
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Goyal P, Benner P. 2022
Discovery of nonlinear dynamical systems
using a Runge–Kutta inspired
dictionary-based sparse regression approach.
Proc. R. Soc. A 478: 20210883.
https://doi.org/10.1098/rspa.2021.0883

Received: 17 November 2021
Accepted: 16 May 2022

Subject Areas:
differential equations, applied mathematics,
artificial intelligence

Keywords:
system identification, machine learning,
sparse regression, dynamical systems

Author for correspondence:
Pawan Goyal
e-mail: goyalp@mpi-magdeburg.mpg.de

Discovery of nonlinear
dynamical systems using a
Runge–Kutta inspired
dictionary-based sparse
regression approach
Pawan Goyal and Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems,
Standtorstraße 1, 39106 Magdeburg, Germany

PG, 0000-0003-3072-7780; PB, 0000-0003-3362-4103

In this work, we blend machine learning and
dictionary-based learning with numerical analysis
tools to discover differential equations from noisy
and sparsely sampled measurement data of time-
dependent processes. We use the fact that given
a dictionary containing large candidate nonlinear
functions, dynamical models can often be described
by a few appropriately chosen basis functions.
As a result, we obtain parsimonious models that
can be better interpreted by practitioners, and
potentially generalize better beyond the sampling
regime than black-box modelling. In this work, we
integrate a numerical integration framework with
dictionary learning that yields differential equations
without requiring or approximating derivative
information at any stage. Hence, it is utterly effective
for corrupted and sparsely sampled data. We discuss
its extension to governing equations, containing
rational nonlinearities that typically appear in
biological networks. Moreover, we generalized the
method to governing equations subject to parameter
variations and externally controlled inputs. We
demonstrate the efficiency of the method to discover
a number of diverse differential equations using noisy
measurements, including a model describing neural
dynamics, chaotic Lorenz model, Michaelis–Menten
kinetics and a parameterized Hopf normal form.

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2021.0883&domain=pdf&date_stamp=2022-06-22
mailto:goyalp@mpi-magdeburg.mpg.de
http://orcid.org/0000-0003-3072-7780
http://orcid.org/0000-0003-3362-4103
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

1. Introduction
Data-driven discovery of dynamical models has recently drawn significant attention as there
have been revolutionary breakthroughs in data science and machine learning [1,2]. With the
increasing ease of data availability and advances in machine learning, we can analyse data and
identify patterns to uncover dynamical models that faithfully describe the underlying dynamical
behaviour. Although inference of dynamical models has been intensively studied in the literature,
drawing conclusions and interpretations still remains tedious. Moreover, extrapolation and
generalization of models are limited beyond the training regime.

The area of identifying models using data is often referred to as system identification. For linear
systems, there is an extensive collection of approaches [3,4]. However, despite several decades
of research on learning nonlinear systems [5–8], the field is still far away from being as mature
as that for linear systems. Inferring nonlinear systems often requires a priori model hypothesis
by practitioners. A compelling breakthrough towards discovering nonlinear governing equations
appeared in [9,10], where an approach based on genetic programming or symbolic regression
is developed to identify nonlinear models using measurement data. It provides parsimonious
models that accomplish a long-standing desire for the engineering community. A parsimonious
model is determined by examining the Pareto front that discloses a trade-off between the
identified model’s complexity and accuracy. In a similar spirit, there have been efforts to
develop sparsity promoting approaches to discover nonlinear dynamical systems [11–15]. It
is often observed that the dynamics of physical processes can be given by collecting a few
nonlinear feature candidates from a high-dimensional nonlinear function space, referred to as
a feature dictionary. These sparsity-promoting methods are able to discover models that are
parsimonious, which in some situations can lead to better interpretability than black-box models.
For motivation, we take an example from [14], where using data for fluid flow dynamics
behind a cylinder, it is shown that one can obtain a model, describing the dynamics on-attractor
and off-attractor and characterizing a slow parabolic manifold. Fluid dynamics practitioners
can well interpret this model. Another example may come from biological modelling, where
parsimonious models can describe how a species affects the dynamics of other species. Hence,
the approach to discovering sparse models using dictionary learning can be interpreted in
this way.

Significant progress in solving sparse regression problems [16–18] and in compressed sensing
[19–22] supports the development of these approaches. Although all these methods have gained
much popularity, the success largely depends on the feature candidates included in the dictionary
and the ability to approximate the derivative information using measurement data accurately.
A derivative approximation using sparsely sampled and noisy measurements imposes a tough
challenge though there are approaches to deal with noise, e.g. [23]. We also highlight additional
directions explored in the literature to discover nonlinear governing equations, which include
discovery of models using time-series data [8], automated inference of dynamics [9,24,25] and
equation-free modelling [13,26,27].

In this work, we re-conceptualize the problem of discovering nonlinear differential equations
by blending sparse identification with a classical numerical integration tool. We focus on a widely
known integration scheme, namely the classical fourth-order Runge–Kutta [28] method, noting
that any other explicit high-order integration scheme, e.g. 3/8-rule fourth Runge–Kutta method
or the ideal of neural ODEs proposed in [29] incorporating any numerical integrator. In contrast to
previously studied sparse identification approaches, e.g. [9,11,14], our approach does not require
direct access or approximation of temporal gradient information. Therefore, we do not commit
errors due to a gradient approximation. The approach becomes an attractive choice when the
collected measurement data are sparsely sampled and corrupted with noise.

However, we mention that using numerical integration schemes in the course of learning
dynamics has a relatively long history. The work goes back to [30,31], where the fourth-
order Runge–Kutta scheme is coupled with neural networks to learn a function, describing
the underlying vector field. In recent times, making use of numerical integration schemes with

3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

neural networks has again received attention and has been studied from the perspective of
dynamical modelling, e.g. [32–34]. We particularly emphasize the work [34] that also uses a
similar concept to learn dynamical systems using noisy measurements; precisely, it realizes the
decoupling of noise and the underlying truth by enforcing a time-stepping integration scheme. As
a result, one may obtain a denoised signal and the dynamical models describing the underlying
vector field. Based on this, we have discussed an approach in [35] to learn dynamical models
from noisy measurements using time-stepping schemes combined with neural networks that
can handle missing data as well, which is not possible in the approach discussed in [34].
Recently, neural ODEs [29] have gained popularity to learn dynamical systems that show how
to fuse any numerical integration efficiently in the course of learning models. Despite all these
aforementioned methods being very general in the sense that they do not require any prior
assumptions about the underlying system or structure of dynamical models, they are often
black-box models; thus, interpretability and generalization of these models is unclear.

In this work, we also discuss an essential class of dynamical models that typically explains
the dynamics of biological networks. It is also shown that regulatory and metabolic networks
are sparse in nature, i.e. not all components influence each other. Furthermore, such dynamical
models are often given by rational nonlinear functions. Consequently, the classical dictionary-
based sparse identification ideology is not applicable as building all possible rational feature
candidates is infeasible. To deal with this, the authors in [36] have recast the problem as finding
the sparsest vector in a given null space. However, computing a null space using corrupted
measurement data is a non-trivial task though there is some work in this direction [37]. Here,
we instead characterize identifying rational functions as a fraction of two functions, where each
function is identified using dictionary learning. Hence, we inherently retain the primary principle
of sparse identification in the course of discovering models. In addition to these, we discuss the
case where a dictionary contains parameterized candidates, e.g. eαx, where x is the dependent
variable, and α is an unknown parameter. We extend our discussion to parametric and controlled
dynamic processes. The organization of the paper is as follows. In §2, we briefly recap the classical
fourth-order Runge–Kutta method for the integration of ordinary differential equations. After
that, we propose a methodology to discover differential equations by synthesizing the integration
scheme with sparse identification. Furthermore, since the method involves solving nonlinear
and non-convex optimization problems that promote sparse solutions, §3 discusses algorithms
inspired by a sparse-regression approach in [14,18]. In §4, we examine a number of extensions to
other classes of models, e.g. when the governing equations are given by a fraction of two functions
and involve model parameters and external control inputs. In the subsequent section, we illustrate
the efficiency of the proposed methods by discovering a broad variety of benchmark examples,
namely the chaotic Lorenz model, Fitz–Hugh Nagumo (FHN) models, Michaelis–Menten kinetics
and parameterized Hopf normal norm. We extensively study the performance of the proposed
approach even under noisy measurements and compare it to the approach proposed in [14]. We
conclude the paper with a summary and high-priority research directions.

2. Discovering nonlinear governing equations using a Runge–Kutta inspired
sparse identification

In this section, we describe our approach to discovering nonlinear governing equations using
sparsely sampled measurement data. These may be corrupted using experimental and/or sensor
noise. We establish approaches by combining a numerical integration method and dictionary-
based learning. So, we develop methodologies that allow us to discover nonlinear differential
equations without the explicit need for derivative information, unlike the approach proposed
in e.g. [11,14,25]. In this work, we use the widely employed approach to integrate differential
equations, namely the classical fourth-order Runge–Kutta (RK4) method, which is briefly outlined
next.

4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

(a) Fourth-order Runge–Kutta method
The RK4 scheme is a widely used method to solve initial value problems. Let us consider the
following initial value problem:

ẋ(t) = f(x(t)) and x(t0) = x0, (2.1)

where x(t) := [x1(t), x2(t), . . . , xn(t)] with xj(t) being the jth element of the vector x(t), and the
function : R

n → R
n defines its vector field. Assume that we aim at predicting x(tk+1) for a given

x(tk), where k ∈ {0, 1, . . . ,N }. Then, using the RK4 scheme, x(tk+1) can be given as a weighted sum
of four increments, which are the product of the time-step and vector field information f(·) at
specific locations. Precisely, it is given as

x(tk+1) ≈ x(tk) + 1
6

hk(k1 + 2 · k2 + 2 · k3 + k4), hk = tk+1 − tk, (2.2)

where

k1 = f(x(tk)), k2 = f(x(tk) + hk
k1

2
), k3 = f(x(tk) + hk

k2

2
) and k4 = f(x(tk) + hkk3).

The RK4 scheme as a network is illustrated in figure 1a. The local integration error due to the RK4
scheme is in O(h5

k); hence, the approach is very accurate for small time-steps. Furthermore, if we
integrate equation (2.1) from t0 to tf , we can take N steps with time-steps hk, k ∈ {1, . . . ,N } so that
tf = t0 + ∑N

i=0 hk. In the rest of the paper, we use the short-hand notation FRK4(f, x(tk), hk), i.e. for
the step in (2.2)

x(tk+1) = x(tk + hk) ≈FRK4(f, x(tk), hk). (2.3)

Lastly, we stress the point that the RK4 scheme readily handles integration backward in time,
meaning that hk in (2.2) can also be negative. Hence, we can predict both x(tk+1) and x(tk−1) using
x(tk) very accurately using the RK4 scheme.

(b) Discovering nonlinear dynamical systems
Next, we develop a RK4-inspired sparse identification approach to discover governing equations.
Precisely, we aim at disclosing the most parsimonious representation of the vector field f(x(t)) in
(2.1) using only a time-history of x(t). Assume that the data are sampled at the time instances
{t0, . . . , tN }, and let us define time-steps hk := tk+1 − tk. Furthermore, for simplicity of notation,
we assume that the data follows RK4 exactly, but of course, the method is not limited to this, as
we see in our numerical experiments. Consequently, we form two data matrices

X :=

⎡
⎢⎢⎢⎢⎣

x(t1)
x(t2)

...
x(tN)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
...

. . .
...

x1(tN) x2(tN) · · · xn(tN)

⎤
⎥⎥⎥⎥⎦

and XF (f) :=

⎡
⎢⎢⎢⎢⎣

FRK4(f, x(t0), h1)
FRK4(f, x(t1), h2)

...
FRK4(f, x(tN−1), hN)

⎤
⎥⎥⎥⎥⎦

. (2.4)

The next important ingredient to sparse identification is the construction of a huge symbolic
dictionary Φ, containing potential nonlinear features. We assume that the function f(·) can be
given by a linear combination of few terms from the dictionary. For example, one can consider a
dictionary containing polynomial, exponential and trigonometric functions, which, for any given
vector v := [v1, . . . , vn] can be given as

Φ(v) =
[
1, v, vP2 , vP3 , . . . , e−v, e−2v, . . . , sin(v), cos(v), . . .

]
(2.5)

in which vPi , i ∈ {2, 3}, denote high-order polynomials, e.g. vP2 contains all possible degree-2
polynomials of elements of v as

vP2 =
[
v2

1, v1v2, . . . , v2
2, v2v3, . . . , v2

n

]
. (2.6)

5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

⎡
⎢⎢⎣

...
...

, . . . ,
...

...

⎤
⎥⎥⎦

:= X ˜ ˜ ˜

×

hi
2

+
X̃1

×

hi
2

+
X̃2

×

hi

+
X̃3

×

hi
6

+

×
hi
6 ×

hi
3 ×

hi
3

⎡
⎢⎢⎣

...
...

, . . . ,
...

...

⎤
⎥⎥⎦≈

symobolic dictionaraa y of functions

˜
⎡
⎢
⎡⎡
⎢⎢⎢⎣⎢⎢

...
...

, . . . , ˜˜ ˜ ˜ ˜ , . . . ,
...

...

⎤
⎥
⎤⎤
⎥⎥⎥⎦⎥⎥coefficients to describe dynamics[

xX1, . . . , xXn

]

Fitz-Hugh Nagumo model

v̇ = v − w − v3/3 + 0.5

ẇ = 0.040v − 0.028w + 0.032

data

⎡
⎢⎢⎣

...
...

,
...

...

⎤
⎥⎥⎦ RK4

⎛
⎜⎜⎝FF ·]) ,

⎡
⎢⎢⎣

...
...

,
...

...

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎡
⎢⎢⎣

...
...

...
...

⎤
⎥⎥⎦≈

⎛
⎜⎜⎝

⎡
⎢⎢⎣

...
...

,
...

...

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

...
...

...
...

...
...

...
...

· · ·
...

...
...

...
...

...
...

...

⎤
⎥⎥⎦

′′
1 [0.499] [0.032]
v [0.998] [0.040]
w [−0.998] [−0.028]
v2 [0] [0]
vw [0] [0]
w2 [0] [0]
v3 [−0.333] [0]
... [0] [0]

w5 [0] [0]

m
odel

identified model

v̇(t) = Φ([v,w])ξv
ẇ(t) = Φ([v,w])ξv

dictionary of nonlinear functions

X1 (ti) Xn (ti)

F
(X

)
[x

X
1,..

.,x
X
n]

F
(X

1)
 [

x X
1,..

.,x
X
n]

F
(X

2)
 [

x X
1,..

.,x
X
n]

F
(X

3)
 [

x X
1,..

.,x
X
n]

X1 (ti + 1) Xn (ti + 1)

F (X) = 1, X, XP2, XP3 sin (X), cos(X)

xv xw

v (ti + 1) w (ti + 1),xv xwv (ti) w (ti)

0
200

400 600time –2
–1

1
0

2

0

0.5

1.0

v

w

F v (ti) w (ti) 1 v (ti) w (ti) v (ti) w(ti) v (ti)
2 w (ti)

2 w (ti)
5

data

0
200

400 600time –2
–1

1
0

2

0

0.5

1.0

v

w

discovered model

(b)

(a)

Figure 1. In (a), we show the RK4 scheme to predict variables at the next time-step as a network. It resembles a residual-type
network with skip connections (e.g. [38,39]). In (b), we present a systematic illustration of the RK4-SINDy approach to discover
governing equations using the Fitz–Hugh Nagumomodel. In the first step, we collect a time history of variables v(t) andw(t).
Next, we build a symbolic feature dictionaryΦ , containing potential features. This is followed by solving a nonlinear sparse
regression problem to pick the right features from the dictionary (encoded in sparse vectors ξv and ξw). Here, we presume that
variables at the next time-steps are given by following the RK4 scheme. The non-zero entries in vectors ξv and ξw determine
the right-hand side of the differential equations. As shown, we pick the right features from the dictionary upon solving the
optimization problem, and corresponding coefficients are 0.1% accurate. (Online version in colour.)

Each element in the dictionary Φ is a potential candidate to describe the function f. Moreover,
depending on the application, one may use empirical or expert knowledge to construct a
meaningful feature dictionary.

Having an extensive dictionary, one has many choices of candidates. However, our goal is to
choose as few candidates as possible, describing the nonlinear function f in (2.1). Hence, we set up
a sparsity-promoting optimization problem to pick a few candidate functions from the dictionary,
e.g.

fk(x(t)) = Φ(x(t))ξ k, (2.7)

where fk : R
n → R is the kth element of f, and ξ k ∈ R

m a sparse vector with m the total number
of features in the dictionary Φ; hence, selecting appropriate candidates from the dictionary
determines the governing equations. As a result, we can write the function f(·) in (2.1) as follows:

f(x) =
[
f1(x), f2(x), . . . , fn(x)

]
=

[
Φ(x)ξ1, Φ(x)ξ2, . . . , Φ(x)ξn

]
= Φ(x)Ξ , (2.8)

where Ξ = [ξ1, . . . , ξn]. This allows us to articulate our optimization problem that aims at
discovering governing equations; that is to find the sparsest Ξ , satisfying

X = XF (f), where f(x) = Φ(x)Ξ . (2.9)

6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

Once we identify Ξ or {ξ1, . . . , ξn}, the dynamical model is given as
[
x1(t), x2(t), . . . , xn(t)

]
=

[
Φ(x)ξ1, Φ(x)ξ2, . . . , Φ(x)ξn

]
.

We refer to the proposed approach as Runge–Kutta inspired sparse identification for dynamical
systems (RK4-SINDy). We depict all the essential steps for RK4-SINDy to discover governing
equations in figure 1 through the FHN model (details of the model are provided later).

We take the opportunity to stress the imperative advantages of RK4-SINDy. That is, to discover
nonlinear differential equations, we do not require derivative information of x(t) at any step.
We only hypothesize that the vector field can be given by selecting appropriate features from
a dictionary containing a vast number of possible nonlinear features. Consequently, we expect to
discover good quality models when data are sparsely collected or are corrupted, and this is what
we manifest in our results in §5. The approach is also appealing when data is collected at irregular
time-steps.

When the data are corrupted with noise or do not follow RK4 exactly, we may need to
regularize the above optimization problem. Since the l1-regularization promotes sparsity in the
solution, one can solve an l1-regularized optimization problem

min
Ξ

||X − XF (Φ(·)Ξ)|| + α||Ξ ||l1 , (2.10)

where α is a regularizing parameter.
As discussed in §a, the RK4 scheme can accurately predict both x(ti+1) and x(ti−1) using x(ti).

Therefore, the following also holds
Xb = Xb

F (f),

where

Xb :=

⎡
⎢⎢⎢⎢⎣

x(t0)
x(t1)

...
x(tN−1)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x1(t0) x2(t0) · · · xn(t0)
x1(t1) x2(t1) · · · xn(t2)

...
...

. . .
...

x1(tN−1) x2(tN−1) · · · xn(tN−1)

⎤
⎥⎥⎥⎥⎦

Xb
F (f) :=

⎡
⎢⎢⎢⎢⎣

FRK4(f, x(t1), −h1)
FRK4(f, x(t2), −h2)

...
FRK4(f, x(tN), −hN)

⎤
⎥⎥⎥⎥⎦

.

Therefore, we can have a more involved optimization by including both forward and backward
predictions in time. This helps particularly in the presence of noisy measurement data. But, on
the other hand, it would make the optimization problems yielding the sparse vectors ξ i’s harder
to solve. In the following subsection, we discuss an efficient procedure to solve the optimization
problem (2.9).

3. Algorithms to solve nonlinear sparse regression problems
Several methodologies exist to solve linear optimization problems that yield a sparse solution,
e.g. LASSO [16,18]. However, the optimization problem (2.10) is nonlinear and likely non-convex.
There are some developments in solving sparsity-constrained nonlinear optimization problems;
e.g. [40, 41]. Though these methods enjoy many nice theoretical properties, they typically require
a priori the maximum number of non-zero elements in the solutions, which is often unknown.
Also, they are computationally demanding. Here, we propose two simple gradient-based
sequential thresholding schemes, similar to the one discussed in [14] for linear problems. In these
schemes, we first solve the nonlinear optimization problem (2.10) using a (stochastic) gradient
descent method to obtain Ξ1, followed by applying a thresholding to Ξ1.

(a) Fix cut-off thresholding
In the first approach, we define a cut-off value λ and set all the coefficients smaller than λ to zero.
We then update the remaining non-zero coefficients by solving the optimization problem (2.10)
again, followed by employing the thresholding. We repeat the procedure until all the non-zero

7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

Algorithm 1. Fix Cutoff Thresholding Procedure.

Input: Measurement data {x(t0), x(t1), . . . , x(tN)} and the cutoff parameter λ.

1: Solve the optimization problem (2.10) to get Ξ .
2: small_idx = (|Ξ | < λ). � Determine indices at which coefficients are less than λ

3: Err = ‖Ξ (small_idx) ‖.
4: while Err �= 0 do
5: Update Ξ by solving the problem (2.10) with the constraint Ξ (small_idx)=0.
6: small_idx = (|Ξ | < λ). � Determine indices at which coefficients are less than λ

7: Err = ‖Ξ (small_idx) ‖.

Output: The sparse Ξ that picks the right features from the dictionary.

coefficients are equal to or larger than λ. This procedure is efficient as the current value of non-
zero coefficients can be used as an initial guess for the next iteration, and the optimal Ξ can be
found with little computational effort. Note that the cut-off parameter λ is important to obtain a
suited sparse solution, but it can be found using the concept of cross-validation. We sketch the
discussed procedure in algorithm 1.

For the iterative thresholding algorithm proposed for the sparse regression in [14], an analysis
of the iterative thresholding algorithm is conducted in [42], showing a rapid convergence of the
algorithm. In contrast to the algorithm in [14], algorithm 1 is more complex, and the underlying
optimization problem is non-convex; thus, a thorough study of its convergence is out of the scope
of this paper. However, we here mention that a rapid convergence of algorithm 1 is observed in
numerical experiments, but its analysis will be an important topic for future research.

We also note that algorithm 1 always terminates as either the number of indices set to zero is
increased (which terminates when the dictionary is exhausted), or the error criterion is satisfied.
But the question remains as to whether the algorithm will converge to the correct sparse solution.
A remedy to this can be to use the rationale of an ensemble, proposed in [43] to build an ensemble
of sparse models. It can provide statistical quantities for the feature candidates in the dictionary.
Based on these, we can construct a final sparse model based on statistical tools such as the
p-values.

(b) Iterative cut-off thresholding
In the fix cut-off thresholding approach, we need to pre-define the cut-off value for thresholding.
A suitable value of it needs to be found by an iterative procedure. In our empirical observations,
applying fix thresholding at each iteration does not yield the most sparse solution in many
instances. To circumvent this, we propose an iterative way of thresholding, as follows. In the
first step, we solve the optimization problem (2.10) for Ξ . Then, we determine the smallest non-
zero coefficients of |Ξ | followed by setting all the coefficients smaller than this to zero. Like in the
previous approach, we update the remaining non-zero coefficients by solving the optimization
problem (2.10). We repeat the step of finding the smallest non-zero coefficient of the updated |Ξ |
and setting it to zero. We iterate the procedure until the loss of data fidelity is less than a given
tolerance. Visually, it can be anticipated using the curve between the data-fitting and number of
non-zero elements in Ξ , which typically exhibit an elbow-type curve. This approach is close to
the backward stepwise selection approach used in machine learning for feature selection, e.g. [17].
We sketch the step of the procedure in algorithm 2. We shall see the use of this algorithm in our
results section (see §d).

We note that the successive iterations converge faster to the optimal value after the first
thresholding as we choose the coefficients after applying thresholding as the initial guess.
Moreover, in our experiments, we observe that this thresholding approach yields better results,

8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

Algorithm 2. Iterative Cutoff Thresholding Procedure.

Input: Measurement data {x(t0), x(t1), . . . , x(tN)}.
1: Construct X using measurement data as in (2.4).
2: Solve the optimization problem (2.10) to get Ξ .
3: E : =‖X − XF (Φ(·)Ξ) ‖, where XF is defined in (2.4).
4: while E ≤ tol do
5: Determine the smallest non-zero coefficient of abs(Ξ), denoted by λsmall.
6: small_idx = (|Ξ | < λsmall) � Determine indices at which coefficients are less than λ

7: Update Ξ by solving the optimization problem (2.10) with the constraint
Ξ (small_idx) =0.

8: E : =‖X − XF (Φ(·)Ξ) ‖.

Output: The sparse Ξ that picks right features from the dictionary.

particularly when data are corrupted with noise. However, it may be computationally more
expensive than the fixed cut-off thresholding approach as it may need more iterations to converge.
Therefore, an efficient approach combining fixed and iterative thresholding approaches is a
worthy future research direction.

4. A number of possible extensions
In this section, we discuss several extensions of the methodology proposed in §2, generalizing
to a large class of problems. First, we discuss the discovery of governing differential equations
given by a fraction of two functions. Next, we investigate the case in which a symbolic dictionary
is parameterized. It is of particular interest when governing equations expected to have candidate
features, e.g. eαx(t), where α is unknown. We further extend our discussion to parameterized and
externally controlled governing equations.

(a) Governing equations as a fraction of two functions
There are many instances where the governing equations are given as a fraction of two
nonlinear functions. Such equations frequently appear in the modelling of biological networks.
For simplicity, we here examine a scalar problem; however, the extension to multi-dimensional
cases readily follows. Consider governing equations of the form

ẋ(t) = g(x)
1 + h(x)

, (4.1)

where g(x) : R → R and h(x) : R → R are continuous nonlinear functions. Here again, the
observation is that the functions g(·) and h(·) can be given as linear combinations of a few terms
from corresponding dictionaries. Hence, we can cast the problem of identifying the model (4.1) as
a dictionary-based discovery of governing equations. Let us consider two symbolic dictionaries

Φ(g)(x) =
[
1, x, x2, x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), . . .

]
(4.2)

and
Φ(h)(x) =

[
x, x2, x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), . . .

]
. (4.3)

Consequently, the functions g(·) and h(·) can be given by

g(x) = Φ(g)(x)ξg (4.4)

and
h(x) = Φ(h)(x)ξh, (4.5)

9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

where ξg and ξh are sparse vectors. Then, we can readily apply the framework discussed in the
previous section by assuming f(x) := g(x)/(1 + h(x)) in (2.1). We can determine sparse coefficients
ξg and ξh by employing the thresholding concepts presented in algorithms 1 and 2. These are
possible because the algorithms are gradient-based and we only need to compute gradients with
respect to ξg and ξh.

Furthermore, it is worthwhile to consider governing equations of the form

ẋ(t) = k(x) + g(x)
1 + h(x)

. (4.6)

Indeed, the model (4.6) can be rewritten in the form considered in (4.1). But it is rather efficient to
consider the form (4.6). We illustrate it with the following example:

ẋ(t) = −x(t) − x(t)
1 + x(t)

, (4.7)

which fits to the form considered in (4.6). In this case, all nonlinear functions k(·), g(·) and h(·) are
degree-1 polynomials. On the other hand, if the model (4.7) is written in the form (4.1), then we
have

ẋ(t) = −1 − x(t) − x(t)2

1 + x(t)
. (4.8)

Thus, the nonlinear functions g(·) and h(·) in (4.1) are of degrees 2 and 1, respectively. This gives a
hint that if we aim at learning governing equations using sparse identification, it might be efficient
to consider the form (4.6) due to a smaller size of the necessary dictionary. It becomes even more
adequate in multi-dimensional differential equations. To discover a dynamical model of the form
(4.6), we extend the idea of learning nonlinear functions using dictionaries. Let us construct three
dictionaries as follows:

Φ(k)(x) =
[
1, x, x2, x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), . . .

]
, (4.9)

Φ(g)(x) =
[
1, x, x2, x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), . . .

]
(4.10)

and Φ(h)(x) =
[
x, x2, x3, . . . , sin (x), cos (x), sin (x2), cos (x2), sin (x3), sin (x3), . . .

]
. (4.11)

Then, we believe that the nonlinear functions in (4.6) can be given as a sparse linear
combination of the dictionaries, i.e.

k(x) = Φ(k)(x)ξk, g(x) = Φ(g)(x)ξg and h(x) = Φ(h)(x)ξh. (4.12)

To determine the sparse coefficients {ξk, ξg, ξh}, we can employ the RK4-SINDy framework, and
algorithms 1 and 2. We will illustrate this approach to discover enzyme kinetics given by a rational
function in §d .

We note that learning a rational dynamical mode with a small denominator may lead to
numerical challenges. This could be related to fast transient behaviour, as the gradient can be
significantly larger when the denominator is small. Therefore, such cases need to be appropriately
handled, for example, with proper data normalization and sampling, although, in our experiment
to identify a Michaelis–Menten kinetic model from data (see §5d), we have not noticed any
unexpected behaviour.

(b) Discovering parametric and externally controlled equations
The RK4-SINDy framework immediately embraces the discovery of governing equations that are
parametric and externally controlled. Let us begin with an externally controlled dynamical model
of the form

ẋ(t) = f(x(t), u(t)), (4.13)

where x(t) ∈ R
n and u(t) ∈ R

m are state and control input vectors. The goal here is to discover
f(x(t), u(t)) using the state trajectory x(t) generated using a control input u(t). We aim at

10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

discovering governing equations using dictionary-based identification. As discussed in §2, we
construct a symbolic dictionary Φ of possible candidate features using x and u, i.e.

Φ(x, u) =
[
1, x, u, xP2

u , xP3
u

]
, (4.14)

where xPi
u comprises polynomial terms of degree-i, i.e.xP2

u contains degree-2 polynomial terms
including cross terms

xP2
u =

[
x2

1, . . . , x2
n, u2

1, . . . , u2
m, x1u1, . . . , xnu1, x1u2, . . . , xnum

]
, (4.15)

where ui is the ith element of u. Using measurements of x and u, we can cast the problem exactly
as done in §2 by assuming that f(x(t), u(t)) can be determined by selecting appropriate functions
from the dictionary Φ(x, u). Similarly, system parameters can also be incorporated to discover
parametric differential equations of the form

ẋ(t; μ) = f(x(t; μ), μ), (4.16)

where μ ∈ R
p contains the system parameters. It can be considered as a special case of (4.13) since a

constant input can be thought of as a parameter in the course of discovering governing equations.
We illustrate the RK4-SINDy framework for discovering parametrized Hopf normal form using
measurement data (see §5e).

(c) Parameterized dictionary
The success of the sparse identification highly depends on the quality of the constructed feature
dictionary. In other words, the dictionary should contain the right features in which governing
differential equations can be given as a linear combination of a few terms from the dictionary.
However, it becomes a challenging task when one aims at including, for instance, trigonometric
or exponential functions (e.g. sin (ax), e(bx)), where {a, b} are unknown. In an extreme case, one
might think of including sin(·) and e(·) for each possible value of a and b. It would lead to a
dictionary of infinite dimensions, hence becoming intractable. To illustrate it, we consider the
following governing equation:

ẋ(t) = −x(t) + exp(−1.75x(t)). (4.17)

Let us assume that we are concerned about discovering the model (4.17) using a time history
of x(t) without any prior knowledge except that we expect exponential nonlinearities based
on expert. For instance, an electrical circuit containing diode components typically involves
exponential nonlinearities, but the corresponding coefficient is unknown.

We conventionally build a dictionary containing exponential functions using several possible
coefficients as follows:

Φ(x) =
[
1, x, x2, x3, . . . , ex, e−x, e2x, e−2x . . . , sin(x), cos(x), . . .

]
. (4.18)

However, it is impossible to add infinitely many exponential terms with different coefficients
in the dictionary. As a remedy, we discuss the idea of a parameterized dictionary that was also
discussed in [44]

Φη(x) =
[
1, x, x2, x3, . . . , sin(η1x), cos(η2x), sin(η3x2), cos(η4x2), . . . , eη5x, eη6x2

, . . . ,
]

. (4.19)

In this case, we do not need to include all frequencies for trigonometric functions and coefficients
for exponential functions. However, it comes at the cost of finding suitable coefficients {ηi},
along with a vector, selecting the right features from the dictionary. Since we solve optimization
problems, e.g. (2.10) using gradient descent, we can easily incorporate the parameters ηi along
with ξi as learning parameters and can readily employ algorithms 1 and 2 with a little alteration.

11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

5. Results
Here, we demonstrate the success of RK4-SINDy in discovering governing equations using
measurement data through a number of examples1 of different complexity. In the first subsection,
we consider simple illustrative examples, namely, linear and nonlinear damped oscillators. Using
the linear damped oscillator, we perform a comprehensive study under various conditions, i.e.
the robustness of the approach to sparsely sampled and highly corrupted data. We compare the
performance of our approach to discover governing equations with [14]; we refer to it as Std-
SINDy2. In the second example, we study the chaotic Lorenz example and show that RK4-SINDy
determines the governing equations, exhibiting the chaotic behaviour accurately. In the third
example, we discover neural dynamics from measurement data using RK4-SINDy. As the fourth
example, we illustrate the discovery of a model that describes the dynamics of enzymatic activity
and contains rational nonlinearities. In the last example, we showcase that RK4-SINDy also
successfully discovers the parametric Hopf normal form from collected noisy measurement data
for various parameters. Lastly, we mention that we have generated the data using the adaptive
solver solve_ivp from the python library SciPy with default settings. We have implemented
algorithms 1 and 2 using the PyTorch library and have used a gradient descent method with a
fixed learning rate to solve equation (2.10).

(a) Two-dimensional damped oscillators
As simple illustrative examples, we consider two-dimensional damped harmonic oscillators.
These can be given by linear and nonlinear models. We begin by considering the linear one.

(i) Linear damped oscillator

Consider a two-dimensional linear damped oscillator whose dynamics is given by

ẋ(t) = −0.1x(t) + 2.0y(t) (5.1a)

and

ẏ(t) = −2.0x(t) − 0.1y(t). (5.1b)

To infer governing equations from measurement data, we first assume to have clean data at a
regular time-step dt. We then build a symbolic dictionary containing polynomial nonlinearities up
to degree 5. Next, we learn governing equations using RK4-SINDy (algorithm 1 with λ = 5 × 10−2)
and observe the quality of inferred equations for different dt. We also present a comparison with
Std-SINDy.

The results are shown in figure 2 and table 1. We note that RK4-SINDy is much more robust
with the variation in time-step when compared with Std-SINDy, and discovers the governing
equations accurately. We also emphasize that for large time-steps, Std-SINDy fails to capture the
part of dynamics; in fact, for a time-step dt = 5 × 10−1, Std-SINDy even yields unstable models,
figure 2d.

Next, we study the performance of both methodologies under corrupted data. We corrupt
the measurement data by adding zero-mean Gaussian white noise of different variances. We
present the results in figure 3 and table 2 and note that RK4-SINDy can discover better quality
sparse parsimonious models as compared to Std-SINDy even under significantly corrupted data.
It is predominantly visible in figure 3d. Naturally, RK4-SINDy also breaks down for a very large
amount of noise in measurements, but this breakdown happens much later than for Std-SINDy.

1Most of all examples are taken from [14].

2We use the Python implementation of the method, the so-called PySINDy [45].

12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

–2 –1 0 21

0y

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

0y

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

0y

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

0y

x
–2 –1 0 21

x

–2 –1 0 21
x

–2 –1 0 21
x

–2
–1

0
1

0
5

10
15

20
25

–2

–1

0

1

y

x

tim
e

data

RK4-SINDy

Std-SINDy

–2
–1

0
1

0
5

10
15

20
25

–2

–1

0

1

y

x

tim
e

data

RK4-SINDy

Std-SINDy

–2
–1

0
1

0
5

10
15

20
25

–2

–1

0

1

y

x

tim
e

data

RK4-SINDy

Std-SINDy

–2
–1

0
1

0
5

10
15

20
25

–2

–1

0

1

y

x

tim
e

data

RK4-SINDy

Std-SINDy

data

RK4-SINDy

Std-SINDy

data

RK4-SINDy

Std-SINDy

data

Rk4-SINDy

Std-SINDy

data

RK4-SINDy

Std-SINDy

(b)(a)

(d)(c)

Figure 2. Linear two-dimensional model: identified models using data at various regular time-steps. (a) Time-step
dt= 1 × 10−2, (b) time-step dt = 1 × 10−1, (c) time-step dt = 3 × 10−1, (d) time-step dt= 5 × 10−1. (Online version
in colour.)

Table 1. Linear two-dimensional model: the discovered governing equations using RK4-SINDy and Std-SINDy are reported for
different regular time-steps at which data are collected.

time-step RK4-SINDy Std-SINDy

1 × 10−2
ẋ(t)= −0.100x(t) + 2.000y(t)

ẏ(t)= −2.001x(t) − 0.100y(t)

ẋ(t)= −0.100x(t) + 2.000y(t)

ẏ(t)= −2.000x(t) − 0.100y(t)
. .

1 × 10−1
ẋ(t)= −0.100x(t) + 2.001y(t)

ẏ(t)= −2.001x(t) − 0.100y(t)

ẋ(t)= −0.098x(t) + 1.987y(t)

ẏ(t)= −1.988x(t) − 0.098y(t)
. .

3 × 10−1
ẋ(t)= −0.101x(t) + 2.002y(t)

ẏ(t)= −2.002x(t) − 0.101y(t)

ẋ(t)= −0.078x(t) + 1.884y(t)

ẏ(t)= −1.906x(t) − 0.084y(t)
. .

5 × 10−1
ẋ(t)= −0.103x(t) + 2.011y(t)

ẏ(t)= −2.011x(t) − 0.103y(t)

ẋ(t)= 1.688y(t)

ẏ(t)= −1.864x(t) − 0.123x(t)2

− 0.146x(t)2y(t) + 0.115x(t)4y(t)

+ 0.133x(t)3y(t)
. .

7 × 10−1

ẋ(t)= −0.121x(t) + 1.964y(t)

+ 0.153x2(t)y(t) + 0.068x(t)y2(t)

− 0.081x4(t)y(t) − 0.063x3(t)y2(t)

ẏ(t)= −2.024x(t) + −0.078y(t)

ẋ(t)= 1.415y(t)

ẏ(t)= −1.385x(t) + 0.121x(t)2

− 0.116x(t)4 − 0.057x(t)5

+ 0.074x(t)3y(t)2
. .

(ii) Cubic damped oscillator

Next, we consider a cubic damped oscillator, governed by

ẋ(t) = −0.1x(t)3 + 2.0y(t)3

and ẏ(t) = −2.0x(t)3 − 0.1y(t)3.

⎫⎬
⎭ (5.2)

13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

0 2 4 6 8 10

0(x
, y

)
2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

0(x
, y

)

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

0(x
, y

)

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

0(x
, y

)

–2
–1

0
1

0
2

4
6

8
10

–2

–1

0

1

y

tim
e

x

–2
–1

0
1 0

2
4

6
8

10

–1

–2

0

1

y

tim
e

x

–2
–1

0
1 0

2
4

6
8

10

–1

0

1

y

tim
e

x

–2
–1

0
1

0
2

4
6

8
10

–1

0

1

y tim
e

x

noisy data (0.01)
RK4-SINDy
Std-SINDy

noisy data (0.01)
RK4-SINDy
Std-SINDy

noisy data (0.05)
RK4-SINDy
Std-SINDy

noisy data (0.2)
RK4-SINDy
Std-SINDy

noisy data (0.1)
RK4-SINDy
Std-SINDy

noisy data (0.1)
RK4-SINDy
Std-SINDy

time
0 2 4 6 8 10

time

0 2 4 6 8 10
time

0 2 4 6 8 10
time

noisy data (0.05)
RK4-SINDy
Std-SINDy

noisy data (0.2)
RK4-SINDy
Std-SINDy

(b)(a)

(d)(c)

–2

Figure 3. Linear two-dimensional model: the transient responses of discovered models using corrupted data are compared.
(a) Noise level σ = 1 × 10−2, (b) noise level σ = 5 × 10−2, (c) noise level σ = 1 × 10−1, (d) noise level σ = 2 × 10−1.
(Online version in colour.)

Table 2. Linear two-dimensional model: the discovered governing equations, by employing RK4-SINDy and Std-SINDy, are
reported. In this scenario, the measurement data are corrupted using zero-mean Gaussian white noise of different variances.

noise level (SNR) RK4-SINDy Std-SINDy

1 × 10−2

(39.46 dB)
ẋ(t)= −0.099x(t) + 1.999y(t)
ẏ(t)= −2.000x(t) − 0.101y(t)

ẋ(t)= −0.102x(t) + 1.999y(t)
ẏ(t)= −2.002x(t) − 0.101y(t)

. .

5 × 10−2

(25.35 dB)
ẋ(t)= −0.095x(t) + 1.999y(t)
ẏ(t)= −1.995x(t) − 0.105y(t)

ẋ(t)= −0.078x(t) + 2.001y(t)
ẏ(t)= −1.995x(t) − 0.105y(t)

. .

1 × 10−1

(19.36 dB)
ẋ(t)= −0.091x(t) + 1.985y(t)
ẏ(t)= −1.997x(t) − 0.103y(t)

ẋ(t)= −0.076x(t) + 1.969y(t)
ẏ(t)= −2.008x(t) − 0.095y(t)

. .

2 × 10−1

(13.06 dB)
ẋ(t)= −0.177x(t) + 2.053y(t)

− 0.063x2y + 0.059xy2

ẏ(t)= −1.960x(t)

ẋ(t)= −0.173x(t) + 1.950y(t) − 0.056y(t)2

+ 0.059x(t)3 − 0.079x(t)2y + 0.095
ẏ(t)= −2.005x(t) − 0.095y(t) + 0.069x(t)y(t)

+ 0.062x(t)3 + 0.060x(t)y(t)2
. .

3 × 10−1

(9.93 dB)
ẋ(t)= 2.167y − 0.079xy

− 0.101x2y − 0.119xy2

− 0.085y3

ẏ(t)= −2.026x − 0.135y
− 0.066x2y + 0.056y3

ẋ(t)= 0.113 + 2.271y − 0.165x2

− 0.096xy − 0.062y2 − 0.095x3

− 0.260x2y + −0.159y3

ẏ(t)= −2.183x − 0.197y + 0.083xy
+ 0.131x3 + 0.150xy2 + 0.057y3

. .

Like in the linear case, we aim at discovering the governing equations using measurement data.
We repeat the study done in the previous example using different regular time-steps. We report
the quality of discovered models using RK4-SINDy and Std-SINDy in figure 4 and table 3.
We observe that RK4-SINDy successfully discovers the governing equations quite accurately,
whereas Std-SINDy struggles to identify the governing equations when measurements data are
collected at a larger time-step. It simply fails to obtain a stable model for the time-step dt = 0.1. It
showcases the robustness of the RK4-SINDy to discover interpretable models even when data are
collected sparsely.

14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

2.0(a) (b)

(c) (d)

1.5

1.0

0.5

y 0

–0.5

–1.0

–1.5

–2.0

–2 –1

–1
0

x x
1

–2

–2
–1

0
y 1

25
20

15
10

5 tim
e

0
0

RK4-SINDy
data

Std-SINDy

RK4-SINDy
data

Std-SINDy

–1
0

1

–2

–2
–1

0
y 1

25
20

15
10

5 tim
e

0

RK4-SINDy
data

Std-SINDy

x
1 2

2.0

1.5

1.0

0.5

y 0

–0.5

–1.0

–1.5

–2.0

–2 –1 0

RK4-SINDy
data

Std-SINDy

x
1 2

2.0

1.5

1.0

0.5

y 0

–0.5

–1.0

–1.5

–2.0

–2 –1

–1
0

x x
1

–2

–2
–1

0
y 1

25
20

15
10

5 tim
e

0
0

RK4-SINDy
data

Std-SINDy

RK4-SINDy
data

Std-SINDy

–1
0

1

–2

–2
–1

0
y 1

25
20

15
10

5 tim
e

0

RK4-SINDy
data

Std-SINDy

x
1 2

2.0

1.5

1.0

0.5

y 0

–0.5

–1.0

–1.5

–2.0

–2 –1 0

RK4-SINDy
data

Std-SINDy

x
1 2

Figure 4. Cubic two-dimensional model: a comparison of the transient responses of discovered models using data at different
regular time-steps. (a) time-step dt = 5 × 10−3, (b) time-step dt = 1 × 10−2, (c) time-step dt = 5 × 10−2 and (d) time-
step dt = 1 × 10−1. (Online version in colour.)

Table 3. Cubic two-dimensional model: the table reports the discovered governing equations by employing RK4-SINDy and
Std-SINDy.

time-step RK4-SINDy Std-SINDy

5 × 10−3
ẋ(t)= −0.099x(t)3 + 1.996y(t)3

ẏ(t)= −1.997x(t)3 − 0.100y(t)3
ẋ(t)= −0.099x(t)3 + 1.995y(t)3

ẏ(t)= −1.996x(t)3 − 0.099y(t)3
. .

1 × 10−2
ẋ(t)= −0.099x(t)3 + 1.995y(t)3

ẏ(t)= −1.997x(t)3 − 0.100y(t)3
ẋ(t)= −0.100x(t)3 + 1.994y(t)3

ẏ(t)= −1.996x(t)3 − 0.099y(t)3
. .

5 × 10−2
ẋ(t)= −0.100x(t)3 + 1.995y(t)3

ẏ(t)= −1.997x(t)3 − 0.100y(t)3

ẋ(t)= −0.092x(t)3 + 2.002y(t)3

+ 0.076x4y − 0.107x2y3

ẏ(t)= −1.981x(t)3 − 0.092y(t)3

+ 0.078x3y2 − 0.068xy4
. .

1 × 10−1
ẋ(t)= −0.103x(t)3 + 2.000y(t)3

ẏ(t)= −2.001x(t)3 − 0.098y(t)3

ẋ(t)= 0.090x(t) − 0.097x(t)2 − 0.463x(t)3

+ · · · + 0.381x(t)3y(t)2 − 0.258x(t)y(t)4

ẏ(t)= 0.100x(t) + 0.104x(t)2 + 0.051x(t)y(t)

+ · · · + 0.381x(t)3y(t)2 − 0.258x(t)y(t)4
. .

(b) Fitz–Hugh Nagumomodel
Here, we explore the discovery of the nonlinear FHN model that describes the activation and
deactivation of neurons in a simplistic way [46]. The governing equations are

v̇(t) = v(t) − w(t) − 1
3

v(t)3 + 0.5

and ẇ(t) = 0.040v(t) − 0.028w(t) + 0.032.

⎫⎪⎬
⎪⎭

(5.3)

We collect the time-history data of v(t) and w(t) using homogeneous initial conditions.
We construct a dictionary containing polynomial terms up to the third degree. We employ

15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

(a) (b)

(c) (d)

1.4

1.2
1.0

0.8

0.6w
0.4

0.2

–0.2
–2 –1

–2
–1

0
1

2

0

0.5

1.0

0

0
200 400

600
v

v

1 2
time

0

RK4-SINDy
data

Std-SINDy

1.4

1.2
1.0

0.8

0.6w
w

w

w

0.4

0.2

–0.2
–2 –1 0

v
1 2

0

RK4-SINDy
data

Std-SINDy

1.4

1.2
1.0

0.8

0.6w
0.4

0.2

–0.2
–2 –1 0

v
1 2

0

RK4-SINDy
data

Std-SINDy

1.4

1.2
1.0

0.8

0.6w
0.4

0.2

–0.2
–2 –1 0

v
1 2

0

RK4-SINDy
data

Std-SINDy

RK4-SINDy
data

Std-SINDy

–2
–1

0
1

2

0

0.5

1.0

0
200 400

600
v

time

RK4-SINDy
data

Std-SINDy

w

–2
–1

0
1

2

0

0.5

1.0

0
200 400

600
v

time

RK4-SINDy
data

Std-SINDy

–2
–1

0
1

2

0

0.5

1.0

0
200 400

600
v

time

RK4-SINDy
data

Std-SINDy

Figure 5. FHN model: a comparison of the transient responses of the discovered differential equations using data collected at
different regular time-steps. (a) time-step dt = 1.0 × 10−1, (b) time-step dt = 2.5 × 10−1, (c) time-step dt = 5.0 × 10−1

and (d) time-step dt = 7.5 × 10−1. (Online version in colour.)

Table 4. FHNmodel: discovered models using data at various time-steps using RK4-SINDy and Std-SINDy.

dt RK4-SINDy Std-SINDy

1.0 × 10−1
v̇(t)= 0.499 + 0.998v − 0.998w − 0.333v3

ẇ(t)= 0.032 + 0.040v − 0.028w

v̇(t)= 0.498 + 0.996v − 0.996w − 0.332v3

ẇ(t)= 0.032 + 0.040v − 0.028w
. .

2.5 × 10−1
v̇(t)= 0.499 + 0.998v − 0.998w − 0.333v3

ẇ(t)= 0.032 + 0.040v − 0.028w

v̇(t)= 0.494 + 0.985v − 0.989w − 0.328v3

ẇ(t)= 0.032 + 0.040v − 0.028w
. .

5.0 × 10−1
v̇(t)= 0.501 + 1.001v − 1.001w − 0.334v3

ẇ(t)= 0.032 + 0.040v − 0.028w

v̇(t)= 0.482 + 0.943v − 0.959w

− 0.034vw − 0.311v3 + 0.024vw2

ẇ(t)= 0.032 + 0.040v − 0.028w
. .

7.5 × 10−1
v̇(t)= 0.502 + 1.001v − 1.003w − 0.334v3

ẇ(t)= 0.032 + 0.040v − 0.027w

v̇(t)= 0.459 + 0.816v − 0.982w

− 0.013v2 + · · · + 0.131vw2 − 0.021w3

ẇ(t)= 0.032 + 0.040v − 0.028w
. .

RK4-SINDy (algorithm 1 with λ = 10−2) and Std-SINDy. We discover governing equations using
the data collected in the time interval [0, 600]s. We identify models under different conditions,
namely, different time-steps at which data are collected. We report the results in figure 5 and
table 4. It can be observed that RK4-SINDy faithfully discovers the underlying governing
equations by picking the correct features from the dictionary and estimates the corresponding
coefficients up to 1% accurately. On the other hand, Std-SINDy breaks down when data are taken
at a large time-step.

(c) Chaotic Lorenz system
As the next example, we consider the problem of discovering the nonlinear Lorenz model [47].
The dynamics of the chaotic system is governed by

16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

data

–10
–20

–10
0
10

20

40
30
20
10

z

0
x

y10
–10

–20
–10

0
10

20

40

30

20

10

0
x

y
10

–10–20
–20

–10
0
10

20

40
30
20
10

z z

0
x

y
10

RK4-SINDy Std-SINDy(a) (b) (c)

Figure 6. Chaotic Lorenz model: (a) the collected data (in dotted) and a finely spaced trajectory of the ground truth is shown.
(b,c) The trajectories obtained using the discovered models using RK4-SINDy and Std-SINDy, respectively. (Online version in
colour.)

Table 5. Chaotic Lorenz model: discovered governing equations using RK4-SINDy and Std-SINDy.

RK4-SINDy Std-SINDy
˙̃x(t)= −10.004x̃(t) + 10.004ỹ(t),

˙̃y(t)= 2.966x̃ − 0.956ỹ(t) − 7.953x̃(t)z̃(t),

˙̃z(t)= 7.944x̃(t)ỹ(t) − 2.669z̃(t) − 8.336

˙̃x(t)= −9.983x̃(t) + 9.983ỹ(t),

˙̃y(t)= 2.912x̃ − 0.922ỹ(t) − 7.911x̃(t)z̃(t),

˙̃z(t)= 7.972x̃(t)ỹ(t) − 2.662z̃(t) − 8.313
. .

ẋ(t) = −10x(t) + 10y(t),

ẏ(t) = x(28 − z(t)) − y(t)

and ż(t) = x(t)y(t) − 8
3 z(t).

⎫⎪⎪⎬
⎪⎪⎭

(5.4)

We collect the data by simulating the model from time t = 0 to t = 20 with a time-step of
dt = 10−2. To discover the governing equations using the measurement data, we employ RK4-
SINDy and Std-SINDy with the fixed cut-off parameter λ = 0.5. However, before employing the
methodologies, we perform a normalization step. The reason behind this is that the mean value
of the variable z is large, and the standard deviations of all three variables are much larger than
1. Consequently, a dictionary containing polynomial terms would be highly ill-conditioned. To
circumvent this, we perform a normalization of data. Ideally, one performs normalization such
that the mean and variance of the transformed data are 0 and 1. But for this particular example,
we normalize such that the interactions between the transformed variables are similar to (5.4).
Hence, we propose a transformation as

x̃(t) := x(t)
8 , ỹ(t) := y(t)

8 and z̃(t) := z(t)−25
8 . (5.5)

Consequently, we obtain a model

˙̃x(t) = −10x̃(t) + 10ỹ(t),

˙̃y(t) = x̃(28 − 8z̃(t)) − ỹ(t)

and ˙̃z(t) = 8x̃(t)ỹ(t) − 8
3 z̃(t) − 25

3 .

⎫⎪⎪⎬
⎪⎪⎭

(5.6)

The models (5.4) and (5.6) look alike, and the basis features in which the dynamics of both models
lie are the same except for a constant. However, an appealing property of the model (5.6) or
the transformed data is that the data becomes well-conditioned, hence the dictionary containing
polynomial features. Next, we discover models by employing RK4-SINDy and Std-SINDy using
the transformed data. For this, we construct a dictionary with polynomial nonlinearities up to

17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

40
noisy-data
denoised-data

30

20

10
{x

, y
, z

}

0

–10

–20

0 2.5 5.0 7.5 10.0
time

12.5 15.0 17.5 20.0

Figure 7. Chaotic Lorenzmodel: the figure shows the noisymeasurements of {x, y, z} that are corrupted by adding zero-mean
Gaussian noise of variance one. It also shows the denoised signal done using a Savitzky–Golay filter [48]. (Online version in
colour.)

–20–10 0 10 20
–20

–10
0
10

20

10
20
30
40

z

y
x –20

–10
0
10

20
10
20
30
40

z

y–10 0 10x –20
–10

0
10

20
10
20
30
40

z

y–10 0 10x

noisy-data RK4-SINDy Std-SINDy

Figure 8. Chaotic Lorenz model: the left figure shows the collected noisy data (in dotted), and a continuous trajectory of the
ground truth is shown.Wehave addedGaussianwhite noise ofmean zero and variance one. Themiddle and right figures present
the transient trajectories obtained using the discoveredmodels using RK4-SINDy and Std-SINDy, respectively, and show that the
dynamics of the discovered models are intact on the attractor. (Online version in colour.)

degree 3. We observe the result in figure 6 and table 5. We note that both methods identify correct
features from the dictionary with coefficients that are close to the ground truth, but the RK4-
SINDy model coefficients are closer to the ground-truth ones. It is also worthwhile to note that
the coefficients of the obtained RK4-SINDy model are only 0.01% off the ground-truth, but the
dynamics still seem quite different, figure 6. A reason behind this is the highly chaotic behaviour
of the dynamics. As a result, a tiny deviation in the coefficients can significantly impact the
transient behaviour in an absolute sense; however, the dynamics on the attractor are perfectly
captured. Next, we study the performance of the approaches under noisy measurements. For
this, we add zero-mean Gaussian white noise of variance one. To employ RK4-SINDy, we first
apply a Savitzky–Golay filter [48] to denoise the time-history data, figure 7. For Std-SINDy as
well, we use the same filter to denoise the signal and approximate the derivative information.
We plot the trajectories of the discovered models and ground-truth in figure 8 and observe
that dynamics on the attractor is still intact; however, we note that the discovered equations
are very different from the ground truth, table 6. The learning can be improved by employing
algorithm 2, where we iteratively remove the smallest coefficient and determine the sparsest
solutions by looking at the Pareto-front. However, it comes at a slightly higher computational
cost.

18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

training trajectories
ṡ(t) = 0.6–

1.5 s(t)
0.3 + s(t)

ms = 0.374, ss = 0.350, s̃(t) =
s(t) – m

s
s

s

˙̃s (t)=
–0.449 – 0.900s̃(t)
0.674 + 0.350s̃(t)

learned model

˙̃s(t) =
–0.666 – 1.335s̃(t)
1.000 + 0.512s̃(t)⇒

˙̃s(t) =
–0.449 – 0.900s̃(t)
0.674 + 0.345s̃(t)

ctories

ms = 0
data

processing
(t) =

s(t) m
s

s
s

900s̃(t)
50s̃(t)

discovering

m
odel

˙̃s (t)=
–0.449 – 0.9
0.674 + 0.3

arned model

0.666 – 1.335s̃(˜ t)

parsimonious

model

le

simulations

2.0

1.5

1.0

0.5

s(
t)

0 2 4 6 8
time

0 2 4 6 8
time

s

4

3

2

1

0 2 4 6 8
no. forced zero coefficients

10–4

10–6

10–8

lo
ss

ground-truth model

ground-truth model

RK4-SINDy

RK4-SINDy (outside training)

(a)
(b)

(c)
(d)

(e)

Figure 9. Michaelis–Menten kinetics: in the first step, we have collected data for four initial conditions at a time-stepping
dt = 5 × 10−2. In the second step, we performed data-processing to normalize the data using the mean and standard
deviation. In the third step,weemployedRK4-SINDy (algorithm2) todiscover themost parsimoniousmodel. For this,weobserve
the Pareto front and pick themodel that best fits the data, yet has themaximum number of zero coefficients. We then compare
the discovered model with the ground truth and find that the proposed methodology could find precise candidates from the
polynomial dictionary. The corresponding coefficients have less than 1% errors. (Online version in colour.)

Table 6. Lorenz model: discovered governing equations using RK4-SINDy and Std-SINDy from noisy measurements.

RK4-SINDy Std-SINDy
˙̃x(t)= −9.016x̃ + 8.221ỹ − 1.675x̃z̃

+ 0.895x̃3 + 0.603x̃2ỹ + −0.579x̃ỹ2

˙̃y(t)= 1.025ỹ − 6.133x̃z̃ − 1.033ỹz̃

˙̃z(t)= −8.3451 − 2.708z̃ + 7.971x̃ỹ

˙̃x(t)= −8.842x̃ + 8.373ỹ − 3.107x̃z̃

+ 1.065ỹz̃ + 2.165x̃3 + −1.215x̃2ỹ

˙̃y(t)= 1.811x̃ + −7.580x̃z̃

˙̃z(t)= −8.3441 + −2.710z̃ + 7.950x̃ỹ
. .

(d) Michaelis–Menten kinetics
To illustrate RK4-SINDy to discover governing equations that are given by a fraction of two
nonlinear functions, we consider arguably the most well-known model for enzyme kinetics,
namely the Michaelis–Menten model [49,50]. The model explains the dynamics of binding and
unbinding of enzymes with a substrate s. In a simplistic way, the dynamics are governed in [51]

ṡ(t) = 0.6 − 1.5s(t)
0.3 + s(t)

. (5.7)

As a first step, we generate data using four initial conditions {0.5, 1.0, 1.5, 2.0}. We collect data
at a time-step dt = 5 × 10−2, figure 9a. Typically, governing equations explaining biological
processes involve rational functions. Therefore, we aim at discovering the enzyme kinetics
model by assuming a rational form as shown in (4.1), i.e. the vector field of s(t) takes the form
g(s(t))/(1 + h(s(t))).

Next, in order to identify g(s) and h(s), we construct polynomial dictionaries, containing
terms up to degree 4. After that, we employ RK4-SINDy to identify the precise features from
the dictionaries to characterize g and h. Moreover, we apply the iterative thresholding approach
discussed in algorithm 2, in contrast to previously considered examples where fixed thresholding

19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

is applied. Note that the success of the RK4-SINDy approach not only depends on a dictionary
containing candidate features but the quality of data. We note that the dictionary data matrix
conditioning improves when data are normalized to mean-zero and variance-one. This is crucial
for the polynomial basis in the dictionary. For this example, we normalize the data before
employing RK4-SINDy. That is, we apply the following transformation:

s̃(t) = s̃ − μs

σs
, (5.8)

where μs and σs are the mean and standard deviation of the collected data. Next, using the
normalized data, we learn the governing equation, describing the dynamics of s̃(t). Since we
consider dictionaries for g and h, containing polynomials of degree 4, there are in total 9
coefficients. To identify the correct model while employing algorithm 2, we keep track of the loss
(data-fidelity) and the number of non-zero coefficients, which is shown in figure 9c. This allows us
to build a Pareto front for the optimization problem and to choose the most parsimonious model
that describes the dynamics present in the collected data. One of the most attractive features of
learning parsimonious models is to avoid over-fitting and generalizing better in regions in which
data are not collected. It is exactly what we observed as well. As shown in figure 9e, the learned
model predicts dynamics very accurately in the region far away from the training one.

Next, we study the performance of the method under noisy measurements. For this, we
corrupt the collected data using zero-mean Gaussian noise of variance σ = 2 × 10−2. Then, we
process the data by first employing a noise-reduction filter, namely Savitzky–Golay, followed by
normalizing the data. In the third step, we focus on learning the most parsimonious model by
picking appropriate candidates from the polynomial dictionary. Remarkably, the method allows
us to find a model with correct features from the dictionary and coefficient accuracy up to 5%.
Furthermore, the model faithfully generalizes to regimes outside the training, even using noisy
measurements (figure 10).

(e) Hopf normal form
In our last example, we study the discovery of parameterized differential equations from noisy
measurements. Many real-world dynamical processes have system parameters, and depending
on them, the system may exhibit very distinctive dynamical behaviours. To illustrate the efficiency
of RK4-SINDy to discover parametric equations, we consider the Hopf system

ẋ(t) = μx(t) − ωy(t) − Ax(t)(x(t)2 + y(t)2)

and ẏ(t) = ωx(t) + μy(t) − Ay(t)(x(t)2 + y(t)2)

⎫⎬
⎭ (5.9)

that exhibits bifurcation with respect to the parameter μ. For this example, we collect
measurements for eight different parameter values μ at a time-step 0.2 by fixing ω = 1 and A = 1.
Then, we corrupt the measurement data by adding Gaussian sensor noise of 1% that is shown
in figure 11a. Next, we aim at constructing a symbolic polynomial dictionary Φ by including the
parameter μ as the dependent variables. While building a polynomial dictionary, it is important
to choose the degree of the polynomial as well. Moreover, it is known that the polynomial basis
becomes numerically unstable as the degree increases. Hence, solving the optimization problem
(2.9) becomes challenging. By means of this example, we discuss an assessment test to choose
the appropriate degree of the polynomial in the dictionary. Essentially, we inspect data fidelity
with respect to the degree of the polynomial in the dictionary. When the dictionary contains all
essential polynomial features, then a sharp drop in the error is expected. We observe in figure 11b
a sharp drop in the error at the degree 3, and the error remains almost the same even when higher
polynomial features are added. It indicates that polynomial degree 3 is sufficient to describe the
dynamics. Using the dictionary containing degree 3 polynomial features, we seek to identify
the minimum number of features from the dictionary that explains the underlying dynamics.
We achieve this by employing RK4-SINDy, and comparing the performance with Std-SINDy.

20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

noisy measurementsmeasurements

data

processing
discovering

m
odel

ground-truth model

ground-truth model

RK4-SINDy

RK4-SINDy (outside training)
s

4

3

2

1

0 2 4 6 8
time

0 2 4 6 8
time

0 2 4 6 8
time

2.0

1.5

1.0

0.5

s

2.0

1.5

1.0

0.5

s

0 2 4 6
no. forced zero coefficients

3 × 10–4

2 × 10–4

10–4

lo
ss

ound-truth model
K4-SINDy

K4-SINDy (outside training)

4 6 8
timetime

0
no. no.

2 × 10–4

10–4

llo
ss

parsimonious

model

Figure 10. Michaelis–Menten kinetics: the figure demonstrates the necessary steps to uncover the most parsimonious model
using noisymeasurement data. It also testifies to the capability of discovering themost parsimoniousmodel to even generalize
beyond the training regime. (Online version in colour.)

Table 7. Hopf normal form: here, we report discovered governing equations using noisy measurement data, representing
dynamics of Hopf bifurcation. We note that RK4-SINDy recovers the Hopf normal form very accurately; on the other hand,
Std-SINDy breaks down.

method discovered model

RK4-SINDy
ẋ(t)= 1.001μx(t) − 1.001y(t) − 0.996x(t)(x(t)2 + y(t)2)

ẏ(t)= 1.001x(t) + 1.010μy(t) − 1.006x(t)2y(t) − 1.004y(t)3
. .

Std-SINDy

ẋ(t)= −0.961y(t) + 0.719μx(t) + 0.822μy(t) − 0.735x(t)3 − 1.044x(t)2y

− 0.686x(t)y(t)2 − 0.846y(t)3

ẏ(t)= 0.986x(t) + 0.899μy(t) − 0.882x(t)2y(t) − 0.904y(t)3.
. .

We note down the discovered governing equations in table 7, where we note an impressive
performance of RK4-SINDy to discover the exact form of the underlying parametric equations,
and the coefficients are up to 1% accurate. On the other hand, Std-SINDy is not able to identify
the correct form of the model. Furthermore, we compare the discovered model simulations using
RK4-SINDy with ground truth beyond the training regime of the parameter μ in figure 11c,d. It
exposes the strength of the parsimonious and interpretable discovered models.

6. Discussion
This work has introduced a compelling approach (RK4-SINDy) to discover nonlinear differential
equations. For this, we have blended sparsity-promoting identification with a numerical
integration scheme, namely, the classical fourth-order Runge–Kutta method. We note that the

21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

0
0.2 0.4

0

1
2

–0.5

0.5

0

x

y

m

0
0.5

1.0 –1
0

1
2

m

–1.0
–0.5
0
0.5
1.0

x

y

0
0.5

1.0 –1
0

1
2

m

–1.0
–0.5
0
0.5
1.0

x

y

10–1

10–2

10–3

10–4

lo
ss

0 2 4
degree of polynomials

measurement data

truth simulation RK-SINDy

(b)(a)

(c) (d)

Figure 11. Hopf normal form: (a) the noisy measurements that are obtained using various parameter μ. To identify correct
degree polynomial basis in the dictionary, we do an assessment test, indicating degree-3 polynomials are sufficient to describe
the dynamics (b). (c,d) A comparison of simulations of the ground truth model and identified models for the parameter μ,
illustrating the capability of generalizing beyond the training parameter regime. (Online version in colour.)

RK4 scheme could easily be exchanged with other high-order explicit or adaptive-time integrators
using those presented in [29], and similar results could be expected. The appeal of the proposed
methodology is that we do not require derivative information at any stage, still discovering
differential equations. Hence, the proposed algorithm differs from previously suggested sparsity-
promoting identification methods in the literature in this aspect. Consequently, we expect
RK4-SINDy to perform better under sparsely sampled and corrupted data. We have demonstrated
the efficiency of the approach on a variety of examples, namely linear and nonlinear damped
oscillators, a model describing neural dynamics, chaotic behaviour and parametric differential
equations. We have accurately discovered the Fitz–Hugh Nagumo model that describes the
activation and de-activation of neurons. We have also illustrated the identification of the Lorenz
model and have shown that the dynamics of identified models are intact on an attractor as it is
more important for chaotic dynamics. The example of Michaelis–Menten kinetics highlights that
the proposed algorithm can discover models that are given by a fraction of two functions. The
example also shows the power of determining parsimonious models—that is, their generalization
beyond the region in which data are selected. Furthermore, we have demonstrated the robustness
of the proposed RK4-SINDy algorithm to sparsely sampled and corrupted measurement data.
In the case of large noise, a noise-reduction filter such as Savitzky–Golay helps to improve the
quality of the discovered governing equations. We have also reported a comparison with the
sparse identification approach [15] and have observed the out-performance of RK4-SINDy over
the latter approach.

22

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

This work opens many exciting doors for further research from both theory and practical
perspectives. Since the approach aims at selecting the correct features from a dictionary
containing a high-dimensional nonlinear feature basis, the construction of these feature bases
in a dictionary plays a significant role in determining the success of the approach. There is no
straightforward answer to this obstacle; however, there is some expectation that meaningful
features may be constructed with the help of experts and empirical knowledge, or at least they
may be realized in raw forms by them. Furthermore, we have solved the optimization problem
(2.9) using a gradient-based method. We have observed that if feature functions in the dictionary
are similar for given data, the convergence is slow, and sometimes it fails and is stuck in a
non-sparse local minimum. In other words, the coherency between the feature functions is low.
Hence, there is a need for the normalization step. In subsections (c) and (d), we have employed
a normalization step to improve coherency. However, it is worth investigating better-suited
strategies to normalize either data or feature spaces as a pre-processing step so that sparsity in the
feature space remains intact. In addition to these, a thorough study on the performance of various
noise-reduction methods (e.g. [35,52]) would provide deep insights into their appropriateness to
RK4-SINDy, despite that we noted a good performance of the Sabitzky–Golay filter to reduced
noise in our results. Moreover, one can also perform a statistical analysis by obtaining an ensemble
of the sparse models using RK4-SINDy as done in [43].

Methods discovering interpretable models that generalize well beyond the training regime
are limited, and the proposed method RK4-SINDy is among these. Additionally, approaches to
discovering governing equations that also obey physical laws are even more rare. A very recent
paper [53] has stressed that learning models can be made even more efficient by incorporating
the laws of nature in the course of discovering equations, and the work [54] shows how physical
constraints or empirical knowledge can be incorporated into SINDy. A solid example comes
from discovering biological networks that often follow the mass-conversation law. Therefore,
integrating physical laws in the course of discovering models will hopefully shape the future
of finding explainable and generalizable differential equations.

Data accessibility. Our code and data can be found in the following link: https://github.com/mpimd-csc/RK4-
SinDy.
Authors’ contributions. P.G.: conceptualization, data curation, investigation, methodology, software, writing—
original draft, writing—review and editing; P.B.: conceptualization, data curation, investigation,
methodology, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interest.
Funding. Both authors received partial support from BiGmax (www.bigmax.mpg.de/), the Max Planck
Society’s Research Network on Big-Data-Driven Materials Science. P.B. also obtained partial support from
the German Research Foundation (DFG) Research Training Group 2297 ‘MathCoRe’, Magdeburg, Germany.

References
1. Jordan MI, Mitchell TM. 2015 Machine learning: trends, perspectives, and prospects. Science

349, 255–260. (doi:10.1126/science.aaa8415)
2. Marx V. 2013 The big challenges of big data. Nature 498, 255–260. (doi:10.1038/498255a)
3. Ljung L. 1999 System identification: theory for the user. Englewood Cliffs, NJ: Prentice Hall.
4. Van Overschee P, de Moor B. 1996 Subspace identification of linear systems: theory, implementation,

applications. Dordrecht (Hingham, MA): Kluwer Academic Publishers.
5. Kumpati SN, Kannan P. 1990 Identification and control of dynamical systems using neural

networks. IEEE Trans. Neural Netw. 1, 4–27. (doi:10.1109/72.80202)
6. Suykens JA, Vandewalle JP, de Moor BL. 1996 Artificial neural networks for modelling and control

of non-linear systems. New York, NY: Springer.
7. Kantz H, Schreiber T. 2004 Nonlinear time series analysis vol. Cambridge, UK: Cambridge

University Press.
8. Crutchfield JP, McNamara BS. 1987 Equations of motion from a data series. Complex Syst.

1, 121.

https://github.com/mpimd-csc/RK4-SinDy
https://github.com/mpimd-csc/RK4-SinDy
www.bigmax.mpg.de/
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1038/498255a
http://dx.doi.org/10.1109/72.80202

23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

9. Bongard J, Lipson H. 2007 Automated reverse engineering of nonlinear dynamical systems.
Proc. Natl Acad. Sci. USA 104, 9943–9948. (doi:10.1073/pnas.0609476104)

10. Schmidt M, Lipson H. 2009 Distilling free-form natural laws from experimental data. Science
324, 81–85. (doi:10.1126/science.1165893)

11. Wang WX, Yang R, Lai YC, Kovanis V, Grebogi C. 2011 Predicting catastrophes in nonlinear
dynamical systems by compressive sensing. Phy. Rev. Lett. 106, 154101. (doi:10.1103/
PhysRevLett.106.154101)

12. Ozoli vs. V, Lai R, Caflisch R, Osher S. 2013 Compressed modes for variational problems
in mathematics and physics. Proc. Natl Acad. Sci. USA 110, 18368–18373. (doi:10.1073/
pnas.1318679110)

13. Proctor JL, Brunton SL, Brunton BW, Kutz J. 2014 Exploiting sparsity and equation-free
architectures in complex systems. Eur. Phy. J. Spec. Top. 223, 2665–2684. (doi:10.1140/
epjst/e2014-02285-8)

14. Brunton SL, Proctor JL, Kutz JN. 2016 Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937.
(doi:10.1073/pnas.1517384113)

15. Brunton SL, Proctor JL, Kutz JN. 2016 Sparse identification of nonlinear dynamics with control
(SINDYc). IFAC-PapersOnLine 49, 710–715. (doi:10.1016/j.ifacol.2016.10.249)

16. Friedman J, Hastie T, Tibshirani R. 2001 The elements of statistical learning, vol. 1. New York,
NY: Springer.

17. James G, Witten D, Hastie T, Tibshirani R. 2013 An introduction to statistical learning, vol. 112.
New York, NY: Springer.

18. Tibshirani R. 1996 Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B
(Methodological) 58, 267–288.

19. Donoho DL. 2006 Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306. (doi:10.1109/
TIT.2006.871582)

20. Candès EJ, Romberg J, Tao T. 2006 Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inform. Theory 52, 489–509.
(doi:10.1109/TIT.2005.862083)

21. Candés EJ, Romberg JK, Tao T. 2006 Stable signal recovery from incomplete and inaccurate
measurements. Commun. Pure Appl. Math. 59, 1207–1223. (doi:10.1002/cpa.20124)

22. Tropp JA, Gilbert AC. 2007 Signal recovery from random measurements via orthogonal
matching pursuit. IEEE Trans. Inform. Theory 53, 4655–4666. (doi:10.1109/TIT.2007.909108)

23. Chartrand R. 2011 Numerical differentiation of noisy, nonsmooth data. ISRN Appl. Math. 2011,
1-11. (doi:10.5402/2011/164564)

24. Schmidt MD, Vallabhajosyula RR, Jenkins JW, Hood JE, Soni AS, Wikswo JP, Lipson H. 2011
Automated refinement and inference of analytical models for metabolic networks. Phy. Biol.
8, 055011. (doi:10.1088/1478-3975/8/5/055011)

25. Daniels BC, Nemenman I. 2015 Efficient inference of parsimonious phenomenological models
of cellular dynamics using S-systems and alternating regression. PLoS ONE 10, e0119821.

26. Kevrekidis IG, Gear CW, Hyman JM, Kevrekidis PG, Runborg O, Theodoropoulos C.
2003 Equation-free, coarse-grained multiscale computation: enabling mocroscopic simulators
to perform system-level analysis. Commun. Math. Sci. 1, 715–762. (doi:10.4310/CMS.
2003.v1.n4.a5)

27. Ye H, Beamish RJ, Glaser SM, Grant SC, Hsieh C, Richards LJ, Schnute JT, Sugihara G. 2015
Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proc.
Natl Acad. Sci. USA 112, E1569–E1576.

28. Ascher UM, Petzold LR. 1998 Computer methods for ordinary differential equations and differential-
algebraic equations, vol. 61. Philadelphia, PA: SIAM.

29. Chen RT, Rubanova Y, Bettencourt J, Duvenaud DK. 2018 Neural ordinary differential
equations. In Advances Neural Inform. Processing Sys., pp. 6571–6583 (eds S Bengio, H Wallach,
H Larochelle, K Grauman, N Cesa-Bianchi , R Garnett). Red Hook, NY: Curran Associates.

30. Rico-Martinez R, Anderson J, Kevrekidis I. 1994 Continuous-time nonlinear signal processing:
a neural network based approach for gray box identification. In Proc. of IEEE Workshop on
Neural Networks for Signal Processing, pp. 596–605. IEEE.

31. Gonzalez-Garcia R, Rico-Martinez R, Kevrekidis I. 1998 Identification of distributed
parameter systems: a neural net based approach. Comput. Chem.l Eng. 22, S965–S968.
(doi:10.1016/S0098-1354(98)00191-4)

http://dx.doi.org/10.1073/pnas.0609476104
http://dx.doi.org/10.1126/science.1165893
http://dx.doi.org/10.1103/PhysRevLett.106.154101
http://dx.doi.org/10.1103/PhysRevLett.106.154101
http://dx.doi.org/10.1073/pnas.1318679110
http://dx.doi.org/10.1073/pnas.1318679110
http://dx.doi.org/10.1140/epjst/e2014-02285-8
http://dx.doi.org/10.1140/epjst/e2014-02285-8
http://dx.doi.org/10.1073/pnas.1517384113
http://dx.doi.org/10.1016/j.ifacol.2016.10.249
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1002/cpa.20124
http://dx.doi.org/10.1109/TIT.2007.909108
https://doi.org/10.5402/2011/164564
http://dx.doi.org/10.1088/1478-3975/8/5/055011
http://dx.doi.org/10.4310/CMS.2003.v1.n4.a5
http://dx.doi.org/10.4310/CMS.2003.v1.n4.a5
http://dx.doi.org/10.1016/S0098-1354(98)00191-4

24

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210883

..

32. Raissi M, Perdikaris P, Karniadakis GE. 2018 Multistep neural networks for data-driven
discovery of nonlinear dynamical systems. (http://arxiv.org/abs/1801.01236).

33. Raissi M, Perdikaris P, Karniadakis GE. 2019 Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys. 378, 686–707. (doi:10.1016/j.jcp.2018.10.045)

34. Rudy SH, Kutz JN, Brunton SL. 2019 Deep learning of dynamics and signal-noise
decomposition with time-stepping constraints. J. Comput. Phys. 396, 483–506. (doi:10.1016/
j.jcp.2019.06.056)

35. Goyal P, Benner P. 2021 Learning dynamics from noisy measurements using deep learning
with a Runge-Kutta constraint. In Workshop paper at the Symbiosis of Deep Learning and
Differential Equations – NeurIPS (available under the link https://openreview.net/pdf?
id=G5i2aj7v7i)

36. Mangan NM, Brunton SL, Proctor JL, Kutz JN. 2016 Inferring biological networks by sparse
identification of nonlinear dynamics. IEEE Trans. Mol., Biol. Multi-Scale Commun. 2, 52–63.
(doi:10.1109/TMBMC.2016.2633265)

37. Gavish M, Donoho DL. 2017 Optimal shrinkage of singular values. IEEE Trans. Inform. Theory
63, 2137–2152. (doi:10.1109/TIT.2017.2653801)

38. He K, Zhang X, Ren S, Sun J. 2016 Deep residual learning for image recognition. In Proc. IEEE
Conf. Comp. Vision Patt. Recog., pp. 770–778. IEEE. (doi:10.1109/CVPR.2016.90)

39. Huang G, Liu Z, Van D, Weinberger KQ. 2017 Densely connected convolutional networks. In
Proc. IEEE Conf. Comp. Vision Patt. Recog., pp. 4700–4708. IEEE. (doi:10.1109/CVPR.2017.243)

40. Beck A, Eldar YC. 2013 Sparsity constrained nonlinear optimization: Optimality conditions
and algorithms. SIAM J. Optim. 23, 1480–1509. (doi:10.1137/120869778)

41. Yang Z, Wang Z, Liu H, Eldar Y, Zhang T. 2016 Sparse nonlinear regression: parameter
estimation under nonconvexity. In Proc. of the 33rd Intern. Conf. on Machine Learning, pp.
2472–2481. PMLR.

42. Zhang L, Schaeffer H. 2019 On the convergence of the SINDy algorithm. Multiscale Model.
Simul. 17, 948–972. (doi:10.1137/18M1189828)

43. Fasel U, Kutz JN, Brunton BW, Brunton SL. 2021 Ensemble-SINDy: Robust sparse model
discovery in the low-data, high-noise limit, with active learning and control. (http://arxiv.
org/abs/2111.10992).

44. Champion K, Zheng P, Aravkin AY, Brunton SL, Kutz JN. 2020 A unified sparse optimization
framework to learn parsimonious physics-informed models from data. IEEE Access 8, 169259–
169271. (doi:10.1109/ACCESS.2020.3023625)

45. de Silva B, Champion K, Quade M, Loiseau JC, Kutz J, Brunton S. 2020 PySINDy: a Python
package for the sparse identification of nonlinear dynamical systems from data. J. Open Sourc.
Softw. 5, 2104. (doi:10.21105/joss.02104)

46. FitzHugh R. 1955 Mathematical models of threshold phenomena in the nerve membrane. Bull.
Math. Biophys. 17, 257–278. (doi:10.1007/BF02477753)

47. Lorenz EN. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141. (doi:10.1175/
1520-0469(1963)020<0130:DNF>2.0.CO;2)

48. Savitzky A, Golay MJ. 1964 Smoothing and differentiation of data by simplified least squares
procedures.. Anal. Chem. 36, 1627–1639. (doi:10.1021/ac60214a047)

49. Michaelis L, Menten ML. 1913 Die Kinetik der Invertinwirkung. Biochem. Z. 49, 352.
50. Johnson KA, Goody RS. 2011 The original Michaelis constant: translation of the 1913

Michaelis–Menten paper. Biochemistry 50, 8264–8269. (doi:10.1021/bi201284u)
51. Briggs GE. 1925 A further note on the kinetics of enzyme action. Biochem. J. 19, 1037.

(doi:10.1042/bj0191037)
52. Rudy SH, Brunton SL, Proctor JL, Kutz JN. 2017 Data-driven discovery of partial differential

equations. Sci. Adv. 3, e1602614. (doi:10.1126/sciadv.1602614)
53. Willcox KE, Ghattas O, Heimbach P. 2021 The imperative of physics-based modeling

and inverse theory in computational science. Nat. Comput. Sci. 1, 166–168. (doi:10.1038/
s43588-021-00040-z)

54. Loiseau JC, Brunton SL. 2018 Constrained sparse Galerkin regression. J. Fluid Mech. 838, 42–67.
(doi:10.1017/jfm.2017.823)

http://arxiv.org/abs/1801.01236
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2019.06.056
http://dx.doi.org/10.1016/j.jcp.2019.06.056
https://openreview.net/pdf?id=G5i2aj7v7i
https://openreview.net/pdf?id=G5i2aj7v7i
http://dx.doi.org/10.1109/TMBMC.2016.2633265
http://dx.doi.org/10.1109/TIT.2017.2653801
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1137/120869778
http://dx.doi.org/10.1137/18M1189828
http://arxiv.org/abs/2111.10992
http://arxiv.org/abs/2111.10992
http://dx.doi.org/10.1109/ACCESS.2020.3023625
http://dx.doi.org/10.21105/joss.02104
http://dx.doi.org/10.1007/BF02477753
http://dx.doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/bi201284u
http://dx.doi.org/10.1042/bj0191037
http://dx.doi.org/10.1126/sciadv.1602614
http://dx.doi.org/10.1038/s43588-021-00040-z
http://dx.doi.org/10.1038/s43588-021-00040-z
http://dx.doi.org/10.1017/jfm.2017.823

	Introduction
	Discovering nonlinear governing equations using a Runge--Kutta inspired sparse identification
	Fourth-order Runge--Kutta method
	Discovering nonlinear dynamical systems

	Algorithms to solve nonlinear sparse regression problems
	Fix cut-off thresholding
	Iterative cut-off thresholding

	A number of possible extensions
	Governing equations as a fraction of two functions
	Discovering parametric and externally controlled equations
	Parameterized dictionary

	Results
	Two-dimensional damped oscillators
	Fitz--Hugh Nagumo model
	Chaotic Lorenz system
	Michaelis--Menten kinetics
	Hopf normal form

	Discussion
	References

