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Zusammenfassung

Diese Dissertation beschéftigt sich mit Quantencomputing im Kontext von Quantenvielteilchen-
systemen und groéflenlimitierten Quantencomputer. Zunéchst betrachten wir die wichtigsten
Eigenschaften von Grundzustinden lokaler Hamiltonians mit Spektralliicke aus der Sicht des
Quantencomputing. Danach behandeln wir mehrere Quantenalgorithmen zur Préparierung
relevanter Quantenvielteilchenzustdnde auf einem Quantencomputer. Abschliefend erforschen
wir Zugange zu quanten-klassischen Hybridalgorithmen falls nur Quantencomputer mit einer
beschrankten Anzahl von Qubits verfligbar sind.

Abstract

This dissertation studies quantum computing in the context of quantum many-body systems
and size-limited quantum computers. First, we discuss the main properties of ground states of
local gapped Hamiltonians from a quantum computing perspective. We then consider several
quantum algorithms for preparing relevant quantum many-body states on a quantum computer.
Finally, we explore approaches to hybrid quantum-classical algorithms when only quantum
computers constrained in the number of qubits are available.
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1 Introduction

Quantum computers are generally expected to revolutionise the way many computational prob-
lems can be solved. Their impact, however, critically depends on the performance and resource
requirements of the underlying algorithms to be run on such devices, particularly in the fore-
seeable future. Indeed, although the realisation of fully scalable quantum computers is still
remote, small devices that are limited in size may be achievable soon [§]. Finding ways to
exploit such constrained devices remains an important task.

One particularly promising application is the simulation of large quantum systems, as origi-
nally envisioned by Feynman [9]. Such problems are usually classically intractable, largely due
to the exponential scaling of the dimension of the underlying state space. Quantum computers
do not inherently suffer from this representability issue, and as such even small devices could in
principle be able to solve certain simulation tasks for small yet interesting system sizes which
are beyond the reach of classical computers.

The complementary approach to solving small problem sizes on size-limited quantum com-
puters is to expand the applicability of these devices to larger instances. Since established
quantum algorithms require more space than is physically available in this scenario, such ap-
proaches necessitate the development of so-called “hybrid algorithms”, which combine quantum
and classical computational resources.

This dissertation contributes to both of these areas.

1.1 OQOutline of this dissertation

In the remainder of this chapter, we briefly summarise all articles included in this dissertation.
The subsequent chapters provide a short overview of the main concepts in quantum computing,
quantum many-body systems, and hybrid algorithms, which are used and referred to in the
articles included in this dissertation, and moreover contextualise the results of the contributed
articles in the wider field. Specifically, Chapter [2| provides a short introduction to the basic
concepts of quantum computing. Chapter [3| discusses important notions in quantum many-
body systems, and analyses general criteria of quantum many-body states from the perspective
of computational tractability. Chapter [] covers some important quantum algorithms which
are often used as building blocks in other quantum algorithms. Chapter [5| explores several
quantum algorithms to prepare certain quantum many-body states on quantum computers.
Chapter [0] presents new approaches for designing hybrid quantum-classical algorithms for the
scenario when the sizes of the available quantum computers are severely limited.

After this overview, the contributed articles are included. The published Core Articles
and of which the author of this thesis is the principal author, are included in Appendix [A]
Contributed Article [[V] which is currently under review and of which the author of this thesis
is the principal author, is included in Appendix B] Afterwards, in Appendix [C] Contributed
Articles[V]and [VI} of which the author of this thesis is a co-author, are included. Every article
is preceded by a short summary, a statement of the individual contribution of the author of
this thesis to the respective article, as well as the permission to include it in this thesis.



1.2 Summary of results

The articles included in this dissertation consider different aspects of quantum computation
in the context of quantum many-body systems and early quantum computers, and can loosely
be classified into two categories. The first category explores possibilities but also limitations
of quantum computation in the context of quantum many-body systems. Specifically, Arti-
cles [[] and [[T]] propose new quantum state preparation algorithms, while Article [V] introduces
and analyses a new class of quantum many-body states, which, amongst other things, can
also be prepared with the algorithm presented in Article [l Article [II] on the other hand ex-
hibits some limitations of characterising the computational tractability of quantum many-body
states by simply looking at their entanglement properties. The second category proposes new
approaches to hybrid quantum-classical algorithms that utilise quantum computers significantly
smaller than the problem size to enhance the performance of the purely classical version of the
algorithms. Specifically, Article [V]introduces general frameworks and tools for designing such
hybrid algorithms and applies them to speed up the solving of a graph theory problem, while
Article [V achieves this in the context of Boolean satisfiability.

Core articles as principal author

o Article [2] /1]: Rapid adiabatic preparation of injective projected entangled pair states and
Gibbs states
In this article, we propose an adiabatic algorithm to prepare injective projected entan-
gled pair states and purifications of Gibbs states of quantum many-body Hamiltonians
with commuting local terms. We prove that the algorithm is very efficient if a so-called
“uniform gap” condition is satisfied. This efficiency is achieved by making strong use of
the locality of the parent Hamiltonians involved. First, we employ a version of the adi-
abatic theorem whose runtime scales only polylogarithmically in the allowed distance to
the target state. This is achieved through a smooth reparameterisation of the adiabatic
path. Second, the polylogarithmic scaling of the runtime in the allowed error allows for a
sequence of adiabatic paths in which only few local terms are changed at a time. As the
final ingredient of the algorithm, we prove that having only such local changes along the
path of frustration-free Hamiltonians implies that their terms can in fact be truncated
at a short distance away from the support of the local changes. This result, whose proof
utilises Lieb-Robinson bounds, implies a low runtime overhead when the adiabatic path
is converted into a quantum circuit using Hamiltonian simulation.

o Article |l [2]: Area laws and efficient descriptions of quantum many-body states

In this article, we disprove a common folklore conjecture, namely that quantum many-
body states exhibiting so-called “area laws” are, in some sense, easy to describe. We prove
the existence of quantum many-body states on two-dimensional square lattices which ex-
hibit an area law in an extremely strong sense, but yet cannot be well-approximated by
any state which has a polynomial classical description. The latter class is extremely broad,
as it is only defined via a polynomial Kolmogorov complexity of the coefficients of the
states, and in particular includes efficient tensor networks and polynomial quantum cir-
cuits. We also show that the result remains true even if more “physical” conditions, such
as translational and rotational invariance, are imposed on the states, and we moreover
prove a variant of this result with decaying correlations. The proof is non-constructive
and uses a counting argument of e-nets.



° Article |3]: Faster ground state preparation and high-precision ground energy estima-
tion with fewer qubits
In this article, we present general-purpose quantum algorithms for extracting the ground
state of a quantum Hamiltonian from a given trial state by projecting the latter onto its
ground state component. We provide different versions of the algorithm, depending on
whether or not the ground energy is known beforehand. In case of an unknown ground
energy, our algorithms can also be used to estimate its value to a very high precision.
We prove that our algorithms are significantly faster than phase estimation, namely ex-
ponentially better in the allowed error and polynomially better in the overlap of the trial
state with the ground state. Moreover, we show that compared to other methods with
comparable runtimes, our algorithms use significantly fewer qubits, making them more
suitable for early quantum devices. We moreover show how to combine this approach with
phase estimation to optimise the runtime dependence on the spectral gap of the target
Hamiltonian. The algorithms are based on tools developed in the context of solving the
quantum linear systems problem, and implement an approximate ground state projector
using the “linear combinations of unitaries lemma”.

Further articles as principal author currently under review

o Article H4]: A hybrid algorithm framework for small quantum computers with applica-
tion to finding Hamiltonian cycles
In this article, we propose a general framework for developing hybrid quantum-classical
algorithms which speed up classical divide-and-conquer algorithms using only quantum
computers with significantly fewer qubits than the problem size. This framework, which
generalises the approach of Article comprises two parts. First, we develop the so-
called “divide-and-conquer hybrid approach”, which takes a classical divide-and-conquer
algorithm and replaces the recursive call with a faster quantum algorithm once the prob-
lem size, measured by a suitable effective problem size metric, is sufficiently small to
fit on the number of available qubits. We prove sufficient conditions on the time- and
space-efficiency of the replacing quantum algorithm for obtaining a polynomial speedup.
The result also establishes a trade-off between the resource requirements of that quantum
algorithm, the speedup obtained, and the number of qubits available. The second part is
a general procedure to efficiently generate suitably space-efficient encodings of large sets
in a way that is compatible with a polynomial speedup in the divide-and-conquer hybrid
approach. This procedure bridges the gap between reversibility, space-efficiency, and low
computational overhead of the uncomputation operations involved. As an application,
all these results are then used to speed up Eppstein’s algorithm for finding Hamiltonian
cycles on cubic graphs, and the general framework reduces this task to finding time- and
space-efficient implementations of only a small number of graph-theoretic operations.

Further articles as co-author

e Article @ 19]: A generalization of the injectivity condition for projected entangled pair
states
In this article, we introduce a new class of projected entangled pair states (PEPS), which
we term “semi-injective PEPS”. These states are obtained through local invertible op-
erators acting on a torus of plaquette states. This class extends the well-understood
notion of “injective PEPS”. We show that many important states for which no injective
PEPS description exists can naturally be described by a semi-injective PEPS. Similar to



injective PEPS, we also construct frustration-free local parent Hamiltonians for which
these states are the unique ground states. We then derive a “fundamental theorem” for
semi-injective PEPS by showing that two tensors generate the same class of semi-injective
PEPS if and only if they are related by a matrix product operator with certain properties
acting on the boundary. This result then allows for a characterisation of symmetries in
semi-injective PEPS. Finally, we use these results to rederive the third cohomology classi-
fication of symmetry protected topological phases within the framework of semi-injective
PEPS.

Article 160/: Computational speedups using small quantum devices

In this article, we propose a quantum enhancement of Schoning’s algorithm for 3SAT
using only significantly fewer qubits than the number of variables involved in the 3SAT
instance. The speedup is polynomial for any arbitrarily small constant ratio of the num-
ber of available qubits to the number of variables. We demonstrate that straightforward
hybrid quantum-classical algorithms using such devices encounter a “threshhold effect”,
meaning that the hybrid algorithm becomes slower than the original classical algorithm
if that ratio is below some constant value. We then develop a new approach based on
a reformulation of Schoning’s original algorithm as a derandomised divide-and-conquer
algorithm, which reduces 3SAT to solving the so-called “Promise-Ball-SAT” (PBS) prob-
lem. We achieve the speedup by replacing the recursive call with a suitably time- and
space-efficient quantum algorithm sufficiently deep in the recursion tree. The faster run-
time of the replacing quantum subroutine is obtained by rewriting a classical recursive
PBS algorithm in non-recursive form, and speeding it up using amplitude amplification.
In order to be able to do this sufficiently space-efficiently, we develop efficiently uncom-
putable data structures to store sets of “flipped” variable indices.



2 Quantum computing

In this chapter, we provide a brief introduction to the main concepts of quantum computing.
This material can also be found in introductory textbooks such as Ref. [10].

Throughout this dissertation, the computer science convention of the big-O notation is used.
We write f(n) = O(g(n)) if there exist ¢,ng > 0 such that for all n > ng, f(n) < cg(n). We
moreover write f(n) = Q(g(n)) if there exist ¢,ng > 0 such that for all n > ng, f(n) > cg(n).
We also write f(n) = O(g(n)) if both f(n) = O(g(n)) and f(n) = Q(g(n)). The O, Q, and
© notation are generalised in the obvious way to multiple variables, as well as the case when
some of the variables are considered in the limit of sufficiently small instead of sufficiently large
values (it will always be clear from the context which limits are considered for which variables).

Unless stated otherwise, all logarithms in this dissertation are with respect to base 2.

2.1 Quantum states

Associated to any isolated physical quantum system is a complex Hilbert space, known as the
state space. Throughout this dissertation, only the finite-dimensional case C% with d € N is
relevant. Quantum systems with d = 2 are called qubits.

A pure quantum state of this system is an lo-normalised vector in the state space, denoted
as |¢) € CL The dual to |¢) is written as (¢, and the inner product between states |) and
|p) as (1|p). Often, an orthonormal basis {|0),...,|d — 1)}, called the computational basis, is
singled out. In this basis, |1) is represented as

d—1
) = e |z), (2.1)
=0

where ¢, = (z|¢p) € C with > |¢,|? = 1.

The state space associated to composite quantum systems is given by the tensor product of
the individual state spaces. For simplicity of notation, tensor product states ) ® |¢) are often
abbreviated as |¢)|¢) or |[¢). The computational basis of a composite system is given by the
set of all possible tensor products of computational basis states of the individual subsystems.

An important special case in the context of quantum computing is the composite system
comprising n qubits, whose state space is (C?)®". The computational basis of this system is
{Jz) : x € {0,1}"}.

A mized quantum state of a quantum system is described by a density operator p, which is
a positive operator of unit trace acting on the state space. Often, p is given by an ensemble
{(ps, |1i))}i with p; € [0,1] and Y, p; = 1, meaning that the quantum system is in the state
|¢;) with probability p;. In this case p = ). p; |1s)(1;]. Density operators can also be obtained
as partial states through the partial trace operation from larger systems: if |[¢ap) € Ha ® Hp
is a pure state of a composite system with state spaces Ha4 and Hp, respectively, then the
density operator ps = trp(|vap) (Y ap|) is called the reduced state of [1pap) with respect to the
subsystem A.



2.2 Quantum circuits

Quantum operations on pure quantum states are unitaries acting on the state space. In the
context of quantum computing, when the system is composed of n qubitﬂ one usually only
considers unitaries that can be obtained as a quantum circuit, i.e., a product of so-called gates,
which are elements of a fixed set of unitaries, acting on any of the n qubits. Moreover, one
usually only considers sets of gates which only contain unitaries acting on at most two qubits.
The gate set is called exactly universal if for all n, any n-qubit unitary can be written as a
product of its gates. An example of an exactly universal gate set is the set of all single-qubit
unitaries together with the controlled-NOT (or simply CNOT) gate, which in the computational
basis {]00),]01),[10),[11)} acts as

(2.2)

o O O =
o O = O
o O O
O = O O

However, it is often preferable to work only with finite gate sets, which clearly cannot be
exactly universal. Hence, the notion of universality is usually relaxed to only require good
approximations of the target unitaries. In other words, a gate set is called universal if for all n,
any n-qubit unitary can be approximated to arbitrarily small distance (e.g. in operator norm)
by products of its gates.

One of the most commonly used gate sets is

1 /1 1 —im/8
{ﬁ(l _1>’<€O eiﬂ/8>,CNOT}, (2.3)

which can be shown to be universal. The two single-qubit gates in this set are known as the
Hadamard gate and the T gate, respectively. However, many other sets of gates are also known
to be universal. Moreover, the Solovay-Kitaev Theorem implies that any single qubit unitary
can be approximated to distance € in operator norm using O(polylog(1/€)) Hadamard or T’
gates. This means that all universal gate sets are essentially equivalent up to polylogarithmic
factors.

In quantum computation, one is usually tasked with trying to either approximate a target
unitary with a quantum circuit, or alternatively generate an approximation of a target state
by applying a quantum circuit to a given initial state (often simply assumed to be |0)*™).
Moreover, the quantum circuit should be the result of a quantum algorithm, which provides
descriptions of quantum circuits performing the task for varying problem sizes. As such, we
require the circuits to be uniform, which means that circuits for different problem sizes should be
related in a simple Wayﬂ This is an important technicality, as the ability to choose arbitrary
circuits for each problem size would allow one to solve uncomputable problems. There are
several important figures of merit of such quantum algorithms.

The runtime or size of the quantum circuit is simply the number of its elementary gates.
This is the most commonly used metric to measure the efficiency of a quantum algorithm. In
particular, one often demands that the runtime scales at most polynomially with the input size.

'Sometimes, quantum computations on larger-dimensional individual systems are considered, but these indi-
vidual systems can be embedded into a system of multiple qubits each.

2Formally, uniformity means that there exists a fixed Turing machine which, given a tape containing ‘1’ n
times, outputs a description of the n'™ circuit in time O(poly(n)).



Sometimes, we care not just about the runtime of a circuit, but also about its depth, which
is given by the maximum number of elementary gates amongst all paths from an input to an
output. Roughly speaking, the depth of a circuit measures the runtime if one is allowed to
perform gates acting on disjoint subsystems in parallel.

In many cases, quantum algorithms require additional qubits, called ancillas. Indeed, the
number of gates required to map [0)®" to some [¢) € (C?)®™ might be much higher than the
number of gates required to map |0)2"*™ to |1)[0Y®™ for a given m € N. Particularly in the
context of early quantum computers with a limited number of qubits, the number of ancillas
m required by a quantum algorithm may be an important consideration.

2.3 Measurements

Although more general measurement operations are commonly considered in quantum mechan-
ics, in the context of quantum algorithms, one usually only allows projective measurements in
the computational basis. If such a measurement is performed on an n-qubit state |1)) given by

W= 3 wla) (2.4)

z€{0,1}"

with > [¢z|* = 1, then the outcome z € {0,1}" is obtained with probability |¢,|*> and the
state after the measurement will be in |x).
Alternatively, one can choose to perform a measurement on only m of the n qubits. If |¢) is
written as
)= D arln)|Ra), (2.5)

ze€{0,1}™

where the |R;) are (n — m)-qubit states and Y, |a,[* = 1, then a measurement on the first m
qubits will with probability |a|? yield the outcome x € {0,1}™ and leave the state in |z)|R.).

Quantum circuits that utilise measurements will generally only perform a required task with a
certain probability. For most applications, this is good enough as long as the success probability
is sufficiently large. Especially in the context of decision problems, this has termed the notion
of bounded-error algorithms, which solve the problem at hand with a probability of at least 2/3.
The value 2/3 is arbitrary here and could be replaced with any constant in (1/2,1) because
any algorithm with such a probability of success can be lifted to succeeding with probability
at least 1 — e with O(log(1/€)) repetitions and a majority vote.

2.4 Reversibility

Since unitary matrices are invertible, any quantum circuit implements a reversible operation.
Conversely, for any classical reversible gate performing x +— f(z), there is a quantum gate
performing |x) — |f(z)). However, classical cicuits are often written using non-reversible
gates, such as AND and OR. Such computations can nevertheless be rewritten in reversible
form, by replacing any irreversible gate computing 2 — f(z) with the reversible gate computing
(z,y) — (z,y® f(x)), and applying it to (z,0). In this way, any non-reversible classical circuit
computing z — F(x) can be rewritten as a reversible circuit C which implements (z,0,0) —
(z, F(z),G(x)), where G(z) is some unwanted extra output (e.g., the results of all intermediate
computational steps). The presence of this “garbage” register is problematic for quantum
computation, since it prevents the desired interference properties when we lift this circuit to a
quantum circuit. This can be fixed with the following trick, known as uncomputation.



We introduce a fourth register onto which we first reversibly “copy” the register containing
F(z) using controlled-NOT gates, ie. (z,F(z),G(z),y) — (z,F(x),G(x),y @ F(x)). We
then apply the inverse of C. Since C does not involve the last register, we obtain the state
(2,0,0,y® F(x)), yielding a reversible circuit which implements (x,0,0,y) — (z,0,0,y® F(z)).
In particular, by replacing each reversible elementary gate with the corresponding elementary
quantum gate, one obtains a quantum circuit which performs |z)|0)|0)|0) — |z}|0)|0)|F'(x)).

This simple way of turning any non-reversible classical circuit into a reversible and further into
a quantum one requires additional ancillas, in the worst case roughly the number of elementary
gates in the original non-reversible circuit. More general uncomputation schemes exist [11],
which can reduce the number of ancillas required, but usually achieve this at the expense of
potentially large runtime overheads.



3 Quantum many-body systems

The physical properties of a quantum system are usually captured by a Hamiltonian H, which
is a Hermitian operator acting on the state space of the system. Much of low temperature
and condensed matter physics is concerned with studying properties of states associated to a
given Hamiltonian H. For example, the state of inverse temperature § in thermal equilibrium
is described by the Gibbs state, pg = e P17 where Z = tre PH,

Often, one is interested in the properties of the spectral decomposition of H = ), E; | E;) (E;],
where the eigenvalues E; are called the energies of the corresponding eigenstates |E;). Note
that since H is Hermitian, E; € R and the |E;) can without loss of generality be assumed
to form an orthonormal basis of the state space. Of particular importance are the ground
states corresponding to the lowest energy min; F;, known as the ground energy. Indeed, at low
temperatures, the properties of the ground states usually dominate the behaviour of the Gibbs
state. In this thesis, we will mostly be concerned with the case when the ground energy is
non-degenerate.

When H =) E, |z)(z| is diagonal in the computation basis, H describes a classical system,
i.e. one without any quantum effects. Then, pg = £ > e PP |2)(z| captures the Gibbs
distribution given by H.

For quantum many-body systems, additional constraints restrict the structure of Hamiltoni-
ans considered. Usually, there is an underlying lattice geometry of N sites of local dimension
d, and the Hamiltonians of such systems are restricted to be sums of local terms,

H=> hy,  |lullop <1, (3.1)
k

where each of the hj only acts non-trivially in a region of bounded diameter. For example, if H is
a nearest-neighbour Hamiltonian, each hj is a Hermitian operator acting on two neighbouring
sites, tensored with the identity operator on all remaining sites. When all h; are positive
operators and the ground energy of H is 0, H is called frustration-free.

3.1 Tensor networks

The fundamental challenge of dealing with quantum many-body systems lies in the exponential
scaling of the underlying Hilbert space dimension: the state space associated to a system of N
sites of local dimension d is (C%)®" | which has dimension d". Usually, d can be assumed to be
a small constant (e.g. d = 2 for a system of N qubits on a lattice), whereas N generally needs
to be reasonably large to exhibit the relevant macroscopic effects. As such, the asymptotic
scalings of computational resources with large N are usually the relevant figures of merit for
complexities related to any algorithm for quantum many-body systems. The exponential scaling
of the state space dimension is particularly problematic for classical numerical simulations, as
even just storing a naive representation of the state using d”¥ complex parameters would require
more memory than physically available even for relatively small values of N.

However, the locality structure of the Hamiltonian also leads to structural restrictions of its
ground state, and one could therefore hope that in principle, more efficient descriptions of these



states might exist. An important class of such descriptions are tensor networks, which define
states with generally only O(poly(/N)) complex parameters. Such tensor network states are
generally conjectured to be able to approximate ground states of local Hamiltonians well. We
will define some special cases of such tensor networks now and motivate this conjecture below
in Section [3.2]

3.1.1 Matrix product states

The simplest type of tensor network states are matriz product states (or MPS), which describe
quantum many-body states in one spatial dimension. These are states of the form

d—1
nps) o< Y tr(Agl” . Agjj)) i ... i), (3.2)

il,...,iNZO

where the AE]) are D x D matrices fori =0,...,d—1and j = 1,..., N. The value of j labels the
sites in an open or closed chain of NV particles of local dimension d, and D is the so-called bond
dimension. Provided that D is not too large (e.g. D = O(poly(N))), this yields a description
of the state with only polynomially-many parameters. Moreover, the sequential order of the
matrices appearing in the MPS description inherently captures the one-dimensional geometry of
the state. For translationally invariant states, one often only considers translationally invariant
MPS, where the matrices AEJ ) = A; are site-independent.

MPS are particularly suited for classical numerical simulations of one-dimensional quantum
many-body systems. Indeed, physically relevant quantities such as expectation values or cor-
relation functions of local observables can be efficiently calculated classically given only the
matrices of the MPS, and the latter can in turn be used as variational parameters to obtain
states with low energy. For example, the highly successful Density Matrix Renormalisation
Group algorithm [12] can be reformulated in terms of MPS [13]. MPS are generally well un-
derstood. For example, “canonical forms” for MPS have been derived which essentially classify
all MPS [14]. The central ingredient to these canonical forms is a “fundamental theorem” of
MPS, which establishes necessary and sufficient conditions for when two sets of matrices gener-
ate the same set of states. This fundamental theorem is particularly strong for translationally
invariant MPS, which establishes that two matrices generating the same set of MPS are re-
lated by a “gauge” transformation. This result, amongst other things, can be used to classify
symmetry-protected topological (SPT) phases in one dimension [15] |16].

3.1.2 Projected entangled pair states

Projected entangled pair states (or PEPS) are the natural generalisation of MPS in two and
more spatial dimensions |17].

Definition 3.1. Let (V| E) be a simple graph with bounded degree and let D, d be positive
integers. For each v € V, let Q) : (CP)®degv _ C4 he a linear operator. On each edge e € E,
place a maximally entangled state ‘¢E>e =vD-1 Z?:Bl lii) of two D-dimensional “virtual”
particles located at the two ends of e. Then, the projected entangled pair state (or PEPS)
[vpEPs[{Q™) }uev]) € (C?)®IVI is defined as

eers{Qhuer]) o [T @ R [65), (3.3)

veV ecE

where each Q) acts on the degv virtual particles located at v.
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Figure 3.1: PEPS for two-dimensional square lattice. Each physical site comprises four virtual D-
dimensional particles. Two neighbouring virtual particles are placed into a maximally
entangled pair state (blue). Linear operators (red) supported on the four virtual particles
of each site are then applied.

This construction is illustrated in Fig. for a two-dimensional square lattice. The opera-
tors Q) are commonly referred to as PEPS projectors (even though they are not necessarily
projectors). As with MPS, D is called the bond dimension of the PEPS. If D = O(poly(N)),
the PEPS projectors provide an efficient description of the state comprising only polynomially
many parameters. Moreover, as with MPS, one often only considers translationally invari-
ant PEPS whose projectors Q) = Q are site-independent when dealing with translationally
invariant systems.

The general theory and classification of PEPS is much less understood than that of MPS.
In particular, no “fundamental theorem” analogous to that of MPS exists. In fact, quite the
opposite is true: the problem of whether two given PEPS projectors generate the same states
for all system sizes can be shown to be undecidable in general [7]. The latter can be proven
by encoding two-dimensional tiling problems, which are well-known to be undecidable, into the
problem of deciding if two PEPS projectors generate the same set of states.

One important subclass of PEPS are the injective PEPS, which are PEPS for which all PEPS
projectors Q) are invertible.

Definition 3.2. Let (V, E) be a simple graph with bounded degree, D, d be positive integers,
and QW) : (CP)®degv _ 4 he a linear operators. We call the PEPS WPEPS[{Q(U)}ue\/D
injective if Q) is invertible for all v € V.

Unlike general PEPS, the class of injective PEPS is well-understood. In particular, a “fun-
damental theorem” analogous to the one for translationally invariant MPS is known for trans-
lationally invariant injective PEPS [18§].

In Contributed Article the notion of injectivity is generalised. We introduce so-called
semi-injective PEPS, which are obtained by placing plaquette states of four virtual particles on
a two-dimensional lattice and acting with invertible 4-body operators on the virtual particles
meeting at each site (see Fig. [3.2). We show that this class of states not only includes all
injective PEPS, but also several important examples of states which do not admit an injective
PEPS description, such as the AKLT model on square lattices and the CZX model. We show
an analogous fundamental theorem for semi-injective PEPS there, and use it to rederive the
classification of symmetry-protected topological phases of matter in that framework.

11



Figure 3.2: Semi-injective PEPS. Invertible 4-body operators (red) act on plaquette states (blue) of
four virtual particles.

3.2 Ground states of local Hamiltonians and area laws

In this section, we discuss a heuristic argument for why tensor networks could be suited to
capture ground states of local Hamiltonians.

Figure 3.3: Area law. A quantum many-body state |¢) satisfies an area law with respect to some
entanglement entropy S if for any connected subregion A (red) of the lattice, S(pa) =
O(|0A]), where pa = try\ 4 [¢) (1] is the reduced state of [) with respect to the subsystems
in A and 0A is the boundary of A (blue). Generic states satisfy a volume law, S(pa) =
Q()A|), with high probability.

Ground states of local Hamiltonians are generally expected to have special entanglement
properties. Specifically, for local Hamiltonians defined on a lattice (V, E) with a ©(1) spectral
gap and a unique ground state, the latter is expected to exhibit a so-called area law [19]. This
means that certain entanglement entropies, e.g. the Rényi entropies So(pa) = ﬁ log tr p%,
a > 0, or the von Neumann entropy Si(pa) = —tr(palogpa) = limg_1 Sa(pa) of reduced
states p4 with respect to a connected subregion A C V of particles, is bounded by O(|0A4|),
where the boundary OA of A is the set of edges between A and V\A (see Fig [3.3). This
property is in stark contrast to generic states. Indeed, it can be shown, as a consequence of the
concentration of measure phenomenon, that states picked uniformly at random according to
the Haar measure satisfy a volume law, i.e. So(pa) = Q(|A]), with probability close to 1 [20].

This contrast between generic states and ground states of local gapped Hamiltonians has
termed the notion of a small “physical corner” of the exponentially-dimensional quantum many-
body state space. Moreover, MPS and PEPS with an O(1) bond dimension can be easily

12



seen to fulfil an area law with respect to Sy, the binary logarithm of the Schmidt rank, and
hence also with respect to S, for all & > 0. The fact that MPS/PEPS and ground states of
local gapped Hamiltonians are conjectured to share this very non-generic property provides a
heuristic justification for why such tensor network states could be suited to describe ground
states of local gapped Hamiltonians.

In one spatial dimension, i.e. an open or closed chain of N particles of local dimension d,
area laws — which in 1D means that S(p4) is bounded by a constant for all connected subchains
A C V independently of the length of A —have been proven for the unique ground states of local
gapped Hamiltonians |21} 22]. Moreover, the precise link between area laws and the existence
of efficient MPS descriptions has also been proven in 1D. Specifically, it has been shown that
any state which satisfies a 1D area law for S, with o € (0,1) can be approximated by an MPS
with small bond dimension [23|. The result remains true even if the constant scaling of S, (p4)
required by the 1D area law is relaxed to a logarithmic scaling in the system size.

Theorem 3.3 ([23,24]). Let [1) € (C)®N be a state of N quantum systems of local dimension
d. For L=1,...,N —1, let p1, be the reduced state of 1)) with respect to the first L quantum
systems according some pre-specified total order of the N quantum systems. Suppose that there
exists some a € (0,1) such that for all L € {1,...,N — 1}, So(pr) = O(log N). Then, for all
€ > 0, there exists an MPS |{aps) of bond dimension O((N/((1 — a)€))*/(=®) poly(N)) such
that [|¢) — [¥ups)|l3 < e.

To be precise, the proofs in Refs. |21} [22] of the area law for ground states of local gapped
Hamiltonians in 1D only explicitly establish an area law for the von Neumann entropy. However,
Theorem breaks down for & = 1 and moreover, it has been shown that merely looking at
area laws with respect to the von Neumann entropy turns out to be inconclusive in general [24].
Hence, strictly speaking, the established versions of the area laws for ground states of gapped
Hamiltonians in 1D do not a priori imply the existence of a good MPS approximation with
low bond dimension. However, the proof of the 1D area law in [22] using “approximate ground
state projectors” actually also proves that all ground states of local gapped Hamiltonians in
1D can be captured by MPS of polynomial bond dimension. This proven connection ultimately
also gave rise to provably efficient classical algorithms to find the ground state of gapped local
Hamiltonians in 1D in terms of MPS [25-27].

In two (or more) spatial dimensions, the picture is more complicated. While it has been
proven that analogues of PEPS for mixed states with polynomial bond dimension can well ap-
proximate Gibbs states of local gapped Hamiltonians [28], the corresponding claim for ground
states is so far only a (generally believed) conjecture. As a first step to proving it, significant
effort has gone into attempting to prove an area law for ground states of local gapped Hamilto-
nians in 2D. This has been proven in many special cases, including frustration-free Hamiltonians
[29], Hamiltonians in the same gapped phase as other Hamiltonians with area law ground states
[30% 31|, or under certain assumptions on the scaling of the specific heat capacity [32]. However,
a general area law in 2D for ground states of local gapped Hamiltonians is still unproven.

Yet, even if a general area law were to be proven, care has to be taken with this approach: In
Core Article [[T} we show that the analogous statement to Theorem does not hold in more
than one spatial dimensions: there exist states which satisfy an area law in an extremely strong
sense, namely with respect to Sy (and hence with respect to S, for all a > 0), but nevertheless
cannot be approximated by any efficient tensor network description. In fact, the result is more
general and does not only apply to tensor networks, but any efficient classical description of
the state in the sense of having a low Kolmogorov complexity. This in particularly also implies
that 2D area law states cannot in general be prepared by polynomial quantum circuits, even
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when allowing for post-selections of measurement results. Note that the existence of these
counterexamples has no implications for properties of ground states of gapped Hamiltonians —
in fact, the counterexamples established in Core Article [[] are provably not eigenstates of any
local Hamiltonian. Yet, it signifies that the characterisation of the “physical corner” of the
many-body Hilbert space via low entanglement properties is incomplete, and that area laws
can only serve as intuitive guidelines for the ability to capture the state by PEPS.

14



4 Important quantum algorithms

In this chapter, we present some elementary techniques and quantum algorithms which are
often used as subroutines or building blocks in subsequent quantum algorithms.

4.1 Amplitude amplification

A common way to obtain (up to quadratic) polynomial speedups over classical algorithms is
to use amplitude amplification techniques, first introduced in Ref. |33]. Suppose that C is
a quantum circuit on n qubits which prepares the state C|0)*" = X|G) + V1 — A\2|B) with
(B|G) = 0 and A € (0,1), and let U be a unitary on n + 1 qubits that satisfies U |G)|b) =
|G)|1 —b) and U |B)|b) = |B)|b) for b € {0,1}. Here, C can be thought of as preparing a state
which has a desired “good” component |G) (e.g., |G) could be the target state which encodes
the solution to the problem we are trying to solve) and an undesired “bad” component |B).
The unitary U acts as an “oracle” which recognises good states. The naive way to obtain a
good state would be to run UC on \O>®(n+1), followed by a measurement of the last qubit.
Then, a good state is found with probability A2. If A is very small (which is usually the case in
most practical applications), then Q(1/\2?) repetitions of this procedure are required to obtain
a bounded-error algorithm.

Amplitude amplification techniques can be used to reduce this to O(1/\) repetitions. To
illustrate the simplest case, suppose that the value of A is known, and we write A = sin 6 for some
small # > 0. Let Ry be the n-qubit unitary which satisfies Ry [0)*" = — |0)*™ and Ry |z) = |z)
for x € {0,1}™\{0...0}, and U’ be an n-qubit unitary which satisfies U’ |G) = —|G) and
U'|B) = |B) (note that U’ can be obtained from U using one ancilla in (|0) — [1))/v/2).
Then, it is easy to see that in the two-dimensional subspace spang{|G),|B)}, the operator
R = CRoC'U’ acts as a rotation by 26. In particular, since # is small, O(1/8) = O(1/))
repetitions of R will rotate C [0)*" to a state with an Q(1) overlap with |G).

In the above illustration, knowing the value of A was crucial, since applying R too many times
will “overshoot” the target state and reduce the overlap with |G) again. An improvement over
this simple amplitude amplification method, known as fized point search, generalises this result
to the case when only a lower bound on A is known.

Theorem 4.1 ([34]). Let C be a quantum circuit on n qubits such that C|0)®" = \|G) +
V1 =N |B) with (B|G) =0 and X € (0,1), and let U be a unitary on n+ 1 qubits that satisfies
U |G)b) = |G)|1 —b) and U |B)|b) = |B)|b) for b€ {0,1}. Let N',§ € (0,1) with N < X\. Then,
there exists a quantum circuit FPS(C,U, X, d) on n + 1 qubits using O(log(1/6)/\) calls to
C,C", U and O(n?log(1/6)/XN') additional gates such that

(G, 0|FPS(C,U, X, 6)[0)° D2 > 1 — 62, (4.1)

In Core Article [[T, we amongst other things also prove a kind of converse of Theorem

namely that the left hand side of (4.1) is at most 2In(2/5)A\/N if A < X, and use this to
propose a quantum algorithm to find the smallest ancilla “label” amongst terms with at least
some given amplitude in a given superposition.
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4.2 Hamiltonian simulation

The dynamics of a quantum state in a closed system described by a Hamiltonian H is governed
by the Schrodinger equationﬂ

.d
i3 10) = H1v). (4.2)

The problem of simulating this evolution of a given Hamiltonian and initial state on a quan-
tum computer is known as Hamiltonian simulation. For time-independent Hamiltonians H,
Eq. (4.2)) implies that the state [¢)(t)) at time ¢ is simply given by

[%(2)) = e 11(0)), (4.3)

so that Hamiltonian simulation essentially amounts to approximating the unitary e *#¢ by a
short quantum circuit.

Many efficient quantum algorithms for this task are known. The earliest and simplest of
these algorithms [35] is based on “trotterisation” techniques. Suppose that H acts on n qubits
and can be decomposed into M = O(poly(n)) “local” terms, H = 22/[:1 hi, where each hy, only
acts non-trivially on O(1) qubits. Then, using the Trotter formula [36], 37]

o iHE _ (ef’ihlt/’f‘ o e*ihMt/r)r + O(t*/r), (4.4)

with 7 = Q(t?/€) and approximating each e~"*!/7 as a quantum circuit with O(polylog(Mr /)
gates, one obtains a quantum circuit that approximates et to error O(e) using at most
O(Mt%e~ L polylog(M, t,e71)) gates.

In recent years, Hamiltonian simulation algorithms with significantly better runtimes have
been developed for various input models of H [38-41]. Here, we exemplarily state one of these

results, whose runtime scaling can be shown to be essentially optimal [39]:

Theorem 4.2 ([41]). Let H be an N x N Hermitian matriz such that there is an Nd x Nd
unitary U and a d x d unitary G such that H = ((G| @ 1)U(|G) @ 1), where |G) = G |0) € C.
Let t > 0. Then, e "t can be simulated to error € and failure probability O(€) using at most
[logo N'| + [logy d] + 2 qubits, O(t + log(1/€)) calls to controlled-G, controlled-U, and their
inverses, and O(tlogd +log(1/e)logd) additional elementary gates.

In a certain sense, Hamiltonian simulation can be considered the most fundamental problem
in quantum computing. Indeed, it is easy to see that every quantum circuit can be implemented
by a series of Hamiltonian evolutions and thus, the problem is BPQ-hard, where BQP is the
class of decision problems that can be solved in polynomial time with bounded error on a
quantum computer.

4.3 Phase estimation

Suppose that we are given a description of a unitary U as a quantum circuit and a copy of an
eigenstate [\) of U with U |\) = 2™ |\) and X € [0,1). The phase estimation algorithm, first
introduced in Ref. [42], provides a way to obtain an estimate of the unknown value of A\ given
access to a controlled version of U, i.e. cU =1[0)(0|®@ 1+ |1)(1|® U.

In quantum mechanics literature, the Schrédinger equation is often given with an additional multiplicative
constant A, which for convenience we have simply normalised to & = 1 since its precise value does not matter
here.
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Figure 4.1: Phase estimation. The algorithm uses k ancilla qubits, ¥ Hadamard gates (green), con-
trolled versions of U2,... U (red) and an inverse quantum Fourier transform (blue)
to map |A)[0)%¥ to |A)|ea) for any eigenstate |A) of U.

First, we introduce some k ancilla qubits, where the value of k£ will be chosen later. The phase
estimation algorithm uses £ Hadamard gates, CU2O,CU 21, ...,cU 2k_1, as well as a standard
operation known as the inverse “quantum Fourier transform” which uses O(k?) elementary
gates (we refer to Ref. [10] for details of this operation) to perform the map

[IX10)%F = [A)ea) (4.5)

where |¢)) is a k-qubit state which can be used to estimate the value of A (see Fig. [4.1)). Indeed,
it can be shown that |p)) has large overlap with the computational basis states that encode
the first » binary digits of X if k > n is chosen sufficiently large.

Theorem 4.3 ([10]). Let U be a unitary acting on a finite-dimensional state space and |\) be
an eigenstate of U with U |\) = e2™X |\) with A € [0,1). Let n be a positive integer, € > 0, and
k=n+ [log(2 + i)] Suppose that applying phase estimation of U with k ancilla qubits to
INV0YEF results in the state |\)|@y). Then, a measurement of the first n qubits of |¢y) in the
computational basis yields the first n binary digits of A with probability at least 1 — €.

Moreover, it is easy to see that by expanding any state in an orthonormal eigenbasis of U,
the algorithm can also be extended to any state.

Corollary 4.4 ([10]). Let U = 3, €?™X |\;)(\;| be a unitary acting on a finite-dimensional
state space H with an orthonormal eigenbasis {|\;)} and eigenvalues {€*™i}, where \; € [0,1).
Let n be a positive integer, € > 0, k =n+ [log(2+ )], and |¢) = 225 Pi 1A 225 |p;|? =1, be
an arbitrary state in H. Then, applying phase estimation of U with k ancilla qubits to |¢)>\O>®k
followed by a measurement of the first n ancilla qubits in the computational basis yields the first
n binary digits of \; with probability at least |$;]*(1 — €).

In the context of Corollary phase estimation can be intuitively seen as approximately
simulating a projective measurement of the observableﬂ 2-; Aj (A7) (Aj] on the state [¢). How-
ever, the scaling of the number k£ of ancillas required turns out to be unfavourable if good
approximations of not just the eigenvalues but also the residual states are desired. We discuss
this aspect in more detail in Section

2In quantum mechanics, an observable is a Hermitian operator acting on the state space. If the observable has
spectral decomposition > EPg, where Pg is the projector onto the eigenspace with eigenvalue E, then a
projective measurement of that observable on a system in a state |¢) yields the outcome E with probability
IPe [4)]|3 and leaves the system in the state Pg [¢) /|| P& |¥)]]2.
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5 Quantum algorithms for state preparation

In this chapter, we present several quantum algorithms for preparing physically relevant states
on quantum computers. The central problem we consider here is the preparation of ground
states of a given Hamiltonian. Although we will also look at preparing other states, those
problems can be reformulated as ground state problems.

The ability to efficiently prepare certain ground states on a quantum computer would have
many important applications. Indeed, state preparation tasks are often important in simulation
problems. For example, the simulation of quenches in quantum many-body systems using
Hamiltonian simulation requires the preparation of the initial ground state of this process.
Moreover, many optimisation problems can naturally be formulated as ground state problems.

Yet, ground state preparation is in general a hard problem. Indeed, many variations of the
problem of determining the ground energy of a given Hamiltonian — including under various
locality constraints — have been shown to be complete for the complexity class QMA [43]. The
latter can be thought of as the analogous complexity class to NP for quantum computers,
and as such it is generally conjectured that quantum computers cannot solve these problems
efficiently. Nevertheless, given the profound applications of ground state preparation in several
fields of science, quantum algorithms for this task which at least perform better than naive
brute-force algorithms are highly desired. This could include e.g. heuristic algorithms which,
despite having exponentially bad worst-case runtime bounds, may work significantly better in
practice when applied to physically relevant systems.

Most existing quantum algorithms for ground state preparation are based on one of two
methods. First, one could take a trial state |¢) (e.g. a random product state) and attempt
to project it into the ground state, e.g. using phase estimation. The probability of success
of such methods generally depend inverse polynomially on |¢g|, where ¢¢ is the inner product
of |¢) with the ground state. We discuss this class of ground space projection algorithms in
Section [5.3] below.

The second class of algorithms are based on variants of the adiabatic theorem, which we
will review below. Rigorous runtime bounds on adiabatic algorithms however generally depend
inverse polynomially on the minimum spectral gap along a path of Hamiltonians, which in
general is exponentially small, and moreover difficult to calculate or bound in practice. Thus,
adiabatic algorithms are usually treated as heuristic methods to obtain states with (hopefully)
good overlap with the ground state. The resulting states could e.g. be subsequently used as a
trial state in a ground space projection method.

This combined approach of first generating a potentially good trial state with a heuristic
method followed by attempting to project it onto its ground state component is expected
to work significantly better than just using random trial states in ground space projection
algorithms. Moreover, it is also the current paradigm envisioned e.g. for quantum chemistry
applications [44].

This dissertation contributes to both parts of this approach. Core Article [I| presents an
adiabatic algorithm for preparing injective PEPS and certain kinds of Gibbs states. Core
Article [IT]] presents a quantum algorithm that projects a given trial state onto its ground space
component which performs significantly better than phase estimation.
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5.1 Adiabatic algorithms

Adiabatic algorithms are a common strategy to prepare ground states of a given Hamiltonian
by connecting the target Hamiltonian H (1) = H along a path of Hamiltonians H(s), s € [0, 1],
to a “trivial” Hamiltonian H(0) whose ground state can be easily prepared (e.g., a product
state). The adiabatic theorem guarantees that if the initial state is in the ground state of H(0),
and evolves under a time-dependent Schrodinger equation whose Hamiltonian is slowly changed
from H(0) to H(1), then for sufficiently long runtimes, the resulting final state will be close to
the ground state of H. This runtime can be bounded in terms of the spectral gap of H and
the norms of its derivatives:

Theorem 5.1 (|45, |46]). Let H(s), s € [0,1], be a twice continuously differentiable path of
Hamiltonians acting on a finite-dimensional Hilbert space. Suppose that for all s € [0,1], H(s)
has a non-degenerate ground state |A\o(s)) and a spectral gap of A(s). For 7 >0, let |1,(t)) be
the solution to the time-dependent Schrodinger equation

% [r(8) = H(t/7) [r(8), [6:(0)) = |A0(0)) - (5.1)
Then,
; i0 _
o Ilr(7)) = e o (1)lz = O(e), (5.2)

provided that

1 IHOop  HD)o LoH? Ul
T_Q<€ (u A((()))\L o, | A(ﬂ))@ 0, /O a1l | /O a1 )) 53)

In many cases, the inverse polynomial dependence on ming A(s) will dominate this run-
time bound. Moreover, the adiabatic theorem only provides a Schrédinger evolution — i.e., a
time-dependent Hamiltonian and a runtime bound. To turn this into a quantum circuit, the
Schrodinger evolution has to be simulated using Hamiltonian simulation algorithms. This will
in general result in additional overheads for the number of gates compared to the adiabatic run-
time 7. For example, if H (s) is a local Hamiltonian acting on a lattice of N sites for all s € [0, 1],
then the currently best Hamiltonian simulation algorithms require O(TN? + N log(1/¢)) gates
[41, 47, |48].

The dependence on € in Theorem can in fact be exponentially improved using a suitable
reparameterisation H(s) — H(f(s)), where f :[0,1] — [0, 1] is a sufficiently smooth function.
More precisely, recall that f is in the Gevrey class 1+ « if f is smooth and there exist ¢, K > 0
such that for all positive integers k and s € [0, 1], |d* f(s)/ds*| < KcF(kD)'*. Tt is well known
that f(s) = [3 fa(t)dt/ fol fa(t)dt with fo(t) = exp(—1/((1 — t)t)/) is in the Gevery class
1+« for a > 0 [49]. Using such a reparameterisation, one obtains the following improvement:

Theorem 5.2 (|1, 50]). Let H(s), s € [0,1], be a smooth path of Hamiltonians acting on a
finite-dimensional Hilbert space. Suppose that for all s € [0,1], H(s) has a non-degenerate
ground state |A\o(s)) and a spectral gap of A(s). Suppose moreover that all derivatives of H
vanish at 0 and 1, and that H satisfies the Gevrey condition, i.e. there exist ¢, K,a > 0 such
that for all positive integers k,

|d*H (s) /ds¥||op < K c® (RN, (5.4)
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For >0, let [1-(t)) be the solution to the time-dependent Schrédinger equation

i% 07 (t) = H(t/7) [1o-(8)),  [¥+(0)) = [X0(0)) - (5.5)
Then,
o Mllr(m)) = e |Ao(1))]l2 = O(e), (5.6)

provided that

(P s (25, o

where A = minge(g 1] A(S).

The polylogarithmic dependence of the adiabatic runtime with respect to the allowed error
has been proven in [50], which is based on the adiabatic expansion of [51]. In the supplemental
material of Core Article [ we rederive this result by largely following the proof in [50], but
unlike [50], we also explicitly establish the dependence on all other parameters, such as the
spectral gap and the derivatives of the Hamiltonian.

5.2 Preparing injective PEPS on a quantum computer

PEPS with polynomial bond dimension are generally conjectured to be able to capture ground
states of local gapped Hamiltonians. Hence, the problem of preparing ground states of local
Hamiltonians is closely liked to the problem of preparing PEPS on a quantum computer. While
preparing any MPS with low bond dimension on a quantum computer can be done efficiently
[52], PEPS preparation is in general a very hard problem: it has been shown to be PP-hard
[53]. The complexity class PP is extremely large since it contains QMA and hence in particular
also NP.

Nevertheless, preparing certain subclasses of PEPS could be done efficiently under suitable
conditions. The first such quantum algorithm to efficiently prepare “well-conditioned” injective
PEPS has been proposed in Ref. [54]. Here, well-conditioned means that the condition numbers
of all PEPS projectors Q) of WPEPS[{Q(U)}veVD are upper bounded by a positive constant kK =
O(1). PEPS preparation problems are usually turned into ground state preparation problems
by constructing a so-called parent Hamiltonian of which the injective PEPS is the unique ground
state. One way to construct such a parent Hamiltonian is by inverting the PEPS projectors
QW in followed by projecting into the orthogonal complement of the maximally entangled
pair state. More precisely, it is easy to see that ‘wapg[{Q(”)}vGVD is the unique ground state
of the Hamiltonian Hparent[{Q(”)}vev] defined as follows.

Definition 5.3. Let (V| E) be a bounded degree graph, D,d be positive integers and QW .
(CPy®degv _ C? be invertible linear maps. Then, the parent Hamiltonian Hparent[{Q™ }oev]

of WPEPS[{Q(”)}veVD is defined as

1
Hparent[{Q(v)}UGV] = Z <H Q(v)_l) Pe (H Q(U)_1> 9 (58)

ecE \veEe vEe

where P, is the projector onto the orthogonal complement of ‘¢E>e.
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Note indeed that is a sum of nearest-neighbour terms. Alternative parent Hamilto-
nian constructions using projectors onto the orthogonal complement of “PEPS tensors” with
arbitrary boundaries are also widely considered [55].

The most natural approach to prepare a PEPS is by “growing” it site by site. Accordingly,
one considers an ordering v1,...,vy of the vertices of V', as well as the intermediate states,
which are “partial” PEPS where only the first k£ of the N PEPS projectors are applied, i.e.

k) = ‘wPEPS[{Q;(:)}veVD (5.9)
for k=0,...,N, where
e i) <k
(v:) Q i <
= 5.10
@ {ﬂ(”i) i >k, (510)

and 1() is a natural embedding of (CP)®degv into C4. Note that |tg) is just a product state of
|E| maximally entangled pair states, which can be trivially prepared, while |¢y) is our target
state. The central result of Ref. [54] can now be stated as follows:

Theorem 5.4 ([54]). Let D,d be positive integers, (V, E) be a simple graph of N wvertices and
bounded degree, and QW) : (CPy®degv _, C4 be invertible linear maps for v € V. Let k > 0
be an upper bound of the condition numbers of all Q), and let v, ...,vn be an ordering of
the vertices in V. For each k = 0,..., N, let Ay be the spectral gap of the parent Hamilto-

nian Hpa,nem[{QS)}vev] of the k™ partial PEPS ‘wapg[{Ql(:)}UeVD, where Ql(f) is given by
Eq. (5.10), and let A = ming Ag. Then, there exists a bounded-error quantum algorithm gen-

erating an e-close state to ‘wapg[{Q(”)}veVD in runtime O(N*k%/A), where O denotes the
complexity up to subpolynomial factors in N,A™" e 1 k.

In most physically relevant injective PEPS, k can be assumed to be a constant, kK = O(1). In
particular, this is true for translationally invariant injective PEPS since we assume D, d = O(1).
Thus, in many cases, the main limiting factor to the runtime of [54] is the contribution coming
from the minimum spectral gap A. This dependence comes from the fact that the algorithm uses
phase estimatiorﬂ to transition from [ix) to |1g11), whose runtime scales inversely proportional
to the gap.

A particularly interesting case however arises in the presence of a uniform gap, i.e. when
A = Q(1). For suitable orderings of the vertices, this is essentially the condition that the parent
Hamiltonian remains gapped for arbitrary system sizes. In Core Article[I, we propose an adia-
batic approach for preparing injective PEPS, and show that in the presence of such a uniform
gap, an e-close state to |¢n) can be prepared by a quantum circuit with O(N polylog(N/¢))
gates (instead of O(N*)) and depth O(polylog(N/e)). The algorithm moreover applies to
more general states, including purifications of Gibbs states of Hamiltonians with commuting
local terms as well as the semi-injective PEPS introduced in Contributed Article [V] provided
that analogous uniform gap conditions for similar parent Hamiltonian constructions are sat-
isfied. In fact, the algorithm applies to any state that is obtained by acting with invertible
operators on any product of few-body states of nearby particles, which clearly also includes
semi-injective PEPS. To see that purifications of Gibbs states of local Hamiltonians H =), h;

IStrictly speaking, the proof provided in [54] only yields a runtime of O(N®k?/(A€)) rather than the one given
in Theorem since the runtime analysis in [54] does not take the error in the residual state resulting from
phase estimation into account. The latter would incur an additional factor of O(N2/e) in the runtime for a
final error of e. The runtime of O(N*k?/A) could however be obtained by replacing phase estimation with
one of the other ground space projection algorithms discussed in Section
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Figure 5.1: Purification of a Gibbs state for nearest-neighbour interactions. Each physical site is placed
into a maximally entangled pair state with an ancilla system of the same dimension (blue).
By applying e~ #"/2 (red) to the corresponding system vertices for each h;, the reduced
state on the physical sites is proportional to e~ A%

with [h;, hy] = 0 also fall into this category, consider the graph which contains sites composed
of two vertices, one of which we call the “system” vertex and the other the “ancilla” vertex,
each of which are placed in a maximally entangled pair state with the other. Then, by applying
e Phi/2 to the system vertices of the support of each h; (see Fig. , is easy to see that by
taking the partial trace over all ancilla vertices, we obtain p o< e ¥ . Since Hamiltonians with
commuting local terms include classical Hamiltonians as a special case, the algorithm can also
be used to sample from Gibbs distributions of classical Hamiltonians.

5.3 Ground space projection algorithms

Ground space projection algorithms take a trial state |¢) and attempt to project it onto its
ground state component. Their performance will generally depend on the overlap of |¢) with
the ground state, such that these algorithms are best used in combination with e.g. adiabatic
or other heuristic algorithms to obtain a good trial state.

For the remainder of this section, let H be an N x N Hermitian matrix. For convenience,
we assume that H has been rescaled such that its spectrum is contained in [0, 1]. We assume
that we are given the ability to efficiently perform Hamiltonian simulation of H at a “base
cost” of A (e.g., if the simulation algorithm works in the oracle model [39], A is the gate cost
of the oracles). Let Ao be the lowest eigenvalue of H, and |A¢) be the corresponding eigenstate.
We assume for simplicity that Ao is non-degenerate (although most results presented in this
section generalise to degenerate ground spaces). Suppose that A is a known lower bound on
the spectral gap of H.

We assume that the trial state |¢) can be prepared with a circuit C, using ® elementary
gates. Let ¢g = (Ao|¢) be its (generally unknown) overlap with the ground state, and x be
a known lower bound on |fg|. We assume that y = e~?0°eN) " This is an extremely weak
assumption, indeed, this is satisfied even for random states with high probability.

The aim here is to obtain a state e-close to |\g) by (approximately) projecting |¢) onto its
ground state component. If the value of \g is unknown, we also wish to obtain an estimate for its
value. A comparison of the runtimes as well as the qubit requirements of various ground space
projection and ground energy estimation algorithms is given in Table The stated space
complexities do not account for qubits needed to perform Hamiltonian simulation. However,
depending on the input model of H, there are Hamiltonian simulation algorithms (such as
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the ones in Refs. [39-41]) that do not change the asymptotic expressions in Table (c.f.
Theorem we also refer to Table 1 of Ref. [41] for an overview).

Algorithm Gates Qubits Reql.llFEd
precision
Phase estimation o} (L + i) (0] (10 N+lo 1 + 1o l) O (|poleA)
[oPAc T ool BT T %A '
-/ A P log ¢ 1 -~
Filteri Ol ———+— O [logN +1 7X£ X log — oA
iltering (\zzﬁolA + |¢O‘) (og +log - o loglo og X (A)
Core Article ’EIL Thm. 1 0 (L + i) (0] (logN + log log -+ log l) O(A)
|| ' [¢o|A o] € A

(a) Ground state preparation algorithms for the case when the ground energy is known beforehand to the
required precision.

Algorithm Gates Qubits

Phase estimation 0 ( A ) o <logN + log % + log %)

Filtering o} ( ) (0] <10gN + log 1 + % x log —
A3/2 X\F e loglog XL A

Core Article , Thm. 2 (XAA?’/Q ) 0] (logN + log log% + log %)

Core Article |ITI} Thm. 3 ( ETN + (D) 0] (logN + log% + log %)

(b) Ground state preparation algorithms for the case when the ground energy is not known beforehand. The
last algorithm has been adjusted to yield the optimal scaling in A.

Algorithm Gates Qubits

. . = A P 1
Phase estimation O\ —5+—- O (log N +log -
X*¢ X S

~ A P X 1

Filterin, 0] — O|logN 4+ —2%*_ xlog =

& (x x\/f) ( ¢ loglog - g&)

Core Article Thm. 4 | O ( A + i) O ( log N + log 1
s | ofa W i
Core Article [[TI, Thm. 4 10) <T + —> O | log N + log -
X’ x 3

(c) Algorithms for estimating the ground energy to an additive precision of £ <« A. The last algorithm has
been adjusted to yield the optimal scaling in &.

Table 5.1: Comparisons of different ground space projection and ground energy estimation algorithms.
Here, O denotes the complexity up to polylogarithmic factors in N, A=1 et |pg|~*

x~!. The stated runtime complexities already take suitable amplitude amplification tech-

niques into account.

The most straightforward approach to implement a ground space projection in this setting is
to use the phase estimation algorithm to approximately perform a measurement of the energy.
Indeed, the relation of phase estimation to ground space projection is evident if one takes
U = et for some suitable ¢ > 0 in Corollary One would expect that for a suitable choice
of the number k of ancilla qubits in phase estimation, if the measurement of the latter yields
a good approximation of Ag, then the state should be left in a state close to |Ag). One would
moreover naively expect the probability of success for this approach to be

~
~

|o[?, meaning
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that O(1/|¢o|?) repetitions would naively be necessary, and that perhaps an improvement to
O(1/|¢0|) using suitable amplitude amplification techniques may be possible.

In Appendix A and B of Core Article [[II] we however show that the performance of phase
estimation for ground state problems is actually significantly worse than one would naively
expect (see Table . This is especially true if the value of the ground energy is not known
beforehand. Roughly speaking, suppressing measurement outcomes significantly lower than the
ground energy as well as ensuring a small distance of the residual state to the ground state lead
to a required value of k which scales unfavourably with |¢g|, thus leading to the poor runtime.
Moreover, an inverse polynomial dependence on € is common to almost all algorithms based on
phase estimation.

The one exception to this is a “filtering” method proposed by Poulin and Wocjan [56], which
was originally designed to obtain a state with low expected energy faster than with phase
estimation. With a little extra work, it can be shown that this method can also be used for
ground state projection as well as ground energy estimation with a significantly faster runtime
than the original phase estimation algorithm. This however comes at the cost of requiring a
much larger number of ancillas.

This filtering method works as follows. Suppose that A is the phase estimation circuit with
k qubits for the unitary U. Then, with the notation of Corollary Ar IX)0YEF = |\ |os)

for some k-qubit states |p;), and thus, for any k-qubit state |u), A; maps |¢)|u) to

> Sileilm A0 + |R), (5.11)
i

where |R) has no overlap with |O>®k on the k ancilla qubits. Hence, starting with some 7 copies
of the state |u) on nk ancilla qubits, an application of 1 copies of AL maps |¢)|u)®" to

Z¢j(@j\u>”lkj>|0>®"k +[R), (5.12)

where |R') has no overlap with [0)®7" on the 7k ancilla qubits. The main observation of

Ref. [56] is that if |u) is a computational basis state encoding the binary representation of some
pe{0,...,28—1}, then if |n/2% — A ;| is sufficiently small and 7 is suitably large, the coefficients
(pjlp)™ act as a “filter function” which keeps only the |\ ;) component of |¢) while exponentially
suppressing all other components, thus ultimately leading to an exponential improvement in
the runtime dependence on € compared to phase estimation. However, since n needs to be
chosen sufficiently large for this to be achieved, this improvement in the runtime comes at the
cost of requiring many more ancilla qubits. We refer to Table for the precise scalings and
Ref. [56] as well as Appendix C of Core Article [I1I| for the exact analysis.

The central result of Core Article[[T])is to provide a new approach of ground space projection
algorithms that can also be used to determine an unknown ground energy. Like the above fil-
tering method, our algorithms achieve significant runtime improvements over phase estimation,
but without the caveat of adding a large number of ancillas.
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6 Hybrid quantum-classical approaches for
small quantum computers

In this chapter, we explore the potential of quantum computers when the number of available
logical qubits is constrained. This restriction will likely apply to early quantum computers.
Given the current effort to construct prototypes of small quantum computers [§], the tasks of
finding applications for such devices becomes increasingly important. A particularly promising
approach is to extend the usefulness of such devices by supplementing them with classical
computation. Algorithms that combine quantum and classical computational resources are
commonly referred to as hybrid quantum-classical algorithms.

Clearly, quantum computers with only few qubits can be readily used to solve a given problem
using a correspondingly space-efficient quantum algorithm if the size of the instance is small
enough, i.e. if the workspace required by the quantum algorithm for the given problem size is
at most the number of available qubits. Many simulation or ground state problems, including
the ones presented in Chapter [5] potentially fit this category. Indeed, solving these problems
even for small system sizes would already be interesting, firstly because they are inaccessible
classically, but also because small system sizes may already provide important insights into
some of the large-scale behaviour of the simulated systems.

Hybrid quantum-classical algorithms for problem sizes that are sufficiently small in the above
sense have been proposed in the context of “Quantum Approximate Optimisation Algorithms”
(QAOA) [57, 58] or “Variational Quantum Eigensolvers” (VQE) [59, 60]. These are generally
relevant in the regime when the quantum devices available are not only constrained in the
number of qubits, but also in the number of gates they can perform. These algorithms generally
attempt to prepare a state |)(8)) which encodes an approximate solution to the given problem,
where [1)(6)) depends on some parameters 8 = (61,...,6;). QAOA is mostly proposed for
classical optimisation problems such as the Max-Cut problem, which asks for a subset of vertices
of a given graph that maximises the number of edges between the subset and its complement.
In this algorithm, a classical pre-processing scheme first optimises the expected value of the
objective function over @ in a reasonably-sized parameter space, and then prepares [1(0))
on the quantum computer, followed by a measurement to obtain the approximate solution to
the optimisation problem. In VQE algorithms, the objective function is usually the expected
energy ((0)| H |1(0)) with respect to some given Hamiltonian H. These algorithms iteratively
optimise @, where in each iteration, a short 8-dependent quantum circuit is applied to a given
initial state followed by measurements and using their outcomes in a classical optimisation
scheme to update the value of 8. Both of these hybrid algorithms can only be applied if the
instance size strictly fits the number of available qubits.

The complementary approach for employing small quantum computers would be to utilise
them for solving larger problem instances, even when the latter do not immediately fit the
number of available qubits when using established quantum algorithms. Typically, quantum
algorithms require a number of qubits at least comparable to the size of the problem instance,
meaning that direct application of those algorithms to small devices would restrict their po-
tential to only attacking small problem sizes. Especially for more “classical” problems, such as
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certain optimisation or decision problems, ways to attack larger instances using small quantum
computers combined with classical processing would be highly desirable.

There have been some “circuit level” approaches [61} 62| to this challenge, which we will
discuss in Section below. Broadly speaking, these approaches try to simulate a general
quantum circuit acting on strictly more than M qubits using only M qubits supplemented with
additional classical computation. One could apply these results to the circuits of established
quantum algorithms which use more qubits than are available, and thus in principle enable the
solving of larger problem instances than straightforwardly possible. These circuit simulation
approaches do not utilise any “algorithmic” structure of the circuit however, and as such their
performances are necessarily constrained by structural properties of the circuit itself.

In Contributed Articles [[V|and we propose a new approach on the “algorithmic level” for
this problem: in a given overarching classical algorithm, we identify the most computationally
expensive subroutines and replace them with more efficient quantum algorithms that can be
run on the number of available qubits. In Contributed Article [V the potential of size-limited
quantum computers for large problem sizes is explored in the context of Schoning’s algorithm
for 3SAT. Contributed Article [[V] turns these ideas into a more general framework for divide-
and-conquer algorithms under certain technical conditions, and demonstrates the applicability
of these results in the context of Eppstein’s algorithm for the cubic Hamiltonian cycle problem.

6.1 Techniques on the circuit level

In Refs. [61} |62], circuit simulation schemes have been proposed. There, an arbitrary quantum
circuit C on n qubits is given, and the goal is to simulate the action of C using only M < n
qubits and classical computation. Whilst a fully classical simulation of C is generally expected
to be exponentially costly [63], the general strategy of these methods is to trade off some of the
classical runtime by running parts of the circuit on the availabe M qubits. For simplicity, we
first restrict the meaning of a “simulation” of C to estimating a binary outcome obtained from
a measurement of C |[0)*".

Definition 6.1. Let C be a quantum circuit on n qubits and consider the following process:
first C is applied to |0>®", then each qubit is measured in the computational basis, and finally
the measurement outcomes are classically post-processed into a single output bit b taking at
most O(poly(n)) time. We say that a process e-simulates C if with probability at least 2/3 it
estimates the probability of b = 1 to an additive error of at most e.

The first method for such a simulation was proposed in Ref. [61], which describes a scheme
for adding “virtual qubits” to an existing quantum computer. The performance of this method
is however dependent on the sparseness of the circuit.

Definition 6.2. A quantum circuit composed of one- and two-qubit gates is called d-sparse if
every qubit of the circuit participates in at most d two-qubit gates.

Although quantum circuits of low sparsity are only a small subclass of general quantum
circuits, they already contain many non-trivial examples which are generally believed to be
hard to simulate classically [64]. In particular, any quantum circuit of depth < d is also d-
sparse, and several interesting quantum algorithms requiring only low depth circuits are known
[65]. The central result of Ref. [61] provides a simulation of d-sparse quantum circuits using
slightly fewer qubits than the original circuits act on.
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Theorem 6.3 ([61]). Let M, k,d be positive integers with M > kd. Then, any d-sparse quantum
circuit on M+k qubits can be e-simulated by O(2°%9) log(1/€)/€?) repetitions of a (d+3)-sparse
quantum circuit on M qubits plus classical computation of runtime O(2°0%4) poly(M)).

Note in particular that the simulation has runtime O(poly(M)) if k,d = O(1), and that the
runtime scales exponentially only in k£ rather than M + k, as in the case of a fully classical
simulation. However, due to the condition of M > kd, the applicability of this result is restricted
to the case where only few qubits are missing. Moreover, although sparse quantum circuits are
non-trivial, the limitation to small d is unsatisfactory. Some of these restriction were later
overcome in the results of Ref. [62].

Theorem 6.4 ([62]). Let C be a quantum circuit on n qubits and t gates with the following
property: C can be partitioned into clusters such that K qubits in total are exchanged between
different clusters. Suppose that each cluster can be run on M qubits. Then, C can be e-simulated
using M qubits in a total runtime of O(24(n +1t)/€?).

Ref. [62] also provides a few examples of algorithms where their result is applicable, such
as the simulation of Hamiltonians with special interaction graphs as well as certain VQE al-
gorithms. However, the general difficulty with such circuit simulation techniques is that often,
given a higher-level description of a quantum algorithm, it is unclear to what extent the rele-
vant properties, such as the decomposability properties required by Theorem are fulfilled
for the underlying quantum circuit.

6.2 Techniques on the algorithmic level

Approaches on the “algorithmic level”, in contrast to the circuit level techniques discussed in
the previous section, exploit the structure of the algorithm and potentially modify the latter
to obtain hybrid quantum-classical algorithms. One way to utilise few qubits is to take a clas-
sical algorithm and replace certain subroutines with faster quantum algorithms that can be
run on the number of available qubits. One major challenge of designing hybrid algorithms
this way is to identify ways to utilise small quantum computers to actually lead to genuine
speedups of the overarching classical algorithm. Indeed, while it is usually possible to speed up
smaller structure-independent subroutines, e.g. in the preparation or post-processing phase,
such improvements rarely change the asymptotic runtime complexity. To achieve significant
(e.g. polynomial) speedups, one needs to attack the computational bottlenecks of the algorithm.
Doing this with few qubits is generally non-trivial, as straightforward “bottom-up” methods
often break a global structure exploited by the classical algorithm, leading to a suboptimal
overarching classical algorithm whose runtime may dominate the overall runtime. Thus, while
arbitrarily sized quantum computers can speed up many classical algorithms (e.g. using ampli-
tude amplification techniques), the potential of size-limited quantum computers is significantly
less clear given large inputs.

The first result of Contributed Article[[V]is a general framework to attack the computational
bottleneck of classical algorithms with few qubits whilst preserving the structure exploited by
the algorithm. This framework applies to classical divide-and-conquer algorithms (as well
as algorithms which can be reformulated as such), which are recursive algorithms that call
themselves on ever smaller problem instances, according to a suitable problem size metric. The
basic idea of the approach is to replace the recursive call with a suitable quantum algorithm
deep in the recursion tree once the problem size is small enough to fit the number of available
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qubits. The second result of Contributed Article[[V]is a general method to reversibly and time-
efficiently generate very space-efficient encodings of large sets using few ancillas. The result
specifically bridges the gap between the seemingly irreconcilable properties of reversibility on
the one hand, and low runtime and memory overheads on the other (c.f. Section [2.4) such that
a polynomial speedup in the general framework can be achieved.

6.2.1 Schoning’s algorithm for 3SAT

In Boolean satisfiability (or SAT) problems, one is given a Boolean formula F' : {0,1}" — {0, 1}
over n binary variables. The problem is to decide if a satisfying assignment x € {0,1}", which
satisfies F'(x) = 1, exists. In 3SAT, F is restricted to be a conjunction of L clauses, where each
clause is a disjunction of at most three literals, i.e., F/(x) = /\le(l{ VI V1), where each literal

lg specifies one of the n binary variables or its negation.

3SAT is the canonical NP-complete problem [66], and thus only exponential-time algorithms
for both classical and quantum computers are expected to exist. There are however many
classical 3SAT algorithms which are significantly faster than brute-force search, which has
a runtime of O*(2"), where O* denotes the complexity up to polynomial factors in n. The
performance of these algorithms can usually be characterised by a constant v € (0, 1), meaning
that they provably solve 3SAT in a runtime of O*(27"). One of the best and most famous ones
is the simple algorithm of Schoning [67], described in Algorithm

Algorithm 6.1 Schoning’s randomised algorithm for 3SAT.

SCHOENING(F'):
1. Pick an initial assignment x € {0,1}" uniformly at random
2. While F(x) = 0 and we have repeated this at most 3n times
a) Pick an arbitrary clause that is unsatisfied under x
b) Pick one of the variables in that clause uniformly at random and flip its value in x
3. Return x

Schoning proved in Ref. [67] that if F' is satisfiable, SCHOENING(F') returns a satisfying
assignment with probability at least (3/4)™. Thus, by repeating this process O((4/3)") times,
a randomised algorithm is obtained which solves 3SAT with bounded probability of error.

Theorem 6.5 ([67]). There exists a classical randomised bounded-error algorithm that solves
n-variable 3SAT in a runtime of O*(27°™), where vo = log(4/3) ~ 0.4150.

Schoning’s algorithm has later been improved from O*((4/3)™) ~ O*(1.3333™) to O*(1.3302")
[68], O*(1.3297™) [69], O*(1.3290™) [70], and O*(1.3211™) |71]. Moreover, most classical 3SAT
algorithms with provable runtime bounds are either based on the ideas of Schoning, the alter-
native approach of Ref. |72|, which is often termed the “PPSZ” approach, or a combination
of those two techniques. Such combined algorithms lead to runtimes of O*(1.3237™) (73] or
0*(1.3222") [74], while the PPSZ algorithm, originally with a proven runtime of O*(1.3633")
[72], has subsequently been improved to O*(1.3207™) [75] and O*(1.3070™) |76].

In Ref. [77] Ambainis provided a quadratic quantum speedup over Schéning’s original algo-
rithm. The quantum algorithm uses O(n) qubits, and essentially quantum-enhances Schéning’s
algorithm using amplitude amplification.

Theorem 6.6 (|77]). There ezists a bounded-error quantum algorithm which solves n-variable
3SAT in a runtime of O*(20"/2) ~ O*(1.1547") using O(n) qubits, where vy = log(4/3) ~
0.4150.
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It is not immediately clear how Theorem [6.6] can be utilised if fewer qubits than necessary are
available. To demonstrate the problem, assume for concreteness that the quantum algorithm
in Theorem requires Bn qubits for some constant 5 > 0. Given a quantum computer
with only a small fraction of this, say Sm qubits for some m < n, a naive approach would
be to use it as an m-variable 3SAT solver. The straightforward approach to solve the n-
variable instance would then be to go through all possible assignments of some fixed n — m
of the n variables. Each such partial assignment induces an m-variable 3SAT instance which
can then be solved on the available quantum computer. The total runtime of this algorithm
would however be O* (27~ +10m/2) = O*(2((1=a)+a10/2)n) "where @ = m/n. In particular, the
hybrid algorithm becomes slower than the original classical algorithm if a < 0.74. Broadly
speaking, this “threshold effect” is caused by the naive hybrid approach breaking the global
structure exploited by Schoning’s algorithm, which in turn leads to suboptimal classical routines
dominating the overall runtime.

The main result of Contributed Article[VI]is a hybrid quantum-classical speedup of Schoning’s
algorithm that avoids this threshold effect. More precisely, we show that there exists a function
f :RT — RT such that given a quantum computer with M = cn qubits, where ¢ > 0 is an
arbitrary constant, n-variable 3SAT can be solved in a runtime of O*(2(0=/(€)")  The function
f is somewhat involved, but can be shown to scale as f(c) = ©(c/log(1/c)) for small values
of ¢. Critically, irrespective of the exact form of f(c), this result constitutes a polynomial
speedup over Schoning’s algorithm for any ¢ > 0. The speedup is achieved by considering the
derandomised formulation of Schoning’s algorithm as a divide-and-conquer algorithm provided
in |78, [79] and using some of the hybrid techniques which are later generalised to a general
framework in Contributed Article [Vl

6.2.2 Eppstein’s algorithm for the cubic Hamiltonian cycle problem

A similar result can be obtained for speeding up Eppstein’s algorithm for solving the cubic
Hamiltonian cycle problem. This problem asks whether a given cubic graph G = (V| E) with
n vertices has a Hamiltonian cycle, i.e. a cycle going through every vertex exactly once.

This special case of the general Hamiltonian cycle problem, where no restrictions on the
maximum degree of the graphs are placed, is known to be NP-complete [80]. Whilst a trivial
brute-force search over vertex-orderings would take O*(n!) runtime, there exists a straightfor-
ward path search algorithm of runtime O*(2"). In Ref. [81], Eppstein proposed a divide-and-
conquer algorithm that solves the problem in a runtime of O*(Q”/ 3). The algorithm is described
in Algorithm

The main idea of the algorithm is to introduce a subset F' C E of “forced” edges, which
are edges that the target Hamiltonian cycle is required to contain. Then, by selecting an edge
(step 3| of Algorithm and creating two sub-instances of either forcing or deleting that edge
(steps 4] and , the cubic structure of the graph ensures that in either case, additional edges
can be forced or deleted in further “trivial reductions” (step , thus reducing the problem’s
overall complexity and leading to the given runtime.

Theorem 6.7 ([81]). Algorithm 6.4 solves the cubic Hamiltonian cycle problem for n-vertex
cubic graphs in a runtime of O*(2""/3).

Eppstein’s algorithm has subsequently been improved from O*(2"/ 3) &~ 0*(1.2599") to
0*(1.2509™) [82] and O*(1.2312") [83]. However, the currently fastest known classical algorithm
for the cubic Hamiltonian cycle problem with runtime O*(1.2009") is based on a Monte-Carlo
approach [84].
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Algorithm 6.2 Eppstein’s algorithm for the cubic Hamiltonian cycle problem.

EPPSTEIN(G, F):
1. Repeat the following steps until none of the conditions apply

a. If G contains a vertex with degree two with at least one unforced incident edge, add
all its incident edges to F

b. If G contains a vertex with degree three with exactly two forced edges, remove the
unforced edge

c. If G contains a cycle of four unforced edges such that two of its opposite vertices are
each incident to a forced edge and at least one of the other vertices is incident to an
unforced edge that is not part of the cycle, then add to F' all non-cycle edges that
are incident to a vertex of the cycle

2. Check if any of the following conditions apply

a. If G contains a vertex of degree 0 or 1, or if F' contains three edges meeting at a
vertex, return false

b. If G\ F is a collection of disjoint 4-cycles and isolated vertices
i. If G is disconnected, return false
ii. Otherwise, return true
c. If F' contains a non-Hamiltonian cycle, return false
3. Choose an edge yz according to the following cases

a. If G\F contains a 4-cycle, exactly two vertices of which are incident to an edge in
F, let y be one of the other two vertices of the cycle and let yz be an edge of G\ F
that does not belong to the cycle

b. If there is no such 4-cycle, but F' is nonempty, let zy be any edge in F' and yz be
an adjacent edge in G\ F such that yz is not part of an isolated 4-cycle in G\ F’

c. Otherwise, let yz be any edge in G that is not part of an isolated 4-cycle in G\ F'
4. Call EPPSTEIN(G, F' U {yz})
5. Call EPpPSTEIN(G\{yz}, F)
6. Return the disjunction (logical OR) of steps [4] and

A quadratic quantum speedup of the improvement to Eppstein’s algorithm by Xiao and
Nagamochi [83] has been proposed in Ref. [85]. Rather than directly using amplitude ampli-
fication, which in this case turns out to only yield a sub-quadratic advantage, they use more
recent quantum backtracking techniques [86] to obtain a full quadratic improvement.

Theorem 6.8 ([85]). There exists a bounded-error quantum algorithm that solves the cubic
Hamiltonian cycle problem for n-vertex cubic graphs in a runtime of O*(23%/20) ~ O*(1.1096™)
using O(poly(n)) qubits.

As with Theorem this algorithm requires arbitrarily-sized quantum computers and it
is not immediately clear whether it can be applied if the number of qubits is constrained. In
Contributed Article we show that there exists a function f : RT™ — R™ such that given
a quantum computer with M = cn qubits, where ¢ > 0 is an arbitrary constant, the cubic
Hamiltonian cycle problem for n-vertex graphs can be solved in a runtime of O*(2(1/3=f(c)n),
The function f takes a similar form to the one obtained for the case of speeding up Schéning’s
algorithm.
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Rapid adiabatic preparation of injective projected entangled pair states
and Gibbs states

Yimin Ge, Andras Molnar, and J. Ignacio Cirac

In this work, we propose a quantum algorithm to efficiently prepare a particular set of states.
This set contains two classes relevant for lattice problems: injective PEPS and purifications of
Gibbs states of locally commuting Hamiltonians. The latter contains all classical Hamiltonians,
and thus our algorithm can be used to simulate classical problems at finite temperatures.

Our algorithm outperforms all other previously known algorithms for these two problems
under the uniform gap condition: we show that the number of elementary quantum gates
scales only as O (N polylog (N/e)), where N is the system size, € the allowed error in trace
distance, and the degree of the polynomial depends on the geometry of the lattice. This is
essentially optimal. We moreover show that the algorithm is parallelisable, and that a circuit
depth of O (polylog(N/e)) can be obtained.

The class of states we consider in this work can more generally be thought of as commuting,
finite range, and invertible operators acting on a set of maximally entangled pair states which
are distributed on a lattice. We first construct a parent Hamiltonian G, i.e., a local Hamiltonian
acting on the same lattice that has the desired state as its unique ground state (for Gibbs states
of Hamiltonians with non-commuting local terms, we also show that an approximate quasi-
local parent Hamiltonian can be considered above some constant temperature that allows the
preparation in polynomial time — this is explored in Section IV of the supplemental material).

This state can in principle be adiabatically prepared by connecting G to a trivial Hamiltonian
by a continuous path that has a unique ground state along the entire path. While constructing
such a path is simple, this naive approach results in an non-optimal runtime even if the minimum
spectral gap is constantly lower bounded. Indeed, the adiabatic theorem only gives an adiabatic
runtime of O(N2e~1). Moreover, the actual runtime (which is measured by the number of
elementary gates in a quantum circuit) is even worse and scales as O(N*e~! polylog(N/¢)),
which results from the overhead of implementing the adiabatic evolution with Hamiltonian
simulation. To obtain the almost optimal runtime, our algorithm uses three main ingredients.

First, we prove a variant of the adiabatic theorem with an almost exponentially better runtime
dependence on £ (Theorem 1 in the supplemental material). The main idea of this variant is
to use a smooth reparameterisation of the Hamiltonian path using Gevrey class functions.

Second, the locality of the Hamiltonian allows the change of only a few local terms at a
time instead of the entire Hamiltonian. More precisely, we construct a sequence of O(N)
Hamiltonian paths such that along each path, only O(1) local terms change. The improved
adiabatic theorem ensures that the accumulated error along the sequence remains small.

Finally, we exploit the locality of the Hamiltonian further by using Lieb-Robinson bounds to
show that for the locally changed Hamiltonian paths, local terms which are far away from the
local change do not significantly contribute to the evolution (Theorem 8 of the supplemental
material). This is essential to obtain a small number of elementary gates. Indeed, while the
sequence of local changes is sufficient to obtain a small adiabatic runtime, using Hamiltonians
acting on the whole lattice would lead to a large overhead from Hamiltonian simulation. This
final ingredient shows that at each step, it is in fact sufficient to evolve with a Hamiltonian that
acts only on O(polylog N) sites, which almost exponentially reduces the overhead from Hamil-
tonian simulation, rendering it almost negligible. Moreover, the small subsystems required at
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each step means that the evolution of disjoint subsystems can be parallelised, which finally
results in only a polylogarithmic circuit depth.

Our analysis relies on the existence of a gap A = Q(1) along the entire path, we however also
show that this assumption can be significantly relaxed to only a gap at the beginning of each
path in the sequence of the Hamiltonians (Theorem 9 of the supplemental material). We call
this the uniform gap condition. The Hamiltonians for which we require a gap coincide with the
final target Hamiltonian at smaller system sizes. Thus, the uniform gap condition is a natural
assumption in the context of local Hamiltonians as it informally only requires that the spectral
gap is well-behaved with respect to varying system sizes.

Statement of individual contribution

This work is the result of frequent discussions between Andras Molnar, J. Ignacio Cirac, and
myself. J. Ignacio Cirac initially proposed the idea of preparing Gibbs states and injective
PEPS adiabatically. I recognised the obstacle to the runtime coming from Hamiltonian sim-
ulation, especially when comparing our algorithm with classical Gibbs sampling algorithms,
and guided our results and methods towards the finally obtained runtime. With regular advice
from J. Ignacio Cirac, Andras Molnédr and I jointly worked out the details of the algorithm
and proofs involved. I was in charge of writing all parts of this article with the exception of
Sections I, IT and IV of the supplemental material.

I, Yimin Ge, am the principal author of this article and was extensively involved in all parts of it.
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We propose a quantum algorithm for many-body state preparation. It is especially suited for injective
projected entangled pair states and thermal states of local commuting Hamiltonians on a lattice. We show
that for a uniform gap and sufficiently smooth paths, an adiabatic runtime and circuit depth of O(polylogN)
can be achieved for O(N) spins. This is an almost exponential improvement over previous bounds. The
total number of elementary gates scales as O(NpolylogN). This is also faster than the best known upper
bound of O(N?) on the mixing times of Monte Carlo Markov chain algorithms for sampling classical

systems in thermal equilibrium.

DOI: 10.1103/PhysRevLett.116.080503

Quantum computers are expected to have a deep impact
in the simulation of quantum many-body systems, as
initially envisioned by Feynman [1]. In fact, quantum
algorithms have potential applications in diverse branches
of science, ranging from condensed matter physics, atom
physics, high-energy physics, to quantum chemistry [2].
Lloyd [3] was the first to devise a quantum algorithm to
simulate the dynamics generated by few-body interacting
Hamiltonians. When combined with the adiabatic theorem
[4,5], the resulting algorithms allow one to prepare ground
states of local Hamiltonians, and thus to investigate
certain quantum many-body systems at zero temperature.
Quantum algorithms have also been introduced to prepare
so-called projected entangled pair states (PEPS) [6-8],
which are believed to approximate ground states of local
gapped Hamiltonians. Furthermore, quantum algorithms
have also been proposed to sample from Gibbs distributions
[9-14], which describe physical systems in thermal equi-
librium. The computational time of most of these algo-
rithms is hard to compare with that of their classical
counterparts, as it depends on specific (e.g., spectral)
properties of the Hamiltonians which are not known
beforehand. However, they do not suffer from the sign
problem [15], which indicates that they could provide
significant speedups.

Quantum computers may also offer advantages in the
simulation of classical many-body systems. For instance,
quantum annealing algorithms [16,17] have been devised to
prepare the lowest energy spin configuration of a few-body
interacting classical Hamiltonian, which has obvious
applications in optimization problems. Quantum algo-
rithms have also been proposed to sample from their
Gibbs distributions at finite temperature [18-23]. Apart
from applications in classical statistical mechanics, similar
problems appear in other areas of intensive research, e.g.,
machine learning. Speedups as a function of spectral gaps
have been analyzed in Refs. [12,21,22]; the scaling with
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large system sizes, which is of particular interest for
applications in deep machine learning [24], is however
not optimal.

In this Letter we propose and analyze a quantum
algorithm to efficiently prepare a particular set of states.
This set contains two classes relevant for lattice problems:
(i) injective PEPS [25]; (ii) Gibbs states of locally
commuting Hamiltonians. Class (ii) contains all classical
Hamiltonians, and thus the quantum algorithm allows us to
sample Gibbs distributions of classical problems at finite
temperature.

Our algorithm outperforms all other currently known
algorithms for these two problems in the case that the
minimum gap A occurring in the adiabatic paths (to be
defined below) is lower bounded by a constant. We show
that the computational time for a quantum computer, given
by the number of elementary gates in a quantum circuit,
scales only as

T = O(Npolylog(N/¢)), (1)

where N is the number of local Hamiltonian terms, & the
allowed error in trace distance and the degree of the
polynomial depends on the geometry of the lattice. Note
that an obvious lower bound on the computational time is
Q(N), as each of the spins has to be addressed at least once.
Thus, Eq. (1) is almost optimal. Furthermore, the algorithm
is parallelizable, so that the depth of the circuit becomes

D = O(polylog(N/¢)). (2)

This parallelization may also become very natural and
relevant in analog quantum simulation, as is the case for
atoms in optical lattices [26].

One of the best classical algorithms to sample according to
the Gibbs distribution of a general classical Hamiltonian is the
well-known Metropolis algorithm [27]. The currently best

© 2016 American Physical Society
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upper bound to its computational time is 7 = O(N?/ Agocn)
[28], where Ay, is the gap of the generator of the stochastic
matrix. We will see that given any stochastic matrix, one can
always construct a quantum adiabatic algorithm with the same
gap A = Ao, and thus we obtain a potential quantum
speedup of almost a factor of N. Under parallelization, the
circuit depth is almost exponentially shorter. Our algorithm to
prepare injective PEPS also provides a better scaling than the
one presented in Ref. [7].

The class of states we consider in this Letter can be
thought of as commuting finite range operators acting on a
set of maximally entangled pair states (Fig. 1). More
precisely, consider a regular lattice in some dimension,
and let G = (V, ) be the associated (infinite) graph. We
endow G with a distance d, the minimum number of edges
separating two vertices in ). We associate a d-dimensional
Hilbert space, H,, to each of the vertices v € ). Consider
the set A of interaction supports, i.e., A is a collection of
sets of vertices whose relative distance is at most a constant
R, the interaction length, and consider for each 1 € A an
interaction @, which is an operator supported on ®,¢; H,.
We assume that they are strictly positive, 1 > Q,; > ¢,T,
and mutually commute, [Q,, O] = 0. Consider also a set
Y of mutually excluding pairs of neighboring vertices.
Moreover, let Ay be a finite subset of A with |Ay| = N,
and define

) []2: @ 197), 3)

JEAy HEIN

where Yy = {s € Y'|uN({J,er,4) # @} is the set of pairs
with a vertex in Ay, and |¢*) = >°¢ , |ii) is an unnor-
malized maximally entangled state between the pairs of
vertices in Y. We will give a quantum algorithm to prepare
the state, Eq. (3), and analyze the runtime as a function of N
and other spectral properties. In the following, we drop the
subindex N to ease the notation.

As mentioned above, Eq. (3) includes two relevant
classes of states. The first is the class of injective PEPS.
The graph is composed of nodes, each of them including a
set of vertices [Fig. 2(a)]. In this case, 1" contains pairs of
vertices in nearest neighbor nodes, whereas A contains

FIG. 1. The general class of states, Eq. (3). Finite range
operators (red) acting on a collection of maximally entangled
pair states (blue) distributed on a graph.

each node. The operators Q; act on different nodes, and
therefore trivially commute. The resulting state is just a
PEPS, which is injective since each Q; is invertible. In fact,
every injective PEPS can be expressed in this form up to a
local unitary using a QR decomposition. The second class
is the class of Gibbs states of commuting Hamiltonians
[29]. To see this, consider the graph which contains
sites composed of two vertices, one of them is called
“system” and the other “ancilla.” The set ¥* contains all
sites, whereas A contains interacting system vertices
[Fig. 2(b)]. The relation with Gibbs states is evident if
we write Q, = e /2 where ||h,|| <1, and take into
account that they mutually commute. It is easy to see that if
we trace the ancillas, we obtain

poce (4)

where H =, .
The state Eq. (3) is the unique ground state of a
frustration-free local Hamiltonian that can be written as

G=> G, (5)

ney

with

G, = (HQf)Pﬂ(HQzl), (6)

JeA, Jeh,

where A, = {4 € AJANu # @} is the set of supports whose
interactions act nontrivially on x, and P, is the projector
onto the subspace orthogonal to |¢™) - Notice that since
each G, is supported in a region of radius R around y, G is
indeed local.

The state Eq. (3) can be prepared using an adiabatic
algorithm. For that, we define a path Q,(s) with unique
ground state |¢(s)), where s € [0, 1], with Q,(0) =1 and
0,(1) = Q;. We can choose Q,(s) = (1—-1s)1+ s0,.

VRN

S AS /D
N NV
N
A
N
A

[
(i

FIG. 2. (a) Projected entangled pair states. (b) Purification of a
thermal state. For each system qudit, we introduce an ancilla to be
placed in a maximally entangled pair with its system particle, then
apply eH/2 to the system.
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In the case of the thermal state, we can also choose
Q,(s) = e7P$"/2 Then, by starting with |¢(0)) and chang-
ing the parameter s:0 — 1 sufficiently slowly, we will end
up in the desired state |¢(1)). The runtime for this
preparation, as measured by the number of elementary
quantum gates, is unpractical, however, as it scales as
T = O(N*A=3¢'polylog(N/¢)), where ¢ is the tolerated
error and A is the minimum spectral gap along the path.
Indeed, the adiabatic theorem [30] gives an adiabatic
runtime of 7 = O(N?A=3¢™!) so that Hamiltonian simu-
lation [31] gives T = O(zN>polylog(N/e)).

To obtain a better scaling, we first use a variant
of the adiabatic theorem with almost exponentially
better runtime dependence on the error using a suffi-
ciently smooth reparameterization of the Hamiltonian
path. The quadratic scaling of the runtime with the
derivative of the Hamiltonian, however, leads to an
unpractical dependence on N since the Hamiltonian
contains O(N) terms that change with time. To avoid
this, we change the Q’s individually, leading to an
adiabatic runtime of 7 = O(Nlog!**(N/eA)A=3). This,
however, uses Hamiltonians acting on the whole system,
despite only the change of a single O, which would result in
an additional factor of O(N*polylog(N/¢)) for the compu-
tational time measured by the number of elementary gates.
We circumvent this problem by using Lieb-Robinson
bounds [32] and the frustration freeness to show that
under the assumption of a uniformly lower bounded
spectral gap, it is at each step sufficient to evolve with a
Hamiltonian acting only on O(polylog(N/e)) sites instead
of the full lattice.

Thus, define a sequence of N Hamiltonian paths by
enumerating the elements of A as 4,...,4y, and define

Gu(s)= >

HEY
d(p.in)<plogt (N /e)

Gu(s) (7)

for n =1, ..., N, where y is a constant control parameter,
and

[
/1,”61\#

Gyls) = (HM.%(S)) P, ( H AZL(S)) (8)

Am €Ny

with
0, (1) m<n
An,m(s) = Qﬂm(s) m=n (9)
0, 0)=1 m>n.

Notice that G, is supported on a region of radius
O(log'™*(N/e)) and dG,/ds is supported on a region
of bounded size. By reparameterizing G,(s) = G,(f(s))
with f, a function in the Gevrey class 1 + a, we can assume
G, to be in the same Gevrey class [33].

Consider the sequence of Schrodinger equations
.d t
) =G (L) ) =lnten)) (10

for times 7, = O(log(N/e)'*%), starting in |y(0)) =
|$(0)), the trivial ground state of G(0). The algorithm
proceeds by running Hamiltonian simulation [31] on this
sequence of adiabatic evolutions. Since at all times we only
evolve with Hamiltonians acting on O(polylog(N/¢))
sites, the number of gates only grows as Eq. (1).
Moreover, the evolution of consecutive G,’s can be
parallelized if their support is disjoint, i.e., if G, ..., G,
have disjoint supports, the subsequence can be replaced
by their sum without altering the evolution. Since
|suppG, | = O(polylog(N/e)), it is clear that an ordering
of the 4, can be chosen such that subsequences of length
Q(N/polylog(N/e)) of the G,s can be parallelized at a time,
resulting in a circuit of depth Eq. (2), an almost exponential
improvement over previous bounds.

In the following, we show that for a uniformly lower
bounded gap, the error of the above algorithm is bounded
by e First, we use that under sufficient smoothness
conditions on a Hamiltonian path G(s), the final error
can be almost exponentially small in the adiabatic runtime.
Indeed, as proven in the Supplemental Material [36], if G is
in the Gevrey class 1 + @ and d*G/ds* =0 at s = 0, 1 for
all £ > 1, then an adiabatic runtime of

cofoe=(5)E)

is sufficient for an error &, where A is the minimum gap
of G(s) and K = |suppdG/ds| if G is local. The required
smoothness conditions can always be achieved with a
suitable reparametrization of the path G(s) = G(f(s)).

This allows us to implement the global change of the
Hamiltonian, Eq. (5), as a sequence of N local changes.
Define the sequence of Hamiltonian paths,

Gu(s) = Guuls). (12)
neY

Notice that Eq. (12) is the same as Eq. (7), but contains all local
terms G, ,. The weak dependence on £~'in Eq. (11) ensures
that the accumulated error under the sequential evolution
with Eq. (12) remains small. Indeed, for a final error e, it is
sufficient that the evolution with each G, in this sequence only
generates an error of at most ¢/N. Equation (11) and
|suppdG,,/ds| = O(1) imply that this can be achieved in a
time 7, = O(log'™*(N/eA,)A;?), where A, is the mini-
mum spectral gap of Gn. A decomposition into a circuit then
requires 7 = O(N>polylog(N/eA)A™?) elementary gates,
where A = min,A,,. This is already an improvement by a
factor N over the naive change of the entire Hamiltonian,
assuming similar behaviour of A compared to the spectral gap
of the original path G(s).
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Assuming that A = Q(1), we can further improve
on this using Lieb-Robinson bounds to localize the
effect of the adiabatic change. Indeed, we show in the
Supplemental Material [36] that local terms in Eq. (12)
which are supported at a distance Q(log!**(N/e)) away
from the support of dG,, /ds do not significantly contribute
to the unitary evolution generated by Eq. (12). This allows
the replacement of Eq. (12) with Eq. (7) without signifi-
cantly altering the evolution and thus the final state.
Notice that G, only acts on O(polylog(N/¢)) sites and
7, = O(polylog(N/¢)) for all n. Thus, its unitary evolution
can be simulated with only O(polylog(N/¢)) gates. Hence,
we finally obtain a number of gates in the circuit model that
grows only as Eq. (1) for a constant error and lower bounded
spectral gap. Using the described parallelization, we finally
obtain a circuit depth, Eq. (2), as claimed.

In the analysis above, we have assumed a gap > A along
all N paths. This assumption can in fact be relaxed to a gap
at either s = 0 or s = 1 (see Supplemental Material [36]),
using the positivity condition on Q,. We thus say that the
system has a uniformly lower bounded gap A if for all finite
subsets A C A, the Hamiltonian, Eq. (5), has a spectral gap
> A. Under this assumption [47], the circuit depth, Eq. (2),
can be guaranteed [48].

For the preparation of thermal states of classical
Hamiltonians H, it is natural to compare these results with
the performance of classical Monte Carlo Markov chain
algorithms for Gibbs sampling such as the Metropolis
algorithm or Glauber dynamics. Notice that due to the
nature of their implementation, a fair comparison of
performance should compare the mixing time of a
discrete-time Markov chain to the number of elementary
quantum gates, whereas the mixing time of a continuous-
time Markov chain should be compared to the circuit depth.
The best known upper bound on the discrete mixing time for
Monte Carlo Markov chain algorithms for sampling from
Gibbs distributions of classical Hamiltonians given just the
promise of a spectral gap scales as O(N?). Although under
certain additional assumptions such as translational invari-
ance [49,50], weak mixing in two dimensions [51], or high
temperature [52], the existence of a logarithmic Sobolev
constant and hence the rapid (discrete) mixing time of
O(NlogN) can be proven, no such proof exists for the
general case to the best of our knowledge. Our scheme thus
outperforms classical Monte Carlo algorithms whenever
rapid mixing cannot be shown even in the presence of a
uniform gap.

Note that any classical Monte Carlo algorithm can be
realized as an adiabatic algorithm, as has, e.g., been
observed in Ref. [20]. Indeed, if S is the generator matrix
of a continuous-time Monte Carlo algorithm that satisfies
detailed balance with respect to the Gibbs distribution,
G = —¢PH/28e=P1/2 is Hermitian. This Hamiltonian has
the same spectrum as —S and has the unique ground state
e PH/2|1)\8N  For classical Hamiltonians H, this state has

the same measurement statistics as py for observables that
are products of o,. By introducing an ancilla for every
particle and applying the map |i)+>|ii), the purified version
of the thermal state can also be recovered, and its parent
Hamiltonian has the same spectrum as —S within the
symmetric subspace. Thus, any classical system with a
uniform spectral gap for the generator matrix can be turned
into a rapid adiabatic algorithm.

For quantum Hamiltonians, notice the restriction to
commuting local terms. For noncommuting local terms,
an approximate quasilocal parent Hamiltonian can be
considered above some constant temperature that allows
the preparation in polynomial time. We describe this
procedure in the Supplemental Material [36].

For the preparation of injective PEPS, the given algo-
rithm is similar to Ref. [7], which, however, requires a
runtime of O(N*) in the uniformly gapped case, due to the
use of phase estimation and the “Marriot-Watrous trick,”
which are computationally expensive for large systems.
The better runtime of the present algorithm is largely due to
replacing these subroutines by a local adiabatic change.

Throughout the analysis of this Letter, we focused on the
case where a uniform constantly lower-bounded spectral gap
is assumed. This assumption is only used to obtain a small
number of elementary gates and circuit depth, whereas the
adiabatic runtime of 7 = O(N log'**(N/eA)A3) is inde-
pendent of this assumption [53]. In contrast, the runtime of
the algorithm to prepare PEPS given in Ref. [7] only grows as
T ~ A~! for small gaps, and for thermal states, algorithms
based on quantum walks, phase estimation, and the quantum
Zeno effect have been proposed with a runtime of 7 ~ A~!/2
[12,21,22], albeit with worse scaling in the system size.
We believe that similar techniques can be applied to our
scheme of local changes to obtain a good scaling of the
runtime for both large system sizes and small spectral gaps.
Moreover, it would be interesting to investigate if this
scheme of local changes can also be applied to speed up
classical Monte Carlo algorithms.

We have also shown that the algorithm can be paral-
lelized, thus giving rise to a circuit depth that scales only
polylogarithmically with N. This is particularly attractive for
certain experimental realizations of analog quantum simu-
lators, such as with atoms in optical lattices [54] or trapped
ions [55], where this could be carried out in a very natural way.

We thank A. Lucia, D. Pérez-Garcia, A. Sinclair, and
D. Stilck Franca for helpful discussions. This work was
supported by the EU Integrated Project SIQS.
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I. PROOF OF THE ADIABATIC THEOREM WITH ALMOST EXPONENTIAL ERROR DECAY

In this section, we prove a variant of the adiabatic theorem that only requires a runtime almost exponentially small in
the allowed error. Our proof largely follows the proof given in [1], which is based on the method of adiabatic expansion
[2]. The adiabatic expansion in [2] establishes an approximation of the time-dependent Schrédinger evolution in terms
of the instantaneous ground state and its derivatives, but on its own does not necessarily imply an adiabatic theorem
because it assumes a special initial state. Our proof, like [1], resolves this problem by exploiting the Gevrey-class
condition which allows to satisfy these initial conditions, and uses this expansion to establish a bound on the required
runtime. However, unlike [1], which only proves the almost exponential dependence of the runtime with respect to
accuracy, our proof also explicitly establishes the dependence on all other parameters such as the spectral gap and
the bound on the Hamiltonian derivatives [3].

Consider a smooth path of Hamiltonians, G(s), s € [0, 1], acting on a finite-dimensional Hilbert space H. Let ¢(s)
[4] be the ground state of G(s) and (e, s) the solution of the following Schrodinger equation:

iet(e,s) = G(s)1(e, 5),  1(0) = ¢(0), (13)

where 1/e = 7 is the runtime of the adiabatic algorithm, and * denotes derivative with respect to s. We assume
furthermore that the ground state energy of G(s) is 0 (i.e., we fix the phase of ¥) and that it has a gap at least A
throughout the whole path. By an appropriate choice of the phase of ¢, we can without loss of generality assume that

<¢(s)‘ ¢(s)> = 0. In the following, we will sometimes drop the explicit dependence on s to simplify the notation.
Unless otherwise stated, ||.|| will always denote the operator norm for operators and the Euclidean vector norm for
vectors (it will always be clear from the context which one is used). In this section, we prove the following theorem.

Theorem 1. Suppose that all derivatives of G vanish at 0 and at 1, and moreover that it satisfies the following Gevrey
condition: there exist non-negative constants K, ¢ and a such that for all k > 1,

14+
H(;(k)H < ch& (14)
- (k+1)%
Then,
_ K (47%\° 1/ 3\° A%\ ™"
mgln Hd)(e, ].) — € o (1)” < SC€Z <3> ceXp § — <4€C2 (4’/T2> Tl(2> . (15)

Notice that we don’t require the Gevrey condition (14) to hold for k = 0. Therefore, in the application of Theorem 1
in the main text, K = O(1) since along the paths G, (s) (as defined in (12) in the main text), only O(1) local terms
change.

Proof of Theorem 1. Following the adiabatic expansion method from [1, 2], we search (e, s) in the form of an asymp-
totic series expansion by constructing vectors ¢;(s), s € [0,1], j > 0, such that for all M > 0,

(€,8) — Z oi(s) | = O(M). (16)

We first show an explicit expression for ¢; provided that such an expansion exists. Second,we prove that the expansion

really exists if G(*)(0) = 0 for all k by giving an explicit error bound. Third, to connect the expansion to the adiabatic
theorem, we show that

M-1
min||(e, 1) — e“¢(1)] < 2ll(e,1) =Y o), (17)
7=0



2

for some 6 for all M if G*)(1) = 0 for all k. This already proves an error bound of O(eM) for any M. Finally, if
G is Gevrey class, then the error bound can be expressed with the help of the parameters appearing in the Gevrey
condition and using a suitable choice of M yields to the bound in Eq. (15).

Ezxplicit form of ¢;. To satisty the equation at s = 0, we require ¢o(0) = ¢(0) and ¢;(0) = 0 for all j > 0.
Furthermore, substituting back the ansatz to the Schrodinger equation Eq.(13), following [2], we arrive at the recursion

. t .
b :¢j¢+z’G‘1¢j,1, ©j :i/ dt’ <¢>(t’) Gt
0

L)), (18)
for all j > 0, where ¢;(s) is a complex number and G~! is the pseudo-inverse of G, and initial values are

po(s) = &(s) (19)
po(s) = 1. (20)

Note that ¢;(0) has to be zero in order for ¢;(0) to be zero, but this is not a sufficient condition. We will investigate
below when ¢;(0) = 0 can be satisfied.

Ezistence of the expansion. To satisfy ¢;(0) =0 for j > 0, ¢,;_1(0) needs to be parallel to ¢(0). This is satisfied if
all derivatives of G are 0 at s = 0 (see Lemma 2 below). We show that if this condition is fulfilled, then the expansion
exists.

Define the truncation of the asymptotic series expansion,

M-1
'¢M = Z d)jej. (21)
j=0
Note that if ||y =1 || = O(eM 1), then the expansion exists. Indeed, then || = || = || —¥rrs1+eMoar]| = O(eM).

By construction, 15, almost satisfies the Schrodinger equation: 161/JM Gy + ZeMng 1. Let U(s) be the dynamics
generated by G/e. Then, ||[¢ar(e,s) — (e, s)|| = |U(s) ar(e, s) — #(0)| and

< 61\/[71 /S dS/

B 0

S
M 1/ dS/UT(ZSMfl
0
where we used that if the first M derivatives of G are 0, then ¥y(e,0) = ¢(0). This proves the existence of the
expansion.
Connecting the expansion to the adiabatic theorem. Using the triangle inequality, we obtain

|U(s)"ni (e, s) — ¢(0)]| = H/ ds'— UszM)H

(22)

min [[1(e, 1) — e“o(1)| < [9(e,1) = var(e, 1) + min|eoar(e, 1) — e“p(1)]]. (23)

In Lemma 2, we prove that if the first M derivatives of G(s) vanish at s = 1, then ¢;(1) is parallel to ¢(1) for

all j =1,...,M. Therefore, ¢ (e, 1) is parallel to ¢(1), so that ming [|¢ar(e, 1) — e®@(1)[| = [||lvar (e, 1)]| — 1]. But
1 = ||¢(e, 1)]|, so using the triangle inequality, we get ming ||1as(€, 1) — e d(1)|| < ||var(e, 1) — 2b(e, 1)||. Therefore,

min [|(e, 1) — e (1) < 2[l(e, 1) — var(e, 1. (24)

Choice of M. From Eq. (22) and (24),

mjn (e, 1)~ 290 < 2006 1) a1 <24 [ el (25)

so we only need to bound ||¢ar—1]|. We do this by using that G is Gevrey class. From Lemma 7 below,

M-1
Ar? K [(4n?\® | K2 472\ ° [M1]1+e
<2— . 2c— [ — _— —
63-1 < 2520 A( 3 ) 2l ( 3 > ] (M +1)2 (26)

Therefore,

2 3 2 2 51M-1 Ni+a
pen-sn <ol (1) (e ()] s




Changing M to M + 1 and using that [(M 4 1)!]"+e /(M +2)? < MI+)M " we obtain

K (4n2\° [K2 , (422\° mive]™
fote.n) - o)l < sey (7-) [AB4(§) - ] . (25)

This is true for any M, so setting

M= A’ o (29)
a eK?4c? (4”2 )5 7
we obtain
K [472\° A3 1/ 3\°\™
(e, 1) — ()| < Bcex (3> “exp { — (TK24ec2 <47T2) : (30)
This proves Theorem 1. U

We have repeatedly used the following lemma in the proof of Theorem 1.
Lemma 2. If G%)(sy) =0 for some s € [0,1] and for all k =1... M, then
(i) ¥ (sq) is parallel to ¢(so) for all k =0,..., M,

(ii) [GCD]™ (s) = 0 for all k=1,..., M,
(ii1) qﬁ(l)(so) is parallel to ¢(sg) for allk=0,...,.M and1=0,..., M — k.

Proof. G =0, so (G¢)*) = ZJ ( )G(])qﬁ(k 7) =0 for all k. Applying this for k¥ < M and evaluating the result at
So, the derivatives of G vanish, thus G¢(k) = 0 and therefore ¢(*) is parallel to ¢ at so, which proves (i).
To prove (ii), use the Cauchy formula
1 1
= f(z - G)"12dy, (31)
™ Jr z

where I' = {z € C | |z] = A/2} is a fixed curve around 0. Taking the kth derivative of Eq. (31) and evaluating it at
50, we see that the derivatives of G~ also disappear.

To prove (iii), we proceed by induction on k. By (i), the claim is true for £ = 0. For k > 0, we have gb
(ord) D +i(G~ 1¢(1) )(l). By (i), the first term is parallel to ¢ at so. The second term consists of derivatives of G™!

and derivatives of quk, . By (ii), the derivatives of G~! vanish at sg, so that the only remaining term is iG~ 1¢>(l+1).

But this term also vanishes at sg by the induction hypothesis. This proves (iii).

In the remainder of this section, we derive the bound on the norm of qu M —1 which was used in the proof of Theorem 1,
following the analysis in [1]. First, we recall two technical lemmas from [1], which will be used repeatedly.

Lemma 3. Let p,q be non-negative integers and r = p + q. Then,

ECORY [0k =1+ [k ) re 4n?
Z()(l+p+1)2(1~c—l+q+1)2S(/c+r+1)23' (32)

1=0
Proof. Notice that if r = p + ¢, then

(M) [(k + r)1ite

i+
Gl

()14 2200+ g = e = < [l (33)

To upper-bound the summation, divide the sum into two parts at [(k —p+ ¢)/2]. Il < |(k—p+ q)/2], then
(k—1+q+1) > [(k+p+q)/2] +1. Otherwise, if | > |(k—p+q)/2], then (I4+p+1) > |[(k+p+q)/2] + 1. Therefore,

i 1 > 1
lz: (I+p+1)2(k—1+q+1)2 ; l+1)2 L(k+p+a)/2] +1)*

(34)

This can be upper-bounded by 47%/3 as k+p+q+1 < 2(|(k+p+¢q)/2| +1). This finishes the proof of Lemma 3. [J



We now use Lemma 3 to prove that if A and B are Gevrey-class, then their product is also Gevrey-class.

Lemma 4. Let A(s), B(s) (s € [0,1]) be smooth paths of either vectors in H or operators in B(H) satisfying

k+p)]tte [(k +q)]
AB| < grlEEPTT d |BW| < pprl 10 35
|49 < Ca i and B < Bf (3)
for some non-negative constants C,d, E, f, non-negative integers p,q, and for all k > 0. Then,
472 [(k + )it
ABY®|| < Z——CEgFb L 36
I(AB) | < S-CBg* (s (36)
for all k >0, where g = max(d, f) and r = p+q.
Proof. We have
k _
lamy®) < 3 (7)) 1oz, (37)
1
so inserting the bounds (35) and upper-bounding d and f by g, we obtain
B\ [+ )] [(k =1+ g
AB)®| < CEg* () : 38
I(AB) W] < g; ) Uyt 12 (T gt 1? (38)
Using Lemma 3 to upper-bound the r.h.s. of this expression proves Lemma 4. ]

Next we give a bound on the derivatives of the pseudo-inverse G~!. As G is non-invertible, the proof consists of
two steps: first reducing the problem to the invertible case, then proving that the inverse of an invertible Gevrey-class
operator is again Gevrey-class (assuming that the inverse is uniformly bounded).

Lemma 5. If G satisfies Eq. (14), then for all k > 0,

2\ F [k)ite
e 1< 5 (525 ) e (39)

Proof. First, write the pseudo-inverse using the Cauchy formula,

4
27rz G—zz (40)

where I' = {z € C||z| = A/2} is a fixed, s-independent curve. Taking the kth derivative of Eq. (40) (with respect to

s), we get

G Hw =1 ]f (G =)0 2a (41)

27
Thus, the norm of the pseudo-inverse can be bounded by the triangle inequality,
IGH™ < max (G - )P, (42)
ze

Note that G — z is invertible and ||(G — 2)7!|| < 2/A for z € I. We now show that (G — z)~! is also Gevrey-class,
more precisely that

o7 <3 (35 5

for k£ > 0. To show this, we proceed by induction. For k = 0, the bound obviously holds. Taking the kth derivative
of (G—2)(G—2)"t =1, we get

(CRE LR 9l () [CRN IR () (a1

=1



Using the induction hypothesis and collecting terms (notice that [ > 1 and &k —1 < k — 1), we get

fe-am1)< 3 (Gxe) (5) 5 (et g

l

Using Lemma 3 to upper-bound the sum in (45), we get

2\ F 111+«
—_ )1 UC)H<E 3K4L [£1] 4
H[(G S N b (k+1)2 (46)
This proves (43). Substituting this bound into Eq. (42) proves Lemma 5. O

Next, we prove that the ground state is also Gevrey-class (with the special choice of the phase as above).

Lemma 6. If G satisfies Eq. (14), then the ground state ¢ satisfies

2 2\ Ni+a
6] < (22‘ (43) ) ([:L)z (47)

for all k > 0, where K,c and « are defined in Eq. (14) and A is the minimal gap of G.
Proof. We proceed by induction on k. For k = 0, (47) just reads ||¢|| < 1. For k£ > 0, notice that G¢ = 0 and
oM = —G~1GM ¢ since the phase of ¢ is chosen such that <¢‘ ¢> = 0. Therefore,

(k—1)

-l w

Expanding the derivatives, we get

“¢(k)“ < kil (k ; 1) H |:G71G(1):| (k—1-1)
=0

The right hand side can be bounded using the induction hypothesis as the higest derivative of ¢ appearing there is
the (k — 1)th. For that, we first derive a bound on the norm of the derivatives of G"*G("). This can be done by
applying Lemma 4 to G and G~! and using Lemma 5 to obtain

Jeamol s (x5 ) g "

oo »

for k > 0. Substituting this bound into (49), we obtain

R = oy 2 4w\ (k=D [ 2 far2\2) [t
® 2 4n? 2 (4x?
I ”<l_0< z )(KCA 3) k—1+1) KCA( 3> (102 (51)
Notice that [ < k — 1, so
® 2 4r2\ " (am\ TSR R 1 [( = DY )i
Il < (KCA 3 ) ( 5) 2\ Jerra (52

Thus, using Lemma 3, we obtain

2y 2\ 1+a
o < (e (7)) 5 -

which proves Lemma 6. O
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We are now in the position to bound ||¢.7M_1||. Instead of bounding it directly, we prove a general bound on all
W’;—k)ﬂ. The desired bound is obtained then by setting j = M — 1 and k = 1.

Lemma 7. For all j,k > 0, the vectors ¢; and scalars @; defined in Eq. (18) satisfy

) AIRE (k4 -)!]1+a
(k) < A AJAk [(k +J) ] d (k) < A] Ak [( J 4
Hgb] || — 1449443 (l{? +]+ 1)2 an |SOJ | — £12413 (k+]+ 1)27 (5 )
where the constants Ay, Ay and As can be expressed with the constants appearing in Eq. (14):
82 K (472\* K2 [(472\°
Ay = —, A3 =2c—|— Ay =42— [ =) .
1 3 ) 3 CA ( 3 ) ) 2 C A3 ( 3 ) (55)

Proof. We proceed by induction on j, using the recursion in relation (18). We first bound |¢;| using the induction

hypothesis, then bound |<p§-k)\ for k > 0 before bounding ||¢§-k) Il
Base case. We have pg(s) =1 and ¢g(s) = ¢(s), so (54) holds for j = 0 since

K (47*\?
A1 >1 and A3>20A<§). (56)

Bound on |p;|, 7 > 1. |g;| can be bounded by the maximum value of the integrand in Eq. (18),
o5l S NG SNl bl < IGTHI- 1811 - 151 1l- (57)

Using the bound on ||¢|| from Lemma 6, [|G~!|| from Lemma 7 and the induction hypothesis on [|¢;_1||, we get

2,1 -1 4 (DT 1)
o] < A 'Asi CALAYT A TESIE < A4 G+1)? (58)
since
A3 21
> A3
1> A AL Ad (59)
Bound on ||<p§k)|| We now bound |<p.§vk)\ for k > 0. First, from the induction hypothesis,
A1+«
620 < Avay At R (60)
Then, using Lemma 4 and Lemma 5, we get that for all k£ > 0,
NGB _drt e ()
o, < A AT AR T 1
H(G & 1) H 3 AT TS (k12 (61)
Moreover, from Lemma 6,
: k+1)))tte
(k)| < Ak+1 [( 9
160 < A5 (62)
Since ¢; = #| Gh;_1 ), Lemma 4, Eq. (61) and (62) imply that
i i
2\ 2 - 11+«
k1) _ a0 < (477 2 j-1 k1 (B + 5+ 1)
=160 < () Zaanagagn BH 2L (63)

for kK > 0. Changing k + 1 to k gives

2\ 2 ) A l+a ) A Nl4a
(k) < 4m EAA A]*lAk[(k‘i’J)'] <A]Ak[(k+1)'] 4
i |‘< 3) A G S S kg g )2 (64

2
. 2
since 1 > Alf‘—;% (4%) .
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Bound on ||¢§-k)||. We now bound Hgb;k)H. Using the bound on [|¢(*)|| from Lemma 6 and |¢§k)\, Lemma 4 implies

4LAJA’€ [(k +.7) ]1+a (65)

(i) < S e

Finally, using Eq. (18),

1601 < 2 [0

(Glczéjl)(k)]D - (66)

Hence, since

472 472 2

2? S A1 and ?ZAS < AQ, (67)
we obtain
N1+
B < 4,49 gk D]
191 < Ak T (65)
which finishes the proof of Lemma 7 and hence the proof of Theorem 1. O

II. LOCALITY OF LOCAL ADIABATIC CHANGE

We show in this section that G,, and G, as defined in Eq. (7) and in Eq. (12) in the main text, generate basically
the same dynamics. The proof relies on G(0) being frustration-free, and a runtime of 7 = O(log'™*(N/¢)), because
it turns out that the achieved locality scales linearly with the runtime. We also use the Lieb-Robinson bound [5-8],
which states that if H is a local (possibly time-dependent) Hamiltonian with uniformly bounded interaction strengths,
U (t) is the unitary evolution generated by H, and O4, Op are operators supported on regions A, B, respectively, then

U ®)0aU'(t), O5]|| < cmin(|A],[B)|[Oall|Os exp (vt — vL), (69)
where L is the distance between A and B, and c,~y, v are constants depending only on the geometry of the lattice and
the maximum interaction strength.

The following theorem justifies the replacement of (12) with (7) in the main text, without significantly altering the
evolution and thus the final state.

Theorem 8. Let G(s) = > pex Gu(s) be a frustration-free Hamiltonian path with O(N) local terms such that
|supp G\ O(1), and let G be a localised version of G, i.e.,

d -
= Z Gu(s), YT = {u e d(supp &GsuppGu) < XT} (70)
reY’

for some constant x and adiabatic runtime 7. Let 1) and ¥ be the evolved states under G and G respectively, i.e.,

%1&@) =G C) P(t), z‘%&(t) =G C) (), telo,7], ¥(0)=1(0)=¢0), (71)

where ¢(0) is the ground state of C?'(O) Then, for sufficiently large x = O(1),
[(r) = ()| < eN> 72O/, (72)
where ¢,v,v are the constants from (69). In particular, if T = O(log' T (N/e)), then
lo(r) = ¢(7)]| < /N (73)

for sufficiently large x = O(1).



Proof. For any Q C Y, let Go = G, and Uq(t, s) be the unitary dynamics generated by Go. Then Uq satisfies

neQ
0Uq(t,s) = —iGq(t/T)Uq(t, s), (74)
0sUq(t, s) = —iUq(t, s)Ga(s/T), (75)
Ual(t,s) =T exp —i/dt/GQ(t//T) . (76)

S

Notice that Gy = G and Gy = G. We write U = Uy: and U= Uy. Let B be the boundary of Y’, that is,
B={pe€Y|dA\u) =[xt} and B = Y\B. Then, since G(0) is frustration-free and all terms outside of Y’ are
constant, Ug(¢,0)$(0) = U(t,0)¢(0) as Ug = U @ Up\ys and Up\ v ¢(0) = #(0). In other words, G5 generates the
same dynamics as G. Thus,

[9(7) = ()| = 1U$(0) = Ub(0)| = [U4(0) = Upd(0) | = | ¢(0) — UTU(0)] (77)
where U and Ug are evaluated at (7,0). Let V() = U'(t,0)Ug(t,0). Then, since Gp = G — G5, Eq. (74) implies

%V = iU (t,0)Gp(t/7)U(L,0)V (). (78)

We now approximate V' with a local unitary to obtain a bound for (77). Let X = {u € T | d(p, B) < r} for some r
to be specified below, and let

¢
Vx(t) = T exp {z/ dr'ul (' O)GB(t’/T)UX(t’,O)} (79)
0
For r = 1x7 and sufficiently large x = O(1), X and supp G are disjoint since | supp G| = O(1), so Gx (t/7) = Gx(0) for
all ¢ € [0, 7]. Because of frustration-freeness, Gx (t/7)$(0) = 0, and thus the dynamics generated by G x acts trivially
on the initial state, i.e., Ux(¢,0)¢(0) = ¢(0). Thus, Vx also acts trivially on the initial state, Vx(t)¢(0) = ¢(0).
Hence, substituting this into Eq. (77), we get
16(0) = UTUG(0)]| = [[Vx #(0) — UTU56(0) | = [[4(0) = VXV (0)|l (80)
From the definition of V and of Vy,
d i vt oLt ot
%(VXV) =iVy(U'GpU — UxGpUx)V, (81)

where Gp is evaluated at /7. Thus, by integrating (81) and using the triangle inequality and unitary invariance of
the operator norm,

16(0) — VEVe(0)|| < /0 At|UtGpU — UL GpUx| = /0 dt||Gp — UULGpUXUT, (82)
where the unitary evolutions are taken from 0 to ¢t and G is evaluated at ¢/7. Observe that
0, (U(t,5)Uk (1, 5)) = =il (t,5)Gx (s/)UL (1, 9), (83)
where X = YT\ X. Integrating (83) over s, we get
Gpt)r) — UULGR(t/r)UxUT = —i /0 t dsU(t, ) [GX(S/TL UL, S)GB(t/T)UX(t,s)} Utt, s). (84)
Therefore, using the triangle inequality and the unitary invariance of the norm, we get
v =il < | ar / s | [Tt )Ga e/ (1. 5), G s/ (35)
< /OT dt /Ot ds cN2e (t=s)—vr < eN2r2em—vr (86)

where the second line follows from the Lieb-Robinson bound as B and X are separated by a distance r = % x7. This
proves Theorem 8.



IIT. RELAXATIONS ON THE ASSUMPTION OF A UNIFORM GAP ALONG THE PATH

In this section, we show that the assumption of a spectral gap along the entire path of G, can be relaxed.

Theorem 9. Suppose that G,,(0) has a spectral gap of at least § > 0. Then G, (s) has a spectral gap of at least a6
for all s € [0,1], where qo satisfies that 1 > Qx > qol (with Qx as in Eq. (3) in the main text). In particular, a
uniform gap as defined in the main text implies a constantly lower bounded gap along the entire Hamiltonian path in
the given algorithm.

Proof. Since G, (0) is positive semidefinite and has a non-trivial kernel, the spectral gap condition of G, (02 is equivalent
to Gn(O)2 > 6G,(0). Note that 1 > A, ,,(s) > qol (with A, ,, as in Eq. (9)). Let X,,(s) = qu;ln(s)Gn(O)A;i(s).
Then,

Gas)=>_| II 4w | P I Ank(s) (87)

HEY \m:Am€EA, m:Am €Ay

>@ A | T A | Pl TI Ankh(s) | Ank(s) (88)

pEYT \ m:Ap €Ay, m:Am €Ay
m#n m#n
= 45 An 1 (5)Gn(0)A; 5 (5) (89)
= X, (s), (90)

where we used in the second line [|A; 7, (s)] < ¢y ' Notice that G,,(s) and X,,(s) have the same kernel and are both

positive semidefinite. Thus, the gap of G, (s) is lower bounded by the gap of X, (s). But since G,,(0)2 > §G,,(0), we
also have X, (s)? > q36X,,(s) since A,2,(s) > 1. Thus, G, (s) has a spectral gap of at least A, > ¢3d. O

IV. GIBBS STATE PREPARATION IN THE NON-COMMUTING CASE FOR HIGH TEMPERATURES

The algorithm we presented to prepare a purifiaction of the Gibbs state of a Hamiltonian used explicitly that the
Hamiltonian is a sum of commuting terms. Thus, one may wonder if one can apply it directly to Gibbs states of
non-commuting Hamiltonians H. The genaral answer is no. The reason is that even though a parent Hamiltonian
can still be defined as

gy =GBy =Y e2 TPt p et (91)

pneY neY

now the terms are not local (hence the superscript nl), and the norm of each term may be exponentially large in N.
Thus, adiabatic state preparation using (91) directly takes exponential time. However, in this section we show that
for sufficiently high, but constant temperatures, one can approximate G™ by an r = O(log N)-local Hamiltonian G”
which is a sum of O(poly(N)) terms. We also show that in this case, G™ (and thus also G") has a (1) spectral gap
and O(N) norm. Because of the existence of the gap, the ground state of G” is a good approximation of the ground
state of G™.

Using the adiabatic theorem, the following algorithm runs in O(poly(NV)) time for high enough (but ©(1)) temper-
atures and gives a good approximation of the purification of the Gibbs state of a non-commuting Hamiltonian:

1. Prepare the ground state of G"(0) = > .y Py

2. Calculate G ()
3. Prepare adiabatically the ground state of G"(3)

We first use the cluster expansion [9] to construct the approximating Hamiltonian G”. We also show that the norm
of G™ is O(N). Finally, we show that the gap of G™ is Q(1). For simplicity, assume that H = }_,_, is a sum
of nearest-neighbour interactions, although the results and proofs generalise to other types of interactions. We also
assume that ||hy|| < 1.
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Cluster expansion. We now show that G™ can be approximated by an r = O(log N)-local Hamiltonian G". More
precisely, we show the following result.

Theorem 10. For sufficiently small (but constant) 8, there exists an r = O(log N)-local Hamiltonian G" with
O(poly(N)) terms such that

IG™ — G"|| < O(1/ poly(N)). (92)
Moreover, the terms of G" can be calculated in O(poly(N)) time.

For any function f defined on the subsets of A, define the Mébius transformations

f@):=Y" 1), (93)
ocn

fQ) =Y (-1)"®f(o). (94)
eca

It is straightforward to check that the following Lemma holds [10].

Lemma 11 (M&bius inversion).

f=f=1r (95)
For any Q C A, let Ho = Y, ha, and let f,(Q) = ePHop,e2PHap efHo for any 1 € Y. Using Lemma 11, one
can express Gﬁl as
Gl = fu(A) =) fu(Q). (96)
QCA
This so-called cluster expansion has many interesting properties.

Lemma 12. Let p € Y. If Q C A is such that p is disjoint from Q and © C A is disjoint from Q, then

fu(QuUoe)=o. (97)
Proof. We have
f“(Q U @) — Z (_1)\Q\Q'|(_1)‘(—)\@’|e[5H(_)/ P“672/3H(_)/ P'ue[ﬁH(_)/ =0, (98)
Q'CQ,0/CO
since Hg: commutes with P, and with He/, and the sum over Q' is 0. O

Lemma 12 states that fﬂ is non-zero only for connected sets of edges that, in addition, contain . Another interesting
property of f, is that its norm can be bounded as follows.

Lemma 13. For any 2 C A and any edge p,
I£u (@] < (7 = 1)L (99)

Proof. Expanding the exponentials, one gets

fu= Y ymelyn GO GO O, b P, (100)

& e Tl ol ol

where ©* is the set of all finite sequences of elements of ©, and for any w € ©*, |w| denotes the length of w and
hw = h>\1 .. .h)\‘w‘ if w= ()\1, .. ~7/\|w|)-

Consider the set A = supp(w1) Usupp(ws) Usupp(ws). If A # , then the alternating sum in (100) over all © such
that A C © C Q is 0. Thus,

pluil. (23)lwal . glwsl
> 28) |

£ ()] < orTl Twal Tl (101)

w1, Wa, W3 € O*
supp(w1) U supp(wsz) U supp(ws) =
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But this is exactly a Mobius transform, so

”.]E,u(Q)H < Z (_1)\9\@\ Z ﬁ‘“’1| . (25)‘w2| . ﬂ|w3\ _ Z (_1)|Q\@|e4m®| _ (e4ﬁ 3 1)|Q\' (102)

wil|! - Jws|! - |wsl!
ocn w1, w2, w3 EO* | 1| | 2| | 3| oCcn

O
We are now in a position to prove Theorem 10.

Proof of Theorem 10. Using (96), we can write Gﬁl as a sum of local terms where the norm of the terms decay
exponentially with their support. As the number of terms with a given size is bounded by the lattice growth constant
[11], 1G]] = O(1) above some temperature. Indeed, let 7 be the lattice growth constant, so that the number of sets

of connected edges containing u and of size M is bounded by €. Then,
G < D 1@l < D e™ (e = )M = 0(1) (103)
QCA M>0

if 8 is sufficiently small (but constant). In this case, Gﬁl can be approximated by an r-local operator G}, by omitting
all connected sets ) of size at least r. The error of this approximation is

B _ r r
@ -l < Y Ih@) < 3 e -y = -]y

= = , 104
Q> e l—er(e®—1) 1—y (104)

where y = " (646 — 1). Therefore, above some constant temperature, the cluster expansion can be truncated at
|2] < O(log N), giving an error of O(1/ poly(NN)). This results in a O(log(N))-local Hamiltonian

G => > fu9 (105)

1 |Q|<O(log N)

with O(poly(/N)) terms. Note that this Hamiltonian can now be calculated in O(poly(NN)) time. Indeed, there are
O(poly(N)) terms f,(2), and each term can be evaluated in O(poly(N)) time since there are at most O(poly(V))
subsets of each (. O

Gap of G™. Tt remains to be shown that at sufficiently high (but constant) temperatures, the parent Hamiltonian
is gapped.

Theorem 14. For sufficiently small (but constant) B, G™ has a spectral gap of Q(1).
Proof. To show the existence of a gap, we use that G™ > 0 is frustration-free, so it is enough to show that
(G"H)?2 > AG™ (106)
for some A = Q(1). Expanding G™, (106) is equivalent to
M@ +> GGt =y AGH. (107)
W uFV I

Using Eq. (104) with r = 1, we get that Gzl is close to P, = G;zl for high temperatures and thus it is gapped and
the gap is close to 1. Therefore, it is enough to show that for some other constant A’ < 1,

doarap ==y NG (108)

pw#EV I
We upper bound the r.h.s. by lower bounding Zu GZl as

doapt> éZe‘T > art+ay, (109)
I T

d(p,v)=r
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where x = 2" e "Cyr? = O(1) is the number of times a single term is counted, and d is the dimension of the lattice.
Therefore, it is enough to prove that for a given r and any pair u, v with d(u,v) =r,

1
ey > A= (@l arh). (110)

Note that the kernel of the LHS of (110) is contained in the kernel of the RHS. Next, GZZ +G™ can be lower bounded
by

1
Gzl + GIT/LZ Z 5 (]_ — PKeT(Gﬁl—‘rG,’}l)) 5 (111)

since Gﬁl + G = P, + P,, which has gap 1, and at sufficiently high (but constant) temperature the difference is
sufficiently small.

To lower bound the Lh.s of (110), write G1! = ’G,Lr/ﬂ‘ + X, and GI! = ‘G,Er/ﬂ‘ + X,. ‘GLT/Q]‘ and ‘Glr/ﬂ‘

commute as they are supported on two disjoint regions, and they are positive, thus their product is also positive. The
norm of X, X, is bounded by (with y = ¢” (645 — 1) as defined in the proof of Theorem 10)

[r/2]
T T T i y
1Xull = 1Gu = 1G2 < G = G2+ NG = G2 < 35— (112)

)

since ||G™ — G,Er/ﬂH < yl"21/(1 —y) by (104), and thus GlIr’* > —ylm21/(1 —y), so Gl - |G[,T/2]| <
2y["/21 /(1 — y). Using that above some constant temperature |Gl <2, we get that

HGannl |G gl |H <1 oy L (113)
w v Iz v = 1—y — 2x

for sufficiently small (but constant) 8. Therefore for any u, v pair, the following is true:

[r/2] 1 1
n n Y —r —r n n
GGyt > —18 =y [1 = Prer(apicpn) > —A’%e [1 = Prer(anirapy) = —A’;e G+ Gph, (114)
as the kernel of GZZG{,” contains the kernel of GZZ + G™. This proves Eq. (110) and thus Theorem 14. O
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Prior to this work, it was a common jargon that quantum many-body states on regular lattices
which satisfy a so-called area law are, in some sense, “easy” to describe. Such area laws require
that certain Rényi entropies S, of the partial state with respect to a subregion of the lattice
scale at most with the boundary of that subregion rather than with its volume, as is the case for
randomly chosen quantum many-body states with high probability. Proving such an area law
for ground states of all local gapped Hamiltonians in two or more spatial dimensions has become
a milestone open problem in the quantum information theory approach to condensed-matter
physics. Yet, the quest for proving a general area law should only be seen as an intermediate
step towards the bigger programme of understanding whether all ground states of local gapped
Hamiltonians can be faithfully represented by efficient tensor network states. In this endeavour,
it seems a key step to ask whether satisfying an area law automatically implies the existence of
an efficient tensor network description. This has indeed been proven in one spatial dimension:
any state that satisfies an area law for some S, with « € (0, 1) can be approximated to constant
trace distance error by an MPS with polynomial bond dimension. This lead to the common
belief that also in two or more spatial dimensions, any area law state can be captured by a
PEPS with polynomial bond dimension.

In this work, we prove the existence of counterexamples to this conjecture: strictly speaking,
area laws and the existence of efficient tensor network descriptions are unrelated. We show that
there exist states which satisfy an area law for every S, but still, no efficient tensor network
description can be found. In fact, they cannot be captured by any states that have — in the
broadest possible sense — an efficient classical description. The more general conclusion of this
work is that while indeed, the set of area law states, commonly referred to as the “physical
corner”, is a very small subset of the large many-body Hilbert space, the set of efficiently
describable states is in turn tiny compared to the “corner” of area law states.

In Section 2, we introduce a precise definition of our very general notion of efficient (i.e.,
polynomial) classical descriptions of quantum states (Definition 1). We only require that the
Kolmogorov complexity of the list of coefficients of the quantum state in the standard basis
scales at most polynomially with the system size. Hence, this definition includes an extremely
large range of states. Three important examples of such efficient descriptions are highlighted:
tensor networks, quantum circuits with post-selection, and eigenstates of local Hamiltonians.

The central observation of this work, stated as Theorem 6 in Section 3, is that roughly
speaking, in two or more spatial dimensions, the set of states that satisfy an area law for S,
contains a subspace whose dimension scales exponentially with the system size. This remains
true even if in addition we also require the states to be translationally invariant. The main
idea of the proof is the observation that any state on a (D — 1)-dimensional lattice satisfies a
D-dimensional area law when that state is embedded into a D-dimensional lattice, and that
this embedding can also be performed in a translationally invariant way:.

Section 4 then makes precise the notion of approximability by polynomially classically de-
scribable states, and we show that any Hilbert space of exponentially large dimension contains
a state that cannot be approximated by polynomially classically describable states to constant
trace distance error (Theorem 8). In particular, there exist translationally invariant quantum
many-body states in two or more spatial dimensions which satisfy an area law for all S, but can-
not be approximated by efficient tensor network states, quantum circuits with post-selection,
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or eigenstates of local Hamiltonians (Corollaries 9-11). The proof of Theorem 8 uses a counting
argument of e-nets. An alternative proof using communication complexity is later given in
Appendix A.

Corollary 12 and Theorem 16 (which is proven in Appendix B) generalise Theorem 6 to
states that are both translationally and rotationally invariant, while Corollary 13 (proven in
Appendix C) uses error-correcting codes to show a variant with decaying correlation functions
— a well-known feature of ground states of gapped Hamiltonians.

Statement of individual contribution

This work was motivated by a discussion between Jens Eisert and myself. Jens Eisert mentioned
his belief that the commonly stated folklore conjecture of area law states automatically being
describable by efficient tensor networks may in fact be wrong. I subsequently formulated
both proofs of the existence of counterexamples, including the variants for translationally and
rotationally invariant states as well as states with decaying correlation functions. I was also in
charge of writing all parts of this article, with the exception of parts of Sections 1 and 7.

I, Yimin Ge, am the principal author of this article and was extensively involved in all parts of it.
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Abstract

Itis commonly believed that area laws for entanglement entropies imply that a quantum many-body
state can be faithfully represented by efficient tensor network states—a conjecture frequently stated in
the context of numerical simulations and analytical considerations. In this work, we show that this is
in general not the case, except in one-dimension. We prove that the set of quantum many-body states
that satisfy an area law for all Renyi entropies contains a subspace of exponential dimension. We then
show that there are states satisfying area laws for all Renyi entropies but cannot be approximated by
states with a classical description of small Kolmogorov complexity, including polynomial projected
entangled pair states or states of multi-scale entanglement renormalisation. Not even a quantum
computer with post-selection can efficiently prepare all quantum states fulfilling an area law, and we
show that not all area law states can be eigenstates of local Hamiltonians. We also prove translationally
and rotationally invariant instances of these results, and show a variation with decaying correlations
using quantum error-correcting codes.

1. Introduction

Complex interacting quantum systems show a wealth of exciting phenomena, ranging from phase transitions of
zero temperature to notions of topological order. A significant proportion of condensed matter physics is
concerned with understanding the features emergent in quantum lattice systems with local interactions.
However, naive numerical descriptions of such quantum systems require prohibitive resources, for the simple
reason that the dimension of the underlying Hilbert space grows exponentially in the system size.

Yet, it has become clear in recent years that ground states—and a number of other natural states—usually
occupy only a tiny fraction of this Hilbert space. This subset, which is sometimes referred to as the ‘physical
corner’ of the Hilbert space (figure 3(a)), is commonly characterised by states having little entanglement. More
precisely, they are characterised by the area law [ 1]: entanglement entropies grow only like the boundary area of
any subset A of lattice sites

S(pa) = O(|0A]) @

and not extensively like its volume |A| (figure 1). Such area laws have been proven for all gapped spin models in
D = 1[2-6].In D > 2, arealaws have only been proven in special cases, including free gapped bosonic and
fermionic models [7-9], ground states in the same gapped phase as ones satisfying an area law [10, 11], models
which have a suitable scaling for heat capacities [ 12], models whose Hamiltonian spectra satisfy related
conditions [13, 14], frustration-free spin models [ 15], and models exhibiting local topological order [16]. The
general expectation is that all gapped lattice models satisfy an area law. Proving a general area law for gapped
lattice modelsin D > 2 hasindeed become a milestone open problem in condensed-matter physics.
Arealaws are at the core of powerful numerical algorithms, such as DMRG [17]. In D = 1, the situation is
particularly clear: matrix-product states [ 18] essentially ‘parameterise’ those one-dimensional quantum states
that satisfy an area law for some Renyi entropy S, with « € (0, 1). They approximate all such states provably
well, which explains why essentially machine precision can be reached with such numerical tools [19, 20]. A

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) There exist quantum states on D-dimensional cubic latticesin D > 2 suchthat S, (p,) = O (|0A|) forall o > 0, but
which cannot be approximated by efficient tensor network states, such as (b) polynomial projected entangled pair states.

common jargon is that similarly, projected entangled pair states (PEPS) [21], can approximate all states satisfying
area laws in higher dimensions. In the same way, one expects those instances of tensor network states to capture
the ‘physical corner’.

In this work, we show that this jargon is not right: strictly speaking, area laws and the existence of efficient
tensor network descriptions are unrelated. We show that there exist states that satisfy an area law for every Renyi
entropy”

1

—

Sa(p) = ! log,tr(p®), «a € [0, c0), ()

but still, no efficient PEPS can be found. The same holds for multi-scale entanglement renormalisation (MERA)
ansatzes [22], as well as all classes of states that have a short description (the precise meaning of this will be
defined below). Not even a quantum computer with post-selection can efficiently prepare all states satisfying
area laws. Moreover, not all states satisfying area laws are eigenstates of local Hamiltonians.

These conclusions follow from the main result of this work: in D > 2, the set of states satisfying area laws for
all S, contains a subspace whose dimension scales exponentially with the system size. By considering a very
general notion of quantum state descriptions based on the theory of quantum Kolmogorov complexity [23], we
then infer that this large subspace cannot be captured by efficient tensor network states.

However, our results should not be seen to indicate that area laws are not appropriate intuitive guidelines for
approximations with tensor network states. We rather provide a significant step towards precisely delineating
the boundary between those quantum many-body states that can be efficiently captured and those that cannot.
We thus contribute to the discussion why PEPS and other tensor network states approximate natural states so
well. Area laws without further qualifiers are, strictly speaking, inappropriate for this purpose as the ‘corner’ they
parameterise is exponentially large. This work is hence a strong reminder that the programme of identifying that
boundary is not finished yet.

2. Classically efficiently described states

We first review the concept of efficient classical descriptions of quantum states. The focus is on tensor network
states, but the notion of efficient classical descriptions can be formulated in a much more general way. For our
purposes, the following definition of efficiently describable quantum states will suffice (see also [23] for
alternative definitions).

Definition 1 (Classical descriptions). A classical description of a pure quantum state |1)) € S((CH)*N)isa
Turing machine that outputs the coefficients of |1/) in the standard basis { |x): x € [d]" } and halts. The length of

4 Here, S; = lim,|;S, = S is the familiar von-Neumann entropy and S, the binary logarithm of the Schmidt rank.
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the classical description is the size of the Turing machine’. We say that the description is polynomial if its length
is polynomial in N.

We emphasise that for a polynomial classical description we only require the size of the Turing machine to be
polynomial, but not the run-time (which is necessarily exponential). Notice that the shortest length of a classical
description for a given quantum state is a natural generalisation of the Kolmogorov complexity” to quantum
states [23].

Example 2 (Tensor networks). States that can be written as polynomial tensor networks (i.e., they are defined on
arbitrary graphs with bounded degree, have at most O (poly(IN')) bond-dimension and their tensor entries’
Kolmogorov complexity is at most O (poly(IN'))) are polynomially classically described states in the sense of
definition 1. In particular, PEPS and MERA states with O (poly(IN)) bond-dimension and tensor entries of at
most O (poly(N)) Kolmogorov complexity are polynomially classically described states.

As a further interesting special case, we highlight that states that can be prepared by polynomial quantum
circuits, even with post-selected measurement results, fall under our definition of classically described states.

Example 3 (Quantum circuits with post-selection). Suppose that |¢) can be prepared by a quantum circuit of
O (poly(N)) gates from |0)2© ®°Y(N) where we allow for post-selected measurement results in the
computational basis. Then, a Turing machine that classically simulates the circuit constitutes a polynomial
classical description in the sense of definition 1.

Example 4 (Eigenstates of local Hamiltonians). Suppose that |¢)) is an eigenvector of a local Hamiltonian with
bounded interaction strength. Such Hamiltonians can be specified to arbitrary (but fixed) precision with
polynomial Kolmogorov complexity. Thus, a Turing machine that starts from a polynomial description of the
Hamiltonian and computes |/) by brute-force diagonalisation constitutes a polynomial classical description of
[1) in the sense of definition 1.

3. Arealaws and the exponential ‘corner’ of Hilbert space

Throughout the remainder of this work, we consider quantum lattice systems of local dimension d, arranged on
a cubiclattice [L]? of fixed dimension D > 1,where[L] := {0,...,L — 1}. We show in this section that the set
of states satisfying area laws for all S, contains subspaces of exponential dimension. This result is then used in
section 4 to conclude that such states in general do not have an efficient classical description. The case D = 11s
excluded since in this case, the question at hand has already been settled with the opposite conclusion [19, 20].
Thelocal dimension is small and taken to be d = 3 for most of this work. There is no obvious fundamental
reason, however, why such a construction should not also be possible for d = 2.

In the focus of attention are states that satisfy an area law for all a-Renyi entropies, in particular also
fora < 1.

Definition 5 (Strong area laws). A pure state 1)) € S( (CH®L") is said to satisfy a strong area law if there exists a
universal constant ¢ such that for all regions A C [L]P, wehave Sy (1) < c|0A|, where ¢ = trz |¥)v].

Since S, (p) < So(p) forall > 0, strongarea law states in this sense also exhibit area laws for all Renyi
entropies. Definition 5 is hence even stronger than the area laws usually quoted [1, 19, 20]. Here and later, we
write ¢ = [¢)(¢|. For simplicity, we will for the remainder of this paper restrict our consideration to cubic
regions only. It should be clear, however, that all arguments generalise to arbitrary regions A C [L]".

We now turn to showing that the ‘physical corner’ of states satisfying area laws in this strong sense is still very
large: it contains subspaces of dimension exp (€2(LP~!)). We prove this by providing a specific class of quantum
states that have that property. At the heart of the construction is an embedding of states defined ona (D — 1)-
dimensional qubit lattice into the D-dimensional qutrit one. Denote with H; C span{[1), |2) }¥X” " the
subspace of translationally invariant states (with respect to periodic boundary conditions) ona (D — 1)-

For readers who are not familiar with Turing machines, a less formal but for our purposes equivalent definition is that a classical description
of |¢)) is a (classical) computer program that computes the coefficients of |/) in the standard basis. The length of the description is then

simply the length of the program.

Recall that the Kolmogorov complexity of a classical string w is the size of the shortest Turing machine (or computer program) that outputs

wand halts. It can be thought of as the shortest possible (classical) description of w. For an introduction to Turing machines and Kolmogorov
complexity, see e.g. [24].
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Figure 2. Schematic drawing of [1;) in D = 2. |¢;) is an arbitrary translationally invariant state vector on LP~! qubits with basis
states |1), |2) in(D — 1)-dimensions. Schmidt decompositions for |1, ) with respect to bi-partitions of the lattice can be readily
obtained from the corresponding Schmidt decompositions of |, ).

dimensional cubic lattice of LP~! qubits. It is easy to show that dim (H;) > 277! /1P-1, We start from the
simplest translationally invariant construction on  := (C*®L” and discuss rotational invariance and decaying
correlations below.

Theorem 6 (States satisfying strong area laws). There exists an injective linear isometry f: Hy, — H with the
property that forall |¢;) € Hy, f (|¢,)) satisfies a strong area law and is translationally invariant in all D directions.

Proof. Given a state vector |¢;) € Hy, define
W) = 10)°E D @ Jgy) @ [0)° LRI e, 3)
with | ¢, ) at the kth hyperplane of the lattice (figure 2). Define

L
[Yr) = L7Y2Y " |er), 4)
k=1
which is translationally invariant. Any such state vector will satisfy a strong area law (in fact, a sub-area law): for
any cubic subset A = [}]] X --- X [Ip], we have for the reduced state (¢)r)4 = trz |17 )r | that

D
So((Yr)a) <log, (2" o-1lp + 1) <23 [ = |0Al, 5
j=1kk=j
where we used that the Schmidt rank with respect to the bi-partition A, A for each |ty 1) with k € [Ip]isat most
2h-++Io-1 and that since | ¢, ) is only supported on span { | 1), |2) }, the Schmidt vectors of |1/ ;) and |1/} ;) are
orthogonal for k = k' € [Ip] such that in the distinguished Dth direction, the contribution to the Schmidt rank
is additive and thus linear in Ip. Setting f (|¢;)) := |11), we see that fhas the desired properties.

4. Area laws and approximation by efficiently describable states

We now precisely state what we call an approximation of given pure states by polynomially classically described
states.

Definition 7 (Approximation of quantum many-body states). A family of pure states |1/ ) can be approximated
by polynomially classically described statesif for all € > 0, there exist a polynomial p and pure states |wy ) witha
classical description of length at most p (L) such thatforall L, || |4 ) (1| — |wi)wi||lh < e.

Note that this is exactly the sense in which matrix-product states provide an efficient approximation of all
one-dimensional states that satisfy an area law for some S, with o € (0, 1) [19]. We remark that definition 7 can
be weakened without altering the results. We now turn to the main result:

Theorem 8 (Impossibility of approximating area law states). Let 7{; be a Hilbert space of dimension
exp(Q(poly(L))). Then there exist states in H; that cannot be approximated by polynomially classically described
states. In particular, not all translationally invariant strong area law states can be approximated by polynomially
classically described states.

Theorem 8 can be easily proven using a counting argument of € -nets. Indeed, the number of states that can
be parameterised by O (poly(L)) many bits is at most 2° ®°Y')) However, an € -net covering the space of pure
states in C1 requires at least (1,/£)@ elements [25], which is much larger than 20 ®°ly(L) jf
q = exp(£2(poly(L))) (see also [26, 27] on the topic of e-nets for many-body states). Thus, the set of quantum
states in 7{; that have a polynomial classical description cannot form an e-net for 7, which proves theorem 8.

4
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We nevertheless also review the more involved proof from [23] using communication complexity in appendix A.
This proof could, due to its more constructive nature, provide some insight into the structure of some strong
area law states that cannot be approximated by polynomially classically described states.

4.1. Tensor network states
We saw that our definition of polynomial classical descriptions encompasses all efficient tensor network
descriptions. Thus

Corollary 9 (Tensor network states cannot approximate area law states). There exist translationally invariant
strong area law states that cannot be approximated by polynomial tensor network states in the sense of example 2. In
particular, not all translationally invariant strong area law states can be approximated by polynomial PEPS or MERA
states.

Notice the restriction to tensor networks whose tensor entries have a polynomial Kolmogorov complexity.
This is required to ensure that the tensor network description is in fact polynomial. Indeed, a classical
description depending on only polynomially many parameters ), ..., Ao poly(ny) (€-8.» @ PEPS with polynomial
bond-dimension) is not necessarily already polynomial—for the latter, it is also necessary that each of the \;
themselves can be stored efficiently. The notion of Kolmogorov complexity allows for the most general
definition of tensor networks that can be stored with polynomial classical memory.

4.2. Quantum circuits
Example 3 shows that states prepared by a polynomial quantum circuit with post-selected measurement results
have a polynomial classical description. Thus

Corollary 10 (Post-selected quantum circuits cannot prepare area law states). There exist translationally
invariant strong area law states that cannot be approximated by a polynomial quantum circuit with post-selection in
the sense of example 3.

In the light of the computational power of post-selected quantum computation [28], this may be
remarkable.

4.3. Eigenstates of local Hamiltonians
Example 4 shows that eigenstates of local Hamiltonians with bounded interaction strengths also have a
polynomial classical description. Thus

Corollary 11 (Arealaw states without parent Hamiltonian). There exist translationally invariant strong area law
states that cannot be approximated by eigenstates of local Hamiltonians.

5. Rotationally invarant states and area laws

So far, the states in consideration were translationally but not rotationally invariant. However, by taking the
superposition of appropriate rotations of (4), one can alter the above argument such that all involved states are
also rotationally invariant, i.e. remain invariant under 90° rotations of the lattice. The details of this construction
are given in appendix B.

Corollary 12 (Approximation for translationally and rotationally invariant states). There exist translationally
and rotationally invariant strong area law states that cannot be approximated by polynomially classically described
states. In particular, corollaries 9—11 also hold for translationally and rotationally invariant states.

6. Decaying correlations and area laws

One might wonder whether an exponentially dimensional subspace of strong area law states can be constructed
while imposing decaying two-point correlations for distant observables, a property known to occur in ground
states of local gapped Hamiltonians [29, 30]. It follows immediately from their definition that the states
constructed in theorem 6 (and theorem 16 in appendix B) already satisfy an algebraic decay. Indeed, for all L and
alllocal observables A, B on disjoint supports separated by an arbitrary distance £,




I0P Publishing

NewJ. Phys. 18 (2016) 083026 Y Ge and ] Eisert

(Y1l AB |¢r) — (Yl A [¢r)(¥r] B [¢) = O™ =0 . (6)

Using quantum error-correcting codes, it is however also possible to construct variations of the previous results
such that for all L and all local observables A, B with disjoint supports,

(Y] AB |Yr) — (o] A [r)(¥e| B |9r) = 0. (7)

The details of this construction are given in appendix C.

Corollary 13 (Approximation for area law states with vanishing correlations of local observables). There exist
strong area law states with vanishing two-point correlations of all local observables on disjoint supports that cannot be
approximated by polynomially classically described states. In particular, corollaries 9—11 also hold for states with
vanishing correlations of local observables on disjoint supports.

The translationally and rotationally invariant construction only gives algebraic decay (equation (6)).
However, we conjecture that there also exist strong area law states which are translationally and rotationally
invariant and simultaneously have exponentially small correlations for all local observables, but still cannot be
approximated by polynomially classically described states.

7. Conclusion and outlook

We have shown that the set of states satisfying an arealawin D > 2 comprises many states that do not have an
efficient classical description: they cannot be described by efficient tensor networks, cannot be prepared by
polynomial quantum circuits with post-selected measurements, and are also not eigenstates of local
Hamiltonians. We have hence proven that the connection between entanglement properties and the existence of
an efficient description is far more intricate than anticipated. These results are based on the simple observation
thatan arbitrary quantum state in (D — 1) dimensions that is embedded into D dimensions satisfies a D-
dimensional area law, thus implying that the set of area law states contains a subspace of exponential dimension.
In other words, in D > 2, itis possible to ‘dilute’ the entanglement content and still arrive at a strong area law.
We also demonstrated that the exponential scaling persists even if various physical properties, such as
translational and rotational invariance, or decaying correlations of local observables, are imposed. We note
however that while the latter can be extended to non-local observables of size O (LP~1), our notion of decaying
correlations is weaker than the exponential clustering property for ground states of gapped Hamiltonians, since
this can involve all regions of unbounded size [5, 29]. It remains open whether our results are impeded if the
stronger notion of exponential decay of correlations is imposed.

Arealaws indeed suggest the expected entanglement behaviour of naturally occurring ground states.
However, when put in precise contact with questions of numerical simulation, it turns out that satisfying an area
law alone is not sufficient for efficient approximation. Picking up the metaphor of the introduction, the ‘corner
of states that can be efficiently described’ is tiny compared to the ‘physical corner’ (figure 3).

A particularly exciting perspective arises from the observation that states with small entanglement content
can go along with states having divergent bond dimensions in PEPS approximations. This may be taken as a
suggestion that there may be states that are in the same phase if symmetries are imposed, but are being classified
as being in different phases in a classification of phases of matter building upon tensor network descriptions [31—
33]. Itis the hope that the present work can be taken as a starting point of further endeavours towards
understanding the complexity of quantum many-body states.
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Appendix A. Proof of theorem 8 using communication complexity

We now review the alternative proof of theorem 8 using communication complexity, which was given in [23].
Suppose two distant parties, Alice and Bob, each possess an n-bit string, X and y, respectively. No
communication between Alice and Bob is allowed, but they can communicate with a third party, Charlie, whose
task is to guess whether or not x = y. We demand that Charlie may guess the wrong answer with a small (fixed)
probability of at most § > 0. This is called the equality problem, which we denote by EQ (7). We now state some

6



10P Publishing NewJ. Phys. 18 (2016) 083026 Y Ge and ] Eisert

o

Area law states

Many-body
Hilbert space

Efficient
descriptions

(@ (b)

Figure 3. (a) The set of area law states is a tiny ‘corner’ of the many-body Hilbert space. (b) The set of states that can be efficiently
described is tiny compared to the ‘corner’ of area law states.

known results [23, 34, 35] on the communication complexity, i.e. the minimum amount of communication
required for solving the equality problem.

Lemma 14 (Equality problem for classical communication). If Alice and Bob can only send classical information
to Charlie, at least Q) (</1) bits of communication are required to solve EQ (n).

Lemma 15 (Quantum solution to equality problem).

(1)If Alice and Bob can send quantum information to Charlie, there exists a protocol for EQ(n) using only O (log n)
qubits of communication that is of the following form: Alice and Bob each prepare O (log n) qubit states |h (x))
and’ |h(y)), respectively, which they send to Charlie. Charlie then applies a quantum circuit to |h(x)) |k (y) ) |0),
followed by a measurement of a single qubit whose outcome determines Charlie’s guess.

(2) There existsan ¢ > 0 independent of n such that the protocol in (1) still works if instead, Alice and Bob send states
to Charlie which are &-close in trace distance’ to |h (x)) and | h(y)).

We now turn to the proof of theorem 8 .

Proof of theorem 8. We prove the claim by contradiction. Suppose that every state vector in 7; can be
approximated by polynomially classically described states. Then in particular, all M-qubit states can be
approximated by states with a classical description oflength O (poly(N)), where M := [ log,dim (7:(L)J. Fix

6 € (0, 1)andlete > Obeasinlemma 15 (2). Bylemma 15 (1), we can choose n with logn = © (M) such that
M qubits of communication suffice to solve EQ(n).

By assumption, |k (x)) and |k (y)) can be e-approximated by states which have an O (poly(M)) classical
description. Bylemma 15 (2), these states can be used instead of | i (x)) and |k (y)) in the quantum protocol to
solve EQ(n). Now consider an alternative protocol using only classical communication to solve EQ(#) as
follows: Alice and Bob send the classical description of their states to Charlie, who simulates the quantum circuit
and the measurement from lemma 15 using the classical descriptions of the states. This protocol solves EQ (1)
using only O (poly(M)) = O (poly(log n)) bits of communication, contradicting lemma 14. Finally, by setting
Hy = f (Hp) with fand H; as in theorem 6, the second part of theorem 8 follows. O

Appendix B. Translationally and rotationally invariant states

Corollary 12 follows directly from theorem 8 and the following theorem.

7 The exact form of |h(x)) and |k (y)) is not important for our purpose—we will only need that they consist of O (log 1) qubits. Interested
readers are referred to [35].

This was argued in [23] for the Euclidean vector distance but it is clear that the same holds for the trace distance.
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Theorem 16 (Translationally and rotationally invariant area law states). There exists an injective linear
isometry g: G — H with dim(Gy) = exp(QLP~Y)) such thatforall|¢;) € Gr, g(|$;)) satisfies a strong area
law and is translationally and rotationally invariant in all D directions.

Theorem 16 can be proven with a minor modification of the proof of theorem 6. To start with, we replace
| ;) for each L by state vector on the translationally invariant subset H; C (C2)®L”"" which is also mirror
symmetric, i.e. invariant under reflections, in all (D — 1) directions. Notice that the exact choice of the plane of
symmetry in a given direction does not matter since we assume | ¢, ) to be translationally invariant. With [, ) as
in (4), we then consider, for the entire [L]? lattice, state vectors of the form

D
[1) = D~Y/23 "R [4r), (B1)
=1
where I = R, ..., Rp rotate the entire lattice system such that | ¢, ) is arranged along each line of the cubic lattice
in dimension D. Such a state is translationally and rotationally invariant, following from mirror symmetry.
These states satisfy a strong area law: for any cubic subset A C [L]P,

D
Wp)a = tra [Yr)(vrl=D 1Y tra(Rjler) <1/JL|R;), (B2)

=1

since for j = k,

ARl (Y RY = 0. (B3)

This can be seen by taking the partial trace with respect to a set C first. For simplicity of notation, for D = 2,
consider w.l.o.g. distinguished subsets A C [L]P forwhich A N C = @ for C := L x [L]. Then

tra(lyr) (Vi RY = trave D (xlvr) (Vi Rix )=0, (B4)
xe$
where § = {x| 3j: x; = 0 A xx = 0 Vk € [L]\ {;} }. Ananalogous argument holds for any dimension D.
From these considerations, it follows that the area law is inherited by the area law valid for each individual
Rj|¢r). Itis furthermore clear that the exponential scaling of the dimension is not affected by restricting to the
subspace G; C Hp of mirror symmetric states. |

Appendix C. States with vanishing two point correlation functions for local observables

To prove corollary 13, consider a non-degenerate [#, k, AJ-quantum error-correcting code C with

k/n = ©(1)and A/n = O(1) [36]. Here n denotes the block size and k the number of encoded qubits. A is the
so-called distance of the code. Since Cis non-degenerate, the reduced density matrix of any A — 1 qubits of any
state in the code space of Cis maximally mixed. By choosing n = LP~!and considering

[¢1) = |C(xp) ® [0)E- D", (C1)

where |C (y;)) is an arbitrary state vector in the code space of C, we see that for all L and all observables A, B with
disjoint support and whose joint support in the top hyperplane contains less than A = © (LP~1)sites,

(¥l AB |9r) — (Yr| A [Y)9rl B |¢r) = 0. (C2)

In particular, equation (C2) holds for local observables A, B. Clearly, states of the form (C1) obey a strong area
law and since k = ©(LP~"), we obtain a subspace of dimension exp (2(L”~!)) of strong area law states with
vanishing correlations of local observables. Corollary 13 now follows from theorem 8. O
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Faster ground state preparation and high-precision ground energy
estimation with fewer qubits

Yimin Ge, Jordi Tura, and J. Ignacio Cirac

In this work, we propose a general-purpose quantum algorithm for preparing ground states
of quantum Hamiltonians from a given trial state. Compared with phase estimation, the
runtime of our algorithm is exponentially better as a function of the allowed error, and at
least quadratically better as a function of the overlap with the trial state. Moreover, we also
show that our algorithm requires significantly fewer ancilla qubits than existing algorithms with
comparable runtimes, and we show that it can also be used to determine an unknown ground
energy to high precisions faster than with phase estimation.

The setup in this paper is as follows: for an N x N Hermitian matrix H with spectrum
contained in [0, 1] and known lower bound A to its spectral gap, the aim is to prepare a state
which is e-close to the ground state |\o) of H from a trial state |¢). The latter is given by
a circuit which prepares |¢) using ® gates. We assume that its (generally unknown) overlap
do = (Xo|#) with the ground state has a known lower bound y = e~ 908 N)  We also assume
the ability to efficiently perform Hamiltonian simulation of H at a “base cost” of A gates.

This paper presents several versions of the algorithm for different setups. In the first case, if
the ground energy Ag is known to a sufficiently good additive precision, Theorem 1 shows that
an e-close state to |Ag)(Ag| can be prepared with constant probability in a gate complexity of
O(A/(|¢o|A) + ®/|¢o|), and using O(log N + logloge~! + log A~') qubits. The main idea of
the algorithm, detailed in Section III, is to implement a suitable ground state projector using
the “linear combination of unitaries” (LCU) Lemma. More precisely, we first transform H
into a Hamiltonian H such that [\g) is the unique eigenvector of H of eigenvalue ~ 0, then
approximate cos™ H as a linear combination of terms of the form e *#* which we then imple-
ment with some amplitude using Hamiltonian simulation and the LCU Lemma (an alternative
approach using Chebyshev polynomials and quantum walks is presented in Appendix D). The
final step is to use amplitude amplification to boost the overlap with the target state.

In Section IV, we present an adaptation of this algorithm to the case where g is not known
beforehand. In that case, Theorem 2 shows that the same task can be achieved in a gate com-
plexity of O(A/(xA%/?)+®/(xV/A)) and the same number of qubits. The main new ingredient
for this version is a subroutine which we call minimum label finding (Proposition 1). Roughly
speaking, given a superposition of states entangled with a “label” register, that subroutine finds
the smallest label value amongst the terms with at least a given amplitude. To implement the
ground state projection, we first adapt the previous algorithm into a circuit controlled on an
ancilla register |E), which runs the original algorithm assuming that the ground energy were
E. We then divide [0, 1] into L = O(A™1) equally spaced values Ey, . .., F;_; and run the algo-
rithm with v/L=1 >~ |Ej) on the ancilla register. Using the minimum label finding subroutine,
we then search for the smallest j for which the residual state of |E;) has large norm.

Theorem 3 then shows that this algorithm can also be combined with phase estimation to
obtain a better scaling in A at the expense of worsening the scaling in y: by using phase
estimation to first obtain a “crude” estimate of the ground energy, a runtime of O(A/(x>A*) +
A/ (xAB=9)/2) £ & /(yA=K)/2)) is obtained, where x € [0,1] can be chosen arbitrarily.

When the minimum label finding subroutine in the final step of Theorems 2 or 3 succeeds,
then with high probability, the resulting £ is a good approximation of the true ground energy.
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This can be used to find the ground energy to a high precision, which is formally stated in
Theorem 4.

The article also compares our results to previously known algorithms and we show that our
algorithms exhibit the best scaling for both the runtime as well as the number of required
qubits amongst all known ground space projection algorithms. To that end, in the appendices
of this work, the runtime and qubit scalings for some previously known algorithms are analysed
in greater detail than in the original works.

Statement of individual contribution

This work was motivated by several discussions between Jordi Tura, J. Ignacio Cirac, and
myself. It was my idea to implement a suitable ground state projector using the LCU Lemma
in order to extract the ground state from a trial state. Subsequently, with regular advice from
J. Ignacio Cirac and occasional numerical support from Jordi Tura, I worked out the details of
all variants of the algorithm, the minimum label finding subroutine, all proofs involved, as well
as the comparisons to previously known algorithms. I was in charge of writing all parts of this
article.

I, Yimin Ge, am the principal author of this article and was extensively involved in all parts of it.
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ABSTRACT

We propose a general-purpose quantum algorithm for preparing ground states of quantum Hamiltonians from a given trial state.
The algorithm is based on techniques recently developed in the context of solving the quantum linear system problem. We show
that, compared to algorithms based on phase estimation, the runtime of our algorithm is exponentially better as a function of the
allowed error, and at least quadratically better as a function of the overlap with the trial state. We also show that our algorithm
requires fewer ancilla qubits than existing algorithms, making it attractive for early applications of small quantum computers.
Additionally, it can be used to determine an unknown ground energy faster than with phase estimation if a very high precision is
required.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5027484

I. INTRODUCTION

Quantum computers are expected to have a deep impact on the simulation of large quantum systems, as originally envisioned
by Feynman.! Of particular interest is the potential ability to study both the dynamics and low energy properties of many-
body quantum systems, which are usually inaccessible classically due to the exponential dimension of the underlying Hilbert
space. Quantum computers do not suffer from this representability problem, as one can store states in a number of qubits
that only scale logarithmically with that dimension. This fact can be used to develop very efficient algorithms to simulate the
dynamics of quantum systems.?”® However, preparing certain physically relevant states, like the ground state of a many-body
Hamiltonian, may be significantly more difficult. This can be seen as a consequence of ground state preparation likely being hard
in full generality, as indeed many variations of ground state energy problems have been proven to be complete for the class
QMA.7 Nevertheless, preparing ground states of Hamiltonians has profound applications in several fields of science so that more
efficient quantum algorithms than the ones existing®'° are highly desired. This could allow one, for instance, to prepare the
initial states that are required to simulate quenches in quantum many-body systems, thus enabling the study of many intriguing
and not fully understood phenomena, such as many-body localisation'' or the presence of thermalisation in closed systems,'?
with quantum computers. The other applications include single-copy tomography's and the construction of QMA witnesses.?
Furthermore, the ability to determine the ground energy of a Hamiltonian to a high precision also possesses many applications
in the fields of physics and quantum chemistry,'# and possibly even in quantum machine learning.’>

Most existing quantum algorithms for ground state preparation are based on one of two methods. First, one could naively
attempt to project a trial state |¢) onto the ground state by measuring the energy of |¢) using the phase estimation algorithm.®
The probability of success is proportional to |¢o|?, where ¢ is the overlap of |¢) with the ground state. Furthermore, straightfor-
ward application of phase estimation becomes expensive if a very high fidelity of the prepared state with the real ground state is
required. A second class of algorithms is based on variants of the adiabatic algorithm.’® Here, the target Hamiltonian H(l) is con-
nected to a trivial Hamiltonian H(0) via a path H(s), which is slowly changed from H(0) to H(1). The adiabatic theorem guarantees
that if the initial state is the ground state of H(0), which is assumed to be easily prepared, then for sufficiently long runtimes, the
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final state will be close to the ground state of H(1). Rigorous bounds'” on the runtime however depend inverse polynomially on
the minimum spectral gap along the entire path H(s), which is generally exponentially small and moreover extremely difficult to
calculate or bound in practice. Thus, adiabatic algorithms are often only employed as heuristic methods to first obtain a state with
(hopefully) non-trivial overlap with the ground state, which can then subsequently be used as the trial state in phase estimation.'®
This approach is expected to work significantly better than just using random trial states and is the current paradigm, e.g., for
quantum chemistry applications.'*

In this paper, we propose a quantum algorithm that significantly improves the part played by phase estimation in this
approach. More generally, we consider the problem of preparing a good approximation of the ground state from a given trial
state. We show that compared to using phase estimation, the runtime of our ground state preparation algorithm scales expo-
nentially better in the allowed error to the real ground state, and polynomially better with the spectral gap and the overlap
of the trial state with the ground state. We also show that, in case the ground energy is not known beforehand, the same
algorithm can be used to obtain a good estimate of the ground energy to a high precision faster than is possible with phase
estimation.

Unlike algorithms based on the adiabatic theorem, whose runtimes always depend on the minimum spectral gap along an
entire path of Hamiltonians, all algorithms analysed in this paper only require a lower bound on the spectral gap of the target
Hamiltonian. This is a significantly weaker assumption, and indeed, for many systems of interest such as in typical critical points,
this gap is known to scale only inverse polynomially with the system size.

The outline of the remainder of the paper is as follows: in Sec. II, we give an overview of the results and a high-level
overview of the ideas. In Sec. 11, we give the technical details of the algorithm in case the ground energy is known before-
hand. In Sec. IV, we present the technical details of the algorithm for both ground state preparation and high-precision ground
energy estimation, in case the ground energy is unknown beforehand. We close the main part of the paper with some conclud-
ing remarks and open questions in Sec. V. Appendix A analyses the cost of finding the ground energy with phase estimation.
In Appendix B, we demonstrate that if phase estimation is used for ground state preparation, an extremely precise estimate of
the ground energy is required beforehand, and analyse the cost of doing so. In Appendix C, we analyse the filtering algorithm
from Ref. 9. Finally, in Appendix D, we sketch an alternative approach (inspired by the “Chebyshev method” of Ref. 19) to the
problem.

Il. OVERVIEW OF RESULTS

Throughout this paper, let H be an N x N Hermitian matrix such that its spectrum is contained in [0, 1]. We assume that we are
given the ability to efficiently perform Hamiltonian simulation of H. More precisely, we require that e*1* can be approximated
to error € using O(Atpolylog(N, 1/¢€’)) elementary gates,?’ where A is the “base cost” of the simulation (e.g., if the simulation
algorithm works in the oracle model“ then A is the gate cost of the oracles). Let 1o be the lowest eigenvalue of H and |Ao)
be the corresponding eigenstate. For simplicity of notation, we will assume that 1 is non-degenerate (all results in this paper
trivially generalise to the case when Ao is degenerate, see Sec. V). Suppose that A is a known lower bound on the spectral gap
of H.

Suppose moreover that we are given a circuit C,, using ® elementary gates which prepares a trial state |¢). Let ¢o = (1o|¢)
be its (generally unknown) overlap with the ground state and y be a known lower bound on |¢o|. We will assume that y = e-C(°gN)
throughout this paper. Notice that this is an extremely weak assumption, indeed, this is satisfied even for random states with
high probability. The aim of this paper is to prepare a state e-close to |1p) by (approximately) projecting |¢) onto its ground state
component.

Throughout this paper, we will use the computer science convention for the big-O notation. We furthermore use O to
denote the complexity up to polylogarithmic factors in N, A™!, €71, |¢o|”}, and x~1. Our first result can now be stated as
follows:

Theorem 1 (Ground state preparation for known ground energy). Suppose that 1o is known to an additive precision of
O(A/ log ﬁ), i.e., there exists a known real number E > 0 such that |1y — E| = O(A/log ﬁ) with certainty. Then, an e-close state
to | 20){ Ao | can be prepared with constant probability in a gate complexity of

=~ A O]
O( Gold " %) ®
and using
O(logN +loglog é +log %) 2)
qubits. Moreover, a flag qubit indicates success.
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Although other quantum algorithms for this or similar purposes have previously been proposed,®'° to the best of our knowl-
edge, the algorithm in this paper, for the case of known ground energy, exhibits the best scaling for both the runtime and the
number of qubits amongst all existing algorithms so far (see Table I). For example, the common approach of combining phase
estimation with amplitude amplification?' has a runtime that is exponentially worse in e and moreover quadratically worse in
|#o| (see Appendix B). In fact, an inverse polynomial dependence on e is common to almost all algorithms that are based on phase
estimation.®'° To the best of our knowledge, the only exception is a filtering method proposed by Poulin and Wocjan,? which
was originally designed to quadratically improve the runtime dependence on |¢¢| to obtain a state with low expected energy, and
which, as we prove in Appendix C, can also be used to obtain the ground state with a runtime scaling that is polylogarithmic in ¢!
with a suitable choice of parameters. This however comes at the cost of requiring significantly more ancilla qubits, which makes
it challenging for early applications of small quantum computers.

The algorithm can also be adapted for the case when the ground energy is not known beforehand.

Theorem 2 (Ground state preparation for unknown ground energy). If the ground energy is not known beforehand and
x = e 008N the same task as in Theorem 1 can be achieved in a gate complexity of

[ A O]
(o= 1) ¥

and the same number (2) of qubits.

Provided @ is not too large (which can be assumed in most practical scenarios), our algorithm for the case of unknown
ground energy also has a better runtime scaling than naive phase estimation and uses significantly fewer qubits than an adaption
of Poulin and Wocjan’s filtering method? for this task [see Table II(a)].

Furthermore, for very small A, we show that alternatively, the scaling in A can be improved to ~1/A at the expense of wors-
ening the scaling in y by combining our algorithm with a prior run of phase estimation to first obtain an estimate of the ground
energy.

Theorem 3 (Combined algorithm for ground state preparation). If y = e~(1°¢N), the same task as in Theorem 2 can be achieved
in a gate complexity of
5 ( A A @ ) @

VAr VA2 * N
for any choice of « € [0, 1], and the same number (2) of qubits.

In particular, choosing « =1in Theorem 3 yields the optimal scaling in A of ~1/A.

We show moreover that, with high probability, the algorithms for the case of unknown ground energy also find the ground
energy to a precision of O(A). Since A can be any reliable lower bound on the spectral gap, this yields a general algorithm for
estimating the energy.

Theorem 4 (High-precision ground energy estimation). Let & = O(4). If x = e~C1°¢N) then we can find a real number E such
that |E — 29| < & with constant probability in a gate complexity of

lm* ve) ®

TABLE I. Algorithms for ground state preparation for the case when the ground energy is known beforehand to the required precision.

Preparation (ground energy known) Gates Qubits Required precision
~ A (o) 1 1 ~
This paper O +— OllogN +loglog — +log — o
pap (|¢0|A |¢>0|) ( g rloglog gA) (@)
Phase estimation + amp. amplif oA i) O(logN +log 1, log l) O(|¢poleA)
pampi ol2Ae 1ol e °A 0
1
(A O 1 log¢ 1 ~
Filtering (Poulin and Wocjan O —— +— O[logN +log = + ——*<_ xlog — o
g fan) (|¢0|A |¢>0|) ( N8 loglog L gA) )
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TABLE II. Algorithms in case the ground energy is not known beforehand. (a) Algorithms for ground state preparation. (b) Algorithms for estimating the ground energy to a
precision of & < A. The minimum label finding algorithm is a subroutine that we describe in Sec. |\ A. The combined approaches have been adjusted to yield the optimal
scaling in A and &, respectively.

Gates Qubits
(@) Preparation (ground energy unknown)
. ~[ A (0] 1 1
This paper O()(AB)/2 + X\E) O(logN +loglog . log K)
Phase estimation + min. label findin O( A 9) O(lo N+log L +1o l)
' g xiAe x g g € J A
[ A o 1 logc 1
Filtering + min. label findin, (0] +— OllogN +log = + ——*¢_ xlog —
& & (XAS/z X\E) ( & & loglog - gA)

Combined approaches

This paper + phase estimation

O
E
| &

O(logN+log£ +log%)

XA x
) log -L
Filtering + phase estimation O(L + 9) Ol logN +log 1 + & x log 1
A x € loglog - A
(b) Ground energy estimation
~ A () 1
This paper O( +—) O(lo N +lo f)
pap X&32 xVE & £z
o . . A @ 1
Phase estimation + min. label finding O(— + —) O(logN +log f)
X x £
[ A @ log + 1
Filtering + min. label findin, Ol —&%5 +—= O|logN+ —* _ xlog —
& & (st/z X\E) ( & loglog + gf)
Combined approaches
This paper + phase estimation O(L + 9) O(logN +log l)
papertp X3¢ x 3
(A D log + 1
Filtering + phase estimation O(— + 7) O|logN+ —* _ xlog —
X3¢ x loglog L 3

using O(log N + log £~1) qubits. Alternatively, the combined approach of Theorem 3 achieves this task in a gate complexity of

~ A A [0
O(X3§K * e * Xé:(l—x)/z) (6)

and the same number of qubits.

Provided that @ is not too large, this also scales better than performing the same task with phase estimation and amplitude
amplification [see Table II(b)].

In terms of query complexities, the coefficients of ® and A in Tables I and II are, up to polylogarithmic factors, the number of
calls to C and (unit time) Hamiltonian simulation, respectively. Note that the qubit requirements stated in Tables [ and 11 exclude
ancilla qubits required to perform Hamiltonian simulation.??

Our algorithms are inspired by classical power iteration methods.?®> They are based on techniques (termed the
“Fourier method”) that were recently developed for the quantum linear systems problem'® and are based on the obser-
vation that the Linear Combination of Unitaries, or LCU Lemma,* can be used to implement other functions of a
Hamiltonian.?#
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We now briefly outline the basic idea of the algorithms. It is easy to see that for positive-semidefinite H with non-degenerate
lowest eigenvalue 0, high powers of cos H approximately project any given state into a state proportional to the unique ground
state of H. In case the ground energy of H is known, H can be easily transformed into another Hamiltonian H such that |14) is the
unique eigenvector of H of eigenvalue ~0. The outline of the algorithm in that case is as follows:

1. Approximate cosM H as a linear combination of terms of the form e-H,

2. Using the techniques in Ref. 19, we implement this linear combination with some amplitude using Hamiltonian simulation
and the LCU lemma.

3. We use amplitude amplification to boost the overlap with the target state. Alternatively, the fixed point search algorithm?>
can be used for this step.

The outline of the algorithm in case the ground energy is unknown beforehand is as follows:

1. Adapt the previous algorithm into a circuit controlled on an ancilla register |E), which runs steps 1 and 2 of the previous
algorithm, assuming that the ground energy were E.

2. Divide [0, 1] into L = O(A~!) equally spaced values Eo, .. ., E__;. Run the algorithm with VLT Z|EJ-) on the ancilla register.

Use the minimum label finding algorithm (Sec. IV A) to search for the smallest j such the residual state of |E;) has large norm.

4. When this search succeeds, then with high probability the resulting E; is within £ of the true ground energy and the residual
state is a good approximation of the ground state.

w

The outline of the combined approaches is as follows:

1. Use phase estimation and amplitude amplification to obtain a “crude” estimate of the ground energy. This provides an
interval I which is known to contain the real ground energy.
2. Take L ~ |I|/¢ equally spaced values Eo, Ey, .. ., EL_1 in I, and run the previous algorithm with these values of E;.

I1l. ALGORITHM FOR THE CASE OF KNOWN GROUND ENERGY

In this section, we present the main technical analysis of our algorithm and prove Theorem 1. The method presented here is
based on the observation that if the ground energy of H > 0 is close to 0, then high powers of cos H are approximately proportional
to projectors onto the ground state:

Lemmal LetE € [0, 1o] and 7 < [0,1/2] be arbitrary, and let H := H — (E - 7)1. Then

cosM H|¢)
————— — [20)|| = O(e), 7
‘ TcosHigy ~ 1) = O @
provided that
1 1
M=Q(—log ——|, 8
(A(T+5E) o8 |¢0|6) ®
where 6 := A9 — E.
Proof. We have
My
Hlo) = M L _cosTH s )
cos™ H|¢) = ¢ cos (T+6E)(I/lo> e CosM(‘r+6E)| ) ©)

The norm of the second term is bounded by [pol e~ ¥M(T+4E)8) Indeed, since cos x is concave and decreasing on [r, 1+ 7],

cosMH N cos(r + 6g) — sin(r + 6g)A \M

— b < , (10)

cosM(z + &g) cos(t + Jg)
= (1-tan(r + 6g)A)M, (1)
— e*Q(Mtan(T+6E)A) — e*Q(M(T+6E)A)’ (12)
where in the last step we used tanx > x for x € [0, 1+ 7]. Thus, Eq. (8) implies Eq. (7). m|

Note that 6 is not required to be small in Lemma 1.
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Proof of Theorem 1. Suppose that the value of 1 is known to a precision of 6 = O(A/ log ﬁ) with certainty, and let E be a

known value such that 0 < E < 2y and 6g := Ap — E < 6. Define H := H - (E - 7)1 for some small value of  chosen below. Then,
|10) is the (unique) ground state of H with eigenvalue r + 65, and by assumption all other eigenvalues of H are >7 + §g + A. Using
Lemma 1,

cosM H|¢)
——— — |20)|| = O(e), 13
‘”costM o=@ 3
provided that
1 1
M=Q——log ——|. 14
(A(r+6E) & |¢0|6) %
On the other hand, using that cosx > 1 - x?/2,
M
cosM(z +65) > ( ( ‘5’5) ) (15)
—e T+6E)2M) (16)
Thus,
I cos™ Hig) Il = Q(Igol), (17)
provided that 7 + 6; = O(1/VM). Hence, since by assumption &g < &, choosing
T=0 A I (18)
log e
and
M=o (— log? = ) (19)

satisfies both (13) and (17).

Our aim in the following is to prepare cosM H|g¢). The strategy we employ is as follows: First, we approximate cosM H as a
linear combination of few unitaries of the form e~ for suitable values of t,. Second, we implement this linear combination with
some amplitude using Hamiltonian simulation and the LCU lemma.“ Third, we use amplitude amplification or fixed point search
to boost the overlap with the target state.

In the following, assume for simplicity that M = 2m is even (the algorithm can be adapted to odd M with minor modifications).
Observe that

2m

ix —ix m 2 .
cos®™x = (—e +2€ ) =27m ) ( m )ez‘kx. (20)
Note that

2-2m Z ( ) < emo/4m, @

k=mg+1

Indeed, the LHS is the probability of seeing more than m + m( heads when flipping 2m coins, and (21) follows from the Chernoff
bound. Thus,

mo
os?H= % aye H+0(ye), (22)
k:—mo
where
2m
— 2—2111 2
ay (m N k) (23)
and
3 1) 1, 301
m0—®(1fMlogX6)—®(Alog ) (24)
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Next, e~2Hk can be implemented using Hamiltonian simulation algorithms. To implement the RHS of (22), we employ the LCU
lemma: let B be a circuit on b := [logz(2mg + 1) ] qubits that maps 10)®P to

mo

B|0)®P = Z Valk), (25)

k —Mo

where a = 3,° ' m, @ and let U be the controlled Hamiltonian simulation Ulk)|¢) = [kye2iHk | ) Then,

. 1 & ;
(B" e DUB e Nie)= —10)* > ae?ig)+IR), (26)

k=—-mg

where (]0)(0/®® ® 1)|R) = 0
The final step of the algorithm is to boost the overlap with amplitude amplification or fixed point search. Measuring the
ancillas will then project the state onto

—-2iHk
Zk_ mo e v |¢>

1) = A 27
O IERe,,, ae Ak )] 7

with probability close to 1. From (22),

I, @ke M [8) 2m
k=—mg . _ cos2 Hig) +0(e). (28)
I Zk:_mo are 2ifk|g)|| || cos™ HIg)]|
Thus, (13) implies

125} = 120) + O(e), (29)

as required. Eq. (17) implies that the number of repetitions is O(a// I Z’"O ape~2iHk |¢)||) = O(a/ o).

We now calculate the gate count of the entire algorithm. First note that B can be implemented with O(2%) = O(my) elementary
gates.?® Next, the gate cost to implement e*?! to accuracy €’ in operator norm is O(A polylog(N, 1)), depending on the precise
model and Hamiltonian simulation algorithm used (see Table 1 of Ref. 6 for an overview). Here, we require € = O(e|¢o|/mo). Thus,
the gate cost of U is O(mgA polylog(N, = Ziay)) (Lemma 8 of Ref. 19). Note that Hamiltonian simulation with respect to H can be

trivially obtained from Hamiltonian simulation with respect to H, either by a phase shift or absorbing these phases into the values
of the ay,. Finally, note that & = O(1), and each iteration of amplitude amplification or fixed point search requires O(1) uses of Cy,
B, and U. The final gate complexity is thus

1 1 o
O moA polylo 0)+d>)) ( ol o( ,—)+—). 30
(|¢ |( 0RPOY g( €iool igod POV OB\ 3 Taole ) Tool (30)
Note that if fixed point search is used for the final step, we also require a good lower bound of |¢o|. However, we can simply
run the algorithm with O(1/x’) repetitions in fixed point search for y’ = 1,1, 1, ... until we successfully project the ancillas

into |0)®®*9. Indeed, this only results in an overall multiplicative overhead of O(log1/|¢o|), yielding (). Moreover, whenever we
succeed, the resulting state is | 1)) independently of the value of y” that was used. The number of ancilla qubits required is b plus
any ancillas necessary for performlng Hamiltonian simulation. Note that the number of ancilla qubits required for implementing
U is essentially the same as the number of ancilla qubits required for a single run of e*?H!, since the latter can be re-used. Thus,
the total number of qubits required is given by (2), plus any ancilla qubits required for Hamiltonian simulation (see also Table 1 of
Ref. 6). This proves Theorem 1. O

IV. ALGORITHM FOR THE CASE OF UNKNOWN GROUND ENERGY

The algorithm of Theorem 1 presented in Sec. 111 requires an estimate E of 1 to a precision of O(1/YM). Since E can simply
be viewed as an input parameter, the algorithm can in principle also be run with different values of E. It is easy to see that for
any E € [0, A¢], the algorithm would, if successful, produce a good approximation of |1p) but may have an exponentially small
probability of success. Thus, if the ground energy is not known beforehand, one could simply run the algorithm for increasing
values of E, using a step size O(1/VM) and stop when first successful. It is moreover easy to see that the value of E at which we
first succeed is with high probability a good estimate of 1. Clearly, the runtime of this algorithm would result in an overall factor
of O(¥M) = O(1/A) compared to Eq. (1).
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It turns out that this “classical search” for the correct value of E can be replaced by a “quantum search” that quadratically
improves the overhead from O(VM) to O(YM). We call this search the minimum label finding algorithm, which we describe in
Sec. IV A as a general subroutine, and which may be of independent interest. We then apply this algorithm to the ground state
preparation and ground energy estimation problem in Sec. IV B.

A. Minimum label finding

In this section, we describe a general subroutine to find the minimum “label” in an ancilla register amongst terms with at
least some given amplitude in a given superposition. To motivate this result, consider the following scenario. Suppose we have
L unitaries Uy, ..., U1 that prepare the states U;|0)|0) = |0)|®;) + |R;), where (J0)0| ® T1)|R;) = 0. Let x € (0, 1) be a known real
number. Suppose we want to approximately find the smallest i (or alternatively, prepare the corresponding |®;)) such that |[|®;)||
> x. The naive way to do this is to use amplitude estimation (or fixed point search) to increase the amplitude of |0) on the first
register of U;|0)|0) for i = 0, 1, ..., each time using only O(1/y) repetitions of U;, until we first succeed. This requires O(L/x)
calls to the individual Uy’s in total. Below, we show that a quadratic improvement in L to O(VL/x) can be achieved, provided that
performing the controlled version U = }};]i)(i| ® U; can be done with essentially the same cost as the individual U;’s. The algorithm
is based on a simple binary search technique to successively find the binary digits of the smallest “label” i amongst the terms in
the superposition VLT|0) i1y |®;) + [R) with a norm of at least y/VL.

Proposition 1 (Minimum label finding). Let Co be a circuit on q + n + m qubits that prepares the state

2"n-1
@) = Ca|0)*@™™ = 0)°1 3" [i)|@y) + IR), (31)
i=0

where |®;) are non-normalised m-qubit states and |R) has no overlap with |0)®1 on the first q qubits. Let £ € (0,1) and 6 € (0, 1/4) be

known real numbers, and let J,J € {0, ...,2" =1} be (unknown) integers such that |||®;)||> ¢ and
! o
D) |I* < &2 , -
Z(; 1 8nlog, % In’ (% log, ) (32)

Then, there exists a quantum algorithm on q + n + m + 1 qubits which, with probability at least 1 — 45, prepares the state |j)|®;)/|[|D;) ||
for some j € [1,J], and which uses

n n
O(Z log® 5) (33)
calls to Cp and

O(poly(qv n,m) log? E) (34)

l b
additional elementary gates.

Note that at the end of the algorithm, the register containing j is in a computational basis state and that the state |®;)/[||®;) ]
is prepared exactly.

The minimum label finding algorithm uses the fixed-point search algorithm,?> which can be thought of as a variation of
amplitude amplification, with the additional features that it is not possible to “overshoot” the target state, and that only a lower
bound on the initial overlap is required to be known. More precisely, let C be a circuit on n’ qubits that prepares the state
Cl10y®"™ = A|T) + V1 - 22|T) with (T|T) = 0, and U be a unitary that satisfies U|T)b) = |T)|1 - by and U|T)b) = |T)[b) for b < {0, 1}.
Then, given input parameters ', § € (0, 1), the fixed point search FPS(C, U, ', §) is a circuit on n’ + 1 qubits using O(log(1/5)/’)
calls to C,C", U and O(n’2 log(1/5)/X') elementary gates such that the following hold:27

Lemma2. (i) If 2>, then [(T,0|FPS(C, U, X, 8)[0y°"* )2 > 1 52,
(ii) If 2 <, then [(T,0[FPS(C, U, X, 5)|0y*™*) <24 In £,

Proof. Part (i) is the central result proven in Ref. 25. To prove part (i), let t := [ 1 In % 1 be the number of calls to C. From
Eq. (1) of Ref. 25, the success probability P can be expressed in terms of (generalised) Chebyshev polynomials T¢(x) of the first
kind,
2

P := [(T,0|FPS(C, U, ', 6)|0)*" V2 = 1 - 62T; (7{ (/SN = ,12) (35)
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2
Without loss of generality, assume thatt > 5, so t(t +1) < 2(/11 In %) . It thus suffices to prove that P < 2t(t + 1)2%. Write 2 = sin#
and 7 := T1,(1/8) = cosh(t ! arccosh(1/6)) > 1. Note that 7¢(r) = 1/6. Then, using the mean value theorem on the function 7¢(x)?, we

obtain
_,_ Tz cos6)*
P=1-—F o (36)
=7(l-cos 9)%, 37
= tr(1 - cos 6) —27?%)3;;@) (38)

for some £ € [r cos 6, 7], where we used that T (x) = tl;_(x) and Uy(x) are the (generalised) Chebyshev polynomials of the second
kind. Note that since = > 1and & < 7, |T(¢)| < Ti(r) and [Ui1(€)| < Upa(7). Indeed, both Ti(x) and U_1(x) attain their maximum
moduli on [-1, 1] at x = 1 and are monotonically increasing on [1, o). Finally, using the relations
1+2 5% T(7), t even,
Uy(r) = (39)
2540 Town(®),  todd

and 0 < T (7) < Tp(r) for k’ < k and = > 1, we obtain

27Uy () = Ue() + U2 (7) < 2Ur(7) < 2(t + 1) Te(7). (40)
Hence,

P < 2t(t +1)(1 - cos §) < 2t(t +1)sin® 6 = 2t(t +1)4?, (41)
as claimed. O

Proof of Proposition 1. The algorithm proceeds by successively attempting to find the binary digits ay, ..., an € {0, 1} of an
integer such that 2"la; + - - - + a, € [J,J]. The algorithm runs in two stages. Broadly, the first stage of the algorithm tries to find a
sufficient number of leading digits ay, . . ., a;, while the second stage then attempts to prepare the state |j)|®;) for some j € [7,7].
Concretely, the algorithm runs as follows: in the first stage, suppose that ay, .. ., a,-1 have already been found. To obtain a;, we
use fixed point search?> to search for |0)®1|a; . .. a;-10) on the first q + k qubits, using at most O(% log %) repetitions of Cop. We
repeat this search K times. We choose &’ = 6 /(2nlogs(n/5)) and K = [loga(n/6) 1. If it succeeds all K times, we set a, = 0 and
move on to the next digit a,+ (unless k = n, in which case the algorithm terminates). Otherwise, we search K times for [0)®9|a; .. .
ag-11) on the first q + k qubits. If we succeed all K times, we set a; = 1 and move on to the next digit az. (unless k = n, in which
case the algorithm terminates). If we fail at least once, we say that the result is “inconclusive,” and we abort the first stage of the
algorithm and move on. In the second stage of the algorithm, we successively search for [0)®9|a; ... ag-1), [0)®9a; . .. ak-2), etc.,
where each search is repeated K times, using O(% log 1) calls to Co, until we succeed at least once. Once successful, we measure
the remaining ancillas and the algorithm terminates.

We now show that this algorithm produces the required results. Let ] = 2"~1b; + 2"=2py + - - - + b, and J = 2" ¢ +2"2¢, +- - -+cy
be the binary representations of I, J, respectively. Let iy be the maximum integer such that b, = ¢; forall [ =1, ..., iy. Since J < J, it
follows that ip < n and bj 41 =1, ¢i;+1 = 0. Moreover, we say that binary digits aj, . . ., a; are “consistent” if they are the dominating
k binary digits of at least one integer in [J,J].

Let a4, .. ., a; be the digits that the first stage of the algorithm finds, and let i; < k be the largest integer such that a; = b; for |
=1, ..., 1. We first show that with probability at least 1 - 26, we find k > iy + 1 consistent digits (implying i; > i) and either k > i
or k = n. For a given k’, the probability of finding a,’ such that ay, .. ., @, are not consistent, given that a, . . ., a;’—; are consistent,
is at most § /n. Indeed, finding too large a value means that a; =b; for[ =1, ..., k" - 1, by = 0 and finding a,’ = 1. The probability
of this happening is bounded by the probability of the algorithm failing to find |0)®9|b; .. . by-—10) at least once out of the K trials,
which is at most ¢’?K < 6 /n.25 On the other hand, from Lemma 2(ii), using 2’ = ¢, the probability of finding too small a value for a
single trial of the search is upper bounded by

4?2 J
5 2
7 DlepI® <6. (42)
j=0
Thus, the probability of finding too small a value is at most 6X < § /n. Note that since ay, . . ., a,'—1 are assumed to be consistent,
this can only happen if by = 1.
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Moreover, if a; = by for[ =1, .. ., k" — 1, the probability of finding an inconclusive result for a; is at most 6’>°K < & /n. Thus, with
probability at least
1-n(max(6°K, 6¥) + 62K) = 1- 26, (43)
the first stage finds consistent digits ay, . . ., a; with the following property: either the algorithm that never finds an inconclusive
result (i.e., k = n) or the algorithm that finds a; = b; for l =1, .., i; for some i; > ig, does not find an inconclusive result on a; +

(which implies k > i;) and later finds an inconclusive result at a+;. Indeed, in the LHS of Eq. (43), the two terms inside the max
correspond to finding a wrong digit leading to an inconclusive result, and the last term corresponds to finding an inconclusive
resultatk <igork=1i; +1.

In the following, we bound the probability of the algorithm failing in the second stage. This can happen in two ways. First,
fixed point search could successfully find |0)®9|a; . . . a;) for some [ > i;, but, upon measuring the remaining ancillas, we get a value
ofj¢ [j,J]. Second, fixed point search could fail to find [0)®?|a; . . . j41).

We now address the first way of the second stage failing. Suppose that in the first stage, we found k > iy + 1 consistent digits
and then found an inconclusive result. We can thus assume k > 1; > iy. Clearly, a;+; = 0 and b;+; =1, since ay, . . ., a; are consistent.
Thus, for all | > 1y, if the algorithm successfully finds |0)®9|a; ... a;), then upon measuring the other ancillas, we obtain a value
j<l.

We now show that for a single trial, the probability of first successfully finding [0)®4|a; ... a;) and then finding j < J upon
measuring the remaining n — [ ancillas is at most 6 /nK. Let A; be the event that a single trial of fixed point search successfully
finds [0)®9]a; . .. a;), and let B, be the event that measuring the remaining ancillas then yields j < J. Write & := 2"~a; + 2" 2a,_»
+... + 2 lg; and

a+2n-1
A=) eplt. (44)

Jj=a

2
Suppose first that 4; < ¢. Then, using Lemma 2(ii) with 2’ = ¢, we have P(4)) < 4;—12 In? 2 and

P(B1A) = %i 1)1, (45)
1 j=
Hence,
2 F_
P(A N B)) < 4122% i Hepl? < % (46)
as claimed. On the other hand, if A; > ¢, then o
1 & s
P(A N B) < P(BiIA) < _ZJZ[ Hopi? < —. (47)

as claimed. Since there are at most nK points in the algorithm where the event A; n B; can occur (K times for each value of l), the
probability of finding j < J in the second stage for some [ > i; is at most &.

The last possibility for the algorithm to fail is if the algorithm fails to find |a; ... a;+1) in the second stage. Note that this is
only possible if the algorithm does the following: in the first stage, we find aj, ..., a; for some k > i, and then in the second
stage, we fail to find |0)®9|q; . .. a;) on K trials, then fail to find |0)®9|q; . .. a;-1) on K trials, etc., until ultimately we also fail to find
[0Y®]ay . . . ai+1) on K trials. Call this event C;,. Let p;, be the probability of a single run of the search finding [0)®]a; . . . ai+1). Note
that C;, includes both successfully finding aj, . . ., a;,+1 K times and failing to find ay, . . ., a;+1 K times. Thus,

P(Cy) < pi(1-py)< <475 (48)
where we used that p(1 - p) <1/4 for p € [0, 1]. Thus, the probability of the algorithm failing in the second stage is at most

n-1
6+ > P(Cy) <5 +nd™ <26, (49)

i1=1o

where the first § comes from the upper bound on the probability of finding j < Jin the second stage upon measuring the remaining
n — l ancillas after successfully finding ay, . . ., a; for some [ > ;. Thus, the total probability of the algorithm failing is at most (43)
plus (49), as claimed. The number of calls to Cq and additional elementary gates is
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ofnkLiog L) = o 10g? ™ (50)
é« gé' - é« g (S ,
as claimed. o

Notice that if only the first ’ < n dominant binary digits of an integer in [J,]] are needed, n can be replaced with n’ in (32)
and (33). Moreover, it is clear that the £? dependence in (32) is optimal.

B. Proof of Theorems 2-4

With M and 7 defined as in Sec. 11, let L = ©(VM) be a power of 2 and define E; := j/L. Clearly, Ej,; — E; € O(1/VM). Define &;
=0 - Ejand Hj := H - (Ej - 7)1. Let ] € {0, ..., L — 1} be the largest integer such that E; < 4. Clearly, 5; € O(1/VM). Using the
construction from Sec. 111, we have unitaries V; such that

V;10)°0* D¢y = 10)°"*DG; ) + R, (51)
where
1 B .
gj - - Z a,ke—Zlij (52)
@ k=*m0

and (]0)(01*"**? g T)|R) = 0. The gate cost of a single Vj is given by
~[A
O(Z)' (53)

We now introduce an additional ancilla system £ on | := [log; L] qubits. Let V be the Vj’s controlled on L, ie.,
V = 2113l ® Vi Then,

18
VI+)210°0 gy = — 3" [1)£10)°VGj1g) + IR), (59)
VL &

where (1, ® [0)(0]°®*9 @ 1)|R) = 0. From Lemma 1 and (22),

Gijle)
1G5 1)1l

- |/10>H = O(e), (55)

whenever Ej < 1, and [|Gj$)|l = © (g0l cos(r + &)M). In particular, [|Gyl¢)I| = Q(Iol)-
We now show that we can use the minimum label finding algorithm to project (54) onto the state |j) ng |p)/ ||Qj |¢)y || for some
j € [J,7] and suitable J. Indeed, for any integer J,

J
DG I8 = O(

i

2., 190l cos(r + 5)’)2M) (56)

j=0 j=0
j 2
= O(I¢o|2 Metrra) M) 7
j=0
i
= O(|¢o|2 D e”f’M) (58)
j=0
j .
= o(|¢0|2 D e L)TM) (59)
j=0
_ O(|¢0|26—2(/1073/L)7M) (60)
= O(Igol?e 2o™M) (61)
= O(Ipof2e-Oe™), (62)
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where the last step follows from (18). Thus, since y is a known lower bound on |¢¢| satisfying log(|¢o|/x) = O(log N), we can ensure
that

i 2
IG;1e)I% = O X< : (63)
; LlogLlog <= loglk logz(lofL log logL)

provided that

2
5 = (\/__1 g( 1901 1og L 1og leogZ(loleoglofL))) = 6(A). (64)

To prove Theorem 2, observe that using Proposition 1 with ¢ = x/VL, n = logL, and 6 = €/4, we can, with probability at least
1- ¢, prepare the state |j).Gjl¢)/1G;|)|l for some j € [J,7] using O(VL/x) repetitions of V and C,. The value in the L register gives
an estimate of the ground energy to a precision of (64). Since this process succeeds with probability at least 1 — ¢, (55) implies that
the second register then contains a (mixed) state that is O(e)-close to [ 2)( g |.

Notice that V can be implemented with essentially the same cost as a single V;. Indeed, the only explicit dependence of V; on

j is in the call to Hamiltonian simulation, e*2H = ¢*2ir-E)ex2iH Thys, given access to e*2 it is easy to implement
11 L1 . N
D)iXil @ e = 3 || @ el EexaiH (65)
j=0 j=0

with a single call to e*2H and O(logL) = O(1) additional elementary gates implementing the phases e*2(*~E)

gate cost of this algorithm is
~ (VL (A )) ( A @ )
O == +|]|=0] — + —, 66
( x \A XA A (66)
as claimed. This proves Theorem 2.

To prove Theorem 3, one can alternatively combine the algorithm of Theorem 2 with the prior use of phase estimation. This
approach improves the scaling with A at the cost of a worse scaling in y and is hence useful if A is very small.

First we use Proposition 2 from Appendix A with 6 = € to obtain a “crude” estimate of the ground energy, to a precision of
& = O(A%) for some « € [0, 1] to be chosen later. The runtime of this is

O(X;‘AK . %) (67)

. Hence, the overall

gates (see Appendix A). With probability at least 1 —¢, this provides us with an interval [a, b] 3 1p with b — a = O(A¥). Let
Ef = a+ (b - a)j/L’, where L’ = ©(VMA®). Writing H; = H- (E~7)1 and

Z age 2, (68)
k_—mo
we run the previous algorithm but with
=
Vs [0)20°0 ) = T D 102G ) + R) (69)
j=0

instead of (54), and an ancilla system £ on I’ = [log, L’ qubits instead of L. Since the use of Proposition 2 succeeds with
probability at least 1 — €, an additional error of only O(e) is added to the final (mixed) state.

The algorithm now requires O(VL'/x) repetitions of V” and C,. As before, the cost of V' is given by (53). Hence, the number
of gates for projecting (69) onto the target state is

~( VL' (A (A D
O(T(z”’) :O(XA@—KW +XA<1—~>/2)' o
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The total number of gates for the algorithm is thus (70) plus the gate cost (67) from the prior use of phase estimation, i.e.,

~ A A ]
O(X3AK * YAB/Z + VA2 ) (M)

This proves Theorem 3.

Finally, to prove Theorem 4, it is easy to see that both algorithms can be used to estimate the ground energy to an arbitrarily
small precision ¢. Indeed, note that both algorithms, with constant probability, find Ay to a precision of &; given by Eq. (64), and
the latter depends on the input parameter A. However, for the algorithms to function, A is only required to be a lower bound on
the spectral gap rather than the spectral gap itself. Hence, if we run the algorithm with A’ < A instead of A as the input parameter,
we obtain an estimate of the ground state to a precision of §(A’), where §(4’) is given by Eq. (64), but with A replaced by A’. The
algorithm can thus be used to estimate the ground energy to an arbitrary precision ¢ in a gate complexity of

A )
O ——— + — 72
()(f’?’/z +XV§’) (72)

for the first algorithm and

=~ A A D
O(X?’Af”( + Xé':/(S—K)/Z * Xé:/(l—x)/Z) (73)

for the combined approach, where ¢’ = min(¢, 6;). This proves Theorem 4. O
Note that choosing « = 1in the combined algorithm gives the optimal scaling of ~1/A with A. However, it is obviously also
possible to choose different values of « that also take the other parameters into account.

V. CONCLUSION

In this paper, we presented quantum algorithms to prepare the ground state of a Hamiltonian faster and with fewer qubits
than with previous methods, both in the case of known and unknown ground energy. In the latter scenario, the algorithm
also provides a high precision estimate of the ground energy in a complexity faster than with phase estimation and amplitude
amplification.

Perhaps surprisingly, the straightforward use of phase estimation and amplitude amplification has a significantly worse
scaling in the overlap of the trial state with the ground state than what one would naively expect. In Appendix B, we show that
straightforward phase estimation requires

O(L ® ) (74)

+ —
[pol2Ae ool

gates to prepare the ground state, provided the ground energy is known to a precision of O(|¢o|eA) beforehand. Notice in par-
ticular the 1/|¢o|? scaling, even after using amplitude amplification. The scaling becomes even worse if the ground energy is not
known beforehand [see Table II(a)].

Previous improvements by Poulin and Wocjan® to the phase estimation approach quadratically improved the dependence on
|#o|- Moreover, we prove in Appendix C that for suitable choices of parameters, this algorithm can prepare the ground state in
the same runtime as our algorithm. The algorithms in this paper however use significantly fewer qubits, which make them more
attractive for early applications of quantum computing.

In the case of known ground energy, no non-trivial prior knowledge of the value of |¢¢| is required for any algorithm discussed
in this paper (although for the filtering method, the number of qubits required becomes worse if no non-trivial lower bound is
known). However, in the case of unknown ground energy, the runtime dependences on |¢¢| are replaced by dependences on
the known lower bound yx of |¢o|. There appears to be a systematic reason for this which seems difficult to overcome: broadly
speaking, all methods discussed in this paper produce a state of the form }};|E;)|®;), where |®;) is approximately proportional to
the ground state and [[|®;) || = |pol if Ej ~ Ao, and [||@) || < |¢po] if Ej < 2. Suppose that /lg),/lgz), ¢g),¢f)2) are real numbers in [0, 1]
satisfying /lg) < /lgz) and qbg) < ¢f)2). Any search for the “correct” value of j needs to be able to distinguish the following two cases:
(i) 20 = /18) and ¢g = ¢g), and (ii) 2o = /12)2) and ¢g = ¢(()2). Any use of amplitude amplification to distinguish these cases would require
many, i.e., O(l/qbg)) repetitions to “see” if (i) is the case, which means that if in fact (ii) is the case, significantly more repetitions

than O(l/q’:f)z)) have been performed. On the other hand, if only O(l/q&g)) repetitions are performed, one would accidentally find a

much larger value (e.g., Ag)) than the true ground energy /lg) (and hence also prepare the wrong state) if in fact (i) is the case. We
currently do not see a way to get around this problem.
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For simplicity of notation, we assumed throughout this paper that the ground energy of H is non-degenerate. The algorithm
however trivially generalises to degenerate ground spaces. Indeed, the only thing that changes in this case is that the resulting
state |2;) is e-close to |1p) = P|¢)/||P|¢)|l, where P is the projector onto the ground space of H. The algorithm also generalises to
the case of only approximately degenerate ground spaces, i.e., when the spectrum of H is contained in [1g, 1o + £] U [0 + A, 1]
with & < A.

Finally, given the close relation of this work to Ref. 19, it is also natural to expect that the alternative approach of Ref. 19
using Chebyshev polynomials and quantum walks can be used to get a different algorithm with the same runtime scaling. This is
indeed possible, as shown in Appendix D. These algorithms however are restricted to the case where H is a sparse Hamiltonian
with quantum oracle access. By contrast, the advantage of the approach based on Hamiltonian simulation is that it can be applied
outside the framework of given oracle access to H, as efficient Hamiltonian simulation algorithms exist for other models of
accessing the Hamiltonian.>6
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APPENDIX A: FINDING THE GROUND ENERGY USING PHASE ESTIMATION

We now demonstrate how to combine phase estimation and the minimum label finding algorithm to find the unknown ground
energy of a quantum Hamiltonian to a precision of ¢ in a gate complexity of

é()% . ;i(’) (A1)

with probability at least 1 — &, where & € (0, 1) is a real number and we assume throughout this section that polylogarithmic
factors in 671 are suppressed by the O notation. Notice that straightforward amplitude amplification cannot be used to amplify
the ground energy since the latter is not known.

Let U be an N x N unitary with eigenvectors | ;) and eigenvalues e?*i with 4; € [0, 1). We are interested in finding a good
approximation of the minimum value 29, say, to n = [log, 1/£ 1 binary digits of precision.

Let |¢) = ¥ ¢il4;) be an arbitrary trial state. Suppose that we are given a circuit C, which prepares |¢) using ® elementary

gates. Recall that the phase estimation algorithm?® takes |¢) |0)®* for some k > n to

@)= D il )10 (A2)
i
using controlled U, U?,.. ., U and an inverse quantum Fourier transform on k qubits, where |¢;) can be shown to have a large
overlap with the computational basis state that encodes the first n binary digits of ;.
Let
2k-1
IGi) = > vixl) (A3)
x=0
be its expansion in the computational basis. Then,
2k-1
@)= > [0)Ix), (a4)
x=0
where
|Dx) = ) bivicl i) (AS)
i

are non-normalised states.

Naively, one would expect that simply measuring the ancillas would give a good approximation x ~ 281y of the ground energy
with probability ~|¢|? so that O(1/|¢o[?) repetitions would be needed to find the ground energy. One would also expect that this
could be quadratically reduced to O(1/|¢|) using suitable amplitude amplification techniques. However, we show below that the
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overall gate cost is much higher if the ground energy is not known beforehand. Indeed, due to the finite precision and error in the
phase estimation algorithm, |||®,)||> could in principle be large even when x < 2f1,. This means that the algorithm could fail by
accidentally finding a value that is much smaller than the true ground energy. We show below that in order to guarantee that this
does not happen, one needs to choose 2k = O(2" /|¢¢|?). Since the runtime of phase estimation scales linearly with 2%, and only a
lower bound y on |¢g| is assumed to be known, this would lead to an overall runtime that scales as ~1/x3. We also demonstrate
at the end of this section that this dependence is essentially tight.

Proposition 2 (Ground energy estimation with phase estimation). Let § € (0, 1) be a real number. Then, in a gate complexity of
(A1) and using O(log N +log1/£) qubits, phase estimation can be used to find a real number E > 0 such that with probability at least 1
— 6, |E- 2| < &

Proof. Recall first the well-known?® relations

1/{1- eZm'(Zk/Ii—x)
Yix = ﬁ(l — eZmili—x/2%) (A6)
and
1
ix| £ ———. A7
[Vix| 2128 0; — x| (A7)
Let D := 28", Then, using (A7), we have
DomeolF = > Iyl (A8)
x<2k19-D i
x<2k19-D
2
< Z i) S — (A9)
: 212k, - x|
x<2k19-D
2
< D Il S S (A10)
- Y212k x|
x<2k29-D
1 2
< > b (A1)
k10—
x<2%19-D 212820 - x|
1 1
< — < =. (A12)
27 D
Moreover, when x satisfies |4; — x /2| < 1/2k1,
2
bixl = ~, (A13)
using that
16] > 1-e| >2|6|/x (A14)
for 0 € [-n, x]. Thus,
2
|||¢L2k,10w>“ > ;|¢0|~ (A15)

Let x be a known lower bound on |¢o|- Using Proposition 1, we can thus find an integer x € [LZk/lo] - D, [2*14 1] with
probability at least 1 — &, provided that 1/D = O(y?). The number of calls to phase estimation is O(1/x). The number of gates

required for each run of phase estimation is O(2¥A). Thus, taking U = e~27ifl and ¢ = 271 we arrive at a total gate count of (Al).

Moreover, the number of qubits required is O(logN + k) = O(logN +log1/£). O
_Itis not difficult to show that for suitable H and |¢), the dependence of this algorithm on y is optimal. Indeed, suppose that
H= zlk(H’ +cT), where ¢ € (0,1/2) is a constant and H’ is any Hamiltonian with integer spectrum in {2*-2, .., 281 — 1}, Then from
(A14),
2¢c
x| 2 ———. Al6
[yix| 21250 — x| ( )

Suppose that our trial state |¢) is such that |¢|* > 1/2. Then,
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DU oealt= Y il il (A17)
x<2k29-D i
x<2k19-D
c 1
> = —_— A18
T xd%:ﬂ |2k/11_x|2 ( )
z‘ul
= ( - Fdx> (A19)
- (2k(§+A /ll)) (A20)

Suppose now that A = O(¢) and & = o(1). Then

S leol? = Q( " é:) (a21)

x<2k19-D

which is much larger than y? unless 2% = Q()ﬁ), and the claim follows.

APPENDIX B: PREPARING THE GROUND STATES USING PHASE ESTIMATION

Naively, one would expect that upon successfully projecting the ancillas of (A2) into the first n (or even k) digits of Ay,
the residual state should be a good approximation of |1y), provided that & = O(A). Unfortunately, this is not true because the
“imperfections” in |¢;) build up to a non-negligible error in the residual state. This phenomenon was also observed in Ref. 9.
Below, we analyse these errors and show a non-negligible bound on the minimum precision to which the ground energy needs
to be known beforehand.

Proposition 3 (Ground state preparation with phase estimation for known ground energy). Suppose that the value of A is
known to a precision of O(|¢o|eA), i.e., there exists a known real number E > 0 such that [E — Ap| = O(|¢po|eA) with certainty. Then
phase estimation can be used to prepare a state e-close to the ground state with constant probability in a gate complexity of

~ A o
of —— + — B1
(|¢>o|2Ae+ |¢o|) (B

and using O(log N +log1/e +log1/A) qubits.

Proof. Suppose that z := | 2814 1, i.e., z encodes the first k binary digits of 1y (k will be specified below) and we apply phase
estimation on k qubits. Then, post-selecting the ancillas of (A2) to be in |z), the residual state is

i PiYiz | i)
A= —=———— | B2
. 124 Piviz | Il (B2)

Thus, the error in the residual state is

| Zizo diviz |l )
1Ay = 1) |l = 0| =—=—————|. B3
0 IZi ¢iviz o) (B3)
For1i# 0, (A7) implies that
[yizl < SRip (B4)
Moreover, (A13) implies |yoz| > 2/n. Hence,
(II 2iz0 PiYiz |l AWl )2 _ Ziz0 il izl (B5)
1% diviz Il i |il%lyizl?
1 2
< (—) . (B6)
7| pol2RA
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Thus, it is sufficient if k satisfies

2= O( |¢ol|eA) (57

for an error |||4) — |10)]l = O(€). Notice in particular the scaling with |¢¢|.

Suppose that the value of z, i.e., the ground energy to a precision of k binary digits, is known, where k is known to satisfy
(B7). The cost of a single run of phase estimation is C)(Zk/\), up to polylogarithmic factors. Fixed point search requires O(1/|¢o|)
applications of phase estimation and C,. We thus arrive at a total gate count of

k
()(2 A+cD) =()( A +i)’ (&8)
ol |pol?Ae ol

as claimed. O

Suppose next that the ground energy is not known beforehand. If phase estimation and minimum label finding (Proposition
1) are first used to find the ground energy, we require a precision of O(|¢¢|eA). Since |po| is not assumed to be known, we need to
run phase estimation to find the energy to a precision of & = O(yeA). Thus, from Proposition 2, the number of gates to first find
the ground energy to the required precision takes
~[ A P
O( + —) (B9)

xthe x

gates.

Corollary 1 (Ground state preparation with phase estimation for unknown ground energy). If the ground energy is not known
beforehand, phase estimation can be used to prepare a state e-close to |1 ){Ao| with constant probability in a gate complexity of

( A ®
O + — B10
()(4A6 )() (B10)

and using O(log N +log1/e€ +1log1/A) qubits.

We now argue that the dependence of 2% on |¢¢| in (B7), and thus the quadratic dependence on |¢g| in (B1), is essentially tight
for this algorithm. Suppose that

200, 12
2iz0 19il7lyiel” _

B11
i |3l lyizl? (1)
Then,
) 12y [2
62 > Zuto |¢12| |?’122| (BlZ)
i 19l yizl
. 12y [2
_ . Z1¢2() [#il* iz . . (Bl3)
[pol*lyoz|* + Zizo 10il* Vil
. 12y [2
> (1 _ EZ) 21¢O |Z’1| |71ZZ| (B14)
[pollyoz|
1
> (1-€)— > il el (B15)
|¢ol® £
Suppose that for alli 0,
T2k -2) > (B16)

where 7(x) = |x — | x1| € [0, 1/2], for some constant ¢ > 0. Notice that this can be achieved for any Hamiltonian of the form
H= %(H +cT), where H is any Hamiltonian with the integer spectrum. Then, using Eq. (A14),

1 {1 = e2rir("Ai-2) c
izl = ﬁ(1 _ e2ni(Ai-z/2) Z o1 (B17)
Thus,
2 2
ce(1-
2 x (1- eyl 19d]) (BI8)
451 gpg)2
Therefore, 2* = Q(; = ), and the claim follows.
ole
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One can also show that the linear dependence on 1/A is tight: if our trial state is |¢) = ¢o|20) + ¢1141) with 43 = Ay + A, then

(B17) can be replaced by
1 (1= e2nir(2k/11—z) c
el = §(1 itz | Z pakip (B19)

which follows from Eq. (A14). Thus, 2% = Q( 515 ), and the claim follows.

APPENDIX C: FILTERING METHOD BY POULIN AND WOCJAN

Previously, Poulin and Wocjan proposed a filtering method® as an improvement to phase estimation that only has an inverse
dependence on the overlap |¢o|. We briefly review this algorithm here and show that it can be adapted to achieve a runtime that
scales only polylogarithmically in the allowed error (the analysis provided in Ref. 9 only yields a state with low expected energy,
and only an error analysis for the expected energy rather than the residual state is given there). We also show that this method
can be combined with the minimum label finding algorithm in case the ground energy is not known beforehand to first find
the ground energy to the required precision. We remark that the filtering method can also be formulated as a majority voting
scheme.9:28

The Poulin-Wocjan algorithm is based on the following idea: let .A be the circuit of phase estimation with k ancilla qubits,
but without the inverse Fourier transform. Then A[4;)[0Y®* = |A;)]¢;), where

2k—1
lgi) = — ) e |x) (@)
v2k 3;)

is a momentum state encoding of 2;. Since .4 maps [2:)10)%* to |4i)|¢i), then for any state |u) on k qubits, Al maps |¢)|u) to

> Gilepul )10 + IR, €2

where |R) has no overlap with |0)®* on the ancillas. Hence, starting with » copies of |u) on 7k ancillas (;; will be specified later),
applying 7 copies of A" that maps |#)|u)®" to

D GileOn 1410y + IR, (C3)

where |R’) has no overlap with |0)®’7% on the ancillas. The central idea of Ref. 9 is that for suitable choices of 77 and |u), |(; [p)|” is
a “filter function” that is centered around 1o and falls off quickly, thus suppressing all terms in (C3) except for the contribution
from |1p). We now show that this idea can be used to obtain a ground state preparation algorithm whose runtime also only scales
polylogarithmically with e.

Proposition 4 (Ground state preparation with the filtering method for known ground energy). Suppose that the value of A is
known to a precision of

0 A (C4)
\/10g3 W loglog @

with certainty, i.e., there exists a known real number E > 0 such that |E — Ap| is at most (C4). Then, the filtering method can prepare
a state e-close to | 20)( Ao | with constant probability in a gate complexity of

~( A [
O — C5
( gold " |¢0|) ©
and using
log L
o) logN+logl+—)“1><logl (C6)
€ loglog 7= A
qubits.

Proof. Suppose that we know a value of u € [0, 1) such that

lu— A0l < (€7

1
2k+17l'\/ﬁ’
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where k and n will be specified later. Note that this is the same as assuming that we know 1o up to k + [ binary digits, where
L:= [ log,(277) 1, and we can assume, without loss of generality, that 2¢*} € Z. Choose

k
1 2 .
) = — e~ | xy, (C8)
V2 ,;)

Note that |u) can be efficiently prepared from the computational basis state |2%*4u) by first applying the quantum Fourier trans-
form on k + [ qubits, then applying Hadamard gates on the last | qubits, and finally discarding the last | qubits. The circuit C,
preparing |u) from |0)®(¥*) thus only requires O((k + 1)?) gates.2? Similarly to (A7) and (B4), for i 0,

1
i < < . Cc9
Keiliol < oo — 1 = g (€9)
Moreover, it can be shown? that (C7) implies
1
Keo el = 5 (C10)
Thus, using amplitude amplification or fixed point search to search for [0)*7% on (C3), we obtain with constant probability the
state
i Pilepu | 4i)
oy =-—>=-—"" cn
7 12 picopp |l (c1h
with O(;7/|¢ol) uses of A" and C,,, and O(1/|¢o|) uses of Cy.
We now show that |o) is a good approximation of |1¢) for appropriate choices of k and . We have that
1 . A NG
E o) — MO)”Z < I Yizo Pileilu) | 1>£| (C12)
12 @idepil ) 1)
. 2121
_ 2i#0 |¢12| |<901|l-52 (Clg)
i loil= Keil) =7
1\ 1
<Al —5. Cl4
(7)o o
Thus, in order to obtain
o) = )l <€, (C15)
it suffices if k and # satisfy
1 1
k = |log, — | + O[loglo C16
g 3 | ofogog 7 (€16)
and
lo 1
n=o| S ) (&)
lOg lOg Thole
But since 7 is a parameter of the algorithm that needs to be chosen beforehand, and |¢¢| is unknown, we need to choose
log L
n=0 Lﬂ (C18)
loglog -
to ensure the algorithm works. The full algorithm thus requires
- nzkA+q>) ( A @ )
) = +— C19
( ol [#olA ol (C19)
gates and
O(logN) + nk = O|logN +log 1 + oy log + (C20)
7 € loglog - A
qubits. O
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There does not appear to be an obvious way, such as a recycling scheme, to reduce the number of qubits required.
Suppose now that the value of i is not known beforehand. We show now that in this case, one can combine the filtering
method with the minimum label finding algorithm to determine a suitable value of u beforehand.

Proposition 5 (Ground state preparation with the filtering method for unknown ground energy). If the ground energy is not
known beforehand, the same task as in Proposition 4 can be achieved in a gate complexity of

- A @
O(W + X_‘/Z) (C21)

and the same number (C6) of qubits.

Proof. Let k and 7 be defined as in the Proof of Proposition 4. Let y; = j/2", where k; > k will be chosen later. It is easy to
prepare the state

2ki—1

F Z 1911455 1), (€22)

where 77; will be chosen later, and

|ﬂ} Z 6271'1;1] |x> (C23)
We now run a controlled version of the filtering algorithm with 77; x k; ancilla qubits. This produces the state

2k -1

Doy, (C24)
j=0
where
1 "
0 = == Z Bili )™ | 0). (C25)

Let J be the smallest integer such that |u; — 29| <
that

Then from (C10), |||®;)]] > 129 > —X_ LetJ < J be an integer such
(C10), (@)l o g

2'”2” ‘/* 5 /_zkl

Zjl 1103117 ( 2) (C26)
j=0

Then, the minimum label finding algorithm with & = €/4 finds an integer j € [J,J] with probability at least 1 — €. To obtain a

value of j that gives rise to a good approximation of 1y, we need to ensure that uy — y5 < zwn 7 since the latter then implies
luj — Aol < z,ﬁlmﬁ for all j € [7,7].
Let D = J - J. We have
J
2 oI = 5 ZZ 165 o 1) | (C27)
j=0 j=0 i
B Y . - (c28)
= ok 4 t 2k | — 1 )2
1 i
< — _ C29
2k JZ(; (2k1+l|/10 1 |)27]1 ( )
1 1
J D
1 1
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We thus require

2
ST <X (C32)

with D = O(2k1 &), where & = 1/(2174/77) is the required precision (C7). Thus, it suffices to choose

b—of Lipe L) = ol L /2L/ 1ol
2 _O(fFlogX)-O(Alog‘g o 1oglogX610gX) (C33)

log 1
m=0 8% | (C34)
loglog L

This will, with probability at least 1 — €, provide an estimate of 1y that can be used for the state preparation. The probabil-
ity of not finding such an estimate of 1y only induces an error of O(e) in the final (mixed) state. The number of gates for this
estimation is

and

(V2R - A D
O(T(Z 1A+(I)) :O(W‘Fm), (C35)

as claimed. O

Note that in analogy to Sec. IV B, the algorithm can be used to estimate the ground energy to an arbitrary precision £ = O(A),
by simply running the algorithm with a smaller value of A.

Corollary 2 (Ground energy estimation with the filtering method). Let & = O(). Then, the filtering method can be used to find
a real number E > 0 such that |E — 2p| < & with constant probability in a gate complexity of

~ A [
O +— C36
()(63/2 XVE ) (c36)
and using
log 1 1
O[logN + —*— xlog — C37
(og +loglog)l(xog§) (©37)
qubits.

Alternatively, one can also use a combined approach by using a prior run of phase estimation to first get a “crude” estimate
of 1y, similarly to the method in Sec. IV of the main text. This approach is useful if A is very small.

Proposition 6 (Combining the filtering method with phase estimation). By combining the filtering method with phase
estimation,
(i) The same task as in Proposition 5 can be achieved in a gate complexity of

~[ A A P
O(XSAK * XA(S—K)/Z * XA(l—K)/Z) (C38)

and the same number (C6) of qubits.
(i) The same task as in Corollary 2 can be achieved in a gate complexity of

~ A A @
O()(3:<”” ' x&B-/2 * Xg(l—x)/Z) (C39)

and the same number (C37) of qubits, where « € [0, 1] is arbitrary.
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Proof. To prove (i), first use Proposition 2 from Appendix A with & = € to obtain the ground energy to a precision of &’ = A¥
for some « € [0, 1] chosen below. With probability at least 1 - ¢, this provides us with an interval [a, b] > 19 with b — a = O(A¥).
Let yf = a+ (b - a)j/L with L = ©(A* /£). Note that My — 1 < & We now run the algorithm from Proposition 5, but replacing

(C22) with

1 &
—= D DI 9. (C40)
Then, the total number of gates is
(A VL Al A A @
O(X_B-f’ + 7(2 A+ cD)) = O(X3AK + I + L ) (C41)
This proves part (i). Part (ii) follows from the same argument as Corollary 2. O

Note that choosing « = 1 gives the optimal inverse scaling in A and &, respectively, for this algorithm. Similarly as in Sec. IV,
however, other values of x can be chosen to take the other parameters into account.

APPENDIX D: CHEBYSHEV METHOD

We now show that the alternative approach of Ref. 19 of using quantum walks and Chebyshev polynomials can be used
to obtain an algorithm with essentially the same runtime. We assume in this section that H has at most d = O(log N) non-zero
entries in each row/column.3° We also assume that the spectrum of H is contained in [0, 1/2] for simplicity.>! Moreover, as in
previous work,*619 we assume that we are given quantum oracle access to the positions and values of the non-zero elements of
H. Specifically, we assume that we are given unitaries Oy, O, such that O|j,1) = [j,v(j,1)) and Os|j,k,z) = [j,k,z ® I:Ijk), where v(j,
) is the column index of the Ith nonzero entry in the jth row of H, and the third register on which O, acts encodes a bit string
representation of an entry of H. In this section, let A denote the gate complexity of the oracles.

Suppose that the value of A is known to a precision of 6 = O(A/ log ﬁ) Let E be a known real number such that 0 < E < g
and 8g =1y — E < §. Define H = H - (E - 7)1. Then |4p) is the unique eigenvector of H with minimum eigenvalue 7 + 6 and by
assumption, all other eigenvalues of H are >7 + &g + A. This method is based on the observation that a high power of 1 - (H/d)? is
approximately proportional to a projector onto |1p). More precisely, for any trial state |¢) = ¢o|20) + |/lg>,

M M M
H\? ~ 74652 1 1-(H/dy? K
(ﬂ - (E) ) &) —¢0(1—( a ) ) (IMH%(W 157 |- (DY
The norm of the second term in the brackets is bounded by |¢o| e~ *M(7+6e)4), [ndeed, for small A,
M A+T+8E \2 M
H\? 1= (757%)
1]—(—) ) byl <[ ——24 2 (D2)
d 0 T+ 2
( - (=5%)
M
2
P Gl 5@;42 (D3)
@(1- (%))
— e*Q(M(T+6E)A/d2)' (D4)
Thus,
M
1 - (H/d?) " 1)
( z)M - [20)|| = O(e), (D5)
|(1-0102)" 10
provided that
d? 1
M=Q——log —. D6
(A(r op) |¢0|6) (9
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On the other hand,

1- (ﬂ)z v =0l +5e)2M/d?) D7)
1 = :

(- (&) o

provided that 7 + 6g = O(d/VM). Hence, since by assumption 6 < &, choosing

Thus,

= Q(Igol), (D8)

r= @( 2. ) (DY)
logﬁ
and
3 . 5,1

satisfies both (D5) and (D8).

Our aim in the following is to prepare (1-(H/d)?)M|¢). The strategy we employ is as follows: first, we approximate (1-(H/d)*)M
as a linear combination of low order Chebyshev polynomials in H/d. Second, we implement this linear combination with some
amplitude using quantum walks and the non-unitary LCU lemma (Lemma 7 of Ref. 19). Third, we use amplitude amplification or
fixed point search to boost the overlap with the target state.

In the following, assume for simplicity that M = 2m is even (the algorithm can also be adapted to odd M with minor mod-
ifications). Let T(x) and U (x) be the kth Chebyshev polynomials of the first and second kind, respectively. It is well-known
that

M
(1=x2M =" @, To(), (D11)
k=0
where
2M - 1)!!
21-2M 2M _( , k=0,
@, = (M)~ (D12)
(~Dk2-2M( 2, k>1

Since [|H|| < 1and |Ti(x)| < 1for |x| <1, (21) implies that

(ﬂ - (%)2)2 - zamk(g) +Oxe), (D13)

/ 1 d 1
mo = @( Mlog;) = @(K log®/* ;) (D14)

Next, recall that 7,(H/d) can be implemented with some amplitude using quantum walks (cf. Sec. 4.1 of Ref. 19) on a larger
Hilbert space, which is obtained by first adding an ancilla qubit and then doubling the entire system: for j € [N] ={l, .. ., N}, define

ly;) € CN o C™N as
. 1
=) e o= 3 ID(H10)+ 1= i) (D15)

le[N]
H;#0

provided that

and
Ti= > |45l (D16)
Je[N]
Note that the entries of H have modulus at most 1. Let S be the swap operator on CN o C™ e, S|jb1) |lb2) = |lb2) |jb1)y and
W = S@2TT* - 1). By Lemma 16 of Ref. 19, within the invariant subspace span{T|j), STj : j € [N]}, W* has the form

Wk = Te(H/d) = 1= (/dpU A7) 7 (D17)

J1- (H/dy2U,_y(H/d) Tr(H/d)
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where the first block corresponds to the space span{T|j) : j € [N]}. Hence, using k steps of the walk, we can implement the
transformation

Wi 10)*11¢) = 10)*1 Ty (H/d) 1) + IR}, (D18)

where q := [logz N1+ 3 and (]0)(0** ® T)|R;) = 0.
To implement the RHS of (D13), we employ the non-unitary LCU lemma: let B be a circuit on b = [loga(mg + 1) ] qubits that

map [0)®" to
1 &
B|0)®? = — k), D19
e g valk) (D19)
where a = 3, .. Let U = 3% [R)(k| ® Wy be the controlled quantum walk. Then,
. 1 ah X3 : ,
(B"® HUB & H)I0)**Vip) = —10)™ ) ar(10)* T (H/d)I9) + IRy) + IR (D20)
k=0
1 &
= —10)°0* " @, To(H/d) 16} + R), (D21)
@ =0

where (]0)(0]®? @ 1)|R’) = 0 and (] 0)(0|°®*? & T)|R) = 0.

The final step of the algorithm is to boost the overlap with amplitude amplification or fixed point search. Note that amplitude
amplification can be used without prior knowledge of the overlap.?' Alternatively, fixed point search?® can be used for this step.
Measuring the ancillas will then project the state onto

Tto @ Tor(H/d) )

) = —=k , D22
0TI @ Taw(H/d) ) (b22)
provided we successfully obtain [0)*®*9 on the ancillas. From (D13),
(1 - (H/d)*)*" 1)
[G) = O(e), D23
= A= mapErien O (b23)
and thus (D5) implies
145) = 140) + OCe), (D24)
as required. The probability of success is close to 1, provided that the number of repetitions is
O< = ) = O(/Iol) (D25)
IS, ek Tz(H/d) )| o

where Eq. (D25) follows from (D8).

We now calculate the gate count of the entire algorithm. First note that B can be implemented with O(2%) = O(m,) elementary
gates.?® Next, note that the oracle to H can be obtained from the oracle to H with O(log M) additional gates and qubits. The gate
cost to implement W to accuracy €’ is O(A + logM + log N + log®/%(1/¢’)).* Here, we require € = O(e|¢o|/mod). Thus, the gate
cost of U is O(mg(A +1ogM +1logN + logs/z(mod/elqﬁol)) (Lemma 8 of Ref. 19). Note that @ = O(1), and each iteration of amplitude
amplification or fixed point search requires O(1) uses of Cy, B, and U. The final gate complexity is thus

1 5/2 mod) )) ( A ( 1 1 ) ) )
O —([mgo|A +logM +1ogN +1o —— | +®]| = O —— polylog(N, —, —— | + —|. D26
(|¢0|( "( EVITIoEN T8 igoa PV O8N 3 Tgole ) Tool (026)
The total number of qubits required is O(logN +logM + log my). m]

It is moreover easy to see that, analogously to Sec. [V B, this approach can also be used for ground state preparation in the
case of unknown ground energy, and for estimating the ground energy.
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A hybrid algorithm framework for small quantum computers with
application to finding Hamiltonian cycles

Yimin Ge and Vedran Dunjko

In this work, we generalise the approach of Contributed Article [VI] by developing a general
framework for hybrid quantum-classical algorithms which only use quantum computers signifi-
cantly smaller than the problem size. We prove general criteria such that, given an arbitrarily
small ratio of the number of available qubits to the instance size, a polynomial speedup for clas-
sical divide-and-conquer algorithms can be achieved. We also demonstrate the applicability of
this framework by speeding up Eppstein’s algorithm for the cubic Hamiltonian cycle problem.

Section III of this work develops the so-called divide-and-conquer hybrid approach, which is
a general framework for speeding up classical divide-and-conquer algorithms. The main idea is
to replace the recursive call with a call to a suitable quantum algorithm once the instance size
becomes sufficiently small for the number of available qubits. Theorem 1 formalises this idea,
and explicitly makes the trade-off between the number of available qubits, the resource require-
ment of the quantum subroutine, and the speedup obtained. We also explicitly demonstrate
how the results of Contributed Article [VI|fit into this framework (Example 3).

Although the basic idea of the divide-and-conquer hybrid approach is simple, in order to
obtain a polynomial speedup over the original classical algorithm, the underlying quantum
subroutine needs to fulfil strict criteria for space-efficiency whilst also being (at least) polyno-
mially faster than the original algorithm. In many cases, the main contribution to the space
requirement of the quantum subroutine comes from the necessity of generating and storing large
sets. Indeed, a naive encoding of large sets as ordered lists is demonstrated to usually lead to
a less-than-polynomial speedup (Example 2). On the other hand, straightforward encodings as
genuine sets would naively lead to problems with reversibility, which is naturally required for
quantum algorithms. Turning non-reversible computations into reversible ones in the canonical
way either introduces many ancillas, or can incur exponential overheads, both of which would
prevent any reasonable speedup. Indeed, combining the seemingly competing requirements of
reversibility, space-efficiency and time-efficiency for our purposes is non-trivial.

In Section 1V, we show how to overcome this problem. In particular, Theorem 2 provides a
classical reversible set generation routine which can be used to obtain quantum algorithms that
are compatible with a polynomial speedup in the divide-and-conquer hybrid approach. For this,
specialised data-structures to encode large sets are first introduced in Section IV A, which will
later allow the required trade-off between space-efficiency and efficient uncomputation. The
main idea here is to split the large set into smaller subsets of suitable sizes, thus adding just
enough ordering information to be able to uncompute only the smaller subsets individually.
This allows us to keep the overall number of ancillas used low. Afterwards, in Section IV B, we
provide the general algorithm to generate an efficient encoding of a large set, given only access
to operations which generate single elements.

Section IV then provides a novel example of how these tools can be applied in practice.
Eppstein’s algorithm, which decides if a cubic graph of n vertices has a Hamiltonian cycle in
runtime O*(2%/3), is a classical divide-and-conquer algorithm that naturally fits the framework
of Theorem 1. The main ingredient for a speedup then becomes a polynomially faster quan-
tum algorithm that solves the “forced” version of this problem using sufficiently few qubits.
Theorem 3 proves the existence of such a quantum algorithm. The proof of Theorem 3 heavily
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utilises the set generation routine of Theorem 2, which reduces the task to implementing a
small number of problem-specific, i.e. graph-theoretic, operations. Theorem 3, together with
Theorem 1, then immediately imply a polynomial speedup of Eppstein’s algorithm of runtime
O*(2(1/3*f(c))”) using only M = cn qubits, where ¢ > 0 is an arbitrary constant and f(c) > 0.
This is formally stated in Theorem 4.

Statement of individual contribution

This work was motivated by several discussions between Vedran Dunjko and myself. 1 had
the idea of speeding up Eppstein’s algorithm using similar methods to the ones we developed
in Contributed Article and subsequently worked out the details of the algorithm and the
proofs involved. Afterwards, with regular advice from Vedran Dunjko, I formulated the more
general framework for developing hybrid algorithms. I was in charge of writing all parts of this
article.

I, Yimin Ge, am the principal author of this article and was extensively involved in all parts of it.
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A hybrid algorithm framework for small quantum computers with application to
finding Hamiltonian cycles

Yimin Ge!* and Vedran Dunjko? f

! Maz-Planck-Institut fir Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
2LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands

Recent works have shown that quantum computers can polynomially speed up certain SAT-solving
algorithms even when the number of available qubits is significantly smaller than the number of
variables. Here we generalise this approach. We present a framework for hybrid quantum-classical
algorithms which utilise quantum computers significantly smaller than the problem size. Given an
arbitrarily small ratio of the quantum computer to the instance size, we achieve polynomial speedups
for classical divide-and-conquer algorithms, provided that certain criteria on the time- and space-
efficiency are met. We demonstrate how this approach can be used to enhance Eppstein’s algorithm
for the cubic Hamiltonian cycle problem, and achieve a polynomial speedup for any ratio of the
number of qubits to the size of the graph.

I. INTRODUCTION

Although fully scalable quantum computers may be far off, small quantum computers may be achievable in the
forseeable future. Such devices may able to provide solutions to toy or specialised problems of small size (e.g.
in quantum chemistry), it was however until recently unclear whether they could also be utilised for speeding up
more general and common computations of much larger problem instances. Indeed, quantum and classical algorithms
usually exploit global structures inherent to the problem, and it is generally difficult to utilise small quantum computers
without breaking that structure. For example, the ability to factor n/10-digit integers is unlikely to be of much help
for the task of factoring n-digit integers. One would therefore naively expect that for structured problems, small
quantum computers would only be useful for small problem sizes.

Recently in [1], it was show that this is not generally true: given a quantum computer with only M qubits, it was
shown that one can obtain a significant speedup of Schéning’s algorithm for solving 3SAT involving n > M variables.
More precisely, the speedup can be expressed in terms of the ratio ¢ = M/n of available qubits to the problem size,
and it was shown that an asymptotic polynomial speedup can be achieved for arbitrarily small values of c. The latter
is non-trivial, since it was also shown that employing a naive approach to speed up the classical algorithm breaks the
exploited problem structure, thus resulting in no improvement unless c is quite large.

One of the main insights of [1] was that classical divide-and-conquer algorithms inherently don’t suffer from this
“threshold effect” since they naturally maintain the structure of the problem despite breaking it into smaller subprob-
lems, and are thus well-suited for being enhanced using small quantum computers. Yet, to achieve genuine speedups,
the quantum subroutines employed must meet stringent criteria for space- and time-efficiency, which in general are
non-trivial to fulfil and, in the case of [1], required specialised data-structures and careful memory management.
Moreover, [1] exclusively considers the example of Schoning’s 3SAT algorithm, and while it demonstrated how divide-
and-conquer structures can in principle be exploited, it left open a formal characterisation of the criterion for when
this approach works, and whether other examples beyond Schéning’s 3SAT algorithm exist where similar speedups
can be obtained [2]. Given the ubiquity of classical divide-and-conquer algorithms, a general framework for developing
such hybrid algorithms to obtain speedups using only small quantum computers would thus be highly desirable.

In this work, we formalise and generalise the criteria for the hybrid approach of [1], and show that indeed, there
are other problems and algorithms that can be enhanced with that approach, using only small quantum computers.
Specifically, we develop a general framework for constructing hybrid algorithms that speed up certain classical divide-
and-conquer algorithms using significantly fewer qubits than the problem size, which also makes precise the relation
between the speedup obtained on the one hand, and the space requirements and runtime of the underlying quantum
subroutines on the other. We then apply this formalism to finding Hamiltonian cycles on cubic graphs, which is
another fundamental NP-complete problem. This provides the first example of the applicablity of these techniques
beyond the example of Schoning’s 3SAT algorithm given in [1]. Our framework operates on the algorithmic level and
is distinct from the circuit-level techniques of [3, 4], which aim to simulate general quantum circuits on fewer qubits.
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The efficiency of the latter depends on sparseness or decomposability assumptions on the original circuits which will
in general prevent speedups for the algorithms we consider here.

We provide our formalism for constructing hybrid algorithms from classical algorithms in the form of a “toolkit”
comprising two parts. The first part, which we term the divide-and-conquer hybrid approach, shows general criteria
for the kind of classical algorithms one can speed up using our techniques, and relates the speedup to the number
of available qubits. The second part, which we term efficient reversible set generation, comprises specialised data-
structures. These are specifically designed to bridge the gap between two seemingly irreconciliable properties required
of the quantum algorithm for a polynomial speedup in the divide-and-conquer hybrid approach: reversibility on the
one hand, and being extremely space-efficient on the other. The set generation procedure we develop makes the task
of developing quantum algorithms suitable for our hybrid approach significantly easier: we show that it suffices to
find space-efficient implementations for a few problem-specific quantum operations.

Finally, we illustrate how this framework is applied to speed up Eppstein’s algorithm [5] for the cubic Hamiltonian
cycle problem with only a small quantum computer. The cubic Hamiltonian cycle problem asks if a given cubic graph
of n vertices has a Hamiltonian cycle, i.e. a cycle visiting every vertex exactly once. This problem is NP-complete, and
a special case of the general Hamiltonian cycle problem (where no restrictions on the maximum degree of the graph is
assumed), which in turn is closely linked to the travelling salesman problem. Brute-force search requires O(n! poly(n))
time, there is however also a trivial path-search algorithm with runtime O(2" poly(n)). In 2004, Eppstein [5] gave
a divide-and-conquer algorithm of runtime O(2"/3 poly(n)) = O(1.2599" poly(n)), which heavily exploits the cubic
structure of the graph. Quantum speedups for Eppstein’s algorithm have previously been obtained using arbitrarily-
sized quantum computers [6]. In this work, we obtain a polynomial speedup using only M = cn qubits for arbitrarily
small ¢ > 0.

The outline of the remainder of this paper is as follows. In Section II, we give a brief overview of the results and
clarify some notation. In Section ITI, we formulate the divide-and-conquer hybrid approach for a general class of
classical algorithms. In Section IV, we provide the details of the efficient and reversible set generation procedure. In
Section V, we apply these tools to Eppstein’s algorithm for the cubic Hamiltonian cycle problem. Finally, we close
the paper with some concluding remarks and open questions in Section VI.

II. OVERVIEW
A. Overview of results

We briefly summarise the results and main ideas of this paper.

Sections I1T and IV set up the general framework for designing hybrid algorithms for quantum computers significantly
smaller than the problem size. Specifically, Section III introduces the divide-and-conquer hybrid approach, and outlines
the general criteria for the kind of classical algorithms which our framework is applicable to. Theorem 1 then formalises
the trade-off between the number of available qubits, the space-requirement of the underlying quantum subroutine,
and the speedup obtained. The main idea of this hybrid approach is to take a classical divide-and-conquer algorithm,
which calls itself on ever smaller problem instances, and to replace the recursive call with a suitable quantum algorithm
once the problem instance is sufficiently small to fit the number of available qubits. While the basic idea is simple, in
order to obtain a polynomial speedup over the original classical algorithm, the replacing quantum algorithm has to
fulfill strict criteria for space-efficiency whilst also being polynomially faster. In many cases, the main contribution
to the quantum algorithm’s space-requirement comes from the necessity of generating and storing large sets.

Section IV then shows how to do the latter efficiently. In particular, Theorem 2 provides a (classical) reversible set
generation routine which can be used to obtain quantum algorithms that are compatible with a polynomial speedup
when used in Theorem 1. To that end, specialised set encodings are first introduced which are designed to overcome the
main challenge of such an implementation: the ability to uncompute encodings of previously generated sets without
resulting in either large computational overheads or large memory requirements.

Section V then provides an example of how these tools can be applied in practice. Eppstein’s algorithm for finding
Hamiltonian cycles on cubic graphs is a classical divide-and-conquer algorithm that naturally fits the framework of
Theorem 1. The main ingredient for a speedup then becomes a polynomially faster quantum algorithm that solves
this problem using sufficiently few qubits. Theorem 3 proves the existence of such a quantum algorithm. The proof of
Theorem 3 heavily utilises the set generation routine of Theorem 2, which reduces the task to implementing a small
number of problem-specific, i.e. graph-theoretic, operations. Theorem 3, together with Theorem 1, then immediately
imply a polynomial speedup of Eppstein’s algorithm using only significantly fewer qubits than the size of the graph,
which is formally stated in Theorem 4.



B. Related work

The present work is closely linked to the results obtained in [1], which however exclusively focuses on speeding
up Schoning’s algorithm for 3SAT. By contrast, the results presented in Sections III and IV of this work provide a
general framework which is not tied to any specific algorithm. In Section III, we provide general criteria for when
similar speedups as the one in [1] can be obtained for other classical algorithms, and moreover explicitly relate the
degree of the speedup to the resource requirements of the underlying quantum subroutine and the number of qubits
available. The main ideas of the efficient and reversible set generation procedure given in Section IV can also be
found in [1]. However, the presentation in [1] is specific to speeding up Schéning’s algorithm, and potentially more
general structures are often strongly interwoven with 3SAT-specific constructions there. By contrast, in this work and
specifically in Theorem 2, we provide a clean formulation that explicitly separates the more abstract structures from
problem-specific implementations, thus obtaining a general framework that can be more easily applied in different
scenarios. For example, the general formulation of the set generation procedure vastly simplifies the construction of
a suitable quantum subroutine for polynomially speeding Eppstein’s algorithm later in Section V.

C. Notation

Throughout this paper, we will use standard bra/ket notation for quantum states. We will also use bra,/ket notation
in the context of classical reversible circuits, since they can be seen as special cases of quantum circuits.

Moreover, for simplicity of notation, we will often make several notational simplifications. First, we often simply
write |0) for |0)®” for any known L € N. The value of L will always be clear from context. Second, for operators acting
on some registers of a multi-register state, we will normally not explitly write the complementing identiy operators
(e.g., we will simply write A |a)|b) |¢) |d) instead of (1 ® A® 1) |a) |b) |c) |d) if A acts on the middle two registers). It
will always be clear from context which registers which operators act on.

III. THE DIVIDE-AND-CONQUER HYBRID APPROACH

In this section, we formalise the divide-and-conguer hybrid approach, generalising the techniques of [1], for designing
hybrid algorithms using only quantum computers significantly smaller than the problem size. The main idea is to
take a classical divide-and-conquer [7] algorithm that calls itself on ever smaller (effective) problem sizes, and replace
the recursive calls with a quantum algorithm once the problem size becomes sufficiently small.

Let P be a countable set, A : P — {0,1} be a decision problem [3], and n : P — N be a problem parameter. We
refer to n(P) as the problem size of P.

procedure ALG(P)
if TRIVIAL(P) =1
return f(P)

1:

2

3:

4: else
5: return g(ALG(R1(P)),...,ALG(Ri(P)))
6: end procedure

ALG 1: General algorithm for the divide-and-conquer hybrid approach

Suppose that A(P) can be decided by a classical recursive algorithm [9] of the form given in Alg. 1, where
| > 2 is an integer, Ry,....,R; : P — P, g : {0,1}/ — {0,1}, and f, TRiviaL : P — {0,1}. We assume
that TRIVIAL(P), R1(P),..., Ri(P) can be calculated in O(poly(n(P))) time, and that f(P) can be calculated in
O(poly(n(P))) time if TRIVIAL(P) = 1. The maps Ry, ..., R; can be thought of as “reduction operations”, mapping
the problem to a smaller instance, whereas TRIVIAL(P) signifies if P is sufficiently simple to be solved directly. We
assume that for all P € P and i =1,...,1, n(R;(P)) < n(P).

The runtime of such divide-and-conquer algorithms can often be bounded by introducing an effective problem size
s : P — N. In general, s(P) and n(P) can be different, we assume however that for all P € P, s(P) < n(P). We
assume that both n(P) and s(P) can be calculated in time O(poly(n(P))). We moreover assume that there is a
universal constant C' € N such that s(P) < C implies TRIVIAL(P) = 1.

To ensure that ALG(P) has a runtime of the form O(275(") poly(n(P))) for some constant vy > 0, we assume that
there exist integers k > 0, C;; > 0for 1 <i <,1<j <k,and ly,...,lx € {1,...,1} such that for all P € P with



TRIVIAL(P) = 0, there exists some j € {1,...,k} such that for all i = 1,...,1, we have
s(R;(P)) < s(P)—C;; or TRIVIAL(R;(P)) =1 (1)

for i =1,...,1;, and TRIVIAL(R;(P)) = 1 for ¢ = {; +1,...,1. Here, j € {1,...,k} labels one of k possible cases
for effective problem size reductions, and [; < [ the effective number of recursive branches of that case, whereas the
positive integers C;; are lower bounds on the decrease of the effective problem size, guaranteeing that the algorithm
terminates.

Under these assumptions, it is easy to derive the stated upper bound on the runtime of running ALG(P). Indeed,
(1) implies a recursive runtime bound T'(s(P)) depending only on s(P) given by

T(s') < max (T(s' = Chy) +---+T(s' = Ciy5)) + O(poly(n(P))) (2)
3=1,...,
and T'(s") = O(poly n(P)) for ' < C. Using standard methods for solving recurrence relations [10], this leads to a

runtime of T(s") = O(27 poly(n(P))) for some v > 0. Thus, ALG(P) has a runtime of O(27*(F) poly(n(P))).
Our aim is to provide criteria for when a reduction of the value of 7, i.e. a polynomial speedup, can be achieved.

Theorem 1 (Divide-and-conquer hybrid approach). Suppose that there is a quantum algorithm QALG that decides
A(P) using at most G(s(P),n(P)) qubits in time O(272*() poly(n(P))) for some constant Yo € 10,7). Suppose that
G :[0,00) x [0,00) — [0, 00) has the property that for all nonnegative integers s < n' < n, G(s,n’) < G(s,n). Suppose
moreover that there exists some A € (0,1) such that for all A € [0,\] and n € N,

G(An,n) = nF(\) + O(logn) (3)

for some strictly monotonically increasing and continuously differentiable F : [0, 5\] — [0,00) such that F(0) =0 and
F’ is bounded away from 0.

Let ¢ € (0, F(X)) be an arbitrary constant. Then, given a quantum computer with M = cn(P) qubits, there exists
a hybrid quantum-classical algorithm that decides A( ) in a runtime of O(max(275(")=/(n(P) 97e5(P)) poly(n(P))),
where f(c) = (v —v9)F~'(c) > 0. In particular, A(P) can be decided in O(207=/()n(P) poly(n(P)))

E - 1
RN

e ) [

E ] ALc / \4 / \

[ m@e) | [ REE) | | jEe) | | ree) |
/ N\ / o\ /\ / N\

)

/NN /N /N

e ) UL - OO

- J

»
IN

FIG. 1: Schematic view of the hybrid algorithm for [ = 2. Recursive calls to ALG are replaced with calls to QALG
once the effective problem size becomes sufficiently small.

Proof. The proof is based on the ideas developed in [1] in the context of 3SAT. The main idea of the hybrid algorithm

is to call QALG(P’) instead of ALG(P’) in the recursive step of ALG when s(P’) is sufficiently small (see Fig. 1).
By assumption, running QALG(P’) for any P’ € P with n(P’) < n(P) requires at most G(s(P’),n(P’)) <

G(s(P"),n(P)) < n(P)F(s(P")/n(P)) + alnn(P) qubits for some constant a > 0. Hence, if n(P’) < n(P), then

qpq<nuwpﬂ<c—“$£$ﬂ>—ﬁg (4)



is a sufficient condition for being able to run QALG(P’) with M = cn(P) qubits. Note that since F is strictly
increasing and continuously differentiable with its derivative bounded away from 0, the same applies to F~!. Thus,
by the mean value theorem, § = F~1(c)n(P) — O(log n(P)).

Let HYBRIDALG(P’) be the algorithm which calls QALG(P’) if s(P’) < 5 and ALG'(P') otherwise, where ALG is
the same algorithm as ALG except that in line 5 of ALG, the calls to ALG are replaced by calls to HYBRIDALG. Note
that since n(R;(P’)) < n(P’) for all P’ € P and i =1,...,l, M = en(P) qubits suffice to run HYBRIDALG(P).

We now analyse the runtime of HYBRIDALG. Note that its runtime can be bounded by the function Ty (s(P))
depending only on s(P), where Ty is given recursively by

Tr(s') = 0(279% poly(n(P))) (5)
for s’ < 5 and

Tu(s') < max (Tu(s' = Chy) + -+ Tu(s' = Ciy)) + O(poly(n(P)) (6)

for s’ > 5. Using standard recurrence relation techniques, we therefore obtain
Tu(s') = 021 =195 poly(n(P))) = O(2° =779 poly(n(P))) = 027 P poly(n(P))),  (7)
for s’ > §, which proves the claim. O

We remark that the assumptions of Theorem 1 can be relaxed in various ways. First, it is sufficient for QALG
to only decide A(P) for P € Uézl R;(P). Second, F being continuously differentiable can be relaxed to F~! being
locally Lipschitz-continuous.

Note moreover that the assumption that F’ is bounded away from 0 ensures that the degree of the polynomial
overhead of the hybrid algorithm can be bounded by a constant independent of c¢. More precisely, if F'(A) >« > 0
for all A € [0, ], then the hybrid algorithm decides A(P) in a runtime of O(max(275(P)=F()n(P) 97¢s(P))p(p)O1/r)),

Example 1. Suppose that in Theorem 1, running QALG(P) requires O(slog(n/s) + s + logn) qubits, where here
we just write s,n instead of s(P),n(P) for simplicity. In that case, G(s,n) = Asln(n/s) + Bs + O(logn) for some
constants A, B > 0. Then, F(\) = AXIn(1/\) + B, which is monotonically increasing on (0,e?/4=1). Tt can be
shown that F~1(c) = —c/(AW_,(—ce~B/4/A)), where W_; is the —1 branch of the Lambert W function. It is easy
to see that for small values of ¢, F~1(c) = ©(c/log(1/c)).

The curious expression O(slog(n/s) + s) stems from the information-theoretic cost of encoding a subset of
{1,...,0(n)} of size O(s). It is moreover the scaling obtained in Ref [I] (see Example 3 below) and also later
in Section IV and V. |

Example 2. Suppse that QALG requires > slog, n qubits instead. Note that this does not satisfy the requirements
of Theorem 1. Then, with the same notation as in the proof of Theorem 1, § = en/log, n, and hence

Ty(n) = 0(2(77$)n poly(n))). (8)

Note that this does not yield a polynomial speedup over ALG, since the value of v is not reduced by a constant.
The importance of this example lies in that while a qubit scaling of O(slogn) is, in many cases, easy to achieve

(e.g. through storing an ordered list of O(s) numbers in {1,...,O(polyn)}), it however does not lead to a polynomial

(albeit still asymptotic) speedup. A similar result can also be seen for a scaling of O(slog s). |

Note that the strictness of the space requirement for QALG to obtain a polynomial speedup comes from the premise
of only having a quantum computer of size M = cn. Note that if in Example 2, we were given a quantum computer
with M = cnlogn qubits instead, a polynomial speedup would still be obtained. The strength of the speedup therefore
critically depends what is considered a “natural” scaling of M relative to n. In many of the typical applications, the
search space of typical classical algorithms (e.g. brute-force search) can be enumerated using O(n) classical bits.
Using amplitude amplification, one can then often obtain a quantum algorithm using O(n) qubits that is usually
polynomially (and often quadratically) faster than the corresponding classical algorithm [11]. In these cases, M = cn
is the natural scaling because if the scaling were to be relaxed to M = cq(n) qubits with ¢(n) being superlinear in
n, then even for arbitrarily small ¢, the above quantum algorithm would require asymptotically fewer qubits than
the hybrid algorithm, which would be inconsistent with the notion that M should be significantly smaller than the
number of qubits required by a full quantum algorithm.



Example 3. We now show that the results of [1] also fit in this paradigm. We use the nomenclature of [1], and refer
the interested reader to [1, 12] for further details.

In [1], ALG was taken to be the algorithm from [12] for the Promise-Ball-SAT problem. There, P = (F,x,7)
comprises an n-variable 3SAT formula F', a trial assignment x € {0,1}" and a radius r € {1,...,n}. The effective
problem size s(P) was simply taken to be its radius r of P.

In [12], it was shown that there are two possible cases (k = 2) in the recursive algorithm. In the first case, two

subproblems of radius r — 1 are created. In the second case, at most 222 subproblems of radius r — A are created,
where A € N is a constant chosen below and ¢ = 3A.
Then, with the notation of this section, | = t222, k=2, 1, =2, I, =1, and

1 A
1 A
c=104 9)
0 A
This leads to a recursive runtime bound of
T(r) < max (2T(r — 1),#*2°T(r — A)), (10)

leading to a runtime of T'(r) = O((2t*/2)" poly(n)) = O(21+9)" poly(n)), where ¢ = 2A~ ' log,(3A). Note that ¢ — 0
as A — oo.

Ref [1] then constructs a quantum algorithm solving the Promise-Ball-SAT problem in time O(27e" poly(n)) with
7o = logy(3)/2 < 1, and using at most O(rlog(n/r) + r + logn) qubits. Thus, Theorem 1 and the observation
in Example 1 implies that Promise-Ball-SAT can be solved in time O(max(2(1T€)7=f()n 9707) poly(n)) with f(c) =
O(c/log(1/c)). Note that A can be chosen such that e < f(c)/2. The results from [13], which reduce 3SAT to
Promise-Ball-SAT, then imply that given a quantum computer with M = cn qubits, n-variable 3SAT can be solved
in time O(20=F()" poly(n)), where f(c) = f(c)/2 and v = logy(4/3). This is a polynomial speedup of the 3SAT
algorithm obtained in [12] (which in turn can be seen as a derandomised version of Schéning’s algorithm [14]), which
is the central result of [1].

IV. EFFICIENT AND REVERSIBLE SET GENERATION

The previous section highlights the importance of the space-efficiency of the quantum algorithm used in Theorem 1.
In many instances, this quantum algorithm require the storing and manipulation large sets, e.g. to keep track of
changes to P. As observed in [1], this is in general a non-trivial task when constrained by limited memory.

In this section, we formulate a general process to space- and time-efficiently generate an encoding of a set in a
reversible manner, designed to be compatible with the use of Theorem 1 to obtain a polynomial speedup using small
quantum computers.

Note that most of the required subroutines can trivially be implemented space-efficiently if one assumes that an-
cillary memory registers can be erased at will. However, we naturally require our computations to be reversible.
This is in general an issue, since turning non-reversible computations into reversible ones in the canonical fash-
ion either introduces many ancillas, or can incur exponential overheads (see e.g. [15]), both of which are non-
starters for our needs. Combining the seemingly competing requirements of reversibility, small memory require-
ments and computational efficiency for our purposes is non-trivial. To illustrate the problem (see also [l]), note
that if sets S = {x1,...,2,} C {1,..., N} are simply stored as ordered lists |z1)...|z,), the memory requirement
of O(rlog N) qubits is too large for a polynomial speedup if r = O(s(P)) and N = O(n(P)) (see Example 2).
On the other hand, if sets are encoded as genuine sets (i.e., without storing any ordering of the elements in the

set), the operation |{z1,...,2;-1})|z:) — [{x1,...,2;}) is non-reversible, because the information on which ele-
ment was added last is lost. The naive way to make this reversible would be to first implement the operation
Kx1, .. ymima}) |w) — {z1, .- xim1 ) @) |[{z1, ..., 2;}) and then to uncompute the [{x1,...,x;-1}) |z;) registers by

applying the inverse of the circuit up to that point. It is easy to see however that this incurs a computational overhead
of O(2?), which is too large. Indeed, suppose that SetGen; |0) = |{x1,...,2;}) and Calculate; |0) = |x;). Then, the naive
(recursive) implementation of SetGen; would be to first apply Calculate;SetGen,_; to generate |[{x1,...,z;—1}) |z;), then
implementing [{z1,...,z;—1}) |:) = [{z1,...,2i—1}) |z:) {z1,...,2;}), and finally applying (Calculate;SetGen,;_1)~!
to uncompute the ancillas. The resulting recursive runtime would be |SetGen;| > 2|SetGen;_;|, leading to an expo-
nential gate count of O(2¢).



In this section, we describe a general formalism to overcome this problem based on the ideas of [1]. Specifically, we
will show how the above task can in fact be implemented with O(rlog(N/r) + r 4+ log N) memory and O(poly(N))
runtime. Of course, one of the key aspects of our implementation is the continuous uncomputation of any ancillas
we introduce along the way once they are no longer needed. Once they are uncomputed (i.e., reset to a known initial
state, say |0)), they can be re-used for later computational steps. This allows us to keep the overall number of ancillas
used low. The primary challenge is to do this in a way which avoids the exponential overhead mentioned above.

In Section IV A, we first introduce the data-structures which allow this suitable trade-off between space-efficiency
and computational overhead of uncomputation. Specifically, we develop a space-efficient encoding of large sets which
adds just enough ordering information to allow for efficient uncomputation. Afterwards, in Section IV B, we describe
the general algorithm for generating such an encoding of a set, given only access to operations which generate single
elements of the set.

All algorithms considered in the remainder of this section are classical and will be written as reversible circuits.
For convenience, we also introduce the following notion of reversible implementation and note the subsequent trivial
observation.

Definition 1. Let ¢,l,g € N, X C {0,1}2 and f : X — {0,1}¢ be injective. We say that f can be implemented
reversibly using | ancillas and g gates if there exists a classical reversible circuit of at most g elementary gates which
for all x € X implements the operation

) [0)5 [ f(2)) |0)=". (11)

Proposition 1. Let ¢,t € N, Xy,..., X C {0,1}9 and f; : X; — {0,1}%, i = 1,...,¢t, be injective such that f; can
be implemented reversibly using l; ancillas and g; gates. Suppose that fi(X;) C Xiy1 fori =1,...,t — 1. Then,
fro fi—10---0 f1 can be implemented reversibly using max;—1,. . l; ancillas and g1 + - - + g¢ gates.

A. Efficient set encodings

In this section we describe how to efficiently encode sets in a way which allows for efficient uncomputation whilst
maintaining reversibility. We first describe “basic” set encodings, which use little memory but by themselves do not
allow for efficient uncomputation. After that, we describe an efficient encoding composed of multiple basic encodings
that allows for efficient uncomputation.

Definition 2. Let N,k € N be positive integers with k < N, and let S C {1,..., N} with |S| = k. Define the basic
encoding |Ency S) of S to be a sequence of |klogy,(N/k+ 1)] + 2k trits set to

[Ency S) := [(y1)2) [2) [(y2 = 91)2) 12) - [(yk — Yr—1)2) [2)[0) - - 10), (12)

where S = {y1,...,yx} with y1 < -+ < yg, and for a positive integer y, |(y)2) denotes a sequence of [logy(y + 1)]
trits encoding the binary representation of y on the {0, 1} subspace [10].

Example 4. Suppose N =20, k=5, and S = {6,7,10,15,17}. Then, |klog,(N/k+1)]+2k = 21, and y; = 6 = 1102,
Yyo—y1 =1=1s, ys —y2 =3 =113, ys —y3 =5 =101y, and y5 — ys = 2 = 102. Thus,

|Ency S) = [110212112101210200000) . (13)
[ |

To see that |klogy(N/k + 1)| + 2k indeed suffice for [Ency S), note that the number of trits required is

[logy(y1 +1)] + [loga(y2 —y1 + 1)] + - + [loga(yk — yk—1 + )] + & (14)
<logy(yr +1) +logy(ye —y1 +1) + - +logo(yr — yx—1 + 1) + 2k (15)
< klogy((yx + k)/k) + 2k (16)
< klogy(N/k +1) + 2k, (17)

where (16) follows from Jensen’s inequality. Note that this is significantly less than the naive encoding of S as an
ordered list, which uses O(klog N) bits.
In [1], it was shown how to perform basic set operations on |Ency S).

Definition 3. Let N be a positive integer.



(i) For any positive integer k < N, let Containsy  be the operation that performs
Containsy  |[Ency S) |z) |0) = |Ency S) |x) |z € S7?) (18)

for any S C {1,...,N} with |S| = k, where the last bit on the right-hand side of (18) is 1 if z € S and 0
otherwise.

(ii) Let Converty be the operation that performs
Converty |x) |0) = |z) |Ency{z}) (19)
for any z € {1,...,N}.
(iii) For any positive integers k1, ko with ki 4+ ko < N, let Uniony , &, be the operation that performs
Uniony , k, [Ency S1) |[Ency So) |0) = [Ency S1) |Ency Sa) [Ency S1 U Sa) (20)
for any disjoint S1,52 C {1,..., N} with |S1| = k1 and |S2| = ko.
Proposition 2 ([1], Lemma 2,5,6 in Supplemental Material). Let N be a positive integer. Then,

(i) for any positive integer k < N, Containsyy can be implemented reversibly using O(log N) ancillas and
O(poly(N)) gates.

(it) Converty can be implemented reversibly using O(log N) ancillas and O(poly(N)) gates [17].
(i1i) for any positive integers ki, ko with K = ki + ke < N, Unionn , k, can be implemented reversibly using
O(Klog(N/K) 4+ K + log N) ancillas and O(poly(N)) gates.

Note in particular that in Proposition 2(i) and (iii), the runtime bound (i.e., the degree of the polynomial) does
not depend on k or ki, ko, respectively. In fact, none of the operations depend on the set-sizes in any relevant way.

Although |Ency S) is itself space-efficient, it does not allow for a set generation procedure that is simultaneously
space- and time-efficient as well as reversible, for the reasons explained at the beginning of this section. We now define
a memory-structure that allows for this task.
Definition 4. Let N,k be positive integers with k < N. Let S C {1,..., N} with |S| =k, and let Z = (x1,...,xx)
be a permutation of the elements of S. Then, the efficient encoding |EffEncy Z) of Z is definded as follows: suppose
that k has binary representation k = 291 4 - - - 4 2% with integers |logy k| = a1 > as > -+ >as > 0. For j =1,...,s,
let k; :=2% 4 ... 4 2% Then, |[EffEncy Z) is defined as

[EffEncy Z) := [Ency{z1, ..., 2k, }) [Enen{@e, 41, Thy }) - [Enen{ar, 41, 30 }) (21)

Example 5. Suppose k =13 =8+4+1 and Z = (x1,...,213). Then,
|[EffEncy Z) = |Ency{x1,z2, 23, 74, T5, T, T7, 28 }) |Ency{zg, 10, 711, 212}) [Ency{z13}) . (22)
|

Proposition 3. For any positive integers k < N and distinct integers x1, ...,z € {1,..., N}, |EffEncy Z) comprises
at most |2klogy(N/k + 1) | + 8k = O(klog(N/k) + k) trits, where Z = (x1,...,xx).

Proof. For any S’ C {1,...,N}, |Ency S’) comprises at most |S’| log,(N/|S’| + 1) + 2|S’| trits. Thus, the number of
trits in |[EffEncy Z) is at most

[log, k] N+ 21 [log, k] [log, k] [log, k]
> (21 logy —; +21+1> Z 2! 1og2 + Z 2!+ ¢ Z 2! 1og2 > (23)
- _ LIngkJ . N Ung kJ - Ung kJ k
< lz:; 2" log, + Z 27+ k Z log2 ol (24)
[log, k] 1
< 2klog, < - + 4k + 2k Z Srios, 7= ([loga k1 1) (25)

+ 8k, (27)

J
§2klog2< +1)+4k+2k22j (26)
§=0

which proves the claim. O



Note that since we always assume that we work with sets of known sizes, basic set operations can be “lifted” from
|[Ency S) to |EffEncy Z).

Definition 5. For any positive integers N,k with £ < IV, let EffContainsy ; be the operation that performs
EffContainsy ;, [EffEnc Z) |z) |0) = |EffEnc Z) |z) |z € Z7) (28)

for any integer x € {1,..., N} and distinct integers x1,...,z € {1,... N}, where Z = (z1,...,x%) and the last bit
on the right-hand side of (28) is 1 if x = z; for some j € {1,...,k} and 0 otherwise.

Proposition 4. For all positive integers N, k with k < N, EffContainsy i, can be implemented reversibly using O(log N)
ancillas and O(poly(N)) gates.

In particular, the runtime bound in Proposition 4 does not depend on k.

Proof of Proposition 4. This follows immediately from Proposition 2(i): Introduce s < log, k¥ = O(log N) ancilla bits

(where s is defined as in Definition 4), run Containsy oe; on }EncN{xk%ﬁl, .. .,xkj}> |z) for all j = 1,...,s (where
ai,...,asand ki, ..., ks are defined as in Definition 4) such that the outcome is stored in the 5" ancilla, apply a logical
OR over the s ancilla bits, and finally uncompute the s ancilla bits by running Containsj_vlzaj forj=1,...,N. O

Note that if N > N are integers and S C {1,..., N}, then |Ency S) and |Encys S) only differ in the number
of additional |0)’s at the end of the encoding. For the remainder of the paper, whenever the value of N is clear
from context, we will drop the subindex N for simplicity of notation and simply write |Enc S), |EffEnc Z), Containsy,
Convert, Uniony, 1, and EffContains; instead.

B. Efficient and reversible set generation

Suppose we want to generate a set X(v) = {z1...,2,} C {1,...,N} of size r from some input register |v).
We assume that we can generate the elements iteratively, i.e. we have access to circuits that generate x; from v
and {z1,...,2;—1}. As discussed in at the beginning of this section, simply using the basic encoding |Enc X) and
adding one elment x; to |Enc X) at a time is problematic, as this incurs problems with reversibility or exponential
computational overheads. In this subsection, we show how this can be circumvented using the |EffEnc Z) encoding
from the previous subsection.

The intuition for why |EffEnc Z), unlike |Enc X), allows for time-efficient uncomputation is that by splitting X
into smaller subsets, we can generate and uncompute these subsets more efficiently, thus avoiding the necessity of
uncomputing the entire set for each newly added element, which can be seen as the reason for the exponential overhead
in the naive reversible implementation given at the beginning of this section.

Theorem 2. Let N,r be known positive integers with v < N, and let T be a finite set. Let X : T — P,([N]), where
Pr([N]) :={S c{L,...,N},|S| =r}. Suppose that for i =1,...r, Calculate; are reversible circuits such that for all

v € L, there is a permutation (x1,...,x,) of the elements of X (v) such that for alli=1,...,r,
Calculate; |v) |EffEnc Z;_4) |0) |0) = |v) |EffEnc Z;_1) |x;) |0), (29)
where Z; = (z1,...,%;), and the last register in (29) comprises at most A ancillas. Then, the operation
|v) |0) — |v) |EffEnc Z,.) (30)

can be implemented reversibly using O(rlog(N/r) +r + log N + A) ancillas, O(r?) calls to Calculate; for some i €
{1,...,7}, and O(poly(N)) additional gates.

Proof. For any positive integer i, write g(i) to be the largest integer g such that 29 divides i. Then, for all i €
{1...,7—1} and I € {0,...,9(i)} such that i + 2! <r, let R;,; be the operation that performs

R |v) |[EffEnc Z;) |0) = |v) |[EffEnc Z;) |[Enc{@i+1, ... T4 }) (31)
for all v € Z, where x1,...,z, and Z1,...,Z, are as in the statement of the theorem. Note that if [ < g(i) — 1, then

|EffEnc Z;) |[Enc{®it1, ..., 240 }) = |EffEnc Z;, 1) . (32)
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We also define Ry for all [ < [log, r| to be the operation that performs
Ry, |v) 0y = |v) |[Enc{x1, ..., z0}) = |v) |[EffEnc Zy) (33)

for all v € Z. Note that since Convert |z;) |0) = |z;) |Enc{xz;}), a reversible implementation of R;; can be obtained
recursively via

Rio= CalculateijrllConvert Calculate; 1 (34)
for alli € {0,...,r — 1}, and
Rigp1 = R R L, Uniong ot Ry o Ry (35)

for all i € {0,...,r — 1} and [ € {0,...,g(i) — 1} such that i + 2% <. Indeed, for i € {1,...,r} and | < g(i) — 1,
(32) implies that

R |v) |EffEnc Z;) |0) = |v) |EffEnc Z; ;1) . (36)
Hence, R, o R;; maps |v) |[EffEnc Z;) [0) |0) |0) to
|v) |EffEnc Z;) |[Enc{z;t1, ..., 2 0 }) [Enc{a; ot 1, ..., 5011 1) |0) (37)
and Uniong: o1 maps the latter to
[v) [EffEnc Z;) [Enc{@it1, ..., @0 }) [Enc{@iio 1, @00 }) [Bnc{zipr, . @00 ) (38)
Finally, RZZIR;M uncomputes the registers containing [Enc{x;y1,..., ;10 }) |[Enc{z; 0141, ..., T 0+1}), proving

Eq. (35) for ¢ € {1,...,r}. A similar argument also shows that (35) holds for ¢ = 0.
Suppose that r has binary expansion r = 2% + 22 ... 4 2% with integers |logy 7| = a1 > as > -+ > a5 = g(r).
For j=1,...,s, define rj := 2% 4 ... +2% and

Rj = Rrjfl,aj e er,az RO,al . (39)

Note that a; < g(rj—1) — 1 for all j € {2,...,s}, so (32) implies that (39) is well-defined. Note moreover that
R;|v)|0) = |v) |[EffEnc Z,,) for all j € {1,...,s}. In particular, R, performs the desired operation (30).

It follows from (35) that each individual R;; constitutes a reversible implementation using at most O(r log(N/r)+r+
log N+ A) ancillas. Hence, Proposition 1 implies that R, can be implemented reversibly using at most O(r log(N/r)+
r +log N + A) ancillas.

To bound the number of calls to Calculate;; and additional gate count of Ry, let L;; be the number of calls of
R;,; to Calculate;s for some i’ € {1,...,r}, and let M, ; be the number of additional gates of R;;, respectively. Let
Ly =max{L;; :i€{0,...,r —1},1 < g(i),i + 2! <r} and M; = max{M;; :i € {0,...,7r —1},1 < g(i),i + 2! < r}.
Eq. (34) and (35) clearly imply L; = 2 - 4'. Moreover, since Uniony: o can be implemented using at most p(NN) gates,
where p is a polynomial independent of [, it follows from (35) that M;,; < 4M; +p(N), implying M; = O(4! poly(N)).
Thus, R, uses at most

Lo, + -+ Lo <2144+ +4lle2mly = O(r2) (40)

calls to Calculate;s for some ¢’ € {1,...,r}, and
Mg, + -+ My, = O((1+4+ - +4l°87]) poly(N)) = O(poly(N)) (41)
additional gates. O

Theorem 2 generates the efficient encoding |EffEnc Z,.) of the set X (v) instead of the simple encoding |Enc X (v)).
For most applications, the former is sufficient, since the value of r is known and simple set queries for checking
properties of X (v) (e.g. checking if X (v) contains certain elements) are generally just as simple to implement
reversibly using |EffEnc Z,) as with |Enc X(v)) (see Proposition 4). We remark however that |EffEnc Z,) can be
converted to |Enc X (v)) using a sequence of calls to Union (for appropriate set sizes) and uncomputations. Since at
most O(logr) union operations are required, is easy to see that this can be implemented with O(poly(INV)) calls to
R;; (as defined in the proof of Theorem 2) for suitable values of 4,1, and O(poly(N)) additional gates.

Corollary 1. With the same notation as in Theorem 2, the operation
[} [0) = |v) [Enc X (v)) (42)

can be implemented reversibly using O(rlog(N/r) + r 4+ log N + A) ancillas, O(poly(N)) calls to Calculate;, and
O(poly(N)) additional gates.
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V. SPEEDUP OF EPPSTEIN’S ALGORITHM

In this section, we provide an example of how to use the toolkit — the divide-and-conquer hybrid approach from
Section IIT and the set-generation procedure from Section IV — to polynomially speed up Eppstein’s algorithm [5]
for the cubic Hamiltonian cycle problem using a small quantum computer. The problem asks whether a given cubic
graph G = (V, E)) has a Hamiltonian cycle, i.e. a cycle going through every vertex exactly once.

A. Eppstein’s algorithm

In this section, we review Eppstein’s classical algorithm for solving this problem in time O(2"(%)/3 poly(n(QG))),
where n(G) denotes the number of vertices of a graph G.

Note first of all that, without loss of generality, one can assume that the graph is triangle-free, since triangles can
be removed by merging the three vertices of a triangle into a single vertex.

Eppstein’s algorithm introduces the concept of “forced” edges that a Hamiltonian cycle has to contain. In other
words, if an edge is forced, we are only looking for Hamiltonian cycles which contain that edge.

Definition 6. Let G = (V, E) be a simple triangle-free graph with maximum degree at most 3, and F' C E. Then,
the forced cubic Hamiltonian cycle (FCHC) problem asks whether G has a Hamiltonian cycle containing all edges in
F. We call edges in F' forced, and edges in E\F' unforced. We call (G, F) an FCHC instance.

Roughly speaking, Eppstein’s algorithm solves FCHC by recursively selecting an unforced edge and creating two
subinstances by either adding that edge to F' or removing it from G. In both cases, the fact that G is cubic induces
additional edges to be either added to F' or to be removed.

The details of Eppstein’s algorithm are given in Alg. 2. The formulation of the algorithm here has been modified
from Eppstein’s original formulation in several places. In particular, we adapted it to the Hamiltonian cycle problem
(instead of the travelling salesman problem [18]) and solve it as a decision problem (rather than finding a Hamiltonian
cycle). We also made several smaller changes to make the transition the the quantum algorithm later easier. For
clarity, and to make this section self-contained, EPPSTEIN will in the following always refer to the algorithm in Alg. 2
instead of the original formulation of this algorithm in [5].

We first introduce a few important concepts.

Definition 7. An FCHC instance (G, F) is called trivial-reduction-free if
(i) G does not contain any vertices of degree two with unforced incident edges,
(ii) G does not contain any vertices of degree three with exactly two forced edges, and

(iii) G does not contain any cycles of four unforced edges such that two of its opposite vertices are incident to a
forced edge and at least one of the other vertices is incident to an unforced edge that is not part of the cycle.

In other words, an FCHC instance is trivial-reduction-free if and only if none of the conditions of step 1 of EPPSTEIN
apply.

Definition 8. Let G = (V, E) be a simple, triangle-free graph with maximum degree at most 3, w be a cycle of four
edges, and F' C E. We say that w unforced-isolated w.r.t. F if all edges of w are in E\F, and each of the four vertices
of w is incident to an edge in F'. Moreover, denote by C(G, F') the set of 4—cycles in G which are unforced-isolated
w.r.t. F.

Note that if (G, F') is trivial-reduction-free, then all unforced 4-cycles are unforced-isolated w.r.t. F'. The correctness
of Alg. 2 is given by the following proposition.

Proposition 5. Let (G, F) be a trivial-reduction-free FCHC instance. Suppose that G has only vertices of degree 2 or
3, and that no three edges in F' meet in a single vertex. Suppose moreover that G\F is a collection of disjoint 4-cycles
and isolated vertices. Then, G has a Hamiltonian cycle containing all edges in F if and only if G is connected.

Proof. The “only if” direction is trivial. Assume that G = (V, E) is connected. Note first of all that all vertices
outside of C(G, F') have degree 2 and both their incident edges are in F'.

For each 4-cycle w € C(G, F), let hq(w), ha(w) be two opposite edges in w and hg(w), ha(w) be the other two edges
in w. Let F} := FU{h1(w), ha(w) : w € C(G, F)}. Note that every vertex in G is incident to an edge in F; and that
every vertex in Gy = (V, F) has degree two. Thus, G is a collection of cycles. Consider the graph Go whose vertices
are the connected components of G, and two connected components Hy, Hy of G are joined by an edge in G5 iff there
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EPPSTEIN(G, F):
1. Repeat the following steps (“trivial reductions”) until none of the conditions apply

a. If G contains a vertex with degree two with at least one unforced incident edge, add all its incident edges to F'.
b. If G contains a vertex with degree three with exactly two forced edges, remove the unforced edge.

c. If G contains a cycle of four unforced edges such that two of its opposite vertices are each incident to a forced edge
and at least one of the other vertices is incident to an unforced edge that is not part of the cycle, then add to F' all
non-cycle edges that are incident to a vertex of the cycle.

2. Check if any of the following conditions (“terminal conditions”) apply

a. If G contains a vertex of degree 0 or 1, or if F' contains three edges meeting at a vertex, return false.
b. If G\F is a collection of disjoint 4-cycles and isolated vertices

i. If G is disconnected, return false.
ii. Otherwise, return true.

c. If F' contains a non-Hamiltonian cycle, return false.
3. Choose an edge yz according to the following cases:
a. If G\F contains a 4-cycle, exactly two vertices of which are incident to an edge in F', let y be one of the other two
vertices of the cycle and let yz be an edge of G\ F that does not belong to the cycle.

b. If there is no such 4-cycle, but F' is nonempty, let zy be any edge in F' and yz be an adjacent edge in G\ F such that
yz is not part of an isolated 4-cycle in G\ F'.

c. Otherwise, let yz be any edge in G that is not part of an isolated 4-cycle in G\ F.

4. Call EPPSTEIN(G, F U {yz}).
5. Call EPPSTEIN(G\{yz}, F).
6. Return the disjunction (logical OR) of steps 4 and 5.

ALG 2: Eppstein’s algorithm (modified)

exists a 4-cycle w € C(G, F) which “separates” Hy, Hs in G, i.e., hi(w) € Hy and ha(w) € Hy or vice-versa. Note that
since G is connected, so is G3. Note moreover that if H; and Hs are adjacent in G2 and separated by w € C(G, F') in
G, replacing hy (w), he(w) with hs(w), hy(w) in Gy would result in replacing the two disconnected cycles Hy, Ho by a
single cycle going through the same vertices. Thus, consider a spanning tree of Gy and let G} = (V, F]) be the graph
obtained from G, by replacing hj(w), ha(w) with hg(w), ha(w) for all w corresponding to an edge in the spanning tree.
Then, by the previous observation, G is connected. Moreover, since F' C F| and every vertex has degree 2 in G, it
follows that G/ is a Hamiltonian cycle containing all edges in F'. O

Note in particular that Proposition 5 implies that step 2c of EPPSTEIN is in fact unneccessary and the algorithm
still performs correctly if that step is omitted. We include that step nevertheless, since the early termination of these
instances simplifies the runtime analysis in Appendix A.

The main idea of bounding the runime of EPPSTEIN is to introduce a “problem size metric” defined as follows.

Definition 9. For an FCHC instance (G, F), let s(G, F) := max(n(G) — |F| — |C(G, F)|,0). We call s(G, F) the size
of (G, F).

Proposition 6. Let (G, F) be an FCHC instance such that no three edges in F meet at a vertex. Suppose moreover
that F is not a collection of cycles. Then, n(G) — |F| — |C(G, F)| > 0.

Proof. First of all, note that the general case can be reduced to the special case of C(G, F) = () by adding one edge
of each w € C(G, F) to F. Suppose now that C(G, F) = 0, and let G’ = (V, F'), where V is the set of vertices of G.
Then, every vertex has degree at most 2 in G'. Moreover, since F is not a collection of cycles, at least one vertex has
degree < 2 in G'. Hence,

2F| = deggv < 2|V (43)

veV

and hence n(G) — |F| > 0. O
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It can be shown [5] that every application of steps 3-6 creates two FCHC instances (Gy, Fy) and (G2, Fz) such
that s(G1, F1),s(Gz2, F) < s(G,F) — 3 or s(G1,F1) < s(G,F) — 2 and s(Ga, F3) < s(G,F) — 5. This leads to a
recursive runtime bound of T'(s(G, F')), where T'(s) = max(2T(s —3),T (s —2) +T(s—5)) + O(poly(n(G))), leading to
T(s) = O(2%/3 poly(n(G))). In particular, EPPSTEIN(G, () solves the cubic Hamiltonian cycle problem in a runtime
of O(2M&)/3 poly(n(G))). We provide the details of this runtime analysis in the Appendix A.

B. Quantum improvement of Eppstein using small quantum computer

Using Theorem 1, the main part of obtaining a speedup is to provide a quantum speedup of EPPSTEIN using few
qubits.

Theorem 3. There exists a quantum algorithm that, for any FCHC instance (G, F), decides FCHC in a runtime of
O(2%/* poly(n)) using O(slog(n/s) + s+ logn) qubits, where s = s(G, F) and n = n(G).

We will prove this in Section V C. Theorems 1 and 3 immediately imply an improvement to Eppstein’s algorithm.

Theorem 4. Let ¢ > 0 be an arbitrary constant. Then, given a quantum computer with M = cn qubits, there exists

a hybrid quantum-classical algorithm that solves the cubic Hamiltonian cycle problem for n-vertex graphs in runtime
020731 poly(n)), where f(c) > 0.

Note that with Theorem 3, we have a quantum algorithm that satisfies all the criteria to apply Theorem 1. However,
to make things fully rigorous, we also need to deal with the fact that Alg. 2 includes initial rewritings and reductions,
and as such is not immediately a special case of Alg. 1. This is a minor technicality, which we resolve as follows for
completeness.

Proof of Theorem /. Note first of all that it is sufficient to prove that one can solve the FCHC problem in a runtime
of O(max(273(GF)=f(n(G) 2703(CF)) poly(n(G))), where v = 1/3 and v = 1/4. Next, note that it is sufficient to
do this only for trivial-reduction-free FCHC instances, since the others can be reduced to the trivial-reduction-free
case by one application of step 1 of EPPSTEIN.

Thus, with the notation of Section III, let P be the set of all trivial-reduction-free FCHC instances. Then ALG
is given as follows: TRIVIAL(P) = 1 if any of the terminal conditions in step 2 of EPPSTEIN apply, and f(P) is the
value returned in step 2. Moreover, [ = 2 and R; and Rs are given by first selecting an edge yz according to step 3 of
EPPSTEIN, forcing and deleting it, respectively, followed by performing all possible trivial reductions (i.e., step 1 of
EPPSTEIN). Note that indeed, Ry and Re map trivial-reduction-free FCHC instances to trivial-reduction-free FCHC
instances. Finally, the runtime analysis of EPPSTEIN (see Proposition 10 in Appendix A) gives k=3, 11 =1y =13 =2

and
325
O—<352>. (44)

The result now follows from Theorem 1. |

C. Proof of Theorem 3

To prove Theorem 3, note first of all that we can without loss of generality assume that (G, F') is trivial-reduction-
free, because if it is not, G and F' can be classically pre-processed by repeated applications of step 1 of EPPSTEIN.
Note that s(G, F') is non-increasing under this step.

The recursive steps 4 and 5 in EPPSTEIN yield a binary recursion tree, with the two branches corresponding to
either step 4 or 5. More formally, consider the binary rooted tree defined as follows.

Definition 10. Let (G, F') be an FCHC instance. Define RECTREE(G, F') to the binary rooted tree constructed as
follows: the root of the tree is a vertex labelled (G, F). Then, given a vertex (G, F), if EPPSTEIN(G, F) terminates in
step 2, it becomes a leaf of the tree. Otherwise, if EPPSTEIN(G, F) calls EPPSTEIN(G1, Fy) and EPPSTEIN(Ga, F3) in
steps 4 and 5, respectively, create two children of (G, F) labelled (G1, F1) and (G2, F»), respectively.

Moreover, let 7(G, F) be the number of edges that are forced or deleted in step 1 of EPPSTEIN(G, F'), before the
algorithm moves on.

Intiutively, RECTREE(G, F') is the tree of FCHC instances explored by steps 4 and 5 of Alg. 2. Note that by
Proposition 10 in Appendix A, RECTREE(G, F) has depth at most s(G, F')/2. We first show that in a “good” branch
of the recursion tree, a total of at most O(s(G, F')) trivial reductions are performed.
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Proposition 7. Let (G,F) be trivial-reduction-free and let (G, F) = (G1, F1), (G2, Fs),...,(Gi, F;) be a path in
RECTREE(G, F), such that EPPSTEIN(G, F}) returns true in step 2. Then,

l
> TG, Fy) < 4s(G, F). (45)

Jj=1

Proof. First, note that no edge which is part of some w € C(G, F) will be forced at any point of the algorithm. On
the other hand, every Hamiltonian cycle contains exactly two (opposite) edges of each w € C(G, F). Hence, along
the path from (Gi, F1) to (Gi, F), a total of at most n(G) — |F| — 2|C(G, F)| < s(G, F) edges will be forced. In
particular, at most s(G, F) edges will be forced in step la or lc of EPPSTEIN(G, F;) over all j = 1,...,l. As for
the number of edges deleted in step 1b, note that since (G, F') is trivial-reduction-free, every deletion of an edge in
step 1b of EPPSTEIN(G}, F;) for some j € {1,...,1} is induced by an additional edge being forced. Each such edge
can induce at most two edges being deleted in step 1b. Therefore, at most 2(s(G, F) + s(G, F)/2) = 3s(G, F) edges
are deleted in step 1b of EPPSTEIN(G;, F;) over all j =1,...,1. O

The quantum algorithm we construct is essentially a quantum version of a non-recursive variant of EPPSTEIN which
proceeds by successively forcing and deleting edges according to a given input of a suitable search space. Note that
G and F are classical input parameters and as such, the quantum circuit may depend on G and F. We will not
actively modify G or F' in the quantum algorithm. Instead, the removal and forcing of additional edges are done by
quantumly storing encodings of a set X C {1,...,3|E|}, where for e € {1,...,|E|}, e € X means that edge number
e is forced, and e + |F| € X means that edge number e has been removed (we assume that all edges and vertices are
enumerated in a pre-specified order, i.e., with some abuse of notation [19], E = {1,...,|E|} and V = {1,...,|V]}).
For convenience we also introduce dummy variables which correspond to the values 2|E| +1,...,3|E|.

Before moving to the quantum algorithm, we first show how to perform EPPSTEIN non-recursively. By Proposition 7
and Proposition 10 in Appendix A, a given path leading to an accepting leaf of the recursion tree RECTREE(G, F)
adds at most 7 := |s(G, F)/2] + 4s(G, F) elements to X, corresponding to at most 4s(G, F') edges deleted or forced
in step 1 (Proposition 7) of Alg. 2, and at most s(G, F)/2 in steps 4 or 5 (Proposition 10). Thus, a sequence of
r binary variables v1,...,v,. € {0,1} suffice to enumerate all relevant leafs of RECTREE(G, F'), where each variable
v; corresponds to an edge deleted or forced in step 1, step 4 or step 5. More precisely, the value of v; is ignored
if the i*" element added to X is through a trivial reduction (i.e., in step 1 of EPPSTEIN), otherwise the value of v;
specifies if the edge chosen in step 3 is forced (step 4) or removed (step 5). Thus, EPPSTEIN induces a mapping from
T:={0,1}" — P.([31E|]), ¥V := (v1,...,vp) — X = X (7).

Note that although the same task could be achieved by only introducing |s(G, F')/2] binary variables instead of r,
the additional 4s(G, F') variables ensure that at any given point of the implementation, X has a pre-determined size,
which would not be the case otherwise (indeed, Proposition 7 only provides an upper bound to the number of trivial
reductions overall but these are generally distributed in a previously unknown way). This will be important when we
later want to use the results of Section IV.

The non-recursive (classical) variant of EPPSTEIN is given in Alg. 3. Write X = F' U D, where F/' = {e €
{1,...,|E|} :e€ X} and D = {e € {1,...,|E|} : e+ |E| € X} are the edges which would be forced and deleted
in either of steps 1, 4 or 5 of EPPSTEIN(G, F), respectively. The algorithm first computes X (7) from 7 (we call this
operation REDUCE), and then checks the conditions of step 2 for the FCHC instance (G\D, F'U F’) and returns the
corresponding value. We call the second step CHECK. For completeness, CHECK also returns false if none of the
conditions of step 2 apply (note that if this is the case, Propostions 5 and 7 imply that & corresponds to a branch that
does not find a Hamiltonian cycle). The full non-recursive version EPPSTEIN simply goes through all 2" values of 7,
yielding a runtime of O(2" poly(n(G))). Alternatively, by picking 7 € Z uniformly at random, an expected rutnime
of O(27 /2! poly(n(G))) = O(2%/? poly(n(G))) can be achieved.

Note that we have omitted checking the conditions of step 2c of EPPSTEIN in the non-recursive formulation, as it
does not affect the correctness of the algorithm (see also remark after Proposition 5). Indeed, for a “good” branch
(i-e., a value of 7 that corresponds to finding a Hamiltonian cycle), the condition of step 2c of EPPSTEIN is never
fulfilled, whereas Proposition 5 ensures that if F' U F’ contains a non-Hamiltonian cycle, CHECK will return false.
Instead of checking the condition of step 2¢ of EPPSTEIN, the condition in line 34 of Alg. 3 has been modified to
account for the case when F is a collection of (non-Hamiltonian) cycles, in which case step 3b of EPPSTEIN cannot
be applied.

To turn Alg. 3 into a quantum algorithm, we first show that REDUCE and CHECK can be performed reversibly in
polynomial time, and with only O(slog(n/s) + s+ logn) bits, where s = s(G, F') and n = n(G), and we assume that
CHECK simply writes the result on a single output bit. Note that throughout NONRECURSIVEEPPSTEIN(G, F), G
and F' are never modified. As such, it is sufficient to write REDUCE and CHECK as reversible circuits REDUCEq
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procedure NONRECURSIVEEPPSTEIN(G, F)
s:=n(G) — |F| - |C(G, F)|, r := |s/2] +4s
for all 7 € {0,1}" do

X := REDUCE(G, F, V)
h := CHECK(G, F, X)
if h =1 then
return true
end if
end for
return false

: end procedure

procedure REDUCE(G, F, UV = (v1,...,vy))
X:=0
fori=1,...,r do
x := CALCULATE(G, F, X, v;)
X =X U{z}
end for
return X

end procedure

: procedure CALCULATE(G = (V, E), F, X,v)

F' :={ee{l,...,|B|:e€ X}, D:={e€{l,...,|E| e+ |E| € X}, G’ := G\D
if G’ contains a vertex with degree 2 with at least one edge in E\(F U F' U D) then
e := one of the edges in E\(F U F’ U D) incident to that vertex, a := 0
else if G’ contains a vertex with degree 3 with exactly two edges in FFU F’ then
e := the third edge incident to that vertex, a :=1
else if G'\(F U F’) contains a cycle of 4 edges with two of its opposite vertices being incident to an edge in F U F’ and
one of the other two vertices being incident to a non-cycle edge in E\(F U F’ U D) then
e := that non-cycle edge in E\(F U F' UD), a:=0
else if G’ contains a vertex of degree 0 or 1, or if F'U F’ contains three edges meeting at a vertex, or if G'\(F U F”) is
a collection of disjoint 4-cycles and isolated vertices then
e:=1+2|E|,a:=0
else if G'\(F U F’) contains a 4-cycle, two vertices of which are incident to an edge in F' U F’ then
e := an edge in G'\(F U F’) incident to one of the other two vertices and which does not belong to the cycle, a := v
else if F'U F’ is nonempty and not a collection of cycles then
e := any edge in E\(F U F’ U D) that is adjacent to an edge in FU F’, a := v
else
e := any edge in G’ that is not part of a 4-cycle in G'\(F U F'), a :==v
end if
return e + a|E|
end procedure

procedure CHECK(G = (V, E), F, X)
F:={ee{l,...,|El:e€ X}, D:={ee{l,...,|E|:e+|E| € X}, G':= (V,E\D)
if G’ contains a vertex of degree 1 then
return false
else if F'U F’ contains three edges meeting at a vertex then
return false
else if G\(F U F’) is not a collection of disjoint 4-cycles and isolated vertices then
return false
else if G is disconnected then
return false
end if
return true
end procedure

ALG 3: Non-recursive variant of EPPSTEIN. Note that G and F are never modified, and that in the REDUCE
subroutine, | X| = i after each cycle of the loop.
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and CHECKgq,r, which depend on G and F, and which perform

o REDUCEG,F | _, o CHECKG,F | _, _' L
[7)10)[0)0) [0) ~ =" |7) |[EffEnc Z(7)) [0) [0) ——"" |7) [EffEnc Z(2)) [M(Z(7))) |0) , (46)
where Z(V) = (x1,...,%,), Z1,. .., %, are the elements of X (¥) in the order in which they are added to X in REDUCE,

h(Z (7)) is the output bit returned by CHECK(G, F, X (7)), and the last register comprises at most O(slog(n/s) + s+
log n) ancilla bits.

Next, we turn this into a quantum process by replacing every elementary reversible operation by its corresponding
quantum operation. The final step is to use amplitude amplification [20] (or alternatively fixed point search [21])
to quantumly search for the value |h(Z(¥))) = |1) on the output register. Note that since ¢ of the r input bits are
irrelevant, the dimension of the target space, if a Hamiltonian cycle exists, is at least 2¢. Thus, fixed point search
requires O(1/27/2t) = O(2°/) repetitions of REDUCEG, ¢ and CHECKG p.

It thus only remains to show that for any given trivial-reduction-free FCHC instance (G, F'), both REDUCEg,
and CHECKg,r can be performed reversibly in polynomial time and with only O(slog(n/s) + s + logn) bits, where
s =3(G,F) and n = n(G).

1. Reversible space-efficient implementation of REDUCEG, F

The basic idea of the REDUCEq r algorithm is to reversibly generate an efficient encoding of X (¥) C {1,...,3|E|}
from |7) using Theorem 2 by specifying suitable reversible Calculate; operations. For each value of i = 1...,7, let
Calculateg, p; be the operation that finds the next edge e; and an action bit a; € {0,1} following the implementation
of CALCULATE in Alg. 3. That implementation in turn follows the implementation of EPPSTEIN, i.e., an edge e; is
selected according to the rules of step 1 and 3, and a; = 0 if e; will be forced and a; = 1 if e; will be removed. If no
more edges are forced or deleted (i.e., one of the terminal conditions of step 2a or 2b of EPPSTEIN apply), we set e;
to be a dummy variable e; = 2|F| + 4 and a; = 0.

The task then becomes to reversibly implement the operations

Calculateg, p 1 [11) |0) = |v1) |z1) (47)

and
Calculateg, 7 ; |vi) |EffEnc Z;_1) |0) = |v;) |[EffEnc Z;_1) |z;) (48)
fori=2,...,r, where z; = e¢;+a;|E| and Z; = (x1, ..., ;). Note that by introducing the dummy variables, we ensure
that for any ¢ € {1,...,7}, X; = {x1,...,z;} has exactly i elements, even if no edges have been forced or deleted in

some of the steps.

The primary challenge of the implementation is to maintain reversibility and at the same time use few ancillas.
For this, it is important that any ancillas used are as soon as possible reset to |0) in order to avoid accumulating
unnecessary junk bits.

Proposition 8. Let (G, F) be a trivial-reduction-free FCHC instance and i € {1,...,r}, where r = |s(G,F)/2| +
4s(G,F). Then, the operation Calculateg p,; defined by Eq. (47) and (48) can be implemented reversibly using
O(logn(G)) ancillas and O(poly(n(G))) gates.

Proof. The basic idea to maintain reversibility is to introduce a counter, initially set to 0, which is increased once
suitable values for e; and a; have been found. Then, by controlling all operations on that counter being 0, we ensure
that no further edges are selected once an edge and action bit has been found, and hence that only one edge and
action bit is selected.

More precisely, we introduce a counter from 0 to 7, which we call the flag counter, and denote it by FC. We also
introduce an additional ancilla bit, which we call the flag bit, and denote it by FB. Both are initially set to zero. We
denote the register of O(logn) bits containing the value of e; as ¢ and the register containing the value of a; as a. We
assume that ¢ and a are both initially set to zero.

For clarity of notation, we will only cover the case ¢ > 2 here. The case ¢ = 1 is fully analogous, but without
the |EffEnc Z;,_1) register and ignoring any operations involving it. As before, we write Z;_1 = (x1,...,2;-1),
Xi_1 = {1'1,...,.1'7;_1}, F = {6 S {1,,|E|} e e Xi—l} and D = {6 S {1,,‘E|} e+ |E‘ € Xi—1}~

The basic building block of the implementation consists of a controlled check-and-select (CCS) operation illustrated
in Fig. 2. We will implement seven different check-and-select operations, each corresponding to lines 24-25, 26—
27, 28-29, 30-31, 32-33, 34-35, and 36-37, of Alg. 3, respectively. For example, the check-and-select operation
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FIG. 2: Controlled check-and-select (CCS) operation. The ancilla register consists of O(logn) bits.

corresponding to lines 24-25 of Alg. 3 does the following: if G\D contains a vertex with degree 2 with at least one
edge in E\(F U F’'U D), it adds to ¢ the value of e of one of the edges in E\(F U F’ U D) incident to such a vertex
(if multiple such vertex/edge combinations exist, e is taken to be the first such edge of the first such vertex), leaves a
invariant (such that it stays in 0), and flips FB.

|vi) —| . ] )
|EffEnc Z; 1) — — e — - |EffEnc Z;_,)
10)e — — . — —— 10),
|0), — CCS; (— -+ — CCSy ® CCS;'f— - —CCSyt——10),
|0>]-‘B N L ... 1 - — [ ‘0>J-'B
10} ane — — — —10), .
|0>]-‘c 1 L ... — L ... — [ ‘0>J__C
0) —— - (H—1+18] R — )

FIG. 3: Reversible implementation of Calculateg, g; using O(logn) ancillas. The seven CCS operations use the
check-and-select operations corresponding to lines 24-25, 26-27, 28-29, 30-31, 32-33, 34-35, and 3637, of Alg. 3,
respectively.

The full reversible implementation of Calculateg r; is given in Fig. 3. It consists of these seven CCS operations
concatenated in sequence, then adds ¢ + a|E| to the output register, and finally applies the inverses of the CCS
operations. The latter ensure that all registers except for the input registers (|v;) |EffEnc Z;_1)) and the ouput
register are reset to |0).

It thus remains to show how to reversibly implement each of the seven check-and-select operations. It is easy to see,
however, that each of these can be implemented using O(logn) ancilla bits. Indeed, all check-and-select operations
can be formulated as a search over a set of objects that can be classically enumerated beforehand, since G and F' are
classical inputs, and the checking of each individual object can always be implemented using a constant number of
ancillas and calls to EffContains;_1.

For example, checking whether any given vertex v has any of the properties in question (e.g., whether v has degree
2 with at least one incident edge in E\(F U F’ U D)) reduces to checking which, if any, of its incident edges e have
been forced (i.e, e € X;_1) or deleted (i.e, e+|E| € X;_1). The latter can be done using a constant number of calls to
EffContains;_;. Controlled on the outcome, a suitable edge and action bit is added to etemp and @iemp, respectively,
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and FBiemp flipped, where etemp, dtemp and FBiemp are ancilla registers of the same sizes as ¢, a, and F3, respectively.
The full CCS operation is then implemented by introducing a counter from 0 to n initially set to 0, and then, controlled
on the counter being 0, performing the previous operation for all n vertices in sequence, followed by incrementing that
counter controlled on FBiemp (this is conceptually the same as the sequence of CCS operations in Fig. 2-3, except
with FC replaced by a counter from 0 to n, and e, a, and FB replaced by etemp; Otemp, and FBiemp, respectively).
Note that the final value of the counter is then n 4+ 1— the first vertex with the property (if the counter is 0, no
vertex has that property). Then, the values of ¢emp, dtemp and FBiemp are added to e, a, and FB, respectively. After
that, applying the inverse of the property checks for all vertices resets all ancillas. This covers the CCS operations
corresponding to lines 24-25, 26-27, 34-35, and all but one of the subcases of lines 30-31 of Alg. 3.

A similar iteration through all edges in E covers the CCS operation corresponding to lines 36-37 of Alg. 3.

One can similarly check if G\(F U F’ U D) contains 4-cycles with certain properties, and select incident edges
accordingly if it does. Indeed, note that G\ F has at most O(n) 4-cycles, which can be enumerated in a pre-specified
order, so a counter using O(logn) bits suffices. This covers the CCS operations corresponding to lines 28-29 and
32-33 of Alg. 3.

Finally, to check if G\(F U F"U D) is a collection of disjoint 4-cycles and isolated vertices, note that this is the case
if and only if every edge in E\(F U F’U D) is part of exactly one 4-cycle in G\(F U F'U D). This can thus be checked
in a similar manner by sequentially going through all edges e, and then, for each (not necessarily unforced-isolated)
4-cycle w 3 e in G\F, checking if any of its edges are in F’ U D. This covers the final subcase of the CCS operation
corresponding lines 30-31 of Alg. 3. O

Using Theorem 2, we obtain the efficient reversible implementation of REDUCE from Proposition 8.

Corollary 2. Let (G, F) be a trivial-reduction-free FCHC' instance. Then, the operation REDUCEqG p defined by
Eq. (46) can be implemented reversibly with O(slog(n/s)+s+logn) ancillas and O(poly(n)) gates, where s = s(G, F)
and n = n(Q).

2. Reversible space-efficient implementation of CHECKq,

The reversible and space-efficient implementation of CHECK¢, p follows the (non-reversible) implementation of
CHECK in Alg. 3 by checking in turn whether the conditions in lines 44, 46, 48, and 50, respectively, apply.

It is clear that checking the first three conditions of CHECK, namely whether G’ contains a vertex of degree 1,
whether F'U F’ contains three edges meeting at a vertex, or whether G\(F U F' U D) is a collection of disjoint
4-cycles and isolated vertices, can each be done in the same way as the check-and-select operations in the proof of
Proposition 8, and thus can be implemented reversibly using O(logn(G)) ancillas and O(poly(n(G))) gates. Hence,
it only remains to check whether G\ D is connected. We use the fact that there is a classical reversible space-efficient
algorithm to check that. Indeed, [22] shows that there is a (not necessarily reversible) classical algorithm that decides
in time O(poly(n(G))) and space O(logn(G)) if a graph G is connected. Ref. [23] then shows that any given (not
necessarily reversible) computation requiring memory S and time T can be implemented reversibly using S ancillas
and 2909 gates (see also [15, 24]). This implies the following.

Proposition 9 ([22, 23]). There exists a classical deterministic algorithm that checks if a given graph G is connected
in time O(poly n(G)), which can be implemented reversibly using O(logn(G)) ancillas.

Note that Proposition 9 only requires oracular access to the adjacency matrix of the graph in question [22]. Moreover,
we can easily access the required adjacency matrix, i.e., the map

|EffEnc Z (7)) |v) |w) |0) — |[EffEnc Z(7)) |[v) |w) |v ~gr w) (49)
can be implemented reversibly with O(1) ancillas and at most three call to EffContains,. , where the last bit in (49) is
1 if the vertices v and w are connected in G’ = G\ D, and 0 otherwise. This completes our space-efficient reversible

implementation of CHECKg, F.

Corollary 3. Let (G, F) be a trivial-reduction-free FCHC instance. Then, the operation CHECKq r defined by Eq. (46)
can be implemented reversibly using O(logn(Q)) ancillas and O(poly(n(G))) gates.

This concludes the proof of Theorem 3. O



19
VI. CONCLUSION AND OUTLOOK

The recent progress in experimental quantum computing [25-27] increases confidence that fully scalable quantum
computers will be realised at some point in the upcoming decades. However, the rate at which the number of qubits
we can manipulate with relevant precision and coherence times currently grows provides significant motivation for
studying potential uses of size-limited quantum computers. Complementary to research dedicated to solving small-
yet-hard simulation and ground-state problems [28-31], which are promising applications for really small quantum
computers, in this work, we investigated ways to achieve speedups of classical algorithms by exploiting quantum
computers significantly smaller than the problem size. Concretely, we provide a framework for designing hybrid
quantum-classical algorithms, which can allow for polynomial asymptotic speedups given a quantum computer which
is any constant fraction of the problem size.

Our result also implies that we can achieve a trade-off between the speedup we obtain, and the size of problem we
wish to tackle. Thus, a small quantum computer can dramatically speed up the solving of small problems, but can be
used to achieve more modest speedups of larger instances as well. Such trade-offs have, to our knowledge, not been
explored before our works.

We provided the general formalism in the form of the so-called divide-and-conquer hybrid approach, which enables
us to realise such trade-offs for a broad class of recursive classical algorithms, and we provided a characterisation of
the space-efficiency of the quantum subroutines required to achieve polynomial speedups. Moreover, we provided a
toolkit for the space-efficient reversible generation and manipulation of sets, which is often the bottleneck of the space
requirements of many such algorithms. As an illustration, we show how this framework can be applied to speed up
the algorithm of Eppstein for detecting Hamilton cycles in cubic graphs.

We also identify a number of questions that remain unresolved, both from a purely theoretical and from an applied
perspective.

First, the algorithms which we so far have applied our hybrid approach to are not the absolutely best known
algorithms for their respective problems. Indeed, Eppstein’s algorithm has subsequently been improved from
0(1.2599™ poly(n)) to O(1.2509" poly(n)) [32] and O(1.2312" poly(n)) [33], and a Monte-Carlo algorithm with
runtime O(1.2009™ poly(n)) is known [34]. It would be interesting to apply our framework to speed up the actually
best classical algorithms, which would yield an asymptotic speedup over the best classical algorithms for a quantum
computer the size of any constant fraction of the problem size.

Second, our approach currently focuses on Grover-based speedups; however, the quantum backtracking techniques
[6, 35] and subsequent improvements [30] lead to better performing quantum algorithms. It remains an open question
whether these methods can also be made to fit in our hybrid approach, and whether they would thus yield better
speedups.

. . . - C
0.5 1.0 1.5 2.0

FIG. 4: Plot of f(c) in Theorem 4.

From a more applied perspective, there are three key issues which currently prevent our algorithms from being
practical. First, the precise degree of the speedup we obtain is still quite small (see Fig. 4 for the plot of f(c) obtained
for speeding up Eppstein’s algorithm using a straightforward trit encoding [37]). Our results are primarily conceptual,
however, in that a polynomial speedup can in principle be obtained even for arbitrarily small values of ¢, and we
remark that there is likely to be room for significantly improving the actual degree of that speedup.

Second is the fact that we deal with asymptotic speedups, and focus on algorithm performance in the worst-case
exponential run-times. For the issue of asymptotic statements, there has lately been increasing interest in analysing
performance for finite-size settings [38], which were moderately promising, but required arbitrarily-sized quantum
computers. It would be interesting to see if a similar claim could be made for size-limited quantum computers.

Finally, we assume ideal noiseless settings, which is still remote [39]. Note that exponential run-times essentially
require full fault tolerance to yield reliable results. It would be interesting to consider our hybrid approach for
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heuristic algorithms, which run for low-polynomial times, and while they may fail to find solutions for most truly
hard instances, still perform very well in practice. These much more efficient algorithms would be more important for
real-world solutions to NP-hard problems. Furthermore, in this case, it is more likely that intermediary efficient error
mitigation schemes, as opposed to full fault tolerance, suffices to achieve quantum-enhanced and usable NP heuristics.
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Appendix A: Runtime analysis of Eppstein

In this section, we prove the runtime of EPPSTEIN (as defined in Alg. 2) of O(25(%F)/3 poly(n(G))). Note that since
5(G, F) < n(G), this in particular implies a runtime of O(2™(%)/3 poly(n(G))), which is the bound commonly cited in
literature. The analysis is essentially the same as that in [5].

We first introduce a few notions for convenience.

Definition 11. For any FCHC instance (G, F), let TRIVRED(G, F') be the FCHC instance obtained from (G, F') by
applying step 1 of EPPSTEIN to (G, F).

In other words, TRIVRED is the first step of EPPSTEIN which performs all possible trivial reductions (step la, 1b,
and 1c¢) until no more such reductions are possible. In particular, TRIVRED(G, F) is trivial-reduction-free for any
FCHC instance (G, F'), and TRIVRED(G, F') = (G, F) whenever (G, F) is trivial-reduction-free.

Definition 12. Let (G, F) be a trivial-reduction-free FCHC instance. We say that (G, F) is non-terminal if
(i) G does not contain any vertices of degree 0 or 1,
(ii) F does not contain three edges meeting at a vertex,

(iii) G\ F is not a collection of disjoint 4-cycles and isolated vertices, and

(iv) F does not contain a non-Hamiltonian cycle.

Otherwise, we call (G, F) terminal.

In other words, a trivial-reduction-free FCHC instance is non-terminal if and only if none of the terminal conditions
in step 2 of EPPSTEIN apply.

Definition 13. For any trivial-reduction-free and non-terminal FCHC instance (G, F'), let EDGESELECT(G, F') be
the edge selected in step 3 of EPPSTEIN(G, F)).

In other words, if (G, F) is trivial-reduction-free and non-terminal, then steps 4 and 5 of EPPSTEIN(G, F') call
EPPSTEIN(G, F U {EDGESELECT(G, F)}) and EPPSTEIN(G\{EDGESELECT(G, F')}, F), respectively.

Eppstein’s key idea to bounding the runtime was to show that with each recursive call, s(G, F') reduces by a constant
larger than 1, leading to a runtime that is polynomially better than a trivial path-search algorithm (see also Lemma 7

in [5]).
Proposition 10. Let (G, F') be a trivial-reduction-free and non-terminal FCHC instance and let e = EDGESELECT(G, F).

Suppose that F is nonempty, and let (G1, F1) = TRIVRED(G, F U {e}) and (G2, F5) = TRIVRED(G\{e}, F'). Suppose
that (G1, F1) and (Ga, F») are non-terminal. Then,

e 5(G1, I1),5(Ga, I2) < s(G, F) =3, or
e 5(G1,F1) < s(G,F) —2 and s(Ga, F2) < s(G, F) — 5, or vice-versa.

Proof. We prove the claim by going through all possible cases that can occur in EDGESELECT(G, F).

Suppose first that e is selected according to step 3a of EPPSTEIN (see Fig. 5), i.e., G\ F' contains a 4-cycle w with
exactly two vertices incident to edges in F', and e is one of the other two edges adjacent to vertices in the cycle. Note
that indeed, since (G, F) is trivial-reduction-free, every vertex in w is adjacent to a non-cycle edge. Note moreover
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FIG. 5: If EDGESELECT(G, F') selects e according to step 3a of EPPSTEIN, C(G1, Fy) > C(G,F) + 1, |Fy| > |F| + 2,
and |Fy| > |F| + 3.

that since (G, F) is trivial-reduction-free, the two vertices of w which are incident to edges in F' must be adjacent.
Hence, w has two opposite vertices which are incident to an edge in F' U {e}. Thus, TRIVRED(G, F' U {e}) forces
the last non-cycle edge adjacent to w. It follows that |Fyi| > |F| + 2 and |C(Gy, F1)| > |C(G, F)| + 1, and hence
s$(G1, F1) < s(G,F) — 3. On the other hand, removing e leads to two unforced edges in w, which will be forced,
leading to one of the vertices in w to have two incident forced edges. This leads to the removal of the third (cycle)
edge, hence forcing the final edge in w. It follows that |Fy| > |F| + 3, and hence s(Gs, F3) < s(G, F) — 3.

Next, suppose that e = yz is selected according to step 3b of EPPSTEIN. Let w be the third vertex adjacent to y in
G. Note that since (G, F) is trivial-reduction-free, yw ¢ F' and deg z = degw = 3. We distinguish two cases.

] /ﬂe/l\r\ ]
' +

FIG. 6: If EDGESELECT(G, F') selects e according to step 3b of EPPSTEIN, and neither z nor w have an incident
edge in F, then |Fy|, |Fs| > |F| + 3.

In the first case, suppose that neither z nor w have an incident edge in F (Fig. 6). Then, TRIVRED(G, F' U {e})
first removes yw and then adds both remaining edges incident to w to F. Hence, s(G1, F1) < s(G, F') — 3. Similarly,
5(G2, F2) < s(G, F) - 3.

In the second case, suppose that z or w, have an incident edge in F'. Note that since xy € F, yz and yw cannot
be part of a 4-cycle of unforced edges, because otherwise EDGESELECT(G, F) would choose e according to step 3a of
EPPSTEIN. Thus, z,y,w are part of an unforced, and possibly closed, chain of k > 4 vertices, with the inner vertices
each having an incident edge in F'. There are two subcases here.
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(a) k even (b) k odd

FIG. 7: EDGESELECT(G, F') selects e according to step 3b of EPPSTEIN, and z,y,w are part of an unforced chain of
k > 4 vertices such that the inner k — 2 vertices each have an incident edge in F' and the outer two vertices each
have three unforced incident edges. (a) If k is even, then |Fy| > |F| + 5 and |F»| > |F| 4 2 or vice-versa. (b) If k is
odd, then |Fy|, |Fs| > |F| + 4.

In the first subcase, suppose that this chain terminates (see Fig. 7). Thus, z,y,w are part of an unforced chain of
k > 4 vertices such that the inner k — 2 vertices each have an incident edge in F' and the outer two vertices have three
unforced incident edges. Then, TRIVRED(G, F'U {e}) and TRIVRED(G\{e}, F') force and delete alternating edges of
that chain. If £ = 2[ is even, then one of (G, F1) and (Ga, F») has | — 1 edges of that chain which are forced, and
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the other has [ (Fig. 7a). Assume without loss of generality that (G, F1) has [ — 1 edges of that chain forced. Then,
both outer vertices of the chain will eventually have degree two, and thus TRIVRED forces four additional edges. It
follows that |F| > |F|4+ 4+ (I —1) > |F|+5 and |Fy| > |F|+1 > |F| + 2, and hence s(G1, F1) < s(G,F) — 5 and
$(Ga, F3) < s(G, F)—2. On the other hand, if £ = 21+ 1 is odd, then TRIVRED(G, FU{e}) and TRIVRED(G\{e}, F)
both force [ edges of the chain, and leave one of the two outer vertices with degree two, thus forcing its other two
incident edges (Fig. 7b). It follows that |F|, |F3| > |F|+142 > |F|+4 and hence s(G1, F1), s(Ge, F2) < s(G, F) — 4.

/{}\ -

— » <

FIG. 8: If EDGESELECT(G, F) selects e according to step 3b of EPPSTEIN, and z,y, w are part of an unforced cycle
of k > 6 vertices with k even, each of which is incident to an edge in F, then |Fy|, |Fz| > |F| + 3.
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In the second subcase, this unforced chain is a cycle of k vertices (Fig. 8), each of which is incident to an edge in F'.
Then, TRIVRED(G, F' U {e}) and TRIVRED(G\{e}, F) force and delete alternating edges of that chain. Clearly, by
the definition of Step 3b of EPPSTEIN, k > 4. Moreover, if k is odd, TRIVRED(G, F U {e}) and TRIVRED(G\{e}, F)
would both have three forced edges meeting in a vertex, and hence would be terminal. Hence, £k > 6, and thus
|F1|, ‘F2| > |F| + 3. I‘IGHCG7 S(Gl, F1)7 S(GQ, FQ) < S(G, F) - 3.

Finally, note that since F' is assumed to be non-empty and (G, F') to be non-terminal, EDGESELECT(G, F') does
not choose e according to step 3¢ of EPPSTEIN. O

Corollary 4. For any FCHC instance (G,F), EPPSTEIN(G, F) decides the FCHC problem in a runtime of
0(2°(“ )73 poly (n(@))).

Proof. Clearly, if (G, F) is trivial-reduction-free and terminal, EPPSTEIN(G, F') only takes O(poly(n(G))) time. More-
over, if (G, F) is trivial-reduction-free, then by Propostion 6, s(G,F') = 0 implies that (G, F') is terminal. Hence,
Proposition 10 implies that the runtime of EPPSTEIN(G, F') can be bounded by some function T'(s(G, F)) depending
only on s(G, F'), where T'(s) satisfies T'(s) = O(poly(n(G))) for s < 0, and

T(s) <max(2T(s—3),T(s—2)+T(s—5)) (A1)

for s > 0. Using standard techniques for solving linear recurrence relations, one obtains T'(s) = O(2%/3 poly(n(G)))
for s > 0. O
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A generalization of the injectivity condition for projected entangled pair
states

Andras Molnar, Yimin Ge, Norbert Schuch, and J. Ignacio Cirac

In this work, we introduce and study the notion of “semi-injective” PEPS, a generalisation of the
well-studied injective PEPS. We construct parent Hamiltonians for which these states are the
unique ground states. We then prove a “fundamental theorem of semi-injective PEPS”, which
provides necessary and sufficient conditions for when two tensors generate the same family of
such states. Finally, we use these results to show that the third cohomology classification of
symmetry protected topological (SPT) phases extends to semi-injective PEPS.

Tensor network states are local descriptions of quantum many-body states which are generally
expected to be able to capture ground states of local Hamiltonians. In one spatial dimension,
MPS are highly successful, giving rise not only to very good numerical methods for simulating
such systems, but also a framework to classify SPT phases in one dimension. One reason for
the success of MPS is that a general structure theory of MPS is known. The central component
of the latter is the “fundamental theorem of MPS”, which fully characterises when two MPS
tensors give rise to the same family of states, namely when the two tensors are related by a
“gauge” transformation acting on their virtual indices.

PEPS are the natural two-dimensional generalisations of MPS. However, in the case of PEPS,
an analogous fundamental theorem was only known for the class of so-called “injective PEPS”.
Although a randomly chosen PEPS tensor gives rise to an injective PEPS with probability
1, there are many important examples which are not described by an injective PEPS. These
include the AKLT model on the square lattice, the RVB state, certain Gibbs states, as well as
all topologically ordered states.

The notion of semi-injective PEPS, which we introduce in Section II, comprises states that
are constructed from distributing plaquette states of four virtual particles on a two-dimensional
torus and acting with local invertible 4-body operators on the four corners where such plaquette
states meet. We show that this class not only includes injective PEPS, but also many of the
important examples which are not injective, including the CZX model, purifications of thermal
states of commuting nearest neighbour Hamiltonians on square lattices, as well as the AKLT
model on square lattices.

In Section IV, we construct different types of parent Hamiltonians for semi-injective PEPS.
These are local, frustration-free Hamiltonians for which they are the unique ground states. The
central result, stated as Theorem 1 and proven in Section V, is a fundamental theorem for semi-
injective PEPS, which shows that any two tensors generating the same class of semi-injective
PEPS are related by an invertible Matrix Product Operator (MPO) acting on their auxiliary
indices. We also show that the product of the invertible 4-body operator corresponding to one
of the semi-injective PEPS and the inverse of the one corresponding to the other has a special
two-layer structure.

As in the case of MPS and injective PEPS, the fundamental theorem allows for a charac-
terisation of symmetries of semi-injective PEPS: Theorem 2, which is proven in Section VI,
shows that for semi-injective PEPS with an on-site symmetry, the corresponding MPOs form
a projective representation of the symmetry group, and that these MPOs can be labelled by
the third cohomology group H?(G,C*). We moreover show that the two-layer structure of
the symmetry operators can also be assigned a cohomology label, and we show that the latter
coincides with the H3(G, C*) label of the boundary.
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We introduce a family of tensor network states that we term semi-injective Pro-
jected Entangled-Pair States (PEPSs). They extend the class of injective PEPSs and
include other states, like the ground states of the AKLT and the CZX models in
square lattices. We construct parent Hamiltonians for which semi-injective PEPSs
are unique ground states. We also determine the necessary and sufficient conditions
for two tensors to generate the same family of such states in two spatial dimensions.
Using this result, we show that the third cohomology labeling of symmetry protected
topological phases extends to semi-injective PEPSs. Published by AIP Publishing.
https://doi.org/10.1063/1.5007017

I. INTRODUCTION

Tensor Network States (TNS) are expected to approximate ground states of local Hamiltonians
well.!=? Their local description in terms of simple tensors makes them suitable for both numerical and
analytical investigations. First, this local structure enables calculations in large or infinite systems.
In fact, the Density Matrix Renormalization Group (DMRG) algorithm,* which proved successful in
simulating one-dimensional systems, can be re-expressed in terms of Matrix Product States (MPSs),>
the simplest TNS. This connection also motivated a provably efficient algorithm to find the ground
state of a gapped one-dimensional local Hamiltonian.” Algorithms based on higher-dimensional
generalizations of MPSs, projected entangled-pair states (PEPSs®?), are now also giving the best
known numerical results for certain Hamiltonians in two dimensions (see, for example, Refs. 10-12).
Second, TNS are useful for creating and analyzing exactly solvable models with translation symmetry.
Indeed, paradigmatic wavefunctions appearing in different areas of research have a very simple PEPS
description, where one can generate a whole family of many-body states by contracting, according to
a given geometry, the so-called auxiliary indices of N copies of a single tensor. In two-dimensional
systems, this includes, for instance, the cluster state'>!# underlying measurement based computation,
the rotationally invariant spin-liquid AKLT'>'® and resonating valence bond (RVB)!” states, and other
chiral'®!® and non-chiral states’*->3 embodying topological order. In particular, PEPSs encompass
all known non-chiral topological orders.>* All these states allow for the construction of local parent
Hamiltonians and, by making use of their local description, the ground space structure and the
behavior of the low-energy excitations can be fully analyzed.

In the last years, the theory of TNS has been considerably developed. In particular, in one dimen-
sion a general structural theory of MPS is known. First, the “fundamental theorem of MPS”?>20 states
that any two tensors generating the same family of wavefunctions can always be related by a “gauge”
transformation acting on the auxiliary indices of each tensor independently. This result allowed for the
classification of symmetry-protected topological (SPT) phases in one dimension.?’-?8 Indeed, let us
consider an MPS invariant under a symmetry group G. Then, the local gauge transformations which
relate the tensor generating the MPS and that obtained by a symmetry action form themselves a pro-
jective representation of G.2*** The equivalence classes formed by those projective representations,
which are labeled by the second group cohomology H*(G, U(1)), thus characterize the different SPT
phases under the action of G. Second, for any MPS, there exists a systematic way of constructing
parent Hamiltonians with a controlled ground space.”>3!-3? All this renders MPSs a general framework
for the study of solvable models and the classification of phases in one dimension.

0022-2488/2018/59(2)/021902/45/$30.00 59, 021902-1 Published by AIP Publishing.
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In two dimensions, considerable progress has been made in understanding the description of
topologically ordered phases in the PEPS framework.?-2333-3% However, a general structural theory
of PEPSs and, in particular, a “fundamental theorem of PEPS” are only known for a specific class,
termed “injective.”>!3> Those are PEPSs whose generating tensor, when considered as a map from the
auxiliary to the physical indices, can be inverted. While formally, any random PEPS (after blocking
few spins) is injective, many relevant examples such as the square lattice AKLT model,'® the RVB3¢-7
state, wavefunctions obtained from classical statistical mechanics models,” and all topologically
ordered states, do not have this property. Their lack of injectivity prevents us from understanding
their behavior under symmetries and, at the same time, makes the canonical construction of parent
Hamiltonians with unique ground states for injective PEPS inapplicable.

In order to analyze SPT phases in two dimensions, one might thus tentatively restrict to injective
PEPSs and apply the fundamental theorem, which yet again yields a projective local symmetry action
on the auxiliary indices. However, in two dimensions, the classification of projective representations
in terms of group cohomology is not stable under blocking and thus cannot be used to label phases
under symmetries unless translational invariance is imposed.*® This is remedied by the CZX model
proposed by Chen et al.’® It is made up from a non-injective PEPS with a corresponding symmetry
action, in a way that it exhibits non-trivial symmetry invariants which are insensitive to blocking.
Specifically, the symmetry action on the auxiliary indices at the boundary of any region is given
by Matrix Product Unitary Operators (MPUOs). Those can be labeled by elements of the third
cohomology group H3(G, U(1)) of the symmetry group G, and therefore those elements are expected
to label the different SPT phases.*%-°

In this paper, we introduce semi-injective PEPSs and develop the structure theory for them. They
significantly generalize injective PEPSs and include the square-lattice AKLT model, all wavefunctions
based on classical models, and CZX-like states, among others. Our central result is a “fundamental
theorem of semi-injective PEPS” which states that any two tensors generating the same semi-injective
PEPS are related by an invertible Matrix Product Operator (MPO) acting on their auxiliary indices.
For semi-injective PEPSs with an on-site symmetry, the corresponding MPOs form a representation
of the group. We give a general and fully rigorous proof, based on the arguments of Chen et al.,’®
that these MPO representations are labeled by the third cohomology group H 3(G,CH=H3*G,U(1)),
suggesting that this labels SPT phases for all semi-injective PEPSs, including those away from fixed
point wavefunctions*? or with non-unitary symmetries. We further show that symmetries of semi-
injective PEPSs must have a special two-layer structure. This, by itself, enables the definition of an
MPO acting on the physical indices alone and thus allows one to assign another label H*(G, C*) to the
symmetry action, which we show to coincide with that of the MPO acting on the boundary. Therefore,
the SPT labeling is just as much a property of the physical symmetry itself as it is of the boundary and
can in fact be directly inferred by analyzing the structure of the physical symmetry action, without
needing to invoke the underlying PEPS. As a corollary, this implies that the H* label of the MPO
action is well defined and, in particular, the same on the horizontal and vertical boundaries, also in the
absence of rotational symmetry. Furthermore, we also provide two different constructions for parent
Hamiltonians with unique ground states.

The paper is structured as follows. In Sec. II, we introduce the formalism and define semi-injective
PEPS:s. In Sec. 111, we give an overview of the main results of the paper. Readers who are interested
only in the results rather than the proofs might thus restrict to Secs. Il and III. In Sec. IV, we discuss
the parent Hamiltonian for semi-injective PEPSs. In Sec. V, we summarize central results from the
structure theory of MPS needed for the remainder of the paper. In Sec. VI, we develop the structure
theory of semi-injective PEPSs, i.e., we give a local characterization of when two semi-injective
PEPSs generate the same state. In Sec. VII, we apply this to characterize symmetric semi-injective
PEPSs, yielding the characterization in terms of the third cohomology group.

Il. FORMALISM

In this section, we introduce MPSs, PEPSs, and the graphical calculus commonly used in the
field of tensor networks (TNs). We modify the standard notations in order to be able to represent
TNs that are concatenations of several layers of two-dimensional TNS. Using this notation, we define
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semi-injective PEPSs. We show that this class of PEPSs contains all injective PEPSs as well as some
examples that are not known to have injective PEPS description.

A. Notation

Translationally invariant MPSs are defined in terms of a single rank-three tensor
AeCPoCPeC? A= Zaﬂ,iAflﬁ la)(B] ® |i)=Y.; A’ ® |i). The corresponding state on n particles
is

|V,,(A)>:ZTr{A"l AR ). (D

The tensor and the corresponding state can be represented graphically as follows. Each tensor is
represented with a square with lines attached to it. The number of lines connected to the rectangle
is the rank of the tensor, and each line represents one index. For example, the single MPS tensor is

represented as
A
' 2)

Tensor contractions are depicted by joining the lines corresponding to the indices contracted. For
example, the contraction of two MPS tensors is

i Al ii A 4
Z AL AL la)(yl ® lij) = ' 3)

aByij

Same way, the MPS can be depicted as

, _ A A A
Va(A)y= > Tr{A" . AYliy . dy) = . @

We refer to the contracted legs as bonds or virtual indices, D as the bond dimension of the MPS tensor
A, the uncontracted leg as physical index, and d as the physical dimension of A.

We will define PEPSs now as generalizations of MPSs. We will consider a square lattice, although
other geometries can also be used. Take a rank-five tensor B,

B = ) 5)

Consider an n X m rectangular grid with periodic boundary conditions (that is, on a torus). The
PEPS is defined then by placing the tensor B at every lattice point and contracting the neighboring

tensors,

me(B): Cee (6)

An equivalent description is the following. Place maximally entangled pair states on the edges of the
grid. These particles are referred to as virtual particles. At every lattice point, act with an operator on
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the four virtual particles closest to the lattice point,

Here each dot represents a virtual particle, and the lines connecting them represent that they are in
an entangled (here the maximally entangled) state. The red circles depict the operators acting on the
four virtual particles. We call a PEPS injective if these operators are injective maps.

In the following, we use this notation when drawing tensor networks in two dimensions. For
example, a four-partite state will be depicted as

®)

[ 2 L ]
This four-partite state can equally be thought of as a non-translationally invariant MPS on four sites.
Then each corner depicts an MPS tensor. Operators are depicted as circles or rectangles. For example,

i

depicts a four-partite operator acting on the physical indices (black points) of four MPS tensors. In
certain cases, we need more than two layers of tensors. In this case, the upper layer is drawn bigger.
For example, a product of two operators acting on four MPS tensors is depicted as

| I (10)

In this case, the operator depicted as a solid circle acts first on the four MPS tensors and the dashed
one acts second.

We will often use a minimal rank decomposition of tensors. For convenience, we will refer to the
operators in the decomposition as Schmidt vectors, even though the minimal rank decomposition is
not necessarily a Schmidt decomposition, as we do not require orthogonality. For example, a minimal
rank decomposition of a four-partite operator acting on four MPS tensors will be depicted as

an

The Schmidt vectors of a four-partite state l¢) can be related to its MPS description. We will therefore
depict the minimal rank decomposition as

= ; (12)
[ 2 L J [ 2 L ]
where the Schmidt vectors are denoted as
(13)
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B. Semi-injective PEPS

In this section, we define semi-injective PEPSs. We show that this class contains all injective
PEPSs. Moreover, we provide examples that are not known to admit an injective PEPS description,
yet they can be written as semi-injective PEPSs.

Definition I (Semi-injective PEPS). Let|¢) be a four-partite state with full rank reduced densities
at every site, and let O be an invertible operator. The semi-injective PEPS ¥, x,(¢, O)) is defined

% G
om0, 0N = G G GD G (14)
G

where the green rectangle is l¢) and the red circle is O, and the state is defined on a torus with n X m
copies of |¢). We will often drop l¢) and O and the indices n, m from the notation.

Note that the full rank assumption does not affect which states can be described as semi-injective
PEPSs, it is only needed to avoid unnecessary degrees of freedom in the operator O.
These states can be written as a PEPS, but that PEPS is in general not injective. For example, a

PEPS tensor generating the same state is
i o

with an arbitrary (not necessarily translational invariant) MPS decomposition of I¢) (TN states of this
form have been used in other contexts, see, e.g., Ref. 41).

In the following, we show that these states include injective PEPSs as well as all the examples
mentioned above.

1. Injective PEPS

In this case, the invertible operator is the PEPS tensor, and the four-partite state consists of two
maximally entangled pairs (and a one-dimensional particle),

i
Y w
Sestemits

where the four-partite states are (the fourth particle is a scalar)

= I (17)
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2. The CZX model

The CZX model readily admits the semi-injective PEPS form: the four-partite states are GHZ
states [0000) +11111), whereas the invertible operators are unitary operators U czy = X ®4. [Ty CZy;.

3. Purification of thermal states

Consider a commuting nearest neighbor Hamiltonian on a square lattice and the following
purification of its Gibbs state:

1 +
|‘I’>:ﬁ (e ﬁH/z@Id)(g)W) s (18)

where 1¢™) = Y ;ljj) is a maximally entangled pair state, and e BH @ 1d acts non-trivially on one of
the entangled pairs at every lattice site. This state admits a PEPS description: as the Hamiltonian
terms are commuting, e A/ is a product of local operators. The PEPS tensors are then simply
the product of the Schmidt vectors of these local operators acting on I¢*). This tensor does not
become injective after blocking exactly because of the corners: after blocking, the operators lying
entirely inside the blocked region can be inverted. Note that applying invertible operators on the
tensor does not change injectivity. This factorizes the tensor into a product of tensors on the boundary
and tensors on the corners. The boundary is injective, while the corners are not: the Schmidt vectors
of the Hamiltonian terms commute; therefore, any antisymmetric state on the corner is mapped to
zero.

Nevertheless, these states admit a semi-injective PEPS representation. Indeed, block 2 X 2 pairs
of particles. The four-partite state in the semi-injective PEPS description consists of the four pairs of

particles in the state
® o 4
=© ©= [ [e?" |21d® - X) 167, (19)
J . ) i=1

where both i and j run over the particles in one block and l¢*) is the maximally entangled
state. The dots represent I¢*), while the ellipses represent e #% @ Id®2. The invertible opera-
tor is a product of e#" @ 1d®? on the 2 x 2 block shifted by half a lattice constant in both

directions,
O[T}

With this convention, the state is written as an injective PEPS as follows:

Ere
Sy
GO

4. AKLT in two dimensions

The two-dimensional AKLT model is a spin-2 system which is constructed as follows: place a
singlet 101) —110) on each edge of a square lattice. Then, at each vertex, project the four virtual qubits
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into the 5-dimensional symmetric subspace,

-
o=
o=

1
)

\Varrr) = - (22)

! ! ! !
Here the blue lines represent singlets and the orange circles represent the projectors into the symmetric
subspace. As any virtual boundary state which is anti-symmetric on the two qubits of any corner is in
the kernel of the map after appropriate applications of single-qubit Y's, the PEPS tensors describing
this state cannot be injective, even after blocking.

The two-dimensional AKLT admits a semi-injective PEPS description as follows:

TYYY e
4 OO w
) LTIy

with the four-partite state
L)
= | I ; (24)

where the blue lines are singlets, and the orange ellipses are the projectors into the 3-dimensional
symmetric subspace (the four-partite state can thus effectively be viewed as a state on four qutrits:
the one-dimensional AKLT state on four particles), and

_ N s
=~ (25)

which acts on the qubits represented by the hollow dots, restricted to the symmetric subspace at
each corner. It can be verified that the rank of (25) is 81. Clearly, the image of the adjoint of (25) is
contained in the subspace which is symmetric in the pairs of qubits at each corner. The dimension of
the latter is also 81. Thus, (25) is invertible.

lll. SUMMARY AND RESULTS

In this section, we give a summary of the results obtained in this work. The detailed derivations of
all these results are given in Secs. IV=VII. The results extend the properties known for injective PEPSs
to semi-injective ones. First, we show how to construct local Hamiltonians for which they are the
unique ground states. Next, we answer the question under which local conditions two semi-injective
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PEPSs generate the same state. We then use this result to characterize symmetries in semi-injective
PEPSs. We also find that the third cohomology classification of SPT phases naturally extends to these
states, and thus these states might be suitable to capture the physics of SPT phases. In the following,
we give a detailed description of the results.

Consider two semi-injective PEPSs generated by (¢4, O4) and (¢, Op). Suppose that on an n X m
torus, they generate states that are proportional to each other,

=l s ul el e el leals (26)

where the purple circle and the blue rectangle depict O4 and I¢4), respectively, while the orange
dashed circle and the green rectangle depict Op and l¢p), respectively, and u,,, € C. Inverting Og,
we obtain

el % SN )

where the red circle denotes the invertible operator O = 0;1 O4.
In this setup, we prove the following:
Theorem 1. If Eq. (27) holds for some specific ng, my > 3, then for all n,m € N:

1. Equation (27) holds with p, , = u™".
The action of O corresponds to an MPO acting on the boundary as follows: Take a minimal
rank decomposition of the four-partite states with respect to the vertical cut. That is, write

_ M and || = . o8)

Then for the Schmidt vectors defined as above, the following holds: There are two MPO tensors

X and Y such that
X X X
| | |
( ) C ) C )
_n ° o o o o o
. =M . o o o o ° ) (29)
C ) C ) C )
[ [ [
Y Y Y

where u € C is the proportionality constant from Point 1 above, V,,(Y) = (V,,(X ! for every size
n, and both X and Y become injective after blocking two tensors.
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3. The operator O is a four-particle non-translationally invariant MPO with the property that
cutting the MPO into two halves yields a minimal rank decomposition of O.
4. The operator O is a product of two-body invertible operators,

0=(014® 023) - (012 ® O34) = (012 ® 034) . (014 ® 023) , (30)

where the particles are numbered clockwise from the upper left corner and O;; acts on particles
i and j. Pictorially,

= = : €2y

In Sec. VII, we use these results to rederive the third cohomology classification of SPT phases
within the framework of semi-injective PEPSs. The setup in this case is as follows:

Let G be a group and O, be a faithful (not necessarily unitary) representation of G. Let |$) be a
four-partite state with full rank one-particle reduced densities. Suppose Yg € G, O, is a symmetry of
the semi-injective PEPS defined by l¢) and Id,

0 O N oy S O B Oy O

S
i i
IrrrTrIr

where the blue squares represent |¢) and the red circles represent operators O,.

Note that this setup can readily be applied for unitary symmetries of semi-injective PEPSs: let
the semi-injective PEPS be defined by the four-partite state I¢) and an invertible operator A. Let
the unitary representation of the symmetry group G be U,. Then, by inverting A in the symmetry
condition, we arrive to Eq. (32) with Og = AU A

Within this setup, we prove that

(32)

Theorem 2. If Eq. (32) holds for some n, m > 3, then

1. g u(g) is a one-dimensional representation of G.
2. Forevery g € G, there are two MPO tensors X, and Y ; such that

Xg Xg XQ
: : : ( ) C ) C )
e T e S
‘ ‘ ‘ C ) C D) C ) ,

g g g

and V,(Y,) = (Vn (Xg)) - foralln.Moreover,V ,(Xy) and V(Y ) form projective representations
of Gwith V(X o)V (Xp) = 2"(g, W)V (X X}) for a two-cocycle A. In particular, V ,(X )V ,(X})
has only one block in its canonical form.

3. There is a canonical way to assign an element from H>(G,C*) to the one-block MPO
representation g — X.
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4. Og4 has a four-particle non-translationally invariant MPO representation with tensors
02,1), 02,2), 02,3), 0;4) in the sense of Theorem 1, Point 3, such that the MPO Vn(Ofgl)Oé,z)O?) 02,4))
forms a one-block projective MPO representation and its cohomology label coincides with
that of the boundary. In particular, the MPO labels obtained from the vertical and horizontal
boundaries are the same.

IV. PARENT HAMILTONIAN

In this section, we prove that semi-injective PEPSs are unique ground states of their parent
Hamiltonian. Let us consider a semi-injective PEPS ly/). Corresponding to this state, we consider two
parent Hamiltonian constructions. First, one can obtain the usual parent Hamiltonian by writing the
state as a PEPS with the tensors in Eq. (15). That is, consider a 2 x 2 patch of the tensors. Let S be
the subspace generated by the tensors with arbitrary boundary conditions:

( )

LUG
SUG

\ /

|\ € CP+Pi

n
I
>

(34)

The Hamiltonian term /; centered around the plaquette state at position i is just the projector onto S*
and the Hamiltonian H is the sum over all positions of these projectors,

h; = Proj (SL)I, ®1d, (35)
H= Z h;. (36)

1

The second construction is to invert the operators O around a plaquette state at site i and project

¢; to zero,

i

hi:(]_[ 0].—1) P; (]_[ 0].—1), (37)
iy iy

where j runs over all positions of operators that (partially) act on the plaquette state at position i and

the projector P; is the projector to the orthocomplement of C |¢): P; = (Id; — ¢);{¢l) ® Id. Then the

Hamiltonian H is the sum of the different terms,

H:Zhi. (38)

Proposition 3. The semi-injective PEPS ) is the unique ground state of both H and H at all
system sizes.

Proof. We first prove that H has a unique ground state. Then we prove that the kernel of H is
contained in that of H.
To see that ker H is one-dimensional, consider the following similarity transform:

(U oj)TH(lj[ 0-):2P,~®1d®(§j§)(oj—l)*oj—l, (39)

where the product runs over all sites j that are not neighbors of the projector P;, and the identity acts
on all virtual particles that are neighbors of the four-partite state |¢). The kernel of each term in the
sum is |¢); ® &) i ‘H;, where j runs over all virtual particles that are not in the four-partite state |¢).

Clearly the intersection of these subspaces is (X) |#)i, that is, the kernel of H is one-dimensional.
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To see that ker H < ker H, notice that every state in S; [defined in Eq. (34)] is in the kernel of &;.
Therefore,

ker 7;,' < Xker h;. (40)

Finally, as ker H = N; ker #; and ker H = N; ker h;, the inclusion also holds for the kernel of the total
Hamiltonians. O

V. BACKGROUND: MATRIX PRODUCT STATES

In this section, we recall some basic properties of MPSs. These definitions and theorems are
mainly covered in Ref. 26. First, recall some basic properties of completely positive maps.

Definition 2. A completely positive map 7 : p+— T(p)=2; A; pAl.T is

e irreducible if there is no non-trivial projector P such that T(p) = PT(p)P' for all p = PpP¥,
otherwise T is reducible;
e primitive if dn such that 7" (p) > 0 for all p > 0.

Note that then the following statements hold:

Proposition 4. Let T: p—T(p)=2;A; pAl.T be a completely positive map with spectral radius
. Then r is an eigenvalue with at least one positive semidefinite eigenvector. Moreover,

o T is primitive if and only if r has multiplicity one, the corresponding eigenvector is positive
definite, and there are no other eigenvalues of magnitude r.

o if T is irreducible but not primitive, then r has multiplicity one, and all eigenvalues of magnitude
rarer - exp [2nin/K] for some Kandn=1,2, ..., K. We call K the periodicity of T.

e T is reducible if and only if A'P = PA;P for some non-trivial projector P,

For proofs, see, e.g., Refs. 42 and 43. Now we define matrix product states.
Definition 3. An MPS tensor is a tensor A € CP @ (CP)* @ C¥,
A= Algley(pleliy=) Aleli). (41)
iaf i
For any n € N, the state V,(A) € ((Cd)®” is then defined as

Vy(A) = Z Tr{A" AR iy ). (42)

i]...0n

The transfer matrix of A, T 4, is the completely positive map T4 : p+— >; A; ij'. We say that A is

e injective, if 3; Tr{A’ p}li) = 0 implies p = 0;
e normal, if T is primitive;
e periodic, if T4 is irreducible but not primitive.

An MPS is called normal, injective, or periodic, if it can be generated by a normal, injective, or
periodic MPS tensor.
We often depict an MPS tensor and the corresponding MPS as follows:

A A A A
AE—‘ % = V. (A) = . (43)

The horizontal legs of the MPS tensor A are often referred to as the virtual indices, while the vertical
one referred to as the physical index of A. The dimension of the virtual indices, D, is called the bond
dimension of A.
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Note that, unlike in Ref. 26, for convenience, we do not suppose that the spectral radius of a
normal tensor is 1. Note also that an MPS tensor is injective if and only if it has a left inverse, C, such
that }; A’ ® C* =1d in the sense as depicted,

C

— 44
4 ) (44)

Here, and in the following, we use the following graphical calculus** of tensors. A tensor is depicted
as abox or circle, with some lines attached to it. These lines represent the indices of the tensor. Tensor
contraction is depicted by joining the lines. In the picture above, for example, we have contracted
the physical indices of A and C. The result is the identity tensor from the bottom indices to the top
indices. We have omitted drawing a box for the identity.

A frequently used concept in MPS theory is the blocking of tensors.

Definition 4 (Blocking). The MPS tensor B is a blocking of Ait B=};, Al AR L),
Note that V,(B) = Vi, (A).

We will often write the above contraction of tensors as a product. That is, for any two MPS
tensors C and D, CD = }; C D/ ® lijy. With this notation, B = AA ... A. We will use this notation
even if one of the tensors does not have a physical index.

Note that a normal tensor stays normal after blocking. Moreover, injective and normal MPSs are
the same up to blocking:

Proposition 5. Any injective tensor is proportional to a normal tensor. Conversely, for any normal
tensor, ALy € N such that it becomes injective after blocking any L > L tensors. The minimal such
Lo is called the injectivity length.

This statement was proven, e.g., in Ref. 45. Note that Ly might be bigger than the primitivity
length of T'4, that is, the minimal n for which TX( p) >0 for all p > 0. There is, however, a universal
bound depending only on the bond dimension D.

Note that being normal or injective are properties which are stable under taking the tensor product
of MPS tensors:

Proposition 6. The tensor product of two normal MPS tensors is normal. The tensor product of
two injective MPS tensors is injective.

Proof. First, we prove that the tensor product of two normal tensors A and B is normal. The
transfer matrix of A ® B is T4 ® T, where T4 is the transfer matrix of A and T'p is the transfer
matrix of B. Denote the spectrum of any operator T by o(T). Then o(T4 ® Tg) = 0(T4) - o(Tp).
Therefore, T4 ® T'p has a unique eigenvalue with magnitude (and value) equal to the spectral radius.
The corresponding eigenvector of T4 ® Tp is ps ® pp if ps and pp are the eigenvectors of T4
and T'p with maximum eigenvalue, respectively. ps ® pp is positive and is full rank, so T4 ® T is
primitive.

Second, the tensor product of two injective tensors is injective: if A and B are injective and A~
and B~! are their left inverses, then A~! ® B! is a left inverse of A ® B. O

Proposition 7. Given two normal tensors A and B with injectivity length at most L, the two MPSs
generated by them either become perpendicular in the thermodynamic limit, i.e.,

[Va@IVa@B)I
IVa(I - IVa(B)]

45)

as n — oo, or the following three equivalent statements hold:
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o V,(A)= A"V ,(B) for some A €C for all n;
e dn > 2L + 1 such that V,(A) = A"V, (B) for some 1 €C,
o A= AXB'X~!, for some A € C; and this X is unique up to a constant.

We call the normal tensors A and B essentially different if the MPSs generated by them are not
proportional in the above sense. The proof of these statements can be found in Ref. 26.

Corollary 7.1. Given a set of pairwise essentially different normal tensors, A;, AN € N such that
the MPSs V ,(A;) are linearly independent for all n > N.

Proposition 8. Any MPS V,(A) can be decomposed into a linear combination of normal and
periodic MPSs,

Va(A)= D 1 Va(AD, (46)
i
where each A; is either normal or periodic.

The proof can be found in Ref. 26. We provide a simplified proof here.

Proof. We prove this by induction on the bond dimension D. If D = 1, A; is proportional to a
normal MPS. Suppose now that the statement is true for all D < Dy. Consider an MPS tensor A with
bond dimension Dy. If its transfer matrix T4 is irreducible, then A is either periodic or proportional
to a normal MPS tensor. Otherwise, there exists a non-trivial projector P such that A;P = PA;P; see
Proposition 4. Then V,(A) = V,(PAP) + V,(QAQ) with Q = 1 — P. Finally, the bond dimension of
PAP (and QAQ) can be compressed to the rank of P (corr. Q): write P = Y X for some X : CPo - P,
Y:CP - CP, XY = 1dp. Then XAY generates the same MPS as PAP. The bond dimension of the
resulting MPS is smaller than Dy; thus, by the induction hypothesis, they can be written as a linear
combination of normal or periodic MPSs. |

Proposition 9. Let A be a periodic MPS tensor with periodicity K. After blocking K tensors,
Vu(A) decomposes into K essentially different normal MPSs,

K
Vin(A) =" Va(B), (47)
i=1

where the B;’s are pairwise essentially different normal MPS tensors on K spins. Moreover,
Va.(A)=0if n¢ KN.

This statement has been proven as Lemma 5 in Ref. 46. Proposition 9 from Ref. 26 is a corollary
of this:

Corollary 9.1. For any MPS tensor A K such that after blocking K tensors, Vk,(A) decomposes
into the following linear combination of normal tensors:

Vin(A)= ). (Z ﬂ;}) Va(By), (48)
i J

where the B;’s are pairwise essentially different normal tensors on K sites.

Finally, the following statement, together with Corollary 7.1, provides the “uniqueness” of this
decomposition:

Proposition 10. If for uy,...u, € C\{0} and A1, ... A, € C\{0}

Y=Y (49)
i=1 =1

orall neN, then r = s and u; = A,(;) for some permutation p and for all i.
M p(i) p p
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This statement has been proven as Lemma 9 in Ref. 47.
We will also consider non-translationally invariant MPSs.

Definition 5. Let d; and D; (i = 1, ..., k) be positive integers. Let X; =Z;.1;1X{ ® |jyeCP

® (CD il )* ® C% betensors fori=1,. .., k, where we identify k + 1 with 1. Then the non-translationally
invariant MPS defined by these tensors is

d di
VX1, X0 = e Y T XX ). (50)
=1 Q=1
A non-translationally invariant MPS is called injective after blocking [ sites; it Vi =1, ..., k, the

tensor X; X1 ... X4 satisfies that if Tr {pX{‘X{frl .. .X{il_l} lj1...j1y=0, then p=0.

Proposition 11. Let Xy, ..., Xy define a non-translationally invariant MPS that is injective after
blocking [ sites. Then the MPS is also injective after blocking any m > [ sites.

Proof. We prove this by induction on m. For m = [, the statement is true by assumption. Suppose
that the MPS is injective after blocking m tensors. Let p € CP#» @ CP such that for m + 1 consecutive
sites

D0 Te{pxIX2 L XE ) =0 (51)
J1eedme

for some i. Then, as the tensor X;. .. X;;,,—1 is injective,

ij+1p =0 Vi1 €{L,2,...,dism}. (52)

+m

Take any matrix M € C? ® CP#!. Then

0=X2,...X0m pM e CP#1 @ CPi. (53)
Then
D0 (X X0 oM - i - jmen) =0 (54)
J2--Jm+1

The block of the m consecutive tensors X;;i... X 1S injective; therefore, pM = 0. As M was
arbitrary, p = 0; thus, the MPS is injective after blocking m + 1 sites. O

Finally, we introduce Matrix Product Operators (MPOs).

Definition 6. A matrix product operator is an operator written in MPS form

V(X)) = Z Te(XV' XY i i) Gl - (55)

i1 eednefLoeojn

As MPOs are just special MPSs, all the definitions and structure theorems above apply. In
particular, we will use the terminology normal, injective, and periodic for MPOs too.

VI. CANONICAL FORM

In this section, we investigate when two semi-injective PEPSs defined by (¢4, O4) and (¢p,
Op) describe the same state for some (sufficiently large) system size. We find that this question can
be decided locally: the two states are proportional for a large system size if and only if they are
proportional on a 3 X 3 torus. Moreover, the boundary degrees of freedom are related by an invertible
MPO whose inverse is also an MPO. Finally, we show that 01_;1 Oy has to be a product of two-particle
invertible operators. In Appendix A, we also provide some examples that explain why the situation
is more complicated than in the case of injective PEPSs.
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Consider two semi-injective PEPSs generated by (¢4, O4) and (¢p, Op). Suppose that on an
n X m torus, they generate states that are proportional to each other,

. .. . (56)

where the purple circle and the blue rectangle depict O4 and l¢4), respectively, while the orange
dashed circle and the green rectangle depicts Op and l¢p), respectively, and u,, », € C. Inverting Og,
we obtain

. - ;o (57)

where the red circle denotes the invertible operator O = 0}—31 O4. This equation is the starting point of
our investigation below. First we prove that it holds for all system sizes:

Proposition 12. If Eq. (57) holds for some ng > 3, mg > 3, then it also holds for any n,me N
and the proportionality constant is p, , = 1.

Proof. Take a minimal rank decomposition of the four-partite states with respect to the vertical

cut. That is, write
[ L [ L ]
= m—m and = . (58)

L N J L N J L N J L X J

L N 2 L N 2 L N 2 { X 2
B oe | ee [ eei es (59)
_,un,m .

L N J L X 2 L N J L N 3

L N 2 L X 2 L N 2 L N 2

This gives rise to an MPS description of the states with the following tensors:
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L X g
and ﬁ — L X 2 , (60)

N

where the physical index of the MPS tensor is all physical indices of the virtual particles, while the
virtual indices of the MPS correspond to the virtual indices of the minimal rank decomposition of the
four-partite states. These tensors are injective: the green tensor is just a tensor product of the Schmidt
vectors, and as the Schmidt vectors (and their tensor product) are linearly independent, that tensor is
injective. The blue tensor is obtained by acting with an invertible operator on the tensor product of
Schmidt vectors; therefore, it is also injective.

Thus, using Proposition 7, if Eq. (57) holds for ny > 3, mo > 3, then it also holds when the system
size in the horizontal direction is changed to any n by keeping the system size in the vertical direction
my. Therefore Eq. (57) holds for mo and any n, and the proportionality constant iS i, m, = iy, for
some [, € C. The argumentation above holds with respect to the horizontal cut. Therefore the system
size can be changed along the vertical direction too: as Eq. (57) holds for n, my, it also holds for n,

m and the proportionality constant is then u’fi%‘) = " for some peC. m|

Note that this implies that it is decidable whether two semi-injective PEPSs are equal for all
system size. Moreover, it is also practically checkable: it is enough to calculate the overlap between
two states (and their norms) on a 3 x 3 torus. The overlaps can be calculated by standard tensor
network techniques. The cost of this computation scales as the 12th power of the Schmidt rank.

Using Proposition 7, we conclude that up to a constant there is a uniquely defined operator X,
on the boundary for which

S o B W T N 01

— — Xt

This construction, however, does not reveal anything about the properties of the gauges X, and X, !:
they are globally defined and the definition depends on the system size. In the following, we explore
their structure and show that they can both be written as normal MPOs.

Theorem 13. Suppose Eq. (57) holds for some n, m > 3. Then there are two MPO tensors X and
Y such that

( : ) C : ) C : )
_n 'y e o e o 'S
' =M ° ° o ° o . ’ (62)
C ) C ) C )
[ [ [
Y Y Y

where u € C is the proportionality constant from Proposition 12, and V,(Y) = (V,,(X))_1 for every
size n and both X and Y become injective after blocking two tensors.

Before proceeding to the proof, notice that
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Lemma 14. The Lh.s. of Eq. (62) can be described by an MPS that becomes injective after
blocking two tensors.

Proof. Take a minimal rank decomposition of the operators O,

O

Then the Lh.s. of Eq. (62) is an MPS with the MPS tensor

i

where the physical indices of the MPS are both the physical indices and the two virtual indices
belonging to the decomposition of I¢4) on the r.h.s. of Eq. (64), while the virtual indices of the MPS
are the virtual indices belonging to the decomposition of O on the r.h.s. of Eq. (64).

We prove now that this MPS tensor is injective after blocking two tensors. To see this, block two
tensors and note that contracting the middle indices gives back O,

1 1 1 1
C ) C ) C ) C )
C ) C ) C ) ( )
x x x x
Inverting O does not change the injectivity of the MPS tensor, as it is an invertible operation on its
physical indices. Therefore it is enough to prove that

-1
=

is injective. Both v; and wj are linearly independent, as the Schmidt vectors of O are linearly indepen-
dent and the one body reduced densities of the four-partite states are full rank. Therefore the vectors
v; ® w; are also linearly independent, that is, the corresponding tensor is injective. O

We now proceed to the proof of Theorem 13.

Proof of Theorem 13. We first prove that X, and X, ! are proportional to an MPS. Write the Lh.s.
of Eq. (61) as an MPS with two physical indices,

Lo

where the left physical index of the MPS tensor corresponds to the indices on the top of the r.h.s.
(physical and virtual indices of the Schmidt vector), while the right one to the indices on the bottom
of the r.h.s., and the virtual indices of the MPS correspond to the Schmidt index of the decomposition
of O. With this notation, Eq. (61) reads as

- — D Xn

-.-4HHHHHFW = . .. L)
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Applying a product linear functional on the lower half of the r.h.s. (and the right indices of the MPS
on the L.h.s.), the equation changes to

? o

¢ - — S — - X

H‘ L = A X B

...4‘ H‘

for some A, € C. Notice that the Schmidt vectors on the r.h.s. can be inverted: they are an injective
mapping from the Schmidt index to the physical degrees of freedom, as they are linearly independent.
Therefore,

B L L e

where the white circle depicts the inverse of the Schmidt vectors of I¢p). This shows that X, (and
similarly X ') is an MPS with some MPS tensor X (and Y) as long as the Lh.s. is not 0. It is thus
sufficient to prove that there is a translationally invariant product linear functional (the gray circles),
which is independent of n, which does not map the Lh.s. to 0.

Consider two linear functionals acting on the MPS tensor,

ﬁ QHQ QHQ Q% = Ty {M"). )

We show now that there are linear functionals a, b such that for the corresponding M, ,Tr{M, ;}
# 0. Let us consider the map F: (a, b) = Tr{M, , }. Graphically, this map is

- £

Notice that F' equals to the operator O with the left and right side interchanged applied to the tensor
product of the Schmidt vectors of I¢). As O is invertible, F is not zero. Therefore there are linear
functionals a, b such that F(a, b) = Tr{M,} # 0. As Tr{M,;,} # 0, M, is not nilpotent and
thus

R

Tr(M! )} = Z & (73)
i=1

for some &1, ... € C\{0},R>0.LetS:={neN| Tr{MZ’b} # 0}. Notice that IS| = co. Then, choosing

the linear functional appearing in Eq. (70) to be b, the L.h.s. is non-zero for all system sizes n € S.

Therefore, X,, can be written as an MPO for all n € S. Similarly, using the linear functional a instead

of b on the lower part of Eq. (68), we arrive to the conclusion that X! is also a non-zero MPO for

all n € S, for the same S.

Therefore there is a A, € C such that VYn € S,

T I ST VTSP
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Here, u, is the proportionality constant appearing in Eq. (62), and V,,(X) and V,(¥) are translationally
invariant MPOs on 7 sites, such that V,(¥) = (V,,(f())_1 /A,.. Their defining tensors, X and Y, are
independent of n. Note that the MPOs V,(X) and V,(Y) are defined for ¥n € N, but we have not yet
proven that Eq. (74) holds for n ¢ S.

In the following, we prove that Eq. (74) also holds ¥n € N for some injective MPO V ,,(X), V,,(Y)
with 4,, = 1.

Using Corollary 9.1, there exists K € N such that after blocking K tensors, both V,,(X) and V,,(Y)
(n € KN) can be decomposed into a linear combination of normal MPOs. As the tensor product of
normal MPSs is again a normal MPS (Proposition 6), V,,(X)® V,,(¥) has a decomposition into normal
MPOs that are tensor products. Denote these essentially different normal MPOs by V,,(X;) ® V,(Y;).
That is, Yn € KN,

L M
VaR) @ V(1) = > 3 ZV,(X) @ V(X)) (75)
i=1 j=1
where V,,(X;) ® V,(Y;) are essentially different normal MPOs. Using this decomposition in Eq. (74),
the L.h.s. is described by a normal MPO (Lemma 14), while the r.h.s. is described by the sum above
for an infinite number of system sizes (indeed, for all n€ KN N §). As essentially different MPSs
become linearly independent for large system sizes (Corollary 7.1), Eq. (75) can describe a normal
MPO only if either L = 1 or otherwise all but one i satisfy

M;
{;}:0, VneSNKN. (76)
j=1
Recalling that Eq. (73) vanishes ¥n € N\S, we conclude that

R M;
Dy o= (&) =0 VnekN, (77)
k=1 j=1 ki

where i is chosen such that the sum of Z vanishes Vn € S N kN. Applying Proposition 10 to Eq. (77),
all (gkg,,-)K =0, thatis, £;; =0 for all j and all but one i. Therefore, L = 1 in Eq. (75). Using Proposition
9, we conclude that V,,(X) ® V,(Y) does not contain periodic MPOs; therefore K = 1. Thus, both the
Lh.s. and the r.h.s. of Eq. (74) are proportional to normal MPOs. Using Proposition 7, we conclude
that the equality in Eq. (74) holds VYn € N. We have therefore proven that there are normal MPO
tensors X and Y [the ones appearing in the unique normal MPO in Eq. (75)] such that Yn e N and
some A, € C,

S R I ST V7L S

Y Y Y

These MPO tensors also satisfy V,(Y) = (Vn(X))_1 /A, for all n € §. As both V,(Y) and V,,(X) are
normal MPOs, the equality holds Vn € N and thus A, = 2" for some A € C. Absorbing this constant
into Y, V,,(Y) = (V,(X))~" and

O W I LSS S




021902-20 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Corollary 14.1. Suppose that Vn € N Eq. (62) holds also for some other MPOs V,(X) and V,,(Y)
- -1 - -
and V,(Y) = (Va(X)) . Then Vo(X) = 1"V, (X) and V,(¥) = 27"Y™ for some A € C.

Proof. Due to the uniqueness of the gauge in Eq. (61), V,(X)=2,V,(X) and V,(¥) = A;l V.(Y).
Decomposing V,,(X) and V,,(¥) to their canonical forms, we see that the only normal MPS appearing
in the decompositionis V,(X) and V,(Y), and that 1, = }’; A7 and =3, n!. Butthen 1 =3 ;(A;m;)"
and thus by Proposition 10, 4, = 4". |

It turns out that the fact that the boundaries of the two semi-injective PEPSs are related by an
MPO severely restricts the form of O. We will indeed find that

Proposition 15. The operator O from Eq. (57) can be written as a product of invertible two-body
operators,

0=(014 ® 03) - (012 ® O34) = (012 ® 034) . (014 ® 023) , (80)

where the particles are numbered clockwise from the upper left corner and Oj acts on particles i and
j. Pictorially,

We will prove that O has a four site long non-translationally invariant MPO decomposition,
with the property that cutting the MPO into two halves yields a minimal rank decomposition of O.
Moreover, we will show that the product of the Schmidt vectors of O and O~! is tensor products.
Before proceeding to the proof, we show that if O and O~! are both MPOs of this form, O has to
have the two-layer structure (81).

Lemma 16. Consider two non-translationally invariant MPOs on n = 2k sites with tensors X1,
coowXpandYy, ..., Y, Suppose that

1. VXy,.., X)) -VXy,..,Y,=1d;
2. both X;Xi+1 and Y;Y 41 are injective foralli=1,...,nwithn+1=1;
3. the product of X;X;+1 and Y;Y ;11 factorizes as depicted,

X, | Xiy1
Y; Yiy1
%Hl :§ g (83)

ThenV (X, ...,X,) (and V (Y1, ..., Y,)) admits a two layer description,

Y, 1Y, |Ys LYa i ﬁ f

where all two-body operators on the r.h.s. are invertible. Equation (84) also holds when shifted by
one site (with other invertible operators),

Y1 Yo 1Y |V
S = m | (85)
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Note that for the translationally invariant setting, conditions 2 and 3 are satisfied naturally after
blocking some tensors.

Proof. Take a Schmidt decomposition of the tensors X, ..., X, and Y1, ..., ¥, in an alternating
way,
X1 1 Xo | X3 | Xy
= .. (86)
Vi 1Y> 1Y 1Yi
L= .. 87)

We will prove that the two-body operators defined this way are invertible. They naturally have to
be injective from the outside to the middle indices, otherwise V (X, ..., X,) and V (Y1, ..., Y},)
would not be invertible. Suppose that there is an operator which is not injective from the middle to
the outside. Suppose it happens in the lower layer of V (X1, ..., X,). Consider a 2-site part of the

BT

As we took a minimal rank decomposition, the outer tensors on the Lh.s. are invertible. Therefore,
the product of the operators in the middle is a product,

= . (88)

Therefore if the gray operator is not injective from top to bottom, then its kernel factorizes. Suppose
the left operator on the r.h.s. has a non-trivial kernel. Then we can insert a non-trivial projector y on
top that does not change the value of the product,

-

Inserting this back into the product V (Xy, ..., X,,)-V (Y1, ..., Y,), we get that

= o1

AsV (Yy, ..., Y,)is invertible, its left inverse is unique and equal to V (X1, ..., X;,). Therefore
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By assumption, the tensors defining the MPO are injective after blocking at least two sites. Therefore,
by inverting all but one tensor, we conclude that

b

But this is not possible unless the yellow tensor is the identity. Thus, the two-body operators are
invertible. o

We now proceed to the proof of Proposition 15. Note that it is enough to show that both O and
O~! admit an MPO description that satisfies the conditions of Lemma 16.

Proof of Proposition 15. Write the L.h.s. of Eq. (62) as an injective MPS with tensors defined in

Eq. (64). The r.h.s. of Eq. (62) is also an injective MPS. Therefore, the generating tensors are related
by a gauge transformation,

L=ni 7. (94)

= pu oL, (95)

where the red rectangles depict a minimal rank decomposition of the operator O. As V,,(X) and V,,(Y)
are inverses of each other, the inverse relation of Eq. (62) reads

Y Y Y
n * ‘e \o\‘ '/o/ o ‘®

C ) C ) C )]
— = LU e [ (96)
(T—?) (T—T) (T—T) o e o0 o ’

where the dashed red circles denote O~!. Therefore, with an appropriate minimal rank decomposition
of O~!, the generating tensors are related as follows:

|
r-r

) 97

o e
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where the dashed rectangles denote the Schmidt decomposition of O~!. Therefore, applying the
Schmidt vectors of O and then O~! to the Schmidt vectors of l¢4), we obtain

X
X Y
—0O—
= py L= : (98)
—0O—
Y X
Y

99)

Notice that the 1.h.s. is a product with respect to the vertical cut, whereas the r.h.s. is product with
respect to the horizontal cut. Therefore both sides have to be product with respect to both vertical
and horizontal cuts. Note that then V,(X) and V,(Y) satisfy the conditions of Lemma 16 and thus are
products of invertible two-body operators in the sense of Eqs. (84) and (85). Similarly, both terms on
the 1.h.s. factorize with respect to the horizontal cut. As the one-body reduced densities of l¢4) are
full rank, the product of the Schmidt vectors of O and O~! factorizes

-1\ 13 _ ), 43)
(071), 0y =Ay @Ay, (100)

The same holds for the Schmidt vectors of all neighboring bipartition in any order. Similarly, the
equation holds for the bipartition (13)—(24) and also for the reordering of O and O~'. Equation (100)

can be pictorially represented as
D: = T (101)

Consider the operator

J1Jj2 J3J4 1112 1314

7 _ (0(13) 2 O(_24)> O-! (0(12) 2 0(34)) _ i i . (102)

Note that Z factorizes with respect to the bipartition (13)—(24): to see this, decompose O~ with
respect to the bipartition (12)—-(34). Then
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o (o 0 02) - T - ngag (0o

and therefore it factorizes with respect to the bipartition (13)—(24), and so does Z. Similarly, Z also
factorizes with respect to the bipartition (12)—(34). Therefore, Z is a four-partite product,

Kl
-~

| | (104)

As contracting the open indices of Z gives back the operator 0O~'0 = 0, and as Z has a tensor
product structure, this construction gives rise to an MPO description of O. Similarly, contracting only
the vertical (horizontal) indices the lower (upper) two layers gives 07 '0 =1d (00! = 1d) on the
lower (upper) two layers, and thus we obtain a minimal rank decomposition of O in the horizontal
(vertical) cut. As the Schmidt vectors are linearly independent, the MPO tensors become injective
after blocking two tensors.

The above construction can be repeated for O~'. This leads to an MPO decomposition of O,

These two decompositions satisfy the conditions of Lemma 16: the MPOs become injective after
blocking two tensors; moreover, the product of two neighboring tensors of O and O~! factorizes.
Therefore, O (and O™!) is a product of invertible two-body operators. m|

The above form provides an equivalent characterization of when two semi-injective PEPSs are
equal for all system sizes. Before stating the theorem, we introduce two swap operators on four
particles. The horizontal swap, H 4, exchanges the virtual particles of l¢4) in the horizontal direction,

1 2 2 1
— : (105)
4 3 3 Z!

The vertical swap, V 4, reflects the particles of I¢4) in the vertical direction,

1 2 4 3

— . (106)
4 3 1 2

We denote the product of Hy4 and V4 as Sa: Sy = HyV4 = V4Hy4. Define Hg, Vg, and Sp similarly

for lpg). Note that H4 and Hp are different in general as the Hilbert spaces of the virtual particles
might differ.

Theorem 17. Two semi-injective PEPSs are equal [Eq. (57) holds] if and only if the following
conditions are satisfied:

o The operator O factorizes into two-body operators as

| |
= ‘ ‘ : (107)
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o The Schmidt vectors of the four-partite states satisfy

_e—e |

= o @ (108)
°0

— : (109)
o0

where the horizontal ellipse denotes HgOH 4, and the vertical ellipse denotes VOV 4.

Note that the last two conditions are equivalent to the property that the two states are equal on
ann X 1 and a 1 X n torus for all n, and therefore they are easily checkable.

Proof. The necessity of these conditions is clear from above. We now prove the sufficiency.
Let

O '= , (110)
HgOH, = ; (111)
V1O Wy = : (112)
SpOS4 = : (113)

Due to the two layer structure of O and O~! [Eq. (81)], the following operator is a product in the
horizontal cut,

(114)

(115)

where SpOS, is the lower layer. Consider now these operators acting on the semi-injective PEPS
defined by I¢4) and Id,
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From Egs. (108) and (109), the action of the lower layers on each side is to change l¢4) to I¢p).
Therefore,

PR 44
‘e o /o o ‘e o ‘e o/ ‘o @ ‘o o’
| ) Jo ) S
I — ~
e 0,0 0, e o o o 2R S o o
N_ 4 N_ 4 N4 / \ / \ / \
| | | | | |
A7+ A- < PRSI S \ // \ / \ //
‘o o> e o ‘o o> ‘e o ‘e o ‘e o
x ) [ )= - o . (117)
o 0,0 O, 0 o ‘o o o o o o
N _ 4 N NI / \ / \ / \
| | | | | |
A7+ A- < PRSI S \ // \ / \ //
‘o o> e o /e o\‘ ‘e ‘e o ‘e o
| | | | -
o e, e o, e o ‘o o ‘o o ‘o o

Using once more Eq. (109), the r.h.s. is a tensor product of ¢4 at every position,

P SN o SSDC b S O N ) G O O

o o o o o e
N _ - N _ - N _
PR PEaIEN AT %
/e e ‘e e ‘e e

[\0 . [\0 o/} [\o o/} - : (118)
[/f;\‘ [/.»;\‘ [/’f;\‘ j [
YRR T

Applying O on both sides on each site, we see that Eq. (57) holds. O

As a simple application, one can derive the canonical form of injective PEPSs.®

Corollary 17.1. Two injective PEPSs generate the same state if and only if they are related by a
product gauge transformation.

Proof. The conditions of Theorem 17 that Schmidt vectors map to Schmidt vectors read as

(119)
<>X |

and therefore the operator O is a product on the two leftmost particles (and on one particle it is the
inverse of the other). Similarly the other condition implies that the operator is a product on the two
rightmost particles. Therefore O has a product structure in the desired form. O

We now show that if the span of the Schmidt vectors of both states with respect to both the
vertical and horizontal cut contain product states, then I¢4) and I¢p) are stochastic local operations
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and classical communiation (SLOCC)48 -equivalent, that is, there are invertible operators O1, O, O3,
O acting on the virtual particles such that 01 ® Oy ® O3 ® Ould4) = lpp). Pictorially,

(o—F) o .
= : (120)

O O . .

Note that there are examples for states that do not have product states in the span of their Schmidt
vectors, but they generate the same state and are not SLOCC equivalent. For example, consider

*—=0

|pa) = : |oB) = : (121)

*————o

then the semi-injective PEPS defined by I¢4) and Id and I¢p) and Id (more precisely the isomorphism
that rearranges the tensor product to the right order) are the same on every torus, yet these states are
not SLOCC equivalent.

Theorem 18. If the span of the Schmidt vectors of both four-partite states in Eq. (57) contains
a product state for both the vertical and horizontal cut on both sides, then the two four-partite states
are SLOCC equivalent.

Proof. By Theorem 17, Eq. (57) implies
| |

Lm

of
o

L

.*.7
[
o—

— O OO O] oo [ — . o .
—fol lof fiol lof fiol [of fol lof— ] * o 3
S o oo e _ e oo . .
—fol oo lo}—fol o}l lo}— . oo . (122)
— [ O] ] o ¢ — . o .
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Inverting the upper layer, we get
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The Lh.s. is the product in the vertical direction, and the r.h.s. is the product in the horizontal direction.
Therefore the two sides describe a state that factorizes in both directions. Let |I£) be this state and
denote this state with a purple square. Then,
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Equivalently, for the Schmidt vectors, we get

l

D)

|
) C

ﬂ = (125)
D G

D)

LX)
L X

If the span of the Schmidt vectors on the l.h.s. contains a product vector, the same is true for the
Schmidt vectors on the r.h.s. Therefore, choosing a product Schmidt vector on the bottom in Eq. (125)
and applying a product linear functional, we get that for some not necessarily invertible operators,

—— —
= . (127)

A similar equation also holds for the lower part, as well as for both sides of I¢p). Inverting the
operators appearing in Eq. (125), by the same argument, we obtain the inverse relation

l |
C ) C D)
= .4- 4= (128)

and similarly along all other cuts. Equations (127) and (128) ensure that the one particle operators
can be chosen invertible; thus, l¢4) and I£) are SLOCC equivalent. Similarly, l¢g) and I£) are SLOCC
equivalent. Therefore I¢4) and I¢p) are SLOCC equivalent. O

Corollary 18.1. If two semi-injective PEPSs, defined by qubit four-partite states with genuine
four-partite entanglement, are equal, then the four-partite states are SLOCC equivalent.

Proof. Notice that if the four-partite states are entangled for both the vertical and horizontal cut,
then the span of the Schmidt vectors is at least two dimensional. As any two-dimensional subspace
contains a product vector, the previous theorem applies. O

Based on Corollary 18.1, we provide a full classification of semi-injective PEPSs defined with
four-partite qubit states in Appendix C.

VIl. SPT PHASES

In this section, we show how the third cohomology labeling of the SPT phases®®*° extends to
semi-injective PEPSs. First, we show how to assign an element from the third cohomology group
H3(G,C) to a (projective) MPO representation of G. Here, and in the following, the action of G
on C* is trivial. Second, given a group of on-site symmetries of a semi-injective PEPS, there are
three MPO representations associated with it: the boundary along the vertical cut, the boundary along
the horizontal cut, and finally the symmetry operators themselves. We show that the associated third
cohomology labels coincide. The importance of this statement is twofold. First, the labeling is encoded
in the local operators already; thus, one does not have to look at the boundary of the system to find
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the labeling. Second, the labeling corresponding to the vertical and horizontal boundary coincides
despite the model not necessarily having rotational symmetry.

A. Third cohomology labeling of MPO representations

Consider a group G and a projective MPO representation thereof, that is, a tensor X, that gen-
erates an MPO V,(X,) for all g € G such that V,(X)V,(X}) = A,(g, B)V,(Xgp) for all g, h € G,
where 1,(g,h) € C. We will restrict ourselves to MPO representations for which 4,(g, h) = 1"(g,
h). We call such MPO projective representations one-block projective MPO representations. In this
section, we show how to assign an element from the third cohomology group H*(G, C*) to such a
representation.

We first show that we can suppose without loss of generality that X, is normal. The proof is
analogous to Theorem 13.

Lemma 19. Let g |—>)~(g be a one-block projective MPO representation of a group G, that is,
Vn(Xg)Vn(Xh) =A"(g, h)Vn(Xgh)for some A(g,h) € C. Then Vg € G there is a normal tensor X g such
that V,,(X,) = Vu(Xy).

Proof. First we prove that V(X)) = ("1d for some u € C; therefore, there is a normal tensor X,
such that V,,(X,) = V,,(X,). Then, as V,,(Xo)V,(X,-1) = (g, g~ "1d, we will see that V,,(X,) can also
be described with a normal MPO.

To see that V,(X,) = u"'1d, notice that, as g — V,(X,)is a representation, VX, = U,1d and that
V(X)) Vi(X,) = p21d = u, A" (e, e)1d. Therefore, u, = 1"(e, €).

Let K be such that after blocking K tensors, Vn(ffg) and Vn(f(g—l) can be decomposed into a sum
of N and M normal MPOs, respectively. That is, Vn € KN,

N
VaXe) = VX, (129)
i=1
M -
V&)= D" VaXD). (130)
i=1

Then their product, 1*(g, g~")u"1d, can be decomposed into a sum of at least MN not necessarily
essentially different normal MPOs,

N M
(g g A=) N VaROIWaXD)). (131)
i=1 j=1

Let L be such that after blocking L tensors, all of these MPOs can be decomposed into normal MPOs:
Vne KLN,
N M Kj B
V(g,g Hd= )" N Vu(zlh, (132)
i=1 j=1 k=1

=

i

for some normal tensors ng. Ifi#i'orj+j’, ng and Zéj ¥ are not necessarily essentially different.
Collecting the essentially different terms yields

R i
V(g g A= > EVaZY, (133)
i=1 j=1
where R is the number of essentially different terms, Zé‘; are maximal pairwise essentially different

subsets of Z/¥

¢ and S; is the multiplicity with which Zé appears. Note that

N
Si=>

i=1j

M=

R
K. (134)
=1

1

1l
—_
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As essentially different normal MPOs become linearly independent for sufficiently large system sizes
(Corollary 7.1), Proposition 10 implies that there can only be one term in this decomposition, that is,
R =1 and moreover §; = 1. Asall K;; > 1, we have N =M =1 and thus Vn(f(g) is normal. Therefore,
Va(X,) can be described by a normal MPO tensor X. O

The central tool in this section is comparing normal and non-normal MPS tensors that generate
the same state. We only state the results here, and the proofs are provided in Appendix B.

Proposition 20. Let A be a normal MPS tensor and B be an MPS tensor such that for some A € C
Vu(B)=1"V,(A), VYneN. (135)

Then there exist matrices V, W such that VW =1d and ¥n e N and (i, ia, .. ., i) € {1, 2, ...,d}",
VB .. B"W=A" . A", (136)

Definition 7. The pair of operators V, W in Proposition 20 is called a reduction from B to A.

Proposition 21. Let V, W be a reduction from B to A. Let N' = B' — WAV, Then the algebra
generated by N' is nilpotent.

Definition 8. Let V, W be a reduction from B to A. Let N' = B — WA'V. Then the nilpotency
length of the reduction is the minimal N such that Yn > Ny,

N ...N"=0. (137)
The main statement is that any two reductions are related:

Theorem 22. Let V, W and V,W be two reductions from B to a normal tensor A. Let the
nilpotency length of both reductions be at most Ny. Then A4 € C such that for any n > 2N,

VB''B> ... B»=AVB"B? ... B", (138)
B'B2 . B"W=1"'Bi'B2 .  B"W. (139)

Let us now continue how to assign an element of the third cohomology group to a one-block
projective MPO representation. This discussion is essentially the same as in Ref. 38. We include here
the construction for completeness.

Let Xy = Y Xg ®X;Zk ® |i) (k| be the MPO tensor describing the product of two MPOs. As X,
and X ¢, describe the same state and X ¢, is injective, X, ;, can be reduced to X, by Proposition 20. Let
us fix such areduction V(g, h), W(g, h) for any pair of group elements. We will assign a complex scalar
to these reductions. We show that this scalar forms a three-cocycle. Different reductions then lead to
different three-cocycles. We show, however, that their ratio forms a three-coboundary. Therefore, the
equivalence class of the scalars is an element from the third cohomology group.

Starting from the reductions V (g, h), W(g, h), there are two natural ways to reduce the product
of three MPOs,

! A A W)
Xy, iXh Xghk
ixk Xk
V(h, k) \% W (h, k) V(gh, k) W (gh, k)

(140)
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By Theorem 22, there exists a complex scalar A(g, k, k) € C such that for any sufficiently long

chain,
Xy 1 X 1% Wig,h)

Xg W(g7hk)

A
W(gh, k)

\H \H W (h, k)
(141)

We show now that this scalar A forms a three-cocycle due to associativity of the product. For the
fixed reductions V(g, h) and W(g, h), denote the 1.h.s. of Eq. (141) as [g[hk]] and the r.h.s. as [[gh]k].
Consider a product of four MPOs, ghkl, and the following sequence of reductions:

= Ng, h, k)

[[[ghlk]i] — [[gh][kl]] — [glAlkl]]] — [gllhk)I]] — [[g[hk]1l] — [[[ghlk]!]. (142)

In this sequence, every member can be transformed to the next by changing the reduction of three
consecutive group elements. Therefore, every member is related to the previous one by a scalar.
Writing out these scalars, we obtain

[[[ghlklll= A(gh, k,D)~" - A(g, h,k)™" - A, k, 1) - A(g, hk, 1) - A(g, h, k) -[[[ghlk]I]. (143)

=1

As this relation is the defining relation for the three-cocycles, A : G° — C* is a three-cocycle, where
G acts trivially on C*.

Note that the above construction depends on the fixed reductions V' (g, 1), W(g, h) of the product
of two operators. In general, changing the reduction also changes the scalar. This change, however,
is not arbitrary: we prove now that it forms a three-coboundary. Consider another reduction V (g, h)
and W (g, h) with the corresponding three-cocycle A. Then, denoting the reduction with V(g, ) and
W(g, h) by round brackets (in the sense as above), using Theorem 22,

(8h) = w(g, h)[gh] (144)

for some w(g, h) € C. Therefore, the two scalars A and 1 are related as follows:

((gMk) = w(g, Ww(gh, k)[[ghlk], (145)
(8(hk)) = w(h, k)w (g, hk)[glhk]]. (146)

Therefore, the relation between A and A is

w(g, hw(gh, k)

Alg.h k=" Kw(g, k)

A(g, h, k). (147)

This is the defining relation of three-coboundaries; thus, 1/1 : G* — C* is a three-coboundary. There-
fore, A, by construction, is a three-cocycle defined up to a three-coboundary; thus, by the definition
of the cohomology group, it is an element from H>(G, C).

Next, consider MPO representations that are translationally invariant after blocking two tensors
X and Y. The previous method assigns two possibly different labels from H3(G, C*) to the two MPO
tensors XY and YX. We will show now that these two labels are in fact equal.

Proposition 23. Let V,(X,Y,) be a one-block projective MPO representation of G. Then
Vu(Y(Xg) is also a one-block projective MPO representation of G and their third cohomology label
is the same.
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Proof. As V(Y X,) is the same MPO as V,(X,Y,), but shifted by one lattice site, it is a one-
block projective MPO representation. Without loss of generality, one can suppose that both X Y,
and Y X, are injective: they contain only one block; thus, they can be reduced to injective MPOs.
Thus, incorporating the reductions into X, and Y,, we obtain two new tensors such that both XY,
and Y X, are injective.

Let V(g, h) and W(g, h) be reductions corresponding to the product of XY, and XY}, while
V(g, h) and W(g, h) be reductions for the product of Y,X, and X,Y}. Then Proposition 29 in
Appendix B implies that V(g, &) and W(g, h) reduces (up to a scalar) a chain of odd number of MPO
tensors,

Xgn | Ygn | Xgn
(148)

Therefore, for the product of three MPOs corresponding to g, 4, and k and a chain consisting of an
odd number of MPO tensors,

Xgnk | Ygnr | Xgnk

= u(g, h)u(gh, k)

W(gh, k)

(149)

Xgnk | Ygnk | Xgnk
= g hhyuth, ) OO0

(150)

If the above chain is long enough, changing the order of the reductions W changes the above equation
only by a scalar Z(g, h, k),

- Xonk | Ygnr | Xgnk
= Xg h, k)ulg, hk)pu(h, k) ﬁ}(}@

(151)

Similarly, changing the order of the reductions on the left side, we get (notice that the scalar associated
with changing the order of the reductions on the left side is the inverse of that on the right side, see
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Theorem 22)

Mg by E) g, hE)pu(h, E) 1 Xane L Yone 1 Xgnn
N Mg: b, k) ¢ ¢ ¢ |

(152)

Comparing this equation with Eq. (149), we conclude that
A(g, hk) _ p(g, hk)u(h, k)
Ag.h k) p(g hu(gh. k)’

Therefore, the two scalars differ only by a three coboundary. That is, the two third cohomology labels
corresponding to X,Y, and Y X, coincide. m|

(153)

B. Third cohomology labeling of semi-injective PEPS

We investigate the following setup. Let G be a group and O, be a faithful (not necessarily unitary)
representation of G. Let l¢) be a four-partite state with full rank one-particle reduced densities.
Suppose Vg € G, O, is a symmetry of the semi-injective PEPS defined by I¢) and Id,

B O D O SN Oy S oy O

S
] i
rrarTranr

where the blue squares represent |¢) and the red circles represent operators O,.

Note that this setup can readily be applied for unitary symmetries of semi-injective PEPSs: let
the semi-injective PEPS be defined by the four-partite state l¢) and an invertible operator A. Let
the unitary representation of the symmetry group G be U,. Then, by inverting A in the symmetry
condition, we arrive to Eq. (154) with O, = AU A

(154)

Proposition 24. If Eq. (154) holds for some n, m > 3, then it holds for all n, m, and p, ,(g) =
u'"(g) for some one-dimensional representation u of G.

Proof. Apply Proposition 12 and notice that y is a representation. m|

We show now that the action of the symmetries shows up on the boundary as a projective MPO
representation of the group G.

Proposition 25. If Eq. (154) holds, then for every g € G there are two MPO tensors X, and Y
such that

S o I TR T ) B 155
—tr—t 1 (159
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-1
and V,(Y,) = (Vn(Xg)) forall n. Moreover, V,(X¢) and V (Y ;) form projective representations of
G with V,(Xo)V,(Xp) = A"(g, W)V (X X}p) for a two-cocycle A. In particular, V,(X)V (Xp) has
only one block in its canonical form.

Proof. From Theorem 13, the existence of X, and Y, is clear. From Corollary 14.1, it is also
true that V,,(X o)V ,(X},) = 2"(g, )V ,,(X¢X}). Due to associativity, A(g, h)A(gh, k) = A(g, hk)A(h, k),
and thus A forms a two-cocycle. |

Note that if we allow for blocking, there is a length scale K for which AX"(g, h) becomes
constant 1. On the other hand, the labeling with an element from the third cohomology group H3(G, C)
corresponding to the g — X, one-block projective MPO representation of G is a scale-invariant
labeling.

In the following, we show that the classification of the boundary MPO representation V,,(X,)
also shows up in the MPO defined by Oy. To see this, we define a translationally invariant (on four
sites) MPO from O, that we call Vn(Og). Write O, as an MPO in Eq. (104), and open one of the
indices. We call this tensor O,. Pictorially,

0, = I:I = 0, = . (156)

This MPO plays an important role in the third cohomology labeling of semi-injective PEPSs.

Proposition 26. The MPOs Vn(Og) form a one-block projective MPO representation of G. Its
third cohomology label is the same as that of V ,(X).

Proof. As the product of the Schmidt vectors of O, and Oéjl factorizes, the tensor }; (N)gbik_l

has the following structure:
= :ﬂ ‘ ‘ [j:a (157)

Therefore, Vn(Og)Vn(Og_1 )=1d, as it is the n-fold product of this tensor.
We prove now that V,,(Og)Vu(Op)Vi(Ogpy-1) =1d, and thus V,(Og)V,(Op) = Vu(Ogn).
Consider the MPS tensor defined by the Schmidt vectors of Og, Oy, and then O(,)-1 acting on
the Schmidt vectors of I¢). Then, similar to Eq. (98), this tensor can be written as

Xg

Xn

Yan
R

e = : (159)

X gh
Yy,
Yg

with

{
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where the red solid rectangle denotes the Schmidt vectors of Oy, the green one denotes that of
Op, and the dashed one denotes that of O(,)-1. Joining two such tensors, the middle operator is
OgOhO(gh)—l = Id, SO

(160)

As the 1.h.s. factorizes with respect to the vertical cut, and the r.h.s. factorizes with respect to the
horizontal cut, and the one particle reduced densities of l¢) are full rank, the product of the Schmidt
vectors of Og, Oy, and O(gh)—l also factorizes, and thus

= ) (161)

with

= . (162)

Therefore Vn(bg)vn(éh)vn(é(gh)—l) =1d, as it is the n-fold product of this tensor. This means
that Vn(Og) is an MPO representation.

As an MPO representation is also a one-block projective MPO representation, one can label this
MPO representation with an element from the third cohomology group H3(G, C*). We now show that
this label coincides with that of the projective MPO representation of G on the boundary. To see this,
partially contract the MPS tensors describing the boundary of the state [defined in Eq. (95)]. That is,
contract only the lower indices,

(163)
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Notice that the red MPO tensor acting on the L.h.s. is exactly Og. After contracting these tensors,
Eq. (163) reads

x x x

I + b b
By construction, the red MPO appearing on the l.h.s. is Vn(Og). Therefore, if V(g, h), W(g, h) is a
reduction from V,,(0,)V ,(Op) to V,(Ogy), then it is also a reduction from V,,(X,)V ,(X,) to V(X ).

As the third cohomology is assigned to the MPO representation with the help of these reductions,
Vn(Oy) is classified by the same third cohomology class as V,(X). m]

e

(164)

—e 06—
U—e —U
—e 06—
U—e —U
—e 06—
U—e —U

The above proof can be repeated for the vertical boundary instead of the horizontal one. This
means that the third cohomology label of the vertical boundary is the same as that of V,,(Oy), where
Oé ngAngngf Og = AgB,CyDy. Proposition 23 implies that the third cohomology labeling of
Vn(Og,) and V,(Oy) coincides; therefore, the third cohomology labeling of the horizontal and vertical
boundary coincides.

VIIl. CONCLUSION

In this work, we introduced a new class of PEPSs, semi-injective PEPSs. We showed that semi-
injective PEPSs are a generalization of injective PEPSs and that some important examples that are not
known to have an injective PEPS description naturally admit a semi-injective PEPS description. We
showed that they are unique ground states of their parent Hamiltonian. We also derived a canonical
form, i.e., a way to decide locally if two semi-injective PEPSs are equal. One of the necessary
conditions is that the boundaries of the two states are related by an invertible MPO. Using this result,
the third cohomology labeling of SPT phases extends naturally to semi-injective PEPSs, suggesting
that these states are appropriate to capture the relevant physics of SPT phases. We also showed that
this third cohomology labeling is directly encoded in the physical symmetry operators. This property
enables one to find the third cohomology label locally without considering the boundary of a large
system.
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APPENDIX A: EXAMPLES FOR CANONICAL FORM

In the injective PEPS case, if two tensors generate the same state, then they are related by a
product gauge transformation. In the case of semi-injective PEPSs, this is no longer true as the
following example shows.

Let A be the following MPS tensor:

o (10
A _(0 2), (Al)

L (24 -10
A _(17 _3). (A2)
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This tensor was constructed in such a way that it is Z symmetric for size 4, but not for longer chains:
for the tensor B with BY = A? and B! = —A!, V4(B) = V4(A), but V5(A) # V5(B). The tensors A and
B are also normal, and after blocking two tensors they become injective. Proposition 7 also implies
that A and B are not related by a gauge transform. There is also no gauge relating the tensors after
blocking four of them: AX: XBBBBX ™' = AAAA.

Consider two semi-injective PEPSs. Let ¥4 be defined by ¢4 = V4(A) and Id, ¥ by ¢5 = V4(B)
and Id. By construction, ¥4 = Wg. We will show, however, that the PEPS tensors defined by grouping

four MPS tensors,
nd * (A3)

T o

are not related by a gauge, where the blue tensors are A and the green ones are B. We prove that by
contradiction. Suppose there are such gauges, X and Y,

Y
X x—!
_ o O
o o o ' (A4)
Y—l
Inverting Y and Y~!, we get that
1
X x—! )
- e o : (AS)
—o
Y

Notice that the Lh.s. is the product with respect to the vertical cut, whereas the r.h.s. is the product
with respect to the horizontal cut. As A and B become injective after blocking two tensors, both X
and Y have to be product operators, and thus

oI _ L "
SR

But this would mean that after blocking four tensors, BBBB = XAAAAX~! for some gauge X. As
this is a contradiction, the two given PEPS tensors generating the same semi-injective PEPS are not
related by a gauge.

APPENDIX B: MPS REDUCTIONS

In this section, we present the proofs of the theorems about reductions of MPS used in Sec. VII.

Proposition 20. Let A be a normal MPS tensor and B be an MPS tensor such that for some
1€C,

V,.(B)=1"V,(A), VneN. (135"
Then there exist matrices V, W such that VW = 1d and Yn e N and (i, iz, .. ., in) €{1, 2, ..., d}",

VB! .. B"W =A" . AP, (136")
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Proof. Suppose the injectivity length (see Proposition 5) of A is L. Let A and B denote the tensors
obtained from A and B by blocking them L times, respectively. Then A has a left inverse, A~!. Take
the Jordan decomposition of the following matrix:

A—l

- — (BD)
B S + N

where § is semi-simple (diagonalizable), N is nilpotent (upper triangular in the basis in which § is
diagonal), and [S, N] = 0. B and A generate the same state; thus,

(B2)

The r.h.s is D", where D is the bond dimension of A, as it is n times the trace of Id. Using the Jordan
decomposition, Eq. (B1), the Lh.s. is Tr(S + N)" = Tr §”. Therefore Tr S” = D"; thus, Proposition 10
implies that the rank of S is 1. [S, N] = O therefore implies that SN = NS = 0. Thus, (S + N)* = §"
+ N = §" if n is larger than the nilpotency rank of N. Then, as A and B generate the same state, for
all n and m,

n m m
/—/%

B’J_‘ Bt‘T _ pn-l, A A
u Y

where we have used n — 1 times that Tr Id = D. As S is rank one, there are matrices V and W such

that S can be written as

(B3)

L

(BS)
B
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Therefore, comparing this with the r.h.s. of Eq. (B3), for all m,
VB ... B"W=A" .. A" (B6)
Form =0, VW =1d. O

Proposition 21. Let V, W be a reduction from B to A. Let N' = B' — WA'V. Then the algebra
generated by N' is nilpotent.

Before proceeding to the proof, we need the following simple statement:

Lemma 27. Let V, W be a reduction from B to an injectie MPS tensor A, N' = B — WA'V. Then
forany m > 0,
VNIN2 .. N"W =0. (B7)
Proof. We prove this by induction on m. For m = 1,
VN'W = VB'W — VWA'VW =A" — A" =0, (B8)
Suppose the statement is true for all n < m. Then, writing N’ = B' — WA"V and using the induction
hypothesis,
VNUN®2  N»"W =VBI'N2 . NnW. (B9)
Similarly, N ..., N1 can be changed to B2, . .. Bim-1,
VNIN2 . N®W=VB" .  BnINnW. (B10)
Writing now N’ = Bin — WA»V, we arrive to
VNt .. .N"W =VB" .. .B"W — VB" ... B" WA VW =0. (B11)

0

Proof of Proposition 21. B and A generate the same state,
Tr {B"B" .. B} =Tr {A"A” A"} (B12)

Write B’ = WA'V + N' and expand the product on the Lh.s. As V and W form a reduction,
VN .. N»W =0 for any m > 0 and all iy, ..., i,, by Lemma 27, and thus all terms cancel except
the products of A and the products of N. Therefore,

Tr {N'N" .. N} =0. (B13)

This means that Tr{Z} = 0 for every element Z in the algebra generated by N'. Thus, in particular, for
every n > 0, Tr{Z"} = 0. Therefore the algebra generated by N' is a nil algebra and thus nilpotent.>
That is,

NON®Z . Nn=0 (B14)

for large enough n. o
Theorem 22. Let V, W and V,W be two reductions from B to a normal tensor A. Let the
nilpotency length of both reductions be at most Ny. Then A4 € C such that for any n > 2N,
VB'B2 ... B"=AVB"B2...B", (138")
BB .. . B"W=2"'B"B? ... B"W. (139"
Before proceeding to the proof, we need the following calculation that we use repeatedly:

Lemma 28. Let V, W be a reduction from B to a normal tensor A, N i = B' — WA'V. Let N be the
nilpotency length of the reduction. Then the following equations hold:
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B'B2 .. . B"= Z N NEWAR | ATYNsL N (B15)
0<k<lI<n

VBB ... B = Z A ATYNL N (B16)
max(0,n—Ny)<I<n

BUB2 . B"W = Z N NEWAR Al (B17)

0 <k <min(Ny,n)

Proof. Write B = WAV + N’ for all j in B"' ... B and expand the expression. Using Lemma
27 and the definition of the nilpotency length (Definition 8), we arrive at the desired equations. O

Proof of Theorem 22. Let L be the injectivity length of A and let m = 2N + L. Consider
C'm=VB"B> .. . B"W. (B18)

Using Lemma 28 with B = WA'V + N', we have
. . m . . . .
Cliwin= 3" Al ARYN' NI, (B19)
k:N0+L

as m — No = No + L. Similarly, using Lemma 28 with B' = WA’V + N', we get
No
Clwin = 3 VR N WA AT, (B20)
k=0

Note that the MPS tensor at position k = No + 1 to No + L is A% in both expressions. By assumption,
that block is injective. Applying its inverse and comparing the two expressions, we conclude that

No
Z VNI . NEWART AN = QAT AN, (B21)
k=0
No
ZA“ CARVYNR NMOW = ATTAT AN (B22)
k=0
for some A € C. But then, using Lemma 28 for VB' B2 . .. Bi» with B = WA'V + N, we get
. . . NO n . . . . . .
VBB . Br=" " VNU . NEWAk  ATUNS N (B23)
k=0 I=n—Ny

If n > 2Ny, then [ > Ny. Therefore the left part of the r.h.s. can be replaced using Eq. (B21),

n
VBUB2 .  Bin=) Z Al AUYN | N = AVB"B"2 .. B", (B24)
[=n—Ny

where the last equation holds by using Lemma 28 for VBB ... B» with B'=WAV + N'.
Equation (139”) can be proven similarly using Eq. (B22). O

We now consider MPSs that are translationally invariant after blocking two sites.

Proposition 29. Let A€ CP' @ CP? @ C¥ and Be CP? @ CP' ® C® be two tensors such that

both AB and BA are normal MPS tensors. Let C € CP' @ CP2 @ C and De CP2 @ CP' @ C1 be
two tensors such that V,(CD) = V,(AB). Then V ,(BA) = V,(DC) and if V, W are reductions of CD
to AB and V, W are reductions of DC to BA, then for a sufficiently long chain,

AB...BA=AVCD...DCW, (B25)
BA...AB=uVDC...CDW. (B26)
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Proof. First, notice that V,,(BA) =V ,(DC), as V,,(BA) is V ,(AB) shifted by half a lattice constant,
while V,(DC) is V,,(CD) shifted by half a lattice constant.
Next, using Lemma 28 with CD = WABV + N|N,, we have

M
VCD...DCW:ZAB...BVN1N2...N1N2CW, (B27)
2k =0 22 2i
where M is the injectivity length of the reduction V, W. Similarly, using Lemma 28 with
DC =WBAV + NiN,, we have
M
VCD...DCW= ) VCNiN,...N\N, WBA ... BA, (B28)
=0 2%-2
2k = 2i -2i

where M is the injectivity length of V, W. Therefore, if 2k > 2 M +2M +2L, where L is the injectivity
length of AB, then

VCD...CW=AB...AB... A | =| | B...AB...A-
N ~~ 7 N ~~ 7
2k+1 2N+1  2k—1-2N 2N+1 2N+1 2k—1-2N 2N+1
(B29)
As the middle part is injective, the last equation can hold only if AB...BA=AVCD...DCW. The
other equation can be proven similarly. O

APPENDIX C: THE QUBIT CASE

In this section, we characterize how two semi-injective PEPSs defined by (I¢4), O) and (I¢p),

Id) with |¢4), |dB) € (C2)®4 can generate the same state. We restrict ourselves to the case where
l¢p4) and lpp) do not factorize in either direction. Using Corollary 18.1, I¢4) and l¢g) are SLOCC
equivalent, and thus we can suppose l¢4) =1¢p) (by changing O). Notice that the state I£) appearing in
the proof of Theorem 18 [see Eq. (125)] is also SLOCC equivalent with ¢4. We can thus suppose that
lpa) = lpp) =1€). Therefore, given Ig4), we only need to characterize all pairs of two-body invertible
operators such that Eq. (125) holds.

Let us fix lg4) = I¢pp) = I£). We start the investigation with a state such that in the horizontal cut
it has Schmidt rank two. As the span of the Schmidt vectors contains a product state and we are only
interested in l¢4) up to SLOCC equivalence, without loss of generality we can suppose that a basis
of its reduced density on the upper two particles is

Y1) =100), (C1)

[W2)=a|01)+b|10) +c|11), (C2)
whereas a basis of its reduced density on the lower two particles is

|®1)=100), (C3)

|D)=A[01)+B[10)+ C|11). (C4)

In this setting, we are looking for invertible two body operators O and O, such that

l I
C ) C D)

= (C5)

C : ) C : D)

where the left red rectangle represents Oy, the right one represents O, while the blue Schmidt vectors
are Y¥y,,, the purple ones are @;/,. This gives four times sixteen equations on the matrix elements
of O and O,. Checking these equations can be done in any computer algebra system (CAS). The
following cases can be distinguished:
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o C #0, c # 0: In this case, the operators are (a, S, y are free parameters)

01 =100)<00| + a |01) (01| + é(a —1)]00) (01| + £ 110) (10| + g(ﬁ —1)|00) (10| +

b B Bb
YDA+ =y = B)10) A1+ =(y — ) [01) 11|+ (1 +y —a — B)|00)(11],
c C Cc 6
(C

0, =100) (00| + ! [01) (01| + E(l —1)]00) (01| + 1 [10) (10| + é(l —1)|00) (10| +
a ca B Cc B

1 al 1 A1l 1 aA 1 1 1
; |11><11|+E(; - E)IIO)(11|+E(; - E) |01>(11|+a(1+; e E) |00) (11].
(e0))

e C #0, c=0:Inthis case b # 0, otherwise the one particle reduced densities of the state are not
full rank. The operators are (a, 8, y are free parameters)

01 =100) (00| + |01) (01| + @ |00) (01| + B |10) (10] + g(ﬁ —1)]00) (10| +
Y

BI11) A1+ [10) (11| + @ [01)(11] + l% |00) (11], (C8)

1 Al
0, =100)<00| + |01) (01| — ga/ |00) (01| + B [10) (10| + E(E —1)|00) (10| +

1 ay A A Aay — Aay/ B?

— 1)1 - —= 10y A1+ (——= + =) |01) (11| + ————"—100)(11]. (C9

,8' ) (11} b,82| ) (L1 +( C C,B)l ) (11] b 100) (11].  (C9)

e ¢ =0, C =0:In this case B # 0, b # 0, otherwise the one particle reduced densities of the state
are not full rank. The operators are (@, 8, y are free parameters)

01 =100)<00] + |01) (01| + « |00) (O1] + |10) (10| + B |00) (10| +
[11) (11| + a [10) (11| + B |01) (11| +y |00) (11], (C10)

0, =100) (00| +101) (01| — gaf |00) (01| + |10) (10| - gﬁ |00) (10| +

a A 2Aaa B — Aay
[11)(11] - Ea/llO)(lll - E'B [01) (11| + S Te— |00)(11]. (C11)

Using this result, we have checked that if the state has a Schmidt rank of at least 3, then O; and O,
can only be product operators.

To find therefore all possible operators O such that the semi-injective PEPS defined by (I¢4), O)
and by (I¢p), Id) are the same (supposing they have a Schmidt rank of at least two along both vertical
and horizontal cuts), one has to do the following steps:

1. Transform l¢,) with an invertible product operator O; to have 100) in the span of its Schmidt
vectors in both the upper and lower two particles.

2. If the Schmidt rank of I¢,4) is two along the horizontal cut, then take the two-body operators
given above, O, ® Os. Otherwise take O, = O3 =1d.

3. Repeat the previous two steps for the vertical cut, giving an invertible product operator O4 and
two-body invertible operators Os ® Og.

4. Find all invertible product transformation Q7 such that l¢g) = O7lga).

Then all possible operators O are given by 010, ® 03)01_104(05 ® 06)01107, where
0; = SO;S, and S is the swap operator defined before Theorem 17.

APPENDIX D: G-INJECTIVE TENSORS

In this section, we try to generalize semi-injective PEPSs in a way that it also includes G-injective
PEPSs. We try the obvious generalization: if the semi-injective PEPS (I¢), Id) has symmetries O,
for g € G for some group G, then |¢) and },O, defines a non-semi-injective PEPS that could be a
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candidate to include G-injective PEPSs. We present here, however, an example for such a state that
behaves very different from G-injective PEPSs.

G
-G o
GRS

where the green rectangle is a four-partite GHZ state, and the red circle is O = Id + Z®*.

We will show that on an n X n torus, there are at least 2" linearly independent states that are
locally indistinguishable from this state. This means that given any local (frustration free) parent
Hamiltonian, its ground space is at least 2"-fold degenerate.

To see this, consider states on the torus that are constructed similar to I'¥'), except that some of the
four-partite GHZ states |¢*) = 1/V2(|0000) + |1111)) are changed to |¢~) = 1/¥2(]0000) — [1111)).
Such a state will be depicted schematically as a rectangular grid, with squares colored black at all
occurrence of l¢~). For example, the following figure depicts such a state with one occurrence of

l67),

(D2)

We will see that these states are all locally indistinguishable from ') and that they span an at least
exp {n/2}-dimensional space. First notice that I¢~) = ZI$*), where Z acts on one of the four particles
(any one of them). Due to the special form of O, however, if in a 2 X 2 block all I¢*) are changed to
l¢~), it does not change the state,

V) = = : (D3)

In fact, inverting the color of all rectangles in any 2 X 2 rectangle does not change the state. For
example,

. = : (D4)

A consequence of this is that a pair of black rectangles in the same column (row) can “travel”
horizontally (vertically) no matter how far they are separated. As an illustration, let us show how to
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move two black rectangles in the same column separated by one to the neighboring column,

= : (D5)

This means that these states are indistinguishable from I'¥') on any finite (system size independent)
region. Inverting the color of all rectangles in any 2 X 2 rectangle in fact defines an equivalence relation
on the colorings of the grid: two colorings are equivalent if and only if they can be transformed to
each other by repeatedly inverting the color of all rectangles in 2 x 2 regions. Equivalent colorings
correspond to the same state, whereas inequivalent colorings correspond to perpendicular ones: such
states all have the form (1 + Z®*)®"|¢*)®". Expanding this expression, we get a sum of tensor
products of I¢*) and I¢~). Starting from two equivalent colorings, the sum contains the same terms
reordered. Starting from inequivalent colorings, all terms differ from each other and thus the states
are perpendicular as (¢*l¢~) = 0. To see that there are at least 2" equivalence classes, notice that the
parity of black rectangles in each column is an invariant. (And for each parity assignment there is a
coloring with that parities.)
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Computational speedups using small quantum devices

Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac

In this work, we consider the question whether small quantum computers with only M qubits
can be useful for speeding up certain classical algorithms, even when the problem size is much
larger than M. We develop a hybrid quantum-classical algorithm that polynomially speeds up
Schoning’s algorithm for solving 3SAT involving n > M variables.

Many classical 3SAT algorithms significantly faster than brute-force search are known. Their
runtimes can usually be characterised by a constant v € (0, 1), meaning that they solve 3SAT
in O*(27™). One of the best and most famous ones is the randomised bounded-error algorithm
of Schéning with runtime O*(27°"), where 79 ~ 0.415. Given a quantum computer with only
M < n qubits, we however first demonstrate that a straightforward approach to speed up this
algorithm results in a “threshold effect”: if M /n is below some constant value, a naive hybrid
algorithm turns out to be slower than its classical version.

Our central result is a hybrid algorithm which, given a quantum computer with M = cn
qubits, where ¢ € (0,1) is an arbitrary constant, solves 3SAT with n variables in a runtime of
O* (200 =f()+)m) wwhere f(c) > 0 is a constant and e can be made arbitrarily small.

Our hybrid algorithm is a quantum-assisted version of derandomised variants of Schéning’s
algorithm which use the space splitting algorithm to reduce 3SAT to the problem of finding
a satisfying assignment within an r-ball (with respect to the Hamming distance) of a trial
assignment x, known as Promise-Ball-SAT (PBS). Two recursive algorithms for PBS, called
PROMISEBALL and FASTBALL with runtimes O*(3") and O*(2"), respectively, are known. Both
algorithms recursively call themselves with ever smaller values of r. Moreover, using FASTBALL
in the space splitting algorithm leads to an overall 3SAT-solving runtime which essentially
matches that of the randomised version. To obtain the hybrid speedup, we first develop a
quantum algorithm for PBS called QBALL which is quadratically faster than PROMISEBALL
and only uses O(rlog(n/r) + r 4+ logn) qubits. Then, in FASTBALL, we replace the classical
recursive call with a call to QBALL once r becomes small enough for the available M qubits.

The main technical part of this work is the implementation of QBALL, detailed in Section A
of the supplemental material. While the common strategy of using amplitude amplification to
quadratically enhance PROMISEBALL may be obvious, the main difficulty is to do this using
sufficiently few qubits such that genuine speedups arise. Indeed, straightforward quantum
algorithms based on PROMISEBALL use at least €2(n) qubits, even for small values of r, rendering
them useless when only M = cn qubits are available.

To implement QBALL, we first develop a (classical) non-recursive variant of PROMISEBALL
which takes some § € § := {0,1,2}" as input and maps it to a set V' of at most r variables
with the following property: there exists a satisfying assignment within Hamming distance r
of x if and only if there exists some § € S such that xy, the assignment obtained from x by
flipping the variables in V', is a satisfying assignment. This allows us to quantum search over S
in a runtime of O*(37/2). However, the straightforward implementation in which all variables
are part of the workspace uses Q(n) qubits.

Next, we reduce the number of qubits in several steps. First, classical inputs can be hard-
wired into the quantum circuit instead of taking up input qubits. Second, given a quantum
register containing an encoding of V', checking whether xy is a satisfying assignment as well as
selecting the next variable to be added to V' can both be done using only O(logn) reuseable
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qubits. However, naive encodings of V' use O(rlogn) qubits. It is easy to see that this is still
too large, i.e. does not result in a constant decrease of v but only a subpolynomial speedup.

The last qubit reduction comes from using more efficient data structures to encode V', de-
tailed in Section A of the supplemental material. It is easy to see that O(rlog(n/r) + r) bits
suffice in principle to describe V. However, straightforward use of such encodings adds sig-
nificant obstacles: most operations on such encodings become inherently non-reversible and
hence difficult to implement as quantum operations without introducing large ancilla spaces.
Straightforward ways to circumvent this issue without using too many qubits turn out to have
detrimental runtime overheads. We solve this by splitting V' into O(logr) suitable subsets and
uncomputing only the subsets when necessary.

Statement of individual contribution

The work is the result of frequent discussions between Vedran Dunjko, J. Ignacio Cirac, and
myself. Vedran Dunjko, who is the principal author of this article, had the idea of exploit-
ing the recursive structure of the derandomised version of Schoning’s algorithm to obtain a
speedup using few qubits. In particular, it was his idea to use a quantum-enhanced version of
PrROMISEBALL sufficiently deep in the recursion tree of FASTBALL. My contribution to this
work was predominantly in carrying out the detailed technical work to make these ideas work.
First, I recognised the reversibility obstacle, and subsequently developed the data structures for
efficient set-encodings as well as the time- and space-efficient implementations of the accompa-
nying subroutines (detailed in Section A of the supplemental material). Second, I carried out
the precise runtime analysis, linking in particular the degree of the speedup to the value of c.
Vedran Dunjko was in charge of writing the main text of the article, while I was in charge of
writing the supplemental material.
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Suppose we have a small quantum computer with only M qubits. Can such a device genuinely speed up
certain algorithms, even when the problem size is much larger than M ? Here we answer this question to the
affirmative. We present a hybrid quantum-classical algorithm to solve 3-satisfiability problems involving
n > M variables that significantly speeds up its fully classical counterpart. This question may be relevant
in view of the current quest to build small quantum computers.

DOI: 10.1103/PhysRevLett.121.250501

Quantum computers use the superposition principle to
speed up computations. However, it is not clear if they can
be useful when they are, as expected for the foreseeable
future, limited in size. The reason is that quantum (and
classical) algorithms typically exploit global structures of
problems, and restricting superpositions to certain block
sizes will break that structure. Thus, for problems where
arbitrarily sized quantum computers offer advantages,
small quantum computers may be of no significant help
given large inputs.

Here, we study this problem and show that this is not
generally true: There are relevant algorithms that utilize the
global structure, where quantum computers significantly
smaller than the problem size can offer significant speed-
ups. More precisely, we focus on the famous algorithm of
Schoning for boolean satisfiability and present a modified
hybrid quantum-classical algorithm that significantly out-
performs its purely classical version, even given small
quantum computers.

Satisfiability (SAT) problems are among the basic
computational problems, and they naturally appear in many
contexts involving combinatorial optimization, like sched-
uling or planning tasks, and in statistical physics. A
prominent SAT problem is 3SAT, which involves clauses
with up to three literals. 3SAT is the canonical example of
the so-called NP-complete problems, believed to be
exponentially difficult even for quantum computers.
Nevertheless, quantum computers can still accelerate their
solving [1,2], and given their ubiquity, they may become
one of the most important applications of quantum com-
puters. However, the best quantum algorithms, which
“quantum-enhance” classical SAT solvers [1], require
many qubits and are not directly applicable given small
quantum computers. There are several possibilities for how
to use a limited-size quantum device. For instance, one
could speed up smaller, structure-independent subroutines,
which occur, e.g., in the preparation phases of algorithms
(e.g., whenever a search over a few items is performed, one

0031-9007/18/121(25)/250501(5)
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could utilize Grover’s algorithm [3]). However, for “genu-
ine” speedups, e.g., those that interpolate between the
runtimes of the fully classical and a fully quantum
algorithm, according to the size of the available quantum
device, one should attack the actual computational bottle-
necks. As we show, if this is done straightforwardly, one
may encounter a threshold effect: If the quantum device is
too small, i.e., can handle only a small fraction of the
instance, a naive hybrid algorithm turns out to be slower
than its classical version. Here, we demonstrate how this
effect can sometimes be circumvented, in the context of
satisfiability problems. Specifically, we provide a quantum-
assisted version of a well-understood classical algorithm,
which achieves genuine improvements given quantum
computers of basically any size, avoiding the thres-
hold effect [4]. Our results are applicable to broader
kSATproblems and, more generally, highlight the charac-
teristics of classical algorithms and methods, which can be
exploited to provide threshold-free enhancements.

The 3SAT problems.—In SAT problems, we are given a
boolean formula F:{0,1}" — {0, 1} over n binary varia-
bles x = (x1,...,x,) € {0,1}". The task is to find a
satisfying assignment x, i.e., fulfilling F(x) = 1, if one
exists. In 3SAT, F is defined by a set of L clauses {C;},
where each clause specifies three literals {/], /5, 4, }. Each
literal specifies one of the n binary variables (x) or a
negated variable (x); for instance, {l;,l,,/3} could be
{x3,¥5,xg}. An assignment of variables x thus sets the
values of all literals. C is satisfied by x if any of the literals
in C; attains the value 1. A formula F, written as F(x) =

i (I v Iy v I5) using standard logic operator notation,
is satisfied by x if all its clauses are satisfied.

Classical algorithms.—Many classical 3SAT solvers
are significantly faster than the brute-force search. Their
performance can be characterized by a constant y € (0, 1),
meaning that they solve 3SAT in a runtime of O*(2"") [6].
One of the best and most famous ones is the algorithm of

© 2018 American Physical Society



PHYSICAL REVIEW LETTERS 121, 250501 (2018)

Schoning [8]. It initializes a random assignment of the
variables, then repeatedly finds an unsatisfied clause,
randomly selects one literal in that clause, and flips the
corresponding variable. This sampling algorithm termi-
nates once a satisfying assignment is reached or once this
process is iterated O(n) times. Schoning proved that the
probability of this algorithm finding a satisfying assign-
ment (if one exists) is at least (3/4)", which, by iteration,
leads to a Monte Carlo algorithm with expected runtime
O*(2r")  with y,:=1log,(4/3) ~#0.415. A significant
speedup of the classical algorithm is a reduction of its
value of y. To study the potential of small quantum
computers, we investigate whether small devices suffice
to achieve such a reduction.

Straightforward hybrid algorithms for small quantum
computers.—In [1] a quantum algorithm inspired by
Schoning’s method, which exploits amplitude amplifica-
tion [9], was introduced. It solves 3SAT instances with n
variables in runtime O*(270"/2) and requires ~fn qubits for
a f > 2. Given a quantum computer with only M =~ fm
qubits (m < n), one has a few options to achieve speedups.
A “bottom up” approach would be to use the quantum
algorithm as an m-variable instance solver, which is then
used as a subroutine in an overarching classical algorithm.
For instance, to tackle the problem of n variables, one could
sequentially go through all possible partial assignments of
n — m variables. Each partial assignment induces a SAT
problem with m variables, which could then be solved on
the small quantum device. The runtime of such an
algorithm is O*(2("=")+r0m/2) 'which highlights the thresh-
old effect: The hybrid algorithm becomes slower than the
classical algorithm of Schoning if m/n < 0.74. Note that,
unlike thresholds for speedups induced by prefactors sup-
pressed in an asymptotic analysis and the O* notation,
which may prevent speedups for small instances, the
present threshold effect is far more fundamental: If M /n
is below a constant value, no speedup is possible even for
arbitrarily large problem sizes. Roughly speaking, the main
problem of hybrid algorithms using a small device as a
subinstance solver is that they break the global structure
exploited by the classical algorithm. This results in hybrid
algorithms whose runtimes interpolate between a fully
quantum runtime and something slower than the classical
algorithm—hence the threshold effect. Alternatively, we
explore a “top-down” approach, where the most computa-
tionally expensive subroutines of the classical algorithm are
identified and quantum enhanced.

Our results.—We present a hybrid algorithm that avoids
the threshold effect. Specifically, given a quantum com-
puter with M =cn qubits, where c€(0,1) is an arbitrary
constant, our algorithm solves 3SAT with n variables in a
runtime of O*(2(=/()+e)m) “where f(c)>0 is a constant
and e can be made arbitrarily small. The function f(c) is
involved, but it is almost linear for small ¢ (see the
Supplemental Material [10] for details). Critically,

irrespective of its exact form, our result constitutes a
polynomial speedup over Schoning’s algorithm for arbi-
trarily small c¢. Our contribution is primarily conceptual,
and we assume an error-free setting.

Algorithm description—Our hybrid algorithm is a
quantum-assisted version of de-randomized variants of
Schoning’s algorithm [7,11], reviewed next. Given a bit-
string x € {0, 1}", let B,(x) denote the r-ball centered at x,
i.e., the set of all bitstrings y differing from x in at most r
positions (i.e., their Hamming distance is <r). Then,
relying on coding theory, the space of possible assignments
is covered by a number of r-balls. Given this covering set,
specified by the centers of the balls, the algorithm sequen-
tially checks whether there exists a satisfying assignment
within each of the r-balls. This “space-splitting” algorithm
reduces SAT to the problem of finding a satisfying assign-
ment within an r-ball, called Promise-Ball-SAT (PBS).
A deterministic algorithm PROMISEBALL(F, r,x) for
PBS was introduced in [11]. This is a simple, recursive
divide-and-conquer algorithm: On input it takes a formula,
specified by a set of clauses with at most three literals, a
radius, and a center x. The algorithm first checks some
conditions for (un)satisfiability [if » < 0 and F(x) = 0 or if
any clause is empty], or if x is a satisfying assignment.
Otherwise, in the recursive step, it finds the first unsatisfied
clause C and calls PROMISEBALL(F =1, T — 1,x) for
every literal / € C (the variables, literals, and clauses are
enumerated in some prespecified order). Here, F_
denotes the formula obtained by setting the variable
corresponding to [ to the value ensuring [ = 1; i.e., all
clauses involving [ (I) are removed (truncated). This
algorithm solves PBS in time O*(3"). For comparison,
Schéning sampling solves it in O*(2"). The overall runtime
of the space-splitting algorithm of [11] can be expressed as
a function of the runtime of the PBS-solving subroutine
(see Supplemental Material [10]). What is relevant is that,
whenever a PBS solver with runtime O*(2") (e.g., ran-
domized Schoning) is used in the space-splitting algorithm,
we recover Schoning’s runtime with y, = 0.415.

Note that every recursive call in PROMISEBALL reduces r
by 1. To make use of a small quantum device, one can, once
r becomes small enough, use a quantum algorithm for PBS
instead of a classical call. This leads to a general approach
to speed up algorithms, which recursively call themselves
(or other subroutines) with ever-decreasing instance sizes,
using small quantum devices. We call this the standard
hybrid approach. However, there are two obstacles to
consider. First, since PROMISEBALL is significantly slower
than the algorithm of Schoning, this still leads to a
threshold: M would have to be a large fraction of n to
gain an advantage. Second, straightforward quantum
implementations of PROMISEBALL require too many
qubits [Q(n)], even if r is small. While it is not difficult
to reduce this to O(rlogn), the resulting hybrid algorithm,
although avoiding a threshold, would have a very
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low, subpolynomial, advantage and not yield a true
improvement of y. We circumvent this by using more
involved memory structures combined with specialized
algorithms which algorithmically delete unneeded infor-
mation, leading to much better memory requirements of
O(rlog(n/r) + r + logn), and a true speed-up.

To summarize, we next provide the following algorithms:
(1) a nonrecursive variant of PROMISEBALL, which on input
only takes r ternary choices of which literals to flip; (2) a
straightforward reversible implementation of (1) needed for
quantization, with two parts—QBALL; transforms the
choices to corresponding variable labels, and QBALL,
checks whether flipping the chosen variables in x (ball
center) satisfies the formula; (3) a method to significantly
reduce the memory requirements of storing a set of labels in
the second algorithm, from O(rlog n) to O(rlog(n/r) + r),
while preserving reversibility. Algorithms (1)—(3), com-
bined with amplitude amplification, then form the quantum
algorithm QBALL for PBS, which, combined with a faster
classical PBS-based solver [ 7], forms our final algorithm (4).

Space- and time-efficient quantum algorithm for PBS.—
First, we specify a nonrecursive (classical) variant of
PrOMISEBALL, which does not manipulate the entire for-
mulas explicitly. This avoids an immediate need for Q(n)
qubits for “carrying” the formula as input. Afterwards, we
optimize the memory required for a reversible implementa-
tion and use amplitude amplification to achieve a faster
quantum algorithm.

The structure of PROMISEBALL yields a ternary tree of
depth r, induced by the up to three choices of literals in the
recursive step of the algorithm. Thus, a sequence of choices
S1s ..., 8, € {1,2,3} specifies a leaf in the tree and hence
the subset of literals whose values have been flipped. Thus,
the algorithm PROMISEBALL induces a mapping from
Si,...,5, to a set of at most r variables to be flipped,
denoted V = {vy, ..., v}, where ¥ < r. The nonrecursive
algorithm computes the list of variables V indexed by the
sequence S = sy,...,s,, generates the candidate assign-
ments Xy realized by flipping the values of the variables
specified by V, and checks if they satisfy the formula. This
subroutine can be executed in polynomial time. The non-
recursive PROMISEBALL simply goes through all 3" sequen-
ces s, yielding the runtime O*(3").

This can be turned into a quantum algorithm QBALL,,
realizing the mapping:

QBALL,

QBALL,,

——
[510057)10)]0) "= s, s, V)| F(x)), (1)

QBALL,

where the first part (QBALL;) generates the indices of
the variables in V, and the second part (QBALL,) verifies
whether F is satisfied by x,. The full quantum algorithm
for PBS, which we call QBALL, then uses amplitude
amplification to find one sequence s which yields a

satisfying assignment, using O(3"/?) calls to QBALL, ,,
each with polynomial runtime. We next give the basic ideas
for how to implement the algorithm space efficiently (for
details see the Supplemental Material [10]). For ease of
presentation, we first show how QBALL, can be realized
straightforwardly, using many ancillas, before reducing
their number. A straightforward implementation of
QBALL, would utilize n additional qubits and assign
them the value x. Then, the circuit would iterate through
the registers specifying V [naively requiring O(rlogn)
qubits] and introduce (controlled) negations to those
ancillary qubits selected by the values in V. This would
finalize the variable presetting stage and set the input to the
formula to xy. Next, we would sequentially evaluate each
clause, by associating a gate controlled by the variable
qubits corresponding to the variables occurring in the
clause. This controlled gate applies the appropriate neg-
ations to realize the literals, increasing a counter if a clause
is satisfied. After doing this for each clause, the output
qubit is flipped only if the counter equals L, meaning all
clauses are satisfied. Such a circuit uses O(log(L) + n)
ancillas. Since L = O(poly(n)), the key problem is the
contribution of n. This is simplified by noting that,
although the circuits our algorithms generate depend on
F, x and r, we can w.l.o.g. assume that x = (0, ...,0) and
subsume the negations directly into F [12]. Next, since the
clauses are evaluated sequentially, we only require three
variable-specific ancillas, specifying the bit values appear-
ing in the current clause: For each clause, each of the three
ancillas corresponds to the three variables occurring in
that clause. The variable presetting stage is now done
individually for each clause C;: Before clause evaluation,
the circuit iterates through the V-specifying register and
flips the kth ancilla if the specification matches the kth
variable within the clause C;. The three ancillas are
uncomputed after evaluating C; and can be reused. This
requires only O(logn) additional qubits.

The algorithm QBALL,; is more involved. QBALL,
comprises a main loop which sequentially adds one
variable specification v; to the already specified set as
follows: The ith circuit block takes the specifications of the
first i — 1 variables v, ..., v;,_; as inputs, iterates through
all clauses, and evaluates each clause Cj (in a manner
similar to QBALL,), using the values vy,...,v,_; to
correctly preset the clause-specific input. If the clause is
not satisfied, it uses the value of s; to select the specification
of one variable occurring in Cj, taking into account that
variables which have already been flipped cannot be
selected again, and storing this specification as v;. For
reversibility, additional counters are used, but these can be
uncomputed and recycled. The final compression relies on
efficient encodings of V, which, as an ordered list, would
use O(rlogn) qubits. Since the ordering does not matter,
instead of storing the positions, we can store the relative
shifts v, v, — vy, ..., v, — vy_; > 0 of a sorted version of
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the list, using no more digits than necessary and a separation
symbol to denote the next number. Since these values add up
to at most n, one can see that O(rlog(n/r)+r) qubits suffice
for this encoding. This structure indeed encodes a set,
erasing the ordering. However, straightforward algorithms
that use encodings of sets instead of lists encounter revers-
ibility problems. To illustrate this, note that in the process of
adding a new variable to V, one must realize the two steps
{v1, .oy vis DN0) = [{w1, ..., vi21})|vi), ie., finding the
new element, and |[{vy, ..., v,_1 })|v;) = [{v1, ..., v;})]0),
i.e., placing itinto the set, and, critically, freeing the ancillary
qubits for the next step. However, this is irreversible
since the information about which element was added
last is lost. The full ordering information requires
O(rlogr) additional qubits, nullifying all advantages. Of
course, one could instead realize the reversible operation
o1, v DI [0) = Hor. oo Do) {or, .o 0i)),
followed by applying the inverse of the entire circuit up to
this point to uncompute |{vy, ..., v;_; })|v;), but this would
result in an exponential instead of polynomial runtime of
QBALL,;. We circumvent this issue by splitting V into
O(logr) sets of sizes 1,2,4, ..., and the loading of each
larger block is followed by an algorithmic deletion of
all smaller blocks. This ensures the overall number of
qubits needed for this encoding is still O(rlog(n/r) + r),
at the cost of 20002() additional steps, which is just
polynomial. These structures and primitives lead to
an overall space- and time-efficient implementation of
QBALL, (see Supplemental Material [10] for details).
Combining these subroutines with a quantum search over
5, we obtain the algorithm QBALL, solving PBS in time
0*(3"/?) and using O(rlog(n/r) + r +logn) qubits. In
particular, QBALL outperforms the randomized algorithm of
Schoning for PBS (27 vs. 2102203)7/2 5 20.79r),

Hybrid algorithm for 3SAT—We could now use the
standard hybrid approach for PROMISEBALL, i.e., call
QBALL instead of PROMISEBALL when r is sufficiently
small. However, this still leads to a threshold. This is
resolved by using an improved deterministic algorithm for
PBS [7], where coding theory is applied to cover the space
of choice vectors 5. This yields an algorithm with runtime
O*((2+¢€)"), where e can be chosen arbitrarily small—
thus, the runtime of this algorithm for PBS essentially
matches the runtime of Schoning. While we do not need the
details of this algorithm, the critical point is that, like
PROMISEBALL, it recursively calls itself to solve PBS with
ever smaller values of r (sequentially reduced by a quantity
depending on €). Now, we can apply the standard hybrid
approach. Since QBALL beats the runtime of this improved
classical algorithm for PBS, the hybrid algorithm is faster
than Schoning’s, and, unlike using PROMISEBALL, there is
no threshold induced by slow classical algorithms.

To estimate the runtime of our algorithm, note that since
QBALL only requires O(rlog(n/r) + r + logn) qubits, a

device with M = cn qubits can solve PBS for r = f(¢)n
for some f(c) > 0. Since the hybrid algorithm replaces a
classical subroutine of runtime O*(2") with a subroutine of
runtime O*(3"/2) in a recursion tree below depth
r = f(c)n, the runtime of the hybrid algorithm beats
that of the classical one by a factor of O*((v/3/2)F()"),
Thus, the combined runtime of the hybrid algorithm is
O* (2=1(+am) for f(c) = log,(2/v/3)B(c) = 0.215(c).
The forms of f and f are involved, but in the
relevant regime of small ¢, f(c) achieves almost linear
scaling, specifically f(c) = ©(c/log(c™")) (for details see
Supplemental Material [10]).

Conclusions—We have shown that a small quantum
computer can speed up relevant classical algorithms even
for significantly larger inputs. While obvious for structure-
less scenarios (e.g., unstructured search), when considering
algorithms that use the problem’s structure, like Schoning’s
algorithm, speedups are nontrivial: The way the problem is
partitioned must maintain the algorithm’s structure to
avoid thresholds. Our algorithm achieves a significant
speedup, namely, a reduction of the relevant parameter y,
characterizing runtimes of the form O*(2""). The speedup
holds relative to a variant of Schoning’s algorithm. Our
results, however, generalize to other algorithms based on
Schoning’s approach (e.g., Refs. [13,14], since those rely
on better initial assignments) and to the variants handling
kSAT (k > 3). Historically, the best classical SAT solvers
with provable bounds are based either on the ideas of
Schoning or on the approach of [15], which includes the
current record holder [16]. It would be interesting to see
whether this second class of algorithms is also amenable to
the types of enhancements achieved here. The broader
question of this work is becoming increasingly more
relevant given the current progress in prototypes of small
quantum computers [17-19]. As our contribution is con-
ceptual, we assume an error-free scenario. Still, our
results may also have pragmatic relevance. Indeed,
while the number of physical qubits of implementations
is rapidly growing, the number of protected logical
qubits we may expect in the near term is likely to be very
limited. In practice, both the overheads and the noise may
be bottlenecks to exploit small devices in general [20].
Thus, it would be particularly interesting to optimize the
overheads of our algorithm. Specifically, any methods
to decrease the number of gates and ancillas would
increase the tolerance of our scheme. Finally, an in-depth
analysis of optimal device-specific implementations could
further help make our algorithms suitable for near-term
realizations.
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In the supplemental materials we provide the details referred to in the main text. In Section A, we provide the
detailed exposition of the central quantum algorithm QBALL. In Section B, we provide the details of the full hybrid
algorithm and a detailed runtime analysis.

A. Detailed quantum algorithm for PBS

In this section, we describe the quantum algorithm for PBS. Let » > 0 be an integer and F' a 3SAT formula over n
variables. The problem is to decide whether there exists a satisfying assignment of F' with hamming weight at most
T.

As explained in the main text, the most involved part of the algorithm is a subroutine called QBALL; which takes
as input s1,...,8, € {1,2,3} and outputs a set V = V(3) of at most r variables with the property that F has a
satisfying assignment with hamming distance at most r if and only if there exists an § € {1,2,3}" such that the
assignment x(V(5)), obtained by setting all variables in V() to 1 and all other ones to 0, is a satisfying assignment.

The quantum algorithm for PBS is a quantum version of the non-recursive variant of the PROMISEBALL algorithm
described in the main text, which is quantized using amplitude amplification. We will therefore first develop a classical
reversible circuit (which depends on F and r) for the QBALL; subroutine, which maps § to a space-efficient encoding
of the set V(8), using at most O(rlog(n/r) +r 4 logn) ancilla bits. Although the algorithm below is, for now, purely
classical (and reversible), we will nevertheless use bra/ket notation for simplicity.

1. Key ideas of QBALL,

Before going into the particulars of the algorithm, it is worthwhile to highlight the key ideas we utilize, and explain
why we go into such detail to explain a relatively simple algorithm. As mentioned in the main text, given r, QBALL,
can be summarized as follows:

1: Set V = 0.
2: For ¢ =1 to r do begin

3: Set x(V') to be the assignment obtained by setting variables in V' to 1 and all other ones to 0.

4: Find the first clause in F' which is not satisfied by x(V).

5: If such a clause exists, use s; to select the next variable v;. Else, set v; to a dummy variable (index beyond n).
6: Update V: =V U {v;}.

7: end.

The output V of the above process collects specifications of r variables, and the variables with indices below or equal
to n specify the satisfying assignment, if one exists. We use dummy variables as this avoids the need for controlled
operations which could change the algorithm’s behaviour (e.g. terminate the loop once no suitable clause is found),
or which require more memory to implement reversibly. The majority of subtleties in our algorithms pertain precisely
to that latter requirement: utilizing as few ancillas as possible while at the same time maintaining reversibility.

As mentioned in the main text, one of the key issues is dealing with the size of the representation of V. If V is
represented as an ordered list, we end up using O(rlog(n)) bits, which is too much for our purposes. On the other
hand, V' can be represented as a set, i.e. without storing any ordering (e.g. the order in which they were added to
V), in which case we only require O(rlog(n/r) + r) bits (we only need to store the shifts between the indices of the
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variables once they are ordered). This is sufficient for our purposes, however, now the process of adding one variable
to V in line 6 is no longer reversible. More precisely, any reversible operation necessarily produces registers which, at
least implicitly, still contain information about which element in V' was just added. If these additional registers are
not reused, the algorithm uses too much memory. However, in order to reuse those registers, we need to uncompute
information, which may be computationally expensive. Note that since all the operations we utilize will later be
quantized and called in an overarching amplitude amplification process, we must use only reversible operations — no
measurements with classical feedback can be used.
To exemplify the problem, it is possible to implement the operation

[Vie1) [vi) [0) = [Viea) o) [Viey U{wi}), (1)

followed by the deletion of the first register in the state |V;_1), which can be performed by reversing whatever circuit
was used to generate it. This would realize the transformation

Vi) [vi) [Vier Ufwi}) = [Vi) [0) [0) (2)

where V; = V;_; U {v;}. This constitutes an algorithmic deletion procedure, where we have deleted all unnecessary
information so that the ancillas can be reused. However, it is easy to see that the process of calling the inverse of the
entire circuit up to step i — 1, which is (recursively) also done for each i’ < i, has a runtime of O*(2%). Since i goes
up to 7, the resulting full quantum algorithm for PBS (after using amplitude amplification) would have a runtime of
O*(2" - 3"/2). This would be (significantly) worse than the original classical algorithm.

We circumvent this problem by using a more involved memory structure which allows for more efficient deletion.
Specifically, we split V' into approximately log, 7 subsets of sizes [ = 1,2,4,.. ., storing all r variable specifications in
total. This memory structure is still space-efficient, in that it still requires O(rlog(n/r) + r) bits. However, such a
structure can be used for efficient deletion. The basic idea is as follows. At any given point, the set V;_; of size i — 1
is split into subsets corresponding to the binary representation of ¢ — 1. Suppose we now want to add v; to V;_1. If
there is no set of size 1 yet (i.e., i — 1 is even), we simply add {v;} to the representation. Otherwise, we merge the
two sets of size 1 into a set of size 2 and algorithmically delete the two sets of size 1 by inverting the process which
computed them. Then, if there is already a subset of size 2, we merge the two subsets of size 2 into a set of size 4 and
algorithmically delete the two sets of size 2, and so on.

As in the naive algorithmic deletion procedure, the uncomputation is performed recursively. However, in the naive
case, the depth of the recursion was i, whereas in the more efficient algorithm, the recursion depth is only O(logi).
This results in a computational overhead of 20(°27) i e. polynomial, and not exponential, in 7.

In the following sections, these basic ideas are presented in more detail. The high-level descriptions of all the
subroutines required to realize the elementary steps to execute the overall algorithm are provided in Table I. Each
subroutine must satisfy the same two critical properties we just discussed for the highest level of the algorithm
description. First, each subroutine must be economic with respect to the number of ancillary bits used. Second, since
each subroutine is used many times, it is also critical that the ancillary bits are always reset (uncomputed), so they
can be reused, and that the deletion is sufficiently efficient. To ensure both properties are maintained, we provide the
descriptions of all subroutines in full detail.

2. Algorithm overview

The basic idea for the QBALL; algorithm to calculate V' (3) from § consists of a main loop going throughi =1,...,r,
and for each ¢ attempts to find another variable v; to be added to V in the following way. The algorithm finds the
first clause C; that is not satisfied by setting all variables in V' to 1 (we assume that there is some predefined order
of the clauses C1,...,Cr). We then select the next variable v; to be the s;'" variable in C; that is not already in V.
If no such variable exists (i.e., C; contains less than s; variables not in V') or there exists no unsatisfied clause under
the current V', then the algorithm adds a dummy variable x,1; to V. Naively and without any further processing,
this would lead to an encoding of V that simply stores the ordered list vy, ...,v,, taking O(rlogn) bits in total.
As mentioned in the main text, this would ultimately lead to a qubit requirement of the corresponding quantum
algorithm that is too large to give a strong speed up. We therefore first describe how to efficiently encode a set of
variables.

Let S = {y1,...,yx} be aset, where 0 < y; < --- < yx < 2n are integers. Define |Enc S) to be a sequence of at most
O(klog(n/k)+ k) trits encoding (y1,y2 — Y1, - - -, Yk — Yk—1), where each number is encoded on the binary subspace of
the trits using no more digits than necessary and the third symbol of the trit subspace serves as a separation character
between successive numbers. Note that since the numbers add up to at most n, the number of trits required for this



Main subroutines:
Calculate; |s;) |EfEnc Vi—1) |0) — |s;) |EfEnc Vi—1) |v;)

Given a trit s; and (an efficient encoding of) the current set of variables, produces the next
variable v; to be added to V.

Merge; |5) |[EffEnc Vi_1) |vi) — |5) |EffEnc Vi)

Adds the next variable to the set while maintaining efficient encoding, and uncomputes the
value of the added variable.

Key ancillary subroutines:
Extracty, |Enc S) |7} |0) — |Enc S) [5) |y;)

Extracts the j element (w.r.t. ascending ordering) from the encoding of the set S of known
size k. Critical subroutine in Calculate;.

Shift [Enc S) [3) 0) — [Enc S) [5) [y — yj—1)

Used in Extracty. The set-encoding stores shifts between neighbouring elements, and this
subroutine extracts them. In essence, it counts special separation characters delineating
different numbers in the set encoding.

Contains, |[Enc S) |v) |0) — |Enc S) |v) Jv € S7)

Checks if v is present in the set S, given encoding of S. Required for checking if a clause
is satisfied when flipping the values of literals if they occur in S, and also when selecting
the next variable, as we can only select those which have not been chosen previously. Uses
Extracty.

Checkj,i |EﬁEnc ‘/i71> |0> — \EﬂEnc ‘/i71> |Cj(‘/;,1)>

Checks if the 7" clause is satisfied by x(Vi_1). One of the key subroutines.
Selecti |EffEnc %71> |81> |L + 1-— ]> |0> — |EHEHC %71> |Sl> ‘L + 1-— j> "Uj,i(‘/;*ly 81)>

Once a clause Cj is identified to not be satisfied, this subroutine uses the choice s; and V;_;
to select a variable in C; to be added next.

Append,, [v) |[Enc S) |0) — |v) |[Enc S U {v})

Adds an element to the set S and computes the encoding of the new set. The added element
is assumed to be larger than the largest element in S.

Uniong, i, |Enc S1) |[Enc S2) |0) — |Enc S1) |[Enc Sz) |[Enc S1 U S2)

Generates an efficient encoding of the union of two efficiently encoded sets. In essence,
uses Extracty on both sets to compare elements, storing the smaller, and keeping a position
counter for both. Uses Append,,.

TABLE I. Summary of subroutines for the space-efficient reversible implementation to solve PBS. The two main subroutines
ran in succession find the next variable, add it to the set, and, critically, free the ancillary registers so they can be reused.

encoding is indeed at most

[logo y1] + [loga(y2 — y1) | + -+ + [loga(yr — yr—1)] + 2k <logy y1 +loga(y2 — y1) + -+ + loga(yx — yr—1) + 3k (3)
< klog, %’“ + 3k (4)

< klog, % + 4k, (5)

where the second line follows from concavity of the logarithm. Note that this is significantly less than the naive
encoding of S which uses O(klogn) bits. For concreteness, we will assume that after the last separation character,
the remaining trits are in 0.

This gives us an efficient way of storing a set of at most r elements. However, encoding V' as |[Enc V) at all stages
of the algorithm is problematic, because reversibility would be lost (indeed, the map |EncV;_1) — |EncV;) is not
injective). We therefore store the set of variables during the algorithm as follows. Let V; = {v1,...,v;} be the set of
variables obtained after the " round. Note that |Vi| = i. We now divide V; into subsets V; 1, ..., Vi m, of sizes which
are powers of two corresponding to the binary expansion of i. For example, if ¢ = 13 (binary expansion 1101), we
have V; 1 = {v1,v2,v3,v4,v5, 06,07, 08}, Vi = {vg, v10,v11,v12} and V; 3 = {v13}.

To efficiently store V;, we efficiently encode the set as [EffEncV;) := |EncV; 1) ...|EncV;,,,). Note that the number



of bits required for |EffEnc V;) is at most

[logy 7] n [logy 7] n [log, 7] [logy 7] r
Z (21 log, 5 + 2“’2) = Z 2l log, - + Z 22 4 Z 2 log, o (6)
1=0 1=0 1=0 1=0
n [log, 7] 1
< 4rlog, - + 167 + 2r ; m([log2 r] —1) (7)
n
< 4rlog, — + 20r (8)
T
= O(rlog(n/r) +1), 9)

where in (7), the first two terms follow from th)og? "9l < 47 and the last term follows from 2108271 > y > 2flogs r-1,
and (8) follows from

[108'2 r]=l 1 e’} .
Z W(ﬂogz 'I"-| — l) < Z 27 = 2. (10)
1=0 j=0
For a given ¢ € {1,...,r}, the circuit is divided into a calculate phase and a merge phase. The calculate phase
performs
Calculate; |s;) |EffEnc V;_1) |0) = |s;) |EffEnc Vi_1) |v;) , (11)

i.e., finds the next variable to be added to V. The merge phase performs
Merge, |5) |EfEnc V;_1) |v;) = |5) |EfEnc V;) , (12)

i.e., converts the efficient encoding of the old set into the efficient encoding of the new set. It achieves this by using
a series of set merge operations comprising calculating the representation of the set-union and the uncomputation of
original the set representations.

While the main ideas of both phases are straightforward, the primary challenge is to develop these algorithms in
the form of circuits that are both reversible and at the same time require few ancillas. For the latter, it is imperative
that at the end of any subroutine, all ancillas, which can be assumed to be initially in the 0 state, are returned to 0
so that they can be reused. Note that not achieving this would increase the ancilla requirement for each call of any
such subroutine and would likely result in the algorithm requiring too many ancillas. For convenience, we therefore
introduce the following notion.

Definition 1. Let f: {0,1}¢ — {0,1}7 be a bijection. We say that f can be implemented reversibly using l ancillas
and g gates if there exists a (classical) reversible circuit of at most g elementary gates which implements the map

) 10)%" = [ f(2)) [0)* (13)
Proposition 1.
(i) Calculate; can be implemented reversibly using O(logn) ancillas and O(poly(n)) gates.
(i) Merge; can be implemented reversibly using O(rlog(n/r) 4+ r +logn) ancillas and O(poly(n)) gates.

In the next two subsections, we prove Proposition 1 by describing each phase in detail. Table I gives an overview
of the key subroutines involved.

8. The calculate phase

In this part of the algorithm for a given i € {1,...,r}, we calculate the s;'" variable in the first unsatisfied clause.
This part of the algorithm has two components. First, finding the first clause that is not satisfied, and second, selecting
the corresponding variable.

On input, we have |s;) |[EffEnc V;_1). Note that the sizes of the sets are known in advance. We first show how
given a set, we can efficiently and reversibly extract its elements using few bits. For a set S = {y1,...,yx} of integers
0 <y <+ <yg < 2n of known size k, define the reversible operation Extracty |[Enc S) |j) |0) = |EncS) |5) |y;) for
Jj€{1,...,k}. We will assume that any set S we consider has at most r < n elements.



Lemma 1. Extracty can be implemented reversibly using O(logn) ancilla bits and O(poly(n)) gates.

Proof. We first show how to implement the operation Shifty, [Enc S) |j) |0) = |Enc S) |4) |y; — yj—1), where by conven-
tion yg = 0. This operation comprises three parts: first compute the position of the (j — 1) separation character in
|Enc S) and the number of trits to the j** separation character (we call this operation Ui,k), second copy the relevant
trits to a separate register (we call this operation Us j), and third uncompute all other ancillas by running Uy ,:

We introduce three counters, called the block position counter, the length counter and the j-counter, going from 0
to [klogy(n/k)] + 4k, 0 to [logyn] + 1, and 0 to k respectively, and all initially set to 0. Note that all three counters
use no more than O(logn) bits. To implement U; x, we do the following steps.

First, we add k to the j-counter to set it to k. Then, for each trit in |Enc.S) sequentially, we do the following:
Controlled on the j-counter being larger than k — j + 1, increase the block position counter by one; then controlled on
the trit being a termination symbol, decrease j-counter by one. This ends with the j-counter being 0, and the block
position counter containing the position of the j" block.

Note, the implementation of operations controlled on the state of counters can be done by a number comparison,
and the latter can be implemented reversibly with one ancilla bit.

Next, for each trit in |[Enc S), we sequentially do the following: If the j-counter is equal to j — 1, increase the lenght
counter by one; if the trit is a termination symbol, increase the j-counter register by one.

Since the length counter is only increased in the j*® block, it stores its length. The j-counter now has the (known)
value k and we can reset it to 0.

This implements Uy j, which performs

Uy, [Enc S) |7) |0} [0) = [Enc S) [5) [pos(S, j)) [len(S, j)) (14)

and resets all ancillas to 0, where pos(S,j) is the position of the (j — 1)** separation character and len(S,j) =
pos(S,j + 1) — pos(S, j) is the number of trits to the j'" separation character.

To implement Uz j, it will be convenient to define the family of U(j,!) copy-unitaries. Each such unitary is a
sequence of [ CNOT gates, which copy the trits from position j + 1 to position j 4 [ as the last [ bits of the shift-
output register. Each such unitary costs only I CNOTS. The ¢ — U(j,1) is the controlled family of such unitaries,
which is controlled on the states of the block position and the length counter, and the corresponding U(j,[) is only
activated if the block position counter and the length counter are equal to j and [, respectively. For completeness,
these are only well-defined if j + [ < [k x logy(n/k)] + 4k, i.e., the lenght of the register containing |Enc S). If the
labels are out-of-bounds, we substitute them with identities. Although they copy trits, they will only be used as to
act on the binary subspace, as we will not be copying the termination symbols. Us ; is then given by

[logy(n/k)]+4k [logy n]+1

Usj = 11 II <-vGo. (15)

j=1 =1

Note that only one U(4,1) will be activated, namely the one specified by the position and length registers. In total,
Us i contains O((log(n/k) + k)log(n)) = O(log(n)?) gates, and uses no ancillas. Applying Ul_,i then completes the
implementation of Shifty.

Finally, Extracty can be implemented by introducing an additional counter from 1 to k, and k calls to controlled-
Shifty, each controlled on the counter being < j, followed by incrementing that counter. This way, each call adds
Y1 — yi—1 to the output register if [ < j. This finally leaves the output register in |y;) and all ancillas in 0, as
desired. O

This extraction subroutine can be used to check if a given variable index v € {1,...,2n} is contained in a set
of known size. To this end, define the (reversible) operation Contains; which performs Containsg |Enc S) |v) |0) =
|[Enc S) |v) |v € S?), where the last bit is 1 if v € S and 0 otherwise.

Lemma 2. Containsy, can be implemented reversibly using O(logn) ancilla bits and O(poly(n)) gates.

Proof. We introduce a counter from 0 to k and O(logn) additional ancilla bits. Then, for each j = 1,...,k, we use
Lemma 1 to extract the j*" element, controlled on the counter being in 0. We then check whether the extracted
element is equal to v, and store the result in a separate temporary result bit. We then uncompute the controlled
extraction and, controlled on the result bit being in 1, increment the counter. After doing this for all j = 1,...,k,
the result bit is in 1 if the element is in S and 0 if not. We apply a CNOT of the temporary result bit to the output
bit and then run the inverse of the entire circuit up to that point to reset the ancillas. O



Next, for a clause Cj, let

(V) = {1 C; satllsﬁed by x(V) (16)
0 otherwise.
We furthermore define a subroutine Check;; which performs
Checkjvi |EﬁEI1C ‘/;'_1> |O> = |Eﬂ'EI1C ‘/;_1> |C](V;_1)> . (17)

Note the dependence of Check;; on ¢ reflects that the routine is adjusted slightly for different set sizes appearing in
|EffEnc V;) (which are known in advance).

Lemma 3. Check;; can be implemented reversibly using O(logn) ancilla bits and O(poly(n)) gates.

Proof. We introduce three additional ancilla bits storing the values of the three variables in the clause. Then, for each
variable and each set in |EffEnc V;_1), we use Lemma 2 to check if the variable is in the set. The result is copied onto
the variable bit using a CNOT, and the Containsy operation is then reversed. Note that the sets can be assumed to
be disjoint. Then, the variable bits are flipped according to the literals in the clause. The clause is then evaluated
and the result stored in a separate bit. We then apply the inverse of the circuit to reset the ancillas. O

Next, we show how to select a variable from a given clause. For a clause C; with variables z,, zp, 2. with 0 < a < b <
¢ < n, let v;;(Vi—1, s;) be the ;"M smallest number in {a,b,c}\V;_1. If 5; > |{a, b, c}\V;_1|, then vj,i(Viz1, 83) = n+i.
We now define the reversible operation Select; which performs

Select; |EffEnc Vi_1) |s;) |[L + 1 — j) |0) = |EffEnc Vi_1) |s:) |[L + 1 — j) |v;,i(Viz1, 8)) (18)
for j=1,...,L and
Select; |EffEnc V;_1) |s;) |0) |0) = |EfEnc V;_1) |s;) |0) |n + ) . (19)
Lemma 4. Select; can be implemented reversibly using O(logn) ancilla bits and O(poly(n)) gates.

Proof. First, we add n+1 to the result register controlled on the counter input register being in 0. Then, for each j, we
do the following operations controlled on the counter input register being in L +1 — j: Use Lemma 2 to check which
variables are contained in V;_; and store the result in three variable ancilla bits (similarly to the implementation
Check;; in Lemma 3). Then, for each combination of values of the variable ancilla bits and s;, add the value of
v;,; to the result register controlled on the values of the variable register and s;. We then apply the inverse of the
controlled-Contains; operations to uncompute the variable ancilla bits. ]

To implement Calculate;, we first define G;; to be the following circuit: On input we have |EffEnc V;_1), a counter
from 0 to L using O(log L) bits, a result bit and O(logn) workspace ancillas. G ; first performs a controlled-Check; ;,
controlled on the counter being in 0, on the register containing |EffEnc V;_1) and O(logn) of the workspace ancillas.
Then, we perform a CNOT onto the result bit, controlled on the ancilla containing C;(V;_1) being 0. We then run
controlled-(‘,heck-_,i1 , controlled on the counter being in 0, to uncompute the workspace ancillas. Then, we add 1 to
the counter, controlled on the result bit being 1.

The implementation of Calculate; is now as follows.

1. Run  Gi;...Gr; |[EffEncV;_4)|0) [0). It is easy to see that this results in
|[EffEnc V;_1) [L + 1 — jmin) |1 — F(x(Vi—1))), where jmin is the smallest j such that C; is unsatisfied un-
der x(V;_1) if such a clause exist, and L + 1 otherwise, and F(x(V)) is 1 if x(V') is a satisfying assignment for
F and 0 otherwise.

2. Run Select; on |EffEncVi_1)|s;)|L 41— jmin) and O(logn) workspace ancillas. This produces
|[EffEnc V;_1) |s;) |[L 4+ 1 — jmin) |vs), where v; is the index of the variable to be added to V.

3. Apply the inverse of step 1. This results in |[EffEnc V;_1) |s;) |v;) and all other ancilla bits being reset to 0, as
desired.

This proves Proposition 1(i). O



4. The merge phase

The main tool of the merge phase is a reversible operation Uniony, 1, that calculates the union of two sets Sp, 52
of (known) sizes ki, ks < r,

Uniong, x, |EncS1) |Enc Se) |0) = |Enc Sq) |[Enc Sa) |[Enc S1 U Ss) . (20)

Lemma 5. Uniony, i, can be implemented reversibly with O(K log(n/K) 4+ K + logn) ancilla bits and O(poly(n))
gates, where K = ki + ko.

The basic idea is to simply extract the j;" and j,'" elements of S;, S5 at a time, where j; and j are the current
values of two counter registers, appends the smaller of those elements to the output set, and increase either j; or js
depending on which one was added. This results in all elements in S7 U S2 being added to the output set in increasing
order. As such, we first show how to efficiently append an element to a set of known size.

Lemma 6. Let S = {v1,...,v5} be a set with0 < vy < -+ < v < 2n and let v € {vi,+1,...,2n}. Then the operation
Append,, [v) |[Enc S) |0) = |v) [Enc .S U {v}) (21)
can be implemented reversibly using O(logn) ancilla bits and trits and O(poly(n)) gates.

Proof. The proof is very similar to the proof of Lemma 1, the steps are as follows.

1. Use Extracty, to extract the value of the largest element v, € S onto a separate register (note that k is known).

2. Calculate the difference of v with that value and store that difference in a separate register of O(logn) bits
which we call the difference register. The ancilla workspace now contains |vg) [v — v).

3. Introduce a counter from 0 to O(log log n) which we call the length counter, and an additional control bit initially
in 0, and use them to find the number of relevant binary digits in the difference register (i.e., [log,(v —vg)] +1)
as follows. Starting from the most significant digit of the difference register, in turn do the following for each bit
in the difference register: first, controlled on the bit being 1 and end the length counter being 0, flip the control
bit. Then, controlled on the control bit being 1, add 1 to the length counter. After doing this for all bits in
the difference register, the length counter will be in |logy(v —vg)] + 1 and the control bit in 1 (since we assume
v > v). Flip the control bit to reset it. The ancilla workspace now contains |vg) [v — vg) |[logy (v — vi) | + 1).

4. Use the operation Uj j defined in the proof of Lemma 1 to find the position of the last (i.e., k*") separation
character in |Enc S). The ancilla workspace now contains |vg) |[v — vg) |[logs (v — vg) | + 1) [pos(S, k + 1)).

5. Define a family of unitaries V' (4,1) which is a sequence of [ CNOTSs copying the first [ bits in the difference
register to the binary subspace of the (j + 1),...,(j + ) trits of the set register, followed by flipping the
( + 1+ 1) trit in the set register into a separation character (note that we assume that all these trits are
initially in 0). This operation is only well-defined for j + 1 < [(k + 1)logy(n/(k + 1)) + 4(k + 1)]. For out of
bounds values of 7,1, we define V (4,1) to be the identity. Define ¢—V (4,1) to be V(j,1) controlled on the append
position counter being j and the length counter being . Apply

[(k+1)logy(n/(k+1))+2(k+1)] [logy n]

Il c-vG.D. (22)
=1

=1

This appends the value of v — v, (without leading zeros) and a separation character after the last separation
character in the set register.

6. To reset the ancilla workspace, first apply the inverse of step 4, but replacing U; ,i with U; ; 41+ This resets
the ancilla register containing |pos(S,k + 1)). Then apply the inverse of step 3 and step 2. This resets the
ancilla registers containing ||logy(v — vi)| + 1) and |v — vg), respectively. Finally apply the inverse of step 1,
but replacing E><tract,;1 with Extract,;l_l. This resets the ancilla register containing vy and thus all remaining
ancillas.

Note that in the last step, the changes from U, é to Uy é 41 and Extract,;1 to Extract,;i17 respectively, are necessary
because after step 5, the set register contains a set of size k + 1 and not k. O



Proof of Lemma 5. We introduce the following ancilla registers: two counters from 1 to k; and ks, respectively, called
the first and second j-counter, respectively, two registers of O(logn) bits called the first and second candidate registers,
respectively, K trits called comparison trits and O(K log(n/K) + K) bits to temporarily store |[Enc.S; U Ss).

As explained above, the basic idea is to simply extract the elements of S7, .52 corresponding to the current values
of the j-counters, then add the smaller of those element to the output set, and increase the corresponding j-counter.
Additional care however has to be taken to ensure that the algorithm still runs correctly when all elements of one
of the sets have been added. As such, the algorithm is as follows. Sequentially, for each j = 0,..., K — 1, do the
following;:

1. For b = 1,2 in turn, run controlled-Extracty, on |Enc.Sy), the b*" j-counter and the b'" candidate register, where
the operation is controlled on the (3 — b)'" j-counter not being in j — k;. Note that since the sum of the two
j-counters is always equal j at all stages, the latter condition is equivalent to all elements of S, having already

been added.

2. For b = 1,2 in turn, add 2n+ 1 to the b*™" candidate register, controlled on the (3 —b)" j-counter being in j —k;.
This ensures that when all elements of one of the sets have already been added, the value in the candidate
register corresponding to the other set is always smaller.

3. We compare the values of the two candidate registers and determine the smaller one. To do that, note that it is
easy to efficiently and reversibly implement the minimum finding operation Min |v1) [v2) |0) = |v1) |ve) |m(v1, v2)),

where
1 v <o
m(vi,v2) =<2 vy < g (23)
0 v =g,

using only O(loglogn)) ancilla bits. We use the j*" comparison trit as the third register when calling Min.

bth

4. For b = 1,2 in turn, we call controlled—Appendj on the candidate register and the temporary set register,

controlled on the ;' comparison trit being b.
5. We apply the inverse of the operations in steps 1-2. This resets both candidate registers to 0.

6. For b=1,2 in turn, we add 1 to the b*" j-counter controlled on the j** comparison trit being in b.

After doing this for j = 0,..., K — 1, we copy the state of the temporary set register onto the output register and
then apply the inverse of the entire circuit up to that point. This resets the comparison trits and both j-counters. [

We now describe how to implement Merge,.

The first step is to convert |v;) into |Enc{v;}) using Append,. We then apply a sequence of merge operations of sets
that follows the pattern of a binary addition: suppose we expand ¢ — 1 in binary and add 1 to it using the standard
addition procedure. Then, every carry bit corresponds to merging two sets. More formally, let g > 0 be the largest
integer such that 29 divides ¢ (g specifies the the first non-zero position in the binary expansion of i from the least

significant bit position). Then, the sequence of merge operations is as follows. For [ =0,...,g — 1, we merge the sets
{U,L'_2l+1+1, ceey 'Ui_Ql} and {91—21+17 e ,'Ui}.
Each merge of two sets S1 = {v;_at+111,...,0; 01}, So = {v;_o111,...,v;} has two parts. First, we use Lemma 5

to compute |Enc Sy U S3). Second, we uncompute |S1)|S2) by running the inverse of the circuit from the end of the
merge phase for i — 2/*1. Note that since S; o always contain successive variables up to v;, this is possible.
We illustrate this procedure for ¢ = 20. Note that the binary expansion of ¢ —11is 19 = 16 + 2 + 1, so Vig1 =

{v1,...,v16}, Vig,2 = {v17,v18}, Vig,3 = {v19}. Our aim is to go from
|3) |EffEnc Vig) |[Enc{vag}) = |8) |[Enc{vn,...,vi6}) |[Enc{vi7, v1s}) [Enc{vig}) [Enc{vag}) (24)
to
|3) |[Enc{vy,...,v16}) [Enc{vir, vig,v19, v20}) = |8) |EffEnc Vag) . (25)

Note that reversibility is preserved since the operation will also involve the |S) register. First, we call Uniony; to
compute

Uniony 1 [Enc{v1g}) |[Enc{vao}) |0) = |Enc{vig}) |Enc{vao}) |Enc{vig, va0}) . (26)



We then uncompute |Enc{vig}) |Enc{vs}) by running the inverse of the part of the circuit from the end of merge
phase of ¢ = 18. Indeed, that part of the computation mapped |5)|Enc{vy,...,v16}) |Enc{vi7,v1s})|0) |0} to
|3) |[Enc{vy,...,v16}) [Enc{vir, vis}) |Enc{vig}) |Enc{voo}). Thus, running the inverse of this part of the circuits
results in |5) |[Enc{v1,...,vi6}) |[Enc{viz, v1s}) |Enc{vig, v20}). Next, we call Uniong o, which produces

Uni0n2,2 ‘EHC{’017, U18}> |EDC{1)19, 7)20}> ‘0> = ‘EHC{’017, U18}> |EDC{1)19, 7)20}> ‘EHC{’017, V18, V19, 1)20}> . (27)

We then uncompute |Enc{vi7,v18}) |Enc{vig, v20}) by running the inverse of the part of the circuit from the end of
the merge phase for ¢ = 16. This results in

‘§> |Enc{v1, e ,U16}> |EI1C{’U177 V18, V19, U2()}> 5 (28)

which is the desired result.

What remains to be seen is the runtime scaling of Merge,. We show now that the runtime of each merge
operation (comprising calculating the union of two sets and uncomputing these sets) scales polynomially with
the number of elements involved. To see this, we first show that the runtime M; of the operation mapping
|5} |[EffEnc V;_q:) [0) to |5) |[EffEnc V;_g) [Enc{v;_gi1,...,v;}) for any i is bounded by M; = O*(4!), where we
assume that |EffEncV;_ o) has no sets of 2! elements or less. This can be seen by induction. The claim
is trivial for | = 0. Suppose now that this is true for any ¢ and any I’ < [. Then, the operation that
maps |5) [EffEnc V,_oi+1)(0) to |5) |EffEnc V,_gi41) |[Enc{v;_oi+144,...,v;}) comprises two parts. First, we map
|3) |EffEnc V;_5i+1) |0) to |3) |EffEnc V;_gi+1) |[Enc{v; osi+14q,...,v;_a}) = |5) |[EfEncV; o). This operation takes
runtime M;. Next, we map |5) |[EffEnc V;_y:) |0) to |8) |[EffEnc V;_n) |Enc{v;_giy1,. .., v;}), which also takes runtime
M. Next, we call Uniony: o1 to compute

Uni0n21721 |EHC{U,L‘_2Z+1+1, N V1 }) |Enc{’ui_21+1, e ,’U/L'}> |O> =
‘EHC{'UZ‘,2H»1+17 e ,UZ‘,QL}> |EHC{’UZ‘,2l+1, e ,’Ui}> ‘EnC{Ui,21+1+17 e 7’Ui}> . (29)

The runtime of this call can be bounded by a polynomial p(n) that is independent of I or i. Finally, to uncompute

|[Enc{v; _gi+141,...,v;_a}) [Enc{v;_oi1q,...,v;}), we apply the inverse of the two operations before the call to the
union, each taking runtime M;. This implies M;,; < 4M; + p(n), which clearly gives M; = O*(4!), as claimed. In
particular, this implies that merging {v; _gi+1,1,...,v;_2} and {v;_o141,...,v;}, comprising of first calculating their
union and then uncomputing the original sets, takes runtime at most O*(4).
Since 7 < r, we need to do this operation at most once for each [ € {0,..., [logyr]}. Thus, the runtime of Merge,
is at most
[logy 7]
o [ > 4'| =0*(poly(r)) = O(poly(n)). (30)
1=0
This proves Proposition 1(ii). O

5. Quantum algorithm for PBS

To summarize, we have proven the following

Proposition 2 (Classical reversible circuit for QBALL;). The map |3)|0) — |3) |[EfEnc V(S)) can be implemented
reversibly using O(rlog(n/r) +r +logn) ancillas and O(poly(n)) gates.

For completeness, we also show how to (classically) reversibly imeplement QBALL,.

Proposition 3 (Classical reversible circuit for QBALL,). The map |EfEnc V (8)) [0) — |[EffEnc V) |F(x(V))) can be
implemented reversibly using O(logn) ancillas and O(poly(n)) gates.

Proof. The algorithm is similar to Calculate;. Let G ; be defined as in the implementation of Calculate;. We can
assume that V' = V/(§) has exactly r elements. The algorithm is as follows.

1. Run Gi p41...Gp 41 |EfEnc V;) |0) [0). This results in |[EfEnc V,.) |[L 4+ 1 — jmin) |1 — F(x(Vi21))), where jmin
is the smallest j such that C; is unsatisfied under x(V;) if such a clause exist, and L + 1 otherwise.

2. Use a CNOT to copy the last bit onto the output bit, invert it, and apply the inverse of step 1 to reset the
ancillas. O
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As mentioned above, this can now easily be turned into a quantum algorithm for PBS.

Theorem 1 (Quantum algorithm for PBS). There exists a quantum algorithm that solves PBS in runtime O*(3"/?),
using at most O(rlog(n/r) 4+ r +logn) qubits.

Proof. First, quantize the classical reversible circuits of Proposition 2-3 by turning each (reversible) classical gate into
its quantum equivalent. Then, initialise the |5) register into

3

j?? S lsners) (31)

S1,...,8p=1

and apply (quantum) QBALL; followed by QBALL,. The latter produces the state

3
1

—= D s s [VENIF(V(S))- (32)
3" 81,...,8p=1

The last step is to run amplitude amplification (or alternatively, fixed point search [1]) to increase the overlap with 1

on the last qubit. This uses at most O(v/3") repetitions of QBALL; 5. The overall runtime of the quantum algorithm

is therefore O*(37/2). O

B. Hybrid algorithm and runtime analysis

In this section, we provide the details of the full quantum-enhanced algorithm to solve 3SAT using a small quantum
device. In Section B 1 we outline the basic ideas and provide a broad overview. In Section B2, we look at general
runtime properties of the space splitting algorithm which reduces 3SAT to PBS. In Section B3, we summarise the
classical algorithm to solve PBS from [2], which is more efficient than PROMISEBALL. In Section B4, we show
how that algorithm can be quantum enhanced using QBALL and derive its runtime. The full runtime of the hybrid
algorithm to solve 3SAT is finally derived in Section B 5.

1. Key ideas on the hybrid algorithm

As mentioned in the main text, the results of [3] show that any speedup for PBS leads to a faster algorithm for SAT
solving using the space splitting algorithm. This connection is given quantitatively with Eq. (33) in Section B 2 below.
Specifically, any algorithm which solves PBS faster than Schoning’s algorithm (recall that Schoning’s randomized
sampling algorithm can equivalently be used to solve PBS) will also outperform Schéning’s algorithm for SAT solving.

In the previous section of this Supplemental Materials, we have provided the details of the quantum algorithm which
space-efficiently solves the PBS faster than Schoning’s algorithm. This algorithm can be used for any r, provided that
a quantum device with sufficiently many qubits is available. However, in the space-restricted scenario, we have to
resort to other methods. The limit on the number of available qubits translates into a maximum value of r for which
we can run the quantum algorithm. To solve PBS for larger values of r, we use a classical algorithm for PBS that
recursively calls itself for ever smaller values of r, until we reach a value that the quantum device can handle. We call
this general approach the standard hybrid approach. Specifically, we focus on the classical PBS algorithm provided in
[2], which is a de-randomization of the algorithm of Schoning, and which we review in Section B 3. This algorithm has
two features critical for our purposes. First, this algorithm is (essentially) as fast as the original randomized algorithm
of Schoning. This ensures that no thresholds emerge, relative to the algorithm of Schéning, as any speedup for PBS
implies a speedup of the original Schéning runtime for SAT solving [1]. Second, it is a recursive divide-and-conquer
algorithm: it works by calling itself on an instance smaller relative to all relevant parameters. This is in general a
non-trivial demand: the PBS problem involves at least two relevant parameters: r and the size of the formula (which
is essentially lower bounded by the number of variables n). The runtime of the algorithm for PBS is exponential only
with respect to r, and not n [5], so recursing over r makes sense classically. However, since we assume that we only
have a (very) limited-size quantum machine, reducing the PBS instance size only relative to r would not in general
suffice. One would naively expect to still be required to represent the entire formula on the quantum device, which is
impossible since we assume that we have (significantly) fewer qubits than n. However, as explained in the main text,
we do not actually need to carry the representation of the formula as input. This is critical for the standard hybrid
approach, where the quantum routine is invoked when the instance is small enough to be applicable.
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A final contribution of this Section is the overall runtime analysis, provided in Sections B4 and B5. The key
technical subtleties of this analysis are two-fold. First, a quantum machine which can solve PBS over n variables up
to radius r requires somewhat more than r (qu)bits. On the other hand, the expressions quantifying the runtime
incorporate the quantities related to the value of r that can be handled. This implies that any expression which
quantifies the total runtime relative to a size of the quantum device must include the explicit functional relationship
between r, n and the number of qubits we need to run the quantum algorithm for PBS with parameters n,r. The
second issue has to do with details of the algorithm in [2], where the recursive calls reduce the instance sizes with
respect to non-unit steps of A > 1, where A influences the efficiency of the overall algorithm. Due to this, the precise
analysis of the achieved speed-up via the standard hybrid approach is slightly more involved than for the basic, slower,
PrROMISEBALL algorithm presented in the main text. These technical points are elaborated in detail in Section B4
and B5.

2. Runtime properties of the space splitting algorithm

In [3], it was shown that using the space splitting algorithm (which reduces 3SAT to PBS), 3SAT over n variables
can be solved in time

T(n) = ga(n)(2>"/*+20 7" g4 ()20 )" 5 Ty (n, p), (33)
N——
Cover Set preparation Cover Set size PBS cost

where p (the fraction specifying the radius of the balls via r = pn) and d are parameters which can be optimized, g4
is a polynomial depending on d, h(p) = —(plogs(p) + (1 — p)logy(1 — p)) is the binary entropy function, and Ta(n, p)
is the runtime of the algorithm used to solve PBS with n variables and radius r = pn.

Schoning’s algorithm can also be understood as a PBS solver. It can be shown that Schéning sampling, starting
from a center x, which is at Hamming distance r from a satisfying assignment, produces a satisfying assignment with
probability at least 27" [2]. By iteration, we obtain a PBS solver with runtime O*(2").

Since d can be chosen large enough such that the dominating term of T'(n) is 200="(P)" x Ty(n, p) [6], in order
to quantify the improvement given a quantum-enhanced subroutine, it suffices to optimize this term with respect to
p. If (the dominating part of) Ty is of the form Ty (n, p) = O*(2°P"), the optimum is obtained by just minimizing
1 — h(p) + {p. Important values of ¢ are ¢ = log, (3) and { = 1, corresponding to PBS solved by the deterministic
algorithm of [3] and the basic (and also fast deterministic [2]) Schoning’s algorithm, attaining optima at values p = 1/4,
and p = 1/3, respectively. For completeness, the overall effective values «, for the overall algorithm using PBS routines
as listed are approximately 0.585 and 0.415, where the latter matches the runtime of Schéning’s (original) algorithm.

8. Fast deterministic classical PBS solver

In [2], an improved deterministic classical PBS solver was introduced, with run time in O*((2+¢€)"), where € depends
on tunable protocol parameters. We call this algorithm FASTBALL. These parameters can be chosen such that € is
arbitrarily small or even decaying in r, as explained later. As mentioned, the key idea of this algorithm is to also split
the space of choices, selecting which literal will be flipped in the recursive call, into covering balls. For the convenience
of the reader, here we present the details of FASTBALL, adapted from [2]. Let ¢ € N be a parameter (influencing e
in the overall runtime), and C C {1,...,k}" be a k—arry covering code with radius ¢/k (where k specifies the clause
upper bound in the ESAT problem to be solved). Since t and k are constants, the optimal code can be found in
constant time. The key steps and performance aspects of the algorithm are given next, abbreviated and adapted from

[2]-
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1: procedure FASTBALL(F, x,,C)

2 If x satisfies F’

3 return x

4 else if r =0

5: return FALSE

6 else

7 G < a maximal set of pairwise disjoint k-clauses of F' unsatisfied by x

8 if |G| < t, > Case 1
9: for each assignment S of variables in G
10: call PROMISEBALL(Fjg,x,7),

11: else if |G| > ¢ > Case 2
12: H<+ {C,...,C:} C G

13: for each w € C

14: call FASTBALL(F, x[H, w],r — A,C) >A:=t—2t/k

15: end procedure

The parameter A influences €, as will be clarified presently. The expression x[H,w] corresponds to a modified
assignment, where the variables selected by the code-word w from the subset of variables occurring in the subset of
clauses H have been flipped.

The objective of the algorithm is to achieve the run time of essentially O*((k — 1)"), which would be the runtime
achieved by the randomized algorithm of Schoning, used as a PBS solver. We now briefly discuss the runtime of this
algorithm.

In the case the problem is such that the algorithm always encounters Case 1 in line 8, the authors in [2] show that
each Fjz has no clauses of size larger than k£ — 1. In this case, Proposition 7 in [2] shows that PromiseBall can solve the
problem in O*((k — 1)), yielding the overall runtime is O*(2**(k — 1)"). Since 2** is a constant, this is O*((k — 1)"),
achieving the objective.

The more complex case involves occurrences of Case 2 (in line 11). Here, recurrence calls occur, which may encounter
Case 1 deeper in the tree, or not. The slowest case occurs when we remain in Case 2 throughout recurrence calls.
If we set A =t — 2t/k, it was shown in [2] that the runtime of FASTBALL, which, up to polynomial factors, is the
number of leaves in the recursion tree, is O* ((t?(k — 1)2)"/2) = O* ((t*/2(k — 1))"). Since ¥/ goes to 1 as t grows,
for any € > 0 we can choose t = t(¢) such that (t2/2(k —1))" < (k —1+¢)", which is the main result. Note that ¢ can
also be chosen to be a very slowly growing function of n, ¢t &~ log,, log,(n), which guarantees that the runtime of the
algorithm, intuitively, approaches the expression of the form O*((k — 1)") as n grows (see [7]).

4. Quantum speedup of FASTBALL with a small quantum device

The algorithm FASTBALL recursively calls itself on smaller instances, where the value of r is reduced in steps of A
(where A =t/3 for 3SAT), and A is a function which depends on € alone — hence if € is fixed, A is a constant.

At each recurrence step, the algorithm first checks whether a criterion which would ensure that PROMISEBALL
would terminate in O*((k — 1)") (O*(2") for 3SAT) steps, is satisfied (Case 1). In that case, the algorithm runs
PROMISEBALL, the quantum enhancement of which was investigated in the main body of the paper. The faster
runtime in that case is ensured by the property that the formula in question actually has at most (k— 1) (2 for 3SAT)
variables per unsatisfied clause. In that case, a quantum enhancement is achieved by the standard hybrid approach,
where QBALL is run as soon as the instance becomes small enough. Note that since the relevant formula has only
k — 1 variables per clause, QBALL can be adapted in this case to yield a runtime of O*((k —1)"/2) if r is small enough.
Then, we obtain an interpolated time between Schoning-level performance, and something quadratically faster. We
do not need to delve on further details, since this is not the worst-case performance of the algorithm, which occurs
if Case 2 persists. We cannot beforehand know at which step, if at all, the criteria for Case 1 will be satisfied, so we
call QBALL in Case 2 as well, as soon as the recursive step in line 14 calls an instance with sufficiently small . This
QBALL-enhanced version of FASTBALL is a hybrid algorithm which we call QFASTBALL.

We now estimate the runtime of QFASTBALL. Recall that we assume a quantum computer with M = cn qubits,
where ¢ € (0,1) is an arbitrary constant. To obtain the runtime of QFASTBALL, we first determine the largest value
of 7 = (e, n) such that such a quantum computer can solve PBS of radius 7.

Recall that QBALL requires O(rlog(n/r) + r + logn) qubits to solve PBS with n variables and radius r. Suppose
the exact scaling of this number of qubits is Arln(n/r) + Br + O(logn) for constants A, B > 0 [8]. Let 8(c) > 0 be
such that AB(c)In(1/8(c)) + BB(c) = c¢. Then, the quantum device can solve PBS for all » < 7 = (c)n — O(logn).
For completeness, it can be shown that 8(c) = —¢/(AW_1(—ce~B/4/A)), where W_; is the —1 branch of the Lambert
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W function (see Fig. 1 for a plot of 5(c)). We do not need the precise form of 8(c), it is easy to see, however, that
for small values of ¢, 8(c) = O(c/log(1/¢)) [9].
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FIG. 1. Plot of 3(c) for A =~ 6.93, B =50 [3].

Suppose now that QFASTBALL calls QBALL with radius rcay. Clearly, 7 > rean > 7 — A for each call to QBALL.
Note that the value of 7.,y could be different for each call to QBALL depending on whether we call it deep in
PROMISEBALL (Case 1) or in Case 2. The number of calls to QBALL is however at most O((2t>/2)7=(=2)) since
the number of leaves in the recursion tree, which has depth at most r — (7 — A), before QBALL is called, is bounded
by this quantity. The runtime of QFASTBALL is therefore given by the product of this quantity and the runtime
O*(37an/2) of QBALL, i.e., at most O*((2t2/2)7=(7=4) . 37/2) = O*((2t?/2)"=7 . 37/2) since A and ¢ are constants.
Plugging in the expression for 7 and noting that the O(logn) contribution is absorbed by the O* notation, we obtain
a runtime of

B(e)n
3
TQ,QFASTBALL(/)7 n) =0 (2 + G)pn <2{6) (34)
— 0 ((2 n e)P“2*f<C>“) (35)

for solving PBS with n variables and radius r using QFASTBALL with a quantum device of M = cn qubits, where as
before € can be made arbitrarily small, and f(c) = (1 — log, v/3)8(c) =~ 0.2153(c), where in the last step, we bounded

V3/(2+¢€) < V3/2.

5. Total runtime for 3SAT

We now estimate the runtime of the entire algorithm for solving 3SAT using the space splitting algorithm in
combination with QFASTBALL. Substituting (35) into (33), and recalling that we can choose d = O(1) such that the
second term in (33) is the dominating term of T'(n), we obtain

T(n) = O* (2(1—h<p)>n(2 i e)fmg—f(c)n) _ (36)
Note that the last factor in (36), induced by the quantum enhancement, is independent of p, and that the first two
factors together constitute the runtime of the space splitting algorithm using just FASTBALL. The optimal value of
p for (36) is therefore the same as the optimal value of p for just using FASTBALL, which (up to corrections in €) is
p = 1/3. Using this value, we obtain a total runtime of

T(n) = O* (2(%%7}"(0))%) , (37)

where € = log,(1 + ¢/2)/3 can be made arbitrarily small, as stated in the main body of the paper. O
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