏ(t) = −2.002x(t)− 0.101y(t)

ẋ(t) = −0.078x(t) + 1.884y(t)

ẏ(t) = −1.906x(t)− 0.084y(t)

5 · 10−1
ẋ(t) = −0.103x(t) + 2.011y(t)

ẏ(t) = −2.011x(t)− 0.103y(t)

ẋ(t) = 1.688y(t)

ẏ(t) = −1.864x(t)− 0.123x(t)
2

− 0.146x(t)
2
y(t) + 0.115x(t)

4
y(t)

+ 0.133x(t)
3
y(t)

Table 5.1: Linear 2D model: The discovered governing equations using RK4-SINDy and Std-SINDy are reported
for different regular time-steps at which data are collected.

Next, we study the performance of both methodologies under corrupted data. We corrupt the measurement
data by adding zero-mean Gaussian white noise of different variances. We present the results in Figure 5.2
and Table 5.2 and notice that RK4-SINDy can discover better quality sparse parsimonious models as compared
to Std-SINDy even under significantly corrupted data. It is predominately visible in Figure 5.2d.
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(b) Noise level σ = 5 · 10−2.
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(c) Noise level σ = 1 · 10−1.
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(d) Noise level σ = 2 · 10−1.

Figure 5.2: Linear 2D model: The transient responses of discovered models using corrupted data are com-
pared.

Noise level RK4-SINDy Std-SINDy

1 · 10−2
ẋ(t) = −0.099x(t) + 1.999y(t)

ẏ(t) = −2.000x(t)− 0.101y(t)

ẋ(t) = −0.102x(t) + 1.999y(t)

ẏ(t) = −2.002x(t)− 0.101y(t)

5 · 10−2
ẋ(t) = −0.095x(t) + 1.999y(t)

ẏ(t) = −1.995x(t)− 0.105y(t)

ẋ(t) = −0.078x(t) + 2.001y(t)

ẏ(t) = −1.995x(t)− 0.105y(t)

1 · 10−1
ẋ(t) = −0.091x(t) + 1.985y(t)

ẏ(t) = −1.997x(t)− 0.103y(t)

ẋ(t) = −0.076x(t) + 1.969y(t)

ẏ(t) = −2.008x(t)− 0.095y(t)

2 · 10−1
ẋ(t) = −0.177x(t) + 2.053y(t)

− 0.063x
2
y + 0.059xy

2

ẏ(t) = −1.960x(t)

ẋ(t) = −0.173x(t) + 1.950y(t)− 0.056y(t)
2

+ 0.059x(t)
3 − 0.079x(t)

2
y + 0.095

ẏ(t) = −2.005x(t)− 0.095y(t) + 0.069x(t)y(t)

+ 0.062x(t)
3

+ 0.060x(t)y(t)
2

Table 5.2: Linear 2D model: The discovered governing equations, by employing RK4-SINDy and Std-SINDy,
are reported. In this scenario, the measurement data are corrupted using zero-mean Gaussian white noise of
different variances.

5.1.2 Cubic damped oscillator

Next, we consider a cubic damped oscillator, governed by

ẋ(t) = −0.1x(t)3 + 2.0y(t)3,

ẋ(t) = −2.0x(t)3 − 0.1y(t)3.
(5.2)

Like the linear case, we aim at discovering the governing equation using measurement data. We repeat the
study done in the previous example using different regular time-steps. We report the quality of discovered
models using RK4-SINDy and Std-SINDy in Figure 5.3 and Table 5.3. We observe that RK4-SINDy successfully
discovers the governing equations quite accurately, whereas Std-SINDy struggles to identify the governing
equations when measurements data are collected at a larger time-step. It simply fails to obtain a stable
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model for a time-step dt = 0.1. It showcases the robustness of RK4-SINDy to discover interpretable models
even when data are collected sparsely.
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(a) Time step dt = 5 · 10−3.
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(c) Time step dt = 5 · 10−2.
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(d) Time step dt = 1 · 10−1.

Figure 5.3: Cubic 2D model: A comparison of the transient responses of discovered models using data at
different regular time-steps.

Time step RK4-SINDy Std-SINDy

5 · 10−3
ẋ(t) = −0.099x(t)3 + 1.996y(t)3

ẏ(t) = −1.997x(t)3 − 0.100y(t)3

ẋ(t) = −0.099x(t)3 + 1.995y(t)3

ẏ(t) = −1.996x(t)3 − 0.099y(t)3

1 · 10−2
ẋ(t) = −0.099x(t)3 + 1.995y(t)3

ẏ(t) = −1.997x(t)3 − 0.100y(t)3

ẋ(t) = −0.100x(t)3 + 1.994y(t)3

ẏ(t) = −1.996x(t)3 − 0.099y(t)3

5 · 10−2
ẋ(t) = −0.100x(t)3 + 1.995y(t)3

ẏ(t) = −1.997x(t)3 − 0.100y(t)3

ẋ(t) = −0.092x(t)
3

+ 2.002y(t)
3

+ 0.076x
4
y − 0.107x

2
y
3

ẏ(t) = −1.981x(t)
3 − 0.092y(t)

3

+ 0.078x
3
y
2 − 0.068xy

4

1 · 10−1
ẋ(t) = −0.103x(t) + 2.000y(t)

ẏ(t) = −2.001x(t)− 0.098y(t)

ẋ(t) = 0.090x(t)− 0.097x(t)
2 − 0.463x(t)

3

+ · · ·+ 0.381x(t)
3
y(t)

2 − 0.258x(t)y(t)
4

ẏ(t) = 0.100x(t) + 0.104x(t)
2

+ 0.051x(t)y(t)

+ · · ·+ 0.381x(t)
3
y(t)

2 − 0.258x(t)y(t)
4

Table 5.3: Cubic 2D model: The table reports the discovered governing equations by employing RK4-
SINDy and Std-SINDy.
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5.2 Fitz-Hugh Nagumo model

Here, we explore discovery of the nonlinear Fitz-Hugh Nagumo (FHN) model that describes the activation
and deactivation of neurons in a simplistic way [15]. The governing equations are:

v(t) = v(t)−w(t)− 1

3
v(t)3 + 0.5,

w(t) = 0.040v(t)− 0.028w(t) + 0.032.
(5.3)

We collect the time-history data of v(t) and w(t) using the zero initial condition. We construct a dictionary
containing polynomial terms up to the third degree. We employ RK4-SINDy (Algorithm 1 with λ = 10−2) and
Std-SINDy. We discover governing equations by using the data collected between the time interval [0, 600]s.
We identify models under different conditions, namely, different time-steps at which data are collected. We
report the results in Figure 5.4 and Table 5.4. It can be observed that RK4-SINDy faithfully discovers
the underlying governing equations by picking the correct features from the dictionary and estimates the
corresponding coefficients up to 1% accurately. On the other hand, Std-SINDy breaks down when data are
taken at a large time-step.
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(a) Time step dt = 1.0 · 10−1.
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(b) Time step dt = 2.5 · 10−1.

2 1 0 1 2
v

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

w

Data
Rk4-Sindy
Std-Sindy

time

0
200

400
600

v
2

1
0

1
2

w

0.0

0.5

1.0

Data
RK4-SinDy
Std-SinDy

(c) Time step dt = 5.0 · 10−1.
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(d) Time step dt = 7.5 · 10−1.

Figure 5.4: FHN model: A comparison of the transient responses of the discovered differential equations
using data collected at different regular time-steps.

5.3 Chaotic Lorenz system

As the next example, we consider the problem of discovering the nonlinear Lorenz model [27]. The dynamics
of the chaotic system involves on an attractor and is governed by

ẋ(t) = −10x(t) + 10y(t),

ẏ(t) = x(28− z(t))− y(t),

ż(t) = x(t)y(t)− 8
3z(t).

(5.4)

We collect the data by simulating the model from time t = 0 to t = 20 with a time-step of dt = 10−2. To
discover the governing equations using the measurement data, we employ RK4-SINDy and Std-SINDy with the
fixed cutoff parameter λ = 0.5. However, before employing the methodologies, we perform a normalization
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dt RK4-SINDy Std-SINDy

1.0 · 10−1
v̇(t) = 0.499 + 0.998v − 0.998w − 0.333v3

ẇ(t) = 0.032 + 0.040v − 0.028w

v̇(t) = 0.498 + 0.996v − 0.996w − 0.332v3

ẇ(t) = 0.032 + 0.040v − 0.028w

2.5 · 10−1
v̇(t) = 0.499 + 0.998v − 0.998w − 0.333v3

ẇ(t) = 0.032 + 0.040v − 0.028w

v̇(t) = 0.494 + 0.985v − 0.989w − 0.328v3

ẇ(t) = 0.032 + 0.040v − 0.028w

5.0 · 10−1
v̇(t) = 0.501 + 1.001v − 1.001w − 0.334v3

ẇ(t) = 0.032 + 0.040v − 0.028w

v̇(t) = 0.482 + 0.943v − 0.959w

− 0.034vw − 0.311v3 + 0.024vw2

ẇ(t) = 0.032 + 0.040v − 0.028w

7.5 · 10−1
v̇(t) = 0.502 + 1.001v − 1.003w − 0.334v3

ẇ(t) = 0.032 + 0.040v − 0.027w

v̇(t) = 0.459 + 0.816v − 0.982w

− 0.013v2 + · · ·+ 0.131vw2 − 0.021w3

ẇ(t) = 0.032 + 0.040v − 0.028w

Table 5.4: FHN model: Discovered models using data at various time-step using RK4-SINDy and Std-SINDy.

step. A reason behind is that the mean value of the variable z is large, and the standard deviations of all
the three variables is much larger than 1. Consequently, a dictionary containing polynomial terms would
be highly ill-conditioned. To circumvent this, we perform a normalization of data. Ideally, one performs
normalization such that the mean and variance of the transformed data are 0 and 1. But for this particular
example, we normalize such that the interactions between the transformed variables are similar to (5.4).
Hence, we propose a transformation as

x̃(t) := x(t)
8 , ỹ(t) := y(t)

8 , z̃(t) := z(t)−25
8 . (5.5)

Consequently, we obtain a model:

˙̃x(t) = −10x̃(t) + 10ỹ(t),

˙̃y(t) = x̃(28− 8z̃(t))− ỹ(t),

˙̃z(t) = 8x̃(t)ỹ(t)− 8
3 z̃(t)− 25

3 .

(5.6)

Notwithstanding, the models (5.4) and (5.6) look alike, and the basis features in which dynamics of both
models lie are the same except a constant. However, the beauty of the model (5.6) or the transformed data
is that the data becomes well-conditioned, hence the dictionary containing polynomial features. Next, we
discover models by employing RK4-SINDy and Std-SINDy using the transformed data. For this, we construct
a dictionary with polynomial nonlinearities up to degrees 3. We observe the result in Figure 5.5 and Table 5.5.
We note that both methods identify correct features from the dictionary with coefficients that are close to
the ground truth, but RK4-SINDy model coefficients are relatively closer to the ground-truth ones. It is
also worthwhile to note that the coefficients of the obtained RK4-SINDy model are only 0.01% off to the
ground-truth, but the dynamics still seem quite different, see Figure 5.5. A reason behind this is the highly
chaotic behavior of the dynamics. As a result, a tiny deviation in the coefficients can significantly impact
the transient behavior in an absolute sense; however, the dynamics on an attractor are perfectly captured.
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Figure 5.5: Chaotic Lorenz model: The left figures shows the collected data (in red) and a finely spaced
trajectory of the ground truth is shown in black. The middle and right figures shows the trajectories obtained
using the discovered models using RK4-SINDy and Std-SINDy, respectively.

RK4-SINDy Std-SINDy

˙̃x(t) = −10.004x̃(t) + 10.004ỹ(t),

˙̃y(t) = 2.966x̃− 0.956ỹ(t)− 7.953x̃(t)z̃(t),

˙̃z(t) = 7.944x̃(t)ỹ(t)− 2.669z̃(t)− 8.336

˙̃x(t) = −9.983x̃(t) + 9.983ỹ(t),

˙̃y(t) = 2.912x̃− 0.922ỹ(t)− 7.911x̃(t)z̃(t),

˙̃z(t) = 7.972x̃(t)ỹ(t)− 2.662z̃(t)− 8.313

Table 5.5: Chaotic Lorenz model: Discovered governing equations using RK4-SINDy and Std-SINDy.

Next, we study the performance of the approaches under noisy measurements. For this, we add mean zero
Gaussian noise of variance one. To employ RK4-SINDy, we first apply a Savitzky-Golay filter [36] to denoise
the time-history data, see Figure 5.6. For Std-SINDy as well, we use the same filter to denoise the signal and
approximate the derivative information. We plot the trajectories of the discovered models and ground-truth
in Figure 5.7 and observe that dynamics on an attractor is still intact; however, we note that the discovered
equations are very different from the ground truth, see Table 5.6. The learning can be improved by employing
Algorithm 2, where we iteratively remove the smallest coefficient and determine the sparsest solutions by
looking at the Pareto-front. However, it comes at a slightly higher computational cost. We discuss this
approach more in detail in our following examples.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

20

10

0

10

20

30

40

{x
,y

,z
}

Noisy-data
Denoised-data

Figure 5.6: Chaotic Lorenz model: The figure shows the noisy measurements of {x,y, z} that are corrupted
by adding zero-mean Gaussian noise of variance one. It also shows the denoised signal done using a Savitzky-
Golay filter [36].
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Figure 5.7: Chaotic Lorenz model: The left figure shows the collected noisy data (in red), and a continuous
trajectory of the ground truth is shown in light black. We have added a Gaussian white noise of mean zero and
variance one. The middle and right figures present the transient trajectories obtained using the discovered
models using RK4-SINDy and Std-SINDy, respectively, and show that the dynamics of the discovered models
are intact on an attractor.

RK4-SINDy Std-SINDy

˙̃x(t) = −9.016x̃ + 8.221ỹ

− 1.675x̃z̃ + 0.895x̃3

+ 0.603x̃2ỹ +−0.579x̃ỹ2

˙̃y(t) = 1.025ỹ − 6.133x̃z̃− 1.033ỹz̃

˙̃z(t) = −8.3451− 2.708z̃ + 7.971x̃ỹ

˙̃x(t) = −8.842x̃ + 8.373ỹ

− 3.107x̃z̃ + 1.065ỹz̃

+ 2.165x̃3 +−1.215x̃2ỹ

˙̃y(t) = 1.811x̃ +−7.580x̃z̃

˙̃z(t) = −8.3441 +−2.710z̃ + 7.950x̃ỹ

Table 5.6: Lorenz model: Discovered governing equations using RK4-SINDy and Std-SINDy from noisy mea-
surements.

5.4 Michaelis-Menten kinetics

To illustrate RK4-SINDy to discover governing equations that are given by a ratio of two nonlinear functions,
we consider arguably the most well-known model for an enzyme kinetics, namely Michaelis-Menten model
[21, 30]. The model explains the dynamics of binding and unbinding of enzyme with an substrate s. In a
simplistic way, the dynamics are governed by [4]:

ṡ(t) = 0.6− 1.5s(t)

0.3 + s(t)
. (5.7)

As a first step, we generate data using four initial conditions {0.5, 1.0, 1.5, 2.0}. We collect data at a time-step
dt = 5 · 10−2, see Figure 5.8(a). Typically, governing equations, explaining biological process have rational
functions. Therefore, we aim at discovering the enzyme kinetics model by assuming a rational form as shown

in (4.1), i.e., the gradient field of s(t) takes the form g(s(t))
1+h(s(t)) .

Next, in order to identify g(s) and h(s), we construct the polynomial dictionaries, containing terms up
to degrees 4. After that, we employ RK4-SINDy to identify the precise features from the dictionaries to
characterize g and h. Moreover, we apply the iterative thresholding approach discussed in Algorithm 2,
in contrast to previously considered examples where a fixed thresholding is applied. Note that the success
of RK4-SINDy approach not only depends on a dictionary containing candidate features but the quality of
data. We have marked that the dictionary data matrix’s conditioning improves when data are normalized
to mean-zero and variance-one. It is crucial for polynomial basis in the dictionary. For this example, we
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normalize the data before employing RK4-SINDy. It means that the transformation is done as follows:

s̃(t) =
s̃− µs

σs
, (5.8)

where µs and σs are the mean and standard deviation of the collected data. Next, using the normalized
data, we learn the governing equation, describing the dynamics of s̃(t). Since we consider dictionaries for g
and h, containing polynomials of degree 4, there are total 9 coefficients. To identify the correct model while
employing Algorithm 2, we keep track of the loss (data-fidelity) and the number of non-zero coefficients,
which is shown in Figure 5.8(c). This allows us to built a Pareto front for the optimization problem and
choose the most parsimonious model that describes the dynamics present in collected data. One of the most
attractive features of learning parsimonious models is to avoid over-fitting and generalizing better in regions
in which data are not collected. It is precisely what we observed as well. As shown in Figure 5.8(e), the
learned model predicts dynamics very accurately in the region far away from the training one.
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Figure 5.8: Michaelis-Menten kinetics: In the first step, we have collected data for 4 initial conditions at a
time-stepping dt = 5 · 10−2. In the second step, we performed data-processing to normalize the data using
the mean and standard deviation. In the third step, we employed RK4-SINDy (Algorithm 2) to discover the
most parsimonious model. For this, we observe the Pareto front and pick the model that has the best fit to
the data yet having the maximum number of zero coefficients. We then compare the discovered model with
the ground truth and find that the proposed methodology could find precise candidates from the polynomial
dictionary. The corresponding coefficients have less than 1% errors.

Next, we study the performance of the method under noisy measurements. For this, we corrupt the collected
data using zero-mean Gaussian noise of variance σ = 2 · 10−2. Then, we process the data by first employing
a noise-reduction filter, namely Savitzky-Golay, followed by normalizing the data. In the third step, we focus
on learning the most parsimonious model by picking appropriate candidates from the polynomial dictionary.
Remarkably, the method allows us to find a model with correct features from the dictionary and coefficient
accuracy up to 5%. Furthermore, the model faithfully generalizes to regimes outside the training, even using
noisy measurements.

5.5 Hopf normal form

In our last example, we study discovering parameterized differential equations from noisy measurements.
Many real-world dynamical processes have system parameters, and depending on them, the system may
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Figure 5.9: Michaelis-Menten
kinetics: The figure demon-
strates the necessary steps to
uncover the most parsimo-
nious model using noisy mea-
surement data. It also tes-
tifies to the impressive capa-
bility of discovering the most
parsimonious model – that is,
they even generalize beyond
the training regime.

exhibit very distinctive dynamical behaviors. To illustrate the efficiency of RK4-SINDy to discover parametric
equations, we consider the Hopf system

ẋ(t) = µx(t)− ωy(t)−Ax(t)
(
x(t)2 + y(t)2

)
,

ẏ(t) = ωx(t) + µy(t)−Ay(t)
(
x(t)2 + y(t)2

) (5.9)

that exhibits bifurcation with respect to the parameter µ. For this example, we collect measurements for
eight different parameter values µ at a time-step 0.2 by fixing ω = 1 and A = 1. Then, we corrupt the
measurement data by adding a Gaussian sensor noise that is shown in Figure 5.10 (left top). Next, we
aim at constructing a symbolic polynomial dictionary Φ by including the parameter µ as the dependent
variables. While building a polynomial dictionary, it is important to choose the degree of the polynomial as
well. Moreover, it is known that the polynomial basis becomes numerically unstable as the degree increases.
Hence, solving optimization problem that discovers governing equations becomes challenging. With mean
of this example, we discuss an assessment test to choose the appropriate degree of the polynomial in the
dictionary. Essentially, we inspect data fidelity with respect to the degree of the polynomial in the dictionary.
When the dictionary contains all essential polynomial features, then a sharp drop in the error is expected.
We observe in Figure 5.10 (right-top) a sharp drop in the error at the degree 3, and the error remains almost
the same even when higher polynomial features are added. It indicates that polynomial degree 3 is sufficient
to describe the dynamics. Thereafter, using the dictionary containing degree 3 polynomial features, we seek
to identify the minimum number of features from the dictionary that explains the underlying dynamics. We
achieve this by employing RK4-SINDy, and compare the performance with Std-SINDy. We note down the
discovered governing equations in Table 5.7, where we notice an impressive performance of RK4-SINDy to
discover the exact form of the underlying parametric equations, and the coefficients are up to 1% accurate.
On the other hand, Std-SINDy is not able to identify the correct form of the model. Furthermore, we
compare the discovered model simulations using RK4-SINDy with ground truth beyond the training regime
of the parameter µ in Figure 5.10 (bottom). It exposes the strength of the parsimonious and interpretable
discovered models.

6 Discussion

This work has manifested a compelling approach (RK4-SINDy) to discover nonlinear differential equations
without imposing any prior structure on models. For this, we have blended sparsity-promoting identification
with a numerical integration scheme, namely, Runge-Kutta 4th-order scheme. The beauty of the proposed
methodology is that we do not require derivative information at any stage, notwithstanding we still discover
differential equations. Hence, the proposed algorithm differs from previously suggested sparsity-promoting
identification methods in the literature in this aspect. Consequently, we expect RK4-SINDy to perform better

Preprint. 2021-05-12



P. Goyal, P. Benner: Discovery of Nonlinear Dynamical Systems using Sparse Regression 19

0.0
0.2

0.4
x

0.5
0.0

0.5
1.0

1.5
2.0

y

0.50
0.25

0.00
0.25
0.50
0.75

Measurement data

0 2 4
Degree of polynomials

10 4

10 3

10 2

10 1

Los
s

0.0
0.5

1.0
x

1
0

1
2

y

1.0
0.5

0.0
0.5
1.0

Truth Simulation

0.0
0.5

1.0
x

1
0

1
2

y

1.0
0.5

0.0
0.5
1.0

RK-SINDy

Figure 5.10: Hopf normal
form: The top-left figure
shows the noisy measure-
ments that are obtained us-
ing various parameter µ. To
identify correct degree poly-
nomial basis in the dic-
tionary, we do a assess-
ment test, indicating degree-
3 polynomial are sufficient
to describe dynamics (top-
right). The bottom figures
shows a comparison of sim-
ulations of the ground truth
model and identified models
for the parameter µ, illus-
trating the capability of gen-
eralizing beyond the training
parameter regime.

Method Discovered model

RK4-SINDy
ẋ(t) = 1.001µx(t)− 1.001y(t)− 0.996x(t)

(
x(t)2 + y(t)2

)

ẏ(t) = 1.001x(t) + 1.010µy(t)− 1.006x(t)2y(t)− 1.004y(t)3

Std-SINDy
ẋ(t) = −0.961y(t) + 0.719µx(t) + 0.822µy(t)− 0.735x(t)

3 − 1.044x(t)
2
y − 0.686x(t)y(t)

2 − 0.846y(t)
3

ẏ(t) = 0.986x(t) + 0.899µy(t)− 0.882x(t)
2
y(t)− 0.904y(t)

3
.

Table 5.7: Hopf normal form: Here, we report discovered governing equations using noisy measurement data,
representing dynamics of Hopf bifurcation and notice that RK4-SINDy recovers the Hopf normal form very
accurately; on the other hand, Std-SINDy breaks down.

under sparsely sampled and corrupted data. We have demonstrated the efficiency of the approach on a variety
of examples, namely linear and nonlinear damped oscillators, a model describing neural dynamics, chaotic
behavior, and parametric differential equations. We have accurately discovered the Fitz-Hugh Nagumo model
that describes the activation and de-activation of neurons. We have also illustrated the identification of the
Lorenz model and have shown that dynamics of identified models are intact on an attractor as it is more
important for chaotic dynamics. The example of Michaelis-Menten Kinetics highlights that the proposed
algorithm can discover models that are given by a ratio of two functions. The example also shows the power of
determining parsimonious models – that is, their generalization beyond the region in which data are selected.
Furthermore, we have demonstrated the remarkable robustness of the proposed RK4-SINDy algorithm to
sparsely-sampled data and to corrupted measurement data. In the case of large noise, a noise-reduction
filter such as Savitzky-Golay helps to improve the quality of discovered governing equations. We have also
reported a comparison with the sparse identification approach [6] and have observed the out-performance of
RK4-SINDy over the latter approach.

This work opens many exciting doors for further research from both theory and practical perspectives. Since
the approach aims at selecting the correct features from a dictionary containing a high-dimensional nonlinear
feature basis, the construction of these feature bases in a dictionary plays a significant role in determining
the success of the approach. There is no straightforward answer to this obstacle; however, there is some
expectation that meaningful features may be constructed with the help of experts and empirical knowledge,
or at least they may be realized in raw forms by them. Furthermore, we have solved the optimization
problem (2.9) using a gradient-based method. We have observed that if feature functions in the dictionary
are similar for given data, then the convergence is slow, and sometimes it even fails and is stuck in a local
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minimum. In other words, the incoherency between the feature functions is low. Hence, there is a need
for the normalization step. In Subsections 5.3 and 5.4, we have employed a normalization step to improve
incoherency. However, it is worth investigating better-suited strategies to normalize either data or feature
spaces as a pre-processing step so that sparsity in the feature space remains intact. In addition to these,
a thorough study on the performance of various noise-reduction methods would provide deep insights into
their appropriateness to RK4-SINDy, despite we noticed a good performance of the Sabitzky-Golay filter to
reduced noise in our results.

Methods discovering interpretable models that generalize well beyond the training regime are limited, and
the proposed method RK4-SINDy is among these. Additionally, approaches discovering governing equations
that also obey physical laws are even rarer. A very recent paper [44] has stressed that discovering/learning
models can be made even more efficient by incorporating the laws of nature in the course of discovering
equations. A solid example comes from the discovering biological networks that often follow the mass-
conversation law. Therefore, integrating physical laws in discovering models and sparse identification will
hopefully shape the future of discovering explainable and generalizable differential equations.
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