
Technische Universität München

Max-Planck-Institut für Quantenoptik

Fakultät für Mathematik

Lehrstuhl für Mathematische Physik

Quantum algorithms for quantum many-body systems and small
quantum computers

Yi-Min Ge

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende:
Prof. Dr. Simone Warzel

Prüfende der Dissertation:
1. Prof. Dr. Michael M. Wolf
2. Hon.-Prof. Dr. J. Ignacio Cirac
3. Prof. Dr. Harry M. Buhrman

Die Dissertation wurde am 05.12.2019 bei der Technischen Universität München eingereicht
und durch die Fakultät für Mathematik am 16.03.2020 angenommen.

Technical University of Munich

Max Planck Institute of Quantum Optics

Department of Mathematics

Chair of Mathematical Physics

Quantum algorithms for quantum many-body systems and small
quantum computers

Yi-Min Ge

Full imprint of the dissertation approved by the Department of Mathematics of the Technical
University of Munich to obtain the academic degree of

Doctor of Natural Sciences (Dr. rer. nat.)

Chair:
Prof. Dr. Simone Warzel

Examiners of the dissertation:
1. Prof. Dr. Michael M. Wolf
2. Hon.-Prof. Dr. J. Ignacio Cirac
3. Prof. Dr. Harry M. Buhrman

The dissertation was submitted to the Technical University of Munich on 05.12.2019 and was
accepted by the Department of Mathematics on 16.03.2020.

Zusammenfassung

Diese Dissertation beschäftigt sich mit Quantencomputing im Kontext von Quantenvielteilchen-
systemen und größenlimitierten Quantencomputer. Zunächst betrachten wir die wichtigsten
Eigenschaften von Grundzuständen lokaler Hamiltonians mit Spektrallücke aus der Sicht des
Quantencomputing. Danach behandeln wir mehrere Quantenalgorithmen zur Präparierung
relevanter Quantenvielteilchenzustände auf einem Quantencomputer. Abschließend erforschen
wir Zugänge zu quanten-klassischen Hybridalgorithmen falls nur Quantencomputer mit einer
beschränkten Anzahl von Qubits verfügbar sind.

Abstract

This dissertation studies quantum computing in the context of quantum many-body systems
and size-limited quantum computers. First, we discuss the main properties of ground states of
local gapped Hamiltonians from a quantum computing perspective. We then consider several
quantum algorithms for preparing relevant quantum many-body states on a quantum computer.
Finally, we explore approaches to hybrid quantum-classical algorithms when only quantum
computers constrained in the number of qubits are available.

v

Acknowledgements

There is a long list of people whose support and contributions were invaluable to the completion
of this dissertation. First of all, I am indebted to Ignacio Cirac for the opportunity to work
in the MPQ Theory group as well as his extensive support and guidance throughout my PhD.
His enthusiasm for the field has been a great source of inspiration during my time at MPQ.

Second, I am grateful to Michael Wolf for accepting me into M5 as well as his regular help
and advice on many different issues over the years. This thesis benefited immensely from the
opportunity to interact with him and his group on a regular basis.

I would like to thank Harry Buhrman for agreeing to act as a referee for this thesis. I would
also like to thank Simone Warzel for agreeing to chair the committee.

Furthermore, I would like to thank all my collaborators who I have had the pleasure of
working with over the course of this PhD. In particular, I would like to thank all my co-
authors, Andras Molnar, Ignacio Cirac, Jens Eisert, Jordi Tura, Norbert Schuch, and Vedran
Dunjko, of all the articles this thesis is based on.

I would moreover like to thank all my current and former colleagues at the MPQ Theory group
for providing an interactive and cooperative research environment. In particular, I would like
to thank my office mates, Henrik Dreyer and Julian Roos, for the pleasant working atmosphere.
Special thanks also go to Andrea Kluth and Regina Jasny for all their help on administrative
matters. I would moreover like to thank former and current members of M5 for numerous
interesting discussions and exchanges over the years.

I am especially grateful to all my friends and family who have supported me in various ways
during this PhD and have brought balance to my life. Most importantly, I owe my deepest
gratitude to my parents without whom this thesis would not have been possible. Finally, I
would like to thank Sophia Michael for the endless support, patience and encouragement.

vii

List of contributed articles

This thesis is based on the following articles:

Core articles as principal author

I) Yimin Ge, András Molnár, and J. Ignacio Cirac.
Rapid Adiabatic preparation of injective projected entangled pair states and Gibbs states.
Physical Review Letters, 116, 080503, 2016.
(See also article [1] in the bibliography)

II) Yimin Ge and Jens Eisert.
Area laws and efficient descriptions of quantum many-body states.
New Journal of Physics, 18, 083026, 2016.
(See also article [2] in the bibliography)

III) Yimin Ge, Jordi Tura, and J. Ignacio Cirac.
Faster ground state preparation and high-precision ground energy estimation with fewer
qubits.
Journal of Mathematical Physics, 60, 022202, 2019.
(See also article [3] in the bibliography)

Further articles as principal author currently under review

IV) Yimin Ge and Vedran Dunjko.
A hybrid algorithm framework for small quantum computers with application to finding
Hamiltonian cycles.
arXiv:1907.01258 [quant-ph], 2019
Submitted to Journal of Mathematical Physics July 2019.
(See also article [4] in the bibliography)

Further articles as co-author

V) Andras Molnar, Yimin Ge, Norbert Schuch, and J. Ignacio Cirac.
A generalization of the injectivity condition for projected entangled pair states.
Journal of Mathematical Physics, 59, 021902, 2018.
(See also article [5] in the bibliography)

VI) Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac.
Computational speedups using small quantum devices.
Physical Review Letters, 121, 250501, 2018.
(See also article [6] in the bibliography)

I, Yimin Ge, am the principal author of Articles I, II, III, and IV.

ix

Other articles not included in this thesis

VII) Giannicola Scarpa, Andras Molnar, Yimin Ge, Juan Jose Garcia-Ripoll, Norbert Schuch,
David Perez-Garcia, Sofyan Iblisdir.
Computational complexity of PEPS zero testing.
arXiv:1802.08214 [quant-ph], 2018
(See also article [7] in the bibliography)

x

Contents

Abstract v

Acknowledgements vii

List of contributed articles ix

Contents xi

1 Introduction 1
1.1 Outline of this dissertation . 1

1.2 Summary of results . 2

2 Quantum computing 5
2.1 Quantum states . 5

2.2 Quantum circuits . 6

2.3 Measurements . 7

2.4 Reversibility . 7

3 Quantum many-body systems 9
3.1 Tensor networks . 9

3.1.1 Matrix product states . 10

3.1.2 Projected entangled pair states . 10

3.2 Ground states of local Hamiltonians and area laws 12

4 Important quantum algorithms 15
4.1 Amplitude amplification . 15

4.2 Hamiltonian simulation . 16

4.3 Phase estimation . 16

5 Quantum algorithms for state preparation 19
5.1 Adiabatic algorithms . 20

5.2 Preparing injective PEPS on a quantum computer 21

5.3 Ground space projection algorithms . 23

6 Hybrid quantum-classical approaches for small quantum computers 27
6.1 Techniques on the circuit level . 28

6.2 Techniques on the algorithmic level . 29

6.2.1 Schöning’s algorithm for 3SAT . 30

6.2.2 Eppstein’s algorithm for the cubic Hamiltonian cycle problem 31

Bibliography 33

xi

A Core articles 39
A.1 Rapid adiabatic preparation of injective projected entangled pair states and

Gibbs states . 39
A.2 Area laws and efficient descriptions of quantum many-body states 61
A.3 Faster ground state preparation and high-precision ground energy estimation

with fewer qubits . 75

B Further articles as principal author currently under review 105
B.1 A hybrid algorithm framework for small quantum computers with application to

finding Hamiltonian cycles . 105

C Further articles as co-author 133
C.1 A generalization of the injectivity condition for projected entangled pair states 133
C.2 Computational speedups using small quantum devices 183

xii

1 Introduction

Quantum computers are generally expected to revolutionise the way many computational prob-
lems can be solved. Their impact, however, critically depends on the performance and resource
requirements of the underlying algorithms to be run on such devices, particularly in the fore-
seeable future. Indeed, although the realisation of fully scalable quantum computers is still
remote, small devices that are limited in size may be achievable soon [8]. Finding ways to
exploit such constrained devices remains an important task.

One particularly promising application is the simulation of large quantum systems, as origi-
nally envisioned by Feynman [9]. Such problems are usually classically intractable, largely due
to the exponential scaling of the dimension of the underlying state space. Quantum computers
do not inherently suffer from this representability issue, and as such even small devices could in
principle be able to solve certain simulation tasks for small yet interesting system sizes which
are beyond the reach of classical computers.

The complementary approach to solving small problem sizes on size-limited quantum com-
puters is to expand the applicability of these devices to larger instances. Since established
quantum algorithms require more space than is physically available in this scenario, such ap-
proaches necessitate the development of so-called “hybrid algorithms”, which combine quantum
and classical computational resources.

This dissertation contributes to both of these areas.

1.1 Outline of this dissertation

In the remainder of this chapter, we briefly summarise all articles included in this dissertation.
The subsequent chapters provide a short overview of the main concepts in quantum computing,
quantum many-body systems, and hybrid algorithms, which are used and referred to in the
articles included in this dissertation, and moreover contextualise the results of the contributed
articles in the wider field. Specifically, Chapter 2 provides a short introduction to the basic
concepts of quantum computing. Chapter 3 discusses important notions in quantum many-
body systems, and analyses general criteria of quantum many-body states from the perspective
of computational tractability. Chapter 4 covers some important quantum algorithms which
are often used as building blocks in other quantum algorithms. Chapter 5 explores several
quantum algorithms to prepare certain quantum many-body states on quantum computers.
Chapter 6 presents new approaches for designing hybrid quantum-classical algorithms for the
scenario when the sizes of the available quantum computers are severely limited.

After this overview, the contributed articles are included. The published Core Articles I, II,
and III, of which the author of this thesis is the principal author, are included in Appendix A.
Contributed Article IV, which is currently under review and of which the author of this thesis
is the principal author, is included in Appendix B. Afterwards, in Appendix C, Contributed
Articles V and VI, of which the author of this thesis is a co-author, are included. Every article
is preceded by a short summary, a statement of the individual contribution of the author of
this thesis to the respective article, as well as the permission to include it in this thesis.

1

1.2 Summary of results

The articles included in this dissertation consider different aspects of quantum computation
in the context of quantum many-body systems and early quantum computers, and can loosely
be classified into two categories. The first category explores possibilities but also limitations
of quantum computation in the context of quantum many-body systems. Specifically, Arti-
cles I and III propose new quantum state preparation algorithms, while Article V introduces
and analyses a new class of quantum many-body states, which, amongst other things, can
also be prepared with the algorithm presented in Article I. Article II on the other hand ex-
hibits some limitations of characterising the computational tractability of quantum many-body
states by simply looking at their entanglement properties. The second category proposes new
approaches to hybrid quantum-classical algorithms that utilise quantum computers significantly
smaller than the problem size to enhance the performance of the purely classical version of the
algorithms. Specifically, Article IV introduces general frameworks and tools for designing such
hybrid algorithms and applies them to speed up the solving of a graph theory problem, while
Article VI achieves this in the context of Boolean satisfiability.

Core articles as principal author

• Article I [1]: Rapid adiabatic preparation of injective projected entangled pair states and
Gibbs states
In this article, we propose an adiabatic algorithm to prepare injective projected entan-
gled pair states and purifications of Gibbs states of quantum many-body Hamiltonians
with commuting local terms. We prove that the algorithm is very efficient if a so-called
“uniform gap” condition is satisfied. This efficiency is achieved by making strong use of
the locality of the parent Hamiltonians involved. First, we employ a version of the adi-
abatic theorem whose runtime scales only polylogarithmically in the allowed distance to
the target state. This is achieved through a smooth reparameterisation of the adiabatic
path. Second, the polylogarithmic scaling of the runtime in the allowed error allows for a
sequence of adiabatic paths in which only few local terms are changed at a time. As the
final ingredient of the algorithm, we prove that having only such local changes along the
path of frustration-free Hamiltonians implies that their terms can in fact be truncated
at a short distance away from the support of the local changes. This result, whose proof
utilises Lieb-Robinson bounds, implies a low runtime overhead when the adiabatic path
is converted into a quantum circuit using Hamiltonian simulation.

• Article II [2]: Area laws and efficient descriptions of quantum many-body states
In this article, we disprove a common folklore conjecture, namely that quantum many-
body states exhibiting so-called “area laws” are, in some sense, easy to describe. We prove
the existence of quantum many-body states on two-dimensional square lattices which ex-
hibit an area law in an extremely strong sense, but yet cannot be well-approximated by
any state which has a polynomial classical description. The latter class is extremely broad,
as it is only defined via a polynomial Kolmogorov complexity of the coefficients of the
states, and in particular includes efficient tensor networks and polynomial quantum cir-
cuits. We also show that the result remains true even if more “physical” conditions, such
as translational and rotational invariance, are imposed on the states, and we moreover
prove a variant of this result with decaying correlations. The proof is non-constructive
and uses a counting argument of ε-nets.

2

• Article III [3]: Faster ground state preparation and high-precision ground energy estima-
tion with fewer qubits
In this article, we present general-purpose quantum algorithms for extracting the ground
state of a quantum Hamiltonian from a given trial state by projecting the latter onto its
ground state component. We provide different versions of the algorithm, depending on
whether or not the ground energy is known beforehand. In case of an unknown ground
energy, our algorithms can also be used to estimate its value to a very high precision.
We prove that our algorithms are significantly faster than phase estimation, namely ex-
ponentially better in the allowed error and polynomially better in the overlap of the trial
state with the ground state. Moreover, we show that compared to other methods with
comparable runtimes, our algorithms use significantly fewer qubits, making them more
suitable for early quantum devices. We moreover show how to combine this approach with
phase estimation to optimise the runtime dependence on the spectral gap of the target
Hamiltonian. The algorithms are based on tools developed in the context of solving the
quantum linear systems problem, and implement an approximate ground state projector
using the “linear combinations of unitaries lemma”.

Further articles as principal author currently under review

• Article IV [4]: A hybrid algorithm framework for small quantum computers with applica-
tion to finding Hamiltonian cycles
In this article, we propose a general framework for developing hybrid quantum-classical
algorithms which speed up classical divide-and-conquer algorithms using only quantum
computers with significantly fewer qubits than the problem size. This framework, which
generalises the approach of Article VI, comprises two parts. First, we develop the so-
called “divide-and-conquer hybrid approach”, which takes a classical divide-and-conquer
algorithm and replaces the recursive call with a faster quantum algorithm once the prob-
lem size, measured by a suitable effective problem size metric, is sufficiently small to
fit on the number of available qubits. We prove sufficient conditions on the time- and
space-efficiency of the replacing quantum algorithm for obtaining a polynomial speedup.
The result also establishes a trade-off between the resource requirements of that quantum
algorithm, the speedup obtained, and the number of qubits available. The second part is
a general procedure to efficiently generate suitably space-efficient encodings of large sets
in a way that is compatible with a polynomial speedup in the divide-and-conquer hybrid
approach. This procedure bridges the gap between reversibility, space-efficiency, and low
computational overhead of the uncomputation operations involved. As an application,
all these results are then used to speed up Eppstein’s algorithm for finding Hamiltonian
cycles on cubic graphs, and the general framework reduces this task to finding time- and
space-efficient implementations of only a small number of graph-theoretic operations.

Further articles as co-author

• Article V [5]: A generalization of the injectivity condition for projected entangled pair
states
In this article, we introduce a new class of projected entangled pair states (PEPS), which
we term “semi-injective PEPS”. These states are obtained through local invertible op-
erators acting on a torus of plaquette states. This class extends the well-understood
notion of “injective PEPS”. We show that many important states for which no injective
PEPS description exists can naturally be described by a semi-injective PEPS. Similar to

3

injective PEPS, we also construct frustration-free local parent Hamiltonians for which
these states are the unique ground states. We then derive a “fundamental theorem” for
semi-injective PEPS by showing that two tensors generate the same class of semi-injective
PEPS if and only if they are related by a matrix product operator with certain properties
acting on the boundary. This result then allows for a characterisation of symmetries in
semi-injective PEPS. Finally, we use these results to rederive the third cohomology classi-
fication of symmetry protected topological phases within the framework of semi-injective
PEPS.

• Article VI [6]: Computational speedups using small quantum devices
In this article, we propose a quantum enhancement of Schöning’s algorithm for 3SAT
using only significantly fewer qubits than the number of variables involved in the 3SAT
instance. The speedup is polynomial for any arbitrarily small constant ratio of the num-
ber of available qubits to the number of variables. We demonstrate that straightforward
hybrid quantum-classical algorithms using such devices encounter a “threshhold effect”,
meaning that the hybrid algorithm becomes slower than the original classical algorithm
if that ratio is below some constant value. We then develop a new approach based on
a reformulation of Schöning’s original algorithm as a derandomised divide-and-conquer
algorithm, which reduces 3SAT to solving the so-called “Promise-Ball-SAT” (PBS) prob-
lem. We achieve the speedup by replacing the recursive call with a suitably time- and
space-efficient quantum algorithm sufficiently deep in the recursion tree. The faster run-
time of the replacing quantum subroutine is obtained by rewriting a classical recursive
PBS algorithm in non-recursive form, and speeding it up using amplitude amplification.
In order to be able to do this sufficiently space-efficiently, we develop efficiently uncom-
putable data structures to store sets of “flipped” variable indices.

4

2 Quantum computing

In this chapter, we provide a brief introduction to the main concepts of quantum computing.
This material can also be found in introductory textbooks such as Ref. [10].

Throughout this dissertation, the computer science convention of the big-O notation is used.
We write f(n) = O(g(n)) if there exist c, n0 > 0 such that for all n > n0, f(n) ≤ cg(n). We
moreover write f(n) = Ω(g(n)) if there exist c, n0 > 0 such that for all n > n0, f(n) ≥ cg(n).
We also write f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)). The O, Ω, and
Θ notation are generalised in the obvious way to multiple variables, as well as the case when
some of the variables are considered in the limit of sufficiently small instead of sufficiently large
values (it will always be clear from the context which limits are considered for which variables).

Unless stated otherwise, all logarithms in this dissertation are with respect to base 2.

2.1 Quantum states

Associated to any isolated physical quantum system is a complex Hilbert space, known as the
state space. Throughout this dissertation, only the finite-dimensional case Cd with d ∈ N is
relevant. Quantum systems with d = 2 are called qubits.

A pure quantum state of this system is an l2-normalised vector in the state space, denoted
as |ψ〉 ∈ Cd. The dual to |ψ〉 is written as 〈ψ|, and the inner product between states |ψ〉 and
|φ〉 as 〈ψ|φ〉. Often, an orthonormal basis {|0〉 , . . . , |d− 1〉}, called the computational basis, is
singled out. In this basis, |ψ〉 is represented as

|ψ〉 =
d−1∑

x=0

ψx |x〉 , (2.1)

where ψx = 〈x|ψ〉 ∈ C with
∑

x |ψx|2 = 1.

The state space associated to composite quantum systems is given by the tensor product of
the individual state spaces. For simplicity of notation, tensor product states |ψ〉⊗ |φ〉 are often
abbreviated as |ψ〉|φ〉 or |ψφ〉. The computational basis of a composite system is given by the
set of all possible tensor products of computational basis states of the individual subsystems.

An important special case in the context of quantum computing is the composite system
comprising n qubits, whose state space is (C2)⊗n. The computational basis of this system is
{|x〉 : x ∈ {0, 1}n}.

A mixed quantum state of a quantum system is described by a density operator ρ, which is
a positive operator of unit trace acting on the state space. Often, ρ is given by an ensemble
{(pi, |ψi〉)}i with pi ∈ [0, 1] and

∑
i pi = 1, meaning that the quantum system is in the state

|ψi〉 with probability pi. In this case ρ =
∑

i pi |ψi〉〈ψi|. Density operators can also be obtained
as partial states through the partial trace operation from larger systems: if |ψAB〉 ∈ HA ⊗HB
is a pure state of a composite system with state spaces HA and HB, respectively, then the
density operator ρA = trB(|ψAB〉〈ψAB|) is called the reduced state of |ψAB〉 with respect to the
subsystem A.

5

2.2 Quantum circuits

Quantum operations on pure quantum states are unitaries acting on the state space. In the
context of quantum computing, when the system is composed of n qubits1, one usually only
considers unitaries that can be obtained as a quantum circuit, i.e., a product of so-called gates,
which are elements of a fixed set of unitaries, acting on any of the n qubits. Moreover, one
usually only considers sets of gates which only contain unitaries acting on at most two qubits.
The gate set is called exactly universal if for all n, any n-qubit unitary can be written as a
product of its gates. An example of an exactly universal gate set is the set of all single-qubit
unitaries together with the controlled-NOT (or simply CNOT) gate, which in the computational
basis {|00〉 , |01〉 , |10〉 , |11〉} acts as




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.2)

However, it is often preferable to work only with finite gate sets, which clearly cannot be
exactly universal. Hence, the notion of universality is usually relaxed to only require good
approximations of the target unitaries. In other words, a gate set is called universal if for all n,
any n-qubit unitary can be approximated to arbitrarily small distance (e.g. in operator norm)
by products of its gates.

One of the most commonly used gate sets is

{
1√
2

(
1 1
1 −1

)
,

(
e−iπ/8 0

0 eiπ/8

)
,CNOT

}
, (2.3)

which can be shown to be universal. The two single-qubit gates in this set are known as the
Hadamard gate and the T gate, respectively. However, many other sets of gates are also known
to be universal. Moreover, the Solovay-Kitaev Theorem implies that any single qubit unitary
can be approximated to distance ε in operator norm using O(polylog(1/ε)) Hadamard or T
gates. This means that all universal gate sets are essentially equivalent up to polylogarithmic
factors.

In quantum computation, one is usually tasked with trying to either approximate a target
unitary with a quantum circuit, or alternatively generate an approximation of a target state
by applying a quantum circuit to a given initial state (often simply assumed to be |0〉⊗n).
Moreover, the quantum circuit should be the result of a quantum algorithm, which provides
descriptions of quantum circuits performing the task for varying problem sizes. As such, we
require the circuits to be uniform, which means that circuits for different problem sizes should be
related in a simple way2. This is an important technicality, as the ability to choose arbitrary
circuits for each problem size would allow one to solve uncomputable problems. There are
several important figures of merit of such quantum algorithms.

The runtime or size of the quantum circuit is simply the number of its elementary gates.
This is the most commonly used metric to measure the efficiency of a quantum algorithm. In
particular, one often demands that the runtime scales at most polynomially with the input size.

1Sometimes, quantum computations on larger-dimensional individual systems are considered, but these indi-
vidual systems can be embedded into a system of multiple qubits each.

2Formally, uniformity means that there exists a fixed Turing machine which, given a tape containing ‘1’ n
times, outputs a description of the nth circuit in time O(poly(n)).

6

Sometimes, we care not just about the runtime of a circuit, but also about its depth, which
is given by the maximum number of elementary gates amongst all paths from an input to an
output. Roughly speaking, the depth of a circuit measures the runtime if one is allowed to
perform gates acting on disjoint subsystems in parallel.

In many cases, quantum algorithms require additional qubits, called ancillas. Indeed, the
number of gates required to map |0〉⊗n to some |ψ〉 ∈ (C2)⊗n might be much higher than the

number of gates required to map |0〉⊗(n+m) to |ψ〉|0〉⊗m for a given m ∈ N. Particularly in the
context of early quantum computers with a limited number of qubits, the number of ancillas
m required by a quantum algorithm may be an important consideration.

2.3 Measurements

Although more general measurement operations are commonly considered in quantum mechan-
ics, in the context of quantum algorithms, one usually only allows projective measurements in
the computational basis. If such a measurement is performed on an n-qubit state |ψ〉 given by

|ψ〉 =
∑

x∈{0,1}n
ψx |x〉 (2.4)

with
∑

x |ψx|2 = 1, then the outcome x ∈ {0, 1}n is obtained with probability |ψx|2 and the
state after the measurement will be in |x〉.

Alternatively, one can choose to perform a measurement on only m of the n qubits. If |ψ〉 is
written as

|ψ〉 =
∑

x∈{0,1}m
αx |x〉|Rx〉 , (2.5)

where the |Rx〉 are (n−m)-qubit states and
∑

x |αx|2 = 1, then a measurement on the first m
qubits will with probability |αx|2 yield the outcome x ∈ {0, 1}m and leave the state in |x〉|Rx〉.

Quantum circuits that utilise measurements will generally only perform a required task with a
certain probability. For most applications, this is good enough as long as the success probability
is sufficiently large. Especially in the context of decision problems, this has termed the notion
of bounded-error algorithms, which solve the problem at hand with a probability of at least 2/3.
The value 2/3 is arbitrary here and could be replaced with any constant in (1/2, 1) because
any algorithm with such a probability of success can be lifted to succeeding with probability
at least 1− ε with O(log(1/ε)) repetitions and a majority vote.

2.4 Reversibility

Since unitary matrices are invertible, any quantum circuit implements a reversible operation.
Conversely, for any classical reversible gate performing x 7→ f(x), there is a quantum gate
performing |x〉 7→ |f(x)〉. However, classical cicuits are often written using non-reversible
gates, such as AND and OR. Such computations can nevertheless be rewritten in reversible
form, by replacing any irreversible gate computing x 7→ f(x) with the reversible gate computing
(x, y) 7→ (x, y⊕ f(x)), and applying it to (x, 0). In this way, any non-reversible classical circuit
computing x 7→ F (x) can be rewritten as a reversible circuit C which implements (x, 0, 0) 7→
(x, F (x), G(x)), where G(x) is some unwanted extra output (e.g., the results of all intermediate
computational steps). The presence of this “garbage” register is problematic for quantum
computation, since it prevents the desired interference properties when we lift this circuit to a
quantum circuit. This can be fixed with the following trick, known as uncomputation.

7

We introduce a fourth register onto which we first reversibly “copy” the register containing
F (x) using controlled-NOT gates, i.e. (x, F (x), G(x), y) 7→ (x, F (x), G(x), y ⊕ F (x)). We
then apply the inverse of C. Since C does not involve the last register, we obtain the state
(x, 0, 0, y⊕F (x)), yielding a reversible circuit which implements (x, 0, 0, y) 7→ (x, 0, 0, y⊕F (x)).
In particular, by replacing each reversible elementary gate with the corresponding elementary
quantum gate, one obtains a quantum circuit which performs |x〉|0〉|0〉|0〉 7→ |x〉|0〉|0〉|F (x)〉.

This simple way of turning any non-reversible classical circuit into a reversible and further into
a quantum one requires additional ancillas, in the worst case roughly the number of elementary
gates in the original non-reversible circuit. More general uncomputation schemes exist [11],
which can reduce the number of ancillas required, but usually achieve this at the expense of
potentially large runtime overheads.

8

3 Quantum many-body systems

The physical properties of a quantum system are usually captured by a Hamiltonian H, which
is a Hermitian operator acting on the state space of the system. Much of low temperature
and condensed matter physics is concerned with studying properties of states associated to a
given Hamiltonian H. For example, the state of inverse temperature β in thermal equilibrium
is described by the Gibbs state, ρβ = e−βH/Z, where Z = tr e−βH .

Often, one is interested in the properties of the spectral decomposition of H =
∑

iEi |Ei〉〈Ei|,
where the eigenvalues Ei are called the energies of the corresponding eigenstates |Ei〉. Note
that since H is Hermitian, Ei ∈ R and the |Ei〉 can without loss of generality be assumed
to form an orthonormal basis of the state space. Of particular importance are the ground
states corresponding to the lowest energy miniEi, known as the ground energy. Indeed, at low
temperatures, the properties of the ground states usually dominate the behaviour of the Gibbs
state. In this thesis, we will mostly be concerned with the case when the ground energy is
non-degenerate.

When H =
∑

xEx |x〉〈x| is diagonal in the computation basis, H describes a classical system,
i.e. one without any quantum effects. Then, ρβ = 1

Z

∑
x e
−βEx |x〉〈x| captures the Gibbs

distribution given by H.
For quantum many-body systems, additional constraints restrict the structure of Hamiltoni-

ans considered. Usually, there is an underlying lattice geometry of N sites of local dimension
d, and the Hamiltonians of such systems are restricted to be sums of local terms,

H =
∑

k

hk, ‖hk‖op ≤ 1, (3.1)

where each of the hk only acts non-trivially in a region of bounded diameter. For example, ifH is
a nearest-neighbour Hamiltonian, each hk is a Hermitian operator acting on two neighbouring
sites, tensored with the identity operator on all remaining sites. When all hk are positive
operators and the ground energy of H is 0, H is called frustration-free.

3.1 Tensor networks

The fundamental challenge of dealing with quantum many-body systems lies in the exponential
scaling of the underlying Hilbert space dimension: the state space associated to a system of N
sites of local dimension d is (Cd)⊗N , which has dimension dN . Usually, d can be assumed to be
a small constant (e.g. d = 2 for a system of N qubits on a lattice), whereas N generally needs
to be reasonably large to exhibit the relevant macroscopic effects. As such, the asymptotic
scalings of computational resources with large N are usually the relevant figures of merit for
complexities related to any algorithm for quantum many-body systems. The exponential scaling
of the state space dimension is particularly problematic for classical numerical simulations, as
even just storing a naive representation of the state using dN complex parameters would require
more memory than physically available even for relatively small values of N .

However, the locality structure of the Hamiltonian also leads to structural restrictions of its
ground state, and one could therefore hope that in principle, more efficient descriptions of these

9

states might exist. An important class of such descriptions are tensor networks, which define
states with generally only O(poly(N)) complex parameters. Such tensor network states are
generally conjectured to be able to approximate ground states of local Hamiltonians well. We
will define some special cases of such tensor networks now and motivate this conjecture below
in Section 3.2.

3.1.1 Matrix product states

The simplest type of tensor network states are matrix product states (or MPS), which describe
quantum many-body states in one spatial dimension. These are states of the form

|ψMPS〉 ∝
d−1∑

i1,...,iN=0

tr
(
A

(1)
i1
. . . A

(N)
iN

)
|i1 . . . iN 〉 , (3.2)

where the A
(j)
i are D×D matrices for i = 0, . . . , d−1 and j = 1, . . . , N . The value of j labels the

sites in an open or closed chain of N particles of local dimension d, and D is the so-called bond
dimension. Provided that D is not too large (e.g. D = O(poly(N))), this yields a description
of the state with only polynomially-many parameters. Moreover, the sequential order of the
matrices appearing in the MPS description inherently captures the one-dimensional geometry of
the state. For translationally invariant states, one often only considers translationally invariant

MPS, where the matrices A
(j)
i = Ai are site-independent.

MPS are particularly suited for classical numerical simulations of one-dimensional quantum
many-body systems. Indeed, physically relevant quantities such as expectation values or cor-
relation functions of local observables can be efficiently calculated classically given only the
matrices of the MPS, and the latter can in turn be used as variational parameters to obtain
states with low energy. For example, the highly successful Density Matrix Renormalisation
Group algorithm [12] can be reformulated in terms of MPS [13]. MPS are generally well un-
derstood. For example, “canonical forms” for MPS have been derived which essentially classify
all MPS [14]. The central ingredient to these canonical forms is a “fundamental theorem” of
MPS, which establishes necessary and sufficient conditions for when two sets of matrices gener-
ate the same set of states. This fundamental theorem is particularly strong for translationally
invariant MPS, which establishes that two matrices generating the same set of MPS are re-
lated by a “gauge” transformation. This result, amongst other things, can be used to classify
symmetry-protected topological (SPT) phases in one dimension [15, 16].

3.1.2 Projected entangled pair states

Projected entangled pair states (or PEPS) are the natural generalisation of MPS in two and
more spatial dimensions [17].

Definition 3.1. Let (V,E) be a simple graph with bounded degree and let D, d be positive
integers. For each v ∈ V , let Q(v) : (CD)⊗deg v → Cd be a linear operator. On each edge e ∈ E,
place a maximally entangled state

∣∣φ+D
〉
e

=
√
D−1

∑D−1
i=0 |ii〉 of two D-dimensional “virtual”

particles located at the two ends of e. Then, the projected entangled pair state (or PEPS)∣∣ψPEPS[{Q(v)}v∈V]
〉
∈ (Cd)⊗|V | is defined as

∣∣∣ψPEPS[{Q(v)}v∈V]
〉
∝
∏

v∈V
Q(v)

⊗

e∈E

∣∣φ+D
〉
e
, (3.3)

where each Q(v) acts on the deg v virtual particles located at v.

10

Figure 3.1: PEPS for two-dimensional square lattice. Each physical site comprises four virtual D-
dimensional particles. Two neighbouring virtual particles are placed into a maximally
entangled pair state (blue). Linear operators (red) supported on the four virtual particles
of each site are then applied.

This construction is illustrated in Fig. 3.1 for a two-dimensional square lattice. The opera-
tors Q(v) are commonly referred to as PEPS projectors (even though they are not necessarily
projectors). As with MPS, D is called the bond dimension of the PEPS. If D = O(poly(N)),
the PEPS projectors provide an efficient description of the state comprising only polynomially
many parameters. Moreover, as with MPS, one often only considers translationally invari-
ant PEPS whose projectors Q(v) = Q are site-independent when dealing with translationally
invariant systems.

The general theory and classification of PEPS is much less understood than that of MPS.
In particular, no “fundamental theorem” analogous to that of MPS exists. In fact, quite the
opposite is true: the problem of whether two given PEPS projectors generate the same states
for all system sizes can be shown to be undecidable in general [7]. The latter can be proven
by encoding two-dimensional tiling problems, which are well-known to be undecidable, into the
problem of deciding if two PEPS projectors generate the same set of states.

One important subclass of PEPS are the injective PEPS, which are PEPS for which all PEPS
projectors Q(v) are invertible.

Definition 3.2. Let (V,E) be a simple graph with bounded degree, D, d be positive integers,
and Q(v) : (CD)⊗ deg v → Cd be a linear operators. We call the PEPS

∣∣ψPEPS[{Q(v)}v∈V]
〉

injective if Q(v) is invertible for all v ∈ V .

Unlike general PEPS, the class of injective PEPS is well-understood. In particular, a “fun-
damental theorem” analogous to the one for translationally invariant MPS is known for trans-
lationally invariant injective PEPS [18].

In Contributed Article V, the notion of injectivity is generalised. We introduce so-called
semi-injective PEPS, which are obtained by placing plaquette states of four virtual particles on
a two-dimensional lattice and acting with invertible 4-body operators on the virtual particles
meeting at each site (see Fig. 3.2). We show that this class of states not only includes all
injective PEPS, but also several important examples of states which do not admit an injective
PEPS description, such as the AKLT model on square lattices and the CZX model. We show
an analogous fundamental theorem for semi-injective PEPS there, and use it to rederive the
classification of symmetry-protected topological phases of matter in that framework.

11

Figure 3.2: Semi-injective PEPS. Invertible 4-body operators (red) act on plaquette states (blue) of
four virtual particles.

3.2 Ground states of local Hamiltonians and area laws

In this section, we discuss a heuristic argument for why tensor networks could be suited to
capture ground states of local Hamiltonians.

A

∂A

Figure 3.3: Area law. A quantum many-body state |ψ〉 satisfies an area law with respect to some
entanglement entropy S if for any connected subregion A (red) of the lattice, S(ρA) =
O(|∂A|), where ρA = trV \A |ψ〉〈ψ| is the reduced state of |ψ〉 with respect to the subsystems
in A and ∂A is the boundary of A (blue). Generic states satisfy a volume law, S(ρA) =
Ω(|A|), with high probability.

Ground states of local Hamiltonians are generally expected to have special entanglement
properties. Specifically, for local Hamiltonians defined on a lattice (V,E) with a Ω(1) spectral
gap and a unique ground state, the latter is expected to exhibit a so-called area law [19]. This
means that certain entanglement entropies, e.g. the Rényi entropies Sα(ρA) = 1

1−α log tr ραA,
α > 0, or the von Neumann entropy S1(ρA) = − tr(ρA log ρA) = limα→1 Sα(ρA) of reduced
states ρA with respect to a connected subregion A ⊂ V of particles, is bounded by O(|∂A|),
where the boundary ∂A of A is the set of edges between A and V \A (see Fig 3.3). This
property is in stark contrast to generic states. Indeed, it can be shown, as a consequence of the
concentration of measure phenomenon, that states picked uniformly at random according to
the Haar measure satisfy a volume law, i.e. Sα(ρA) = Ω(|A|), with probability close to 1 [20].

This contrast between generic states and ground states of local gapped Hamiltonians has
termed the notion of a small “physical corner” of the exponentially-dimensional quantum many-
body state space. Moreover, MPS and PEPS with an O(1) bond dimension can be easily

12

seen to fulfil an area law with respect to S0, the binary logarithm of the Schmidt rank, and
hence also with respect to Sα for all α > 0. The fact that MPS/PEPS and ground states of
local gapped Hamiltonians are conjectured to share this very non-generic property provides a
heuristic justification for why such tensor network states could be suited to describe ground
states of local gapped Hamiltonians.

In one spatial dimension, i.e. an open or closed chain of N particles of local dimension d,
area laws – which in 1D means that S(ρA) is bounded by a constant for all connected subchains
A ⊂ V independently of the length of A – have been proven for the unique ground states of local
gapped Hamiltonians [21, 22]. Moreover, the precise link between area laws and the existence
of efficient MPS descriptions has also been proven in 1D. Specifically, it has been shown that
any state which satisfies a 1D area law for Sα with α ∈ (0, 1) can be approximated by an MPS
with small bond dimension [23]. The result remains true even if the constant scaling of Sα(ρA)
required by the 1D area law is relaxed to a logarithmic scaling in the system size.

Theorem 3.3 ([23, 24]). Let |ψ〉 ∈ (Cd)⊗N be a state of N quantum systems of local dimension
d. For L = 1, . . . , N − 1, let ρL be the reduced state of |ψ〉 with respect to the first L quantum
systems according some pre-specified total order of the N quantum systems. Suppose that there
exists some α ∈ (0, 1) such that for all L ∈ {1, . . . , N − 1}, Sα(ρL) = O(logN). Then, for all
ε > 0, there exists an MPS |ψMPS〉 of bond dimension O((N/((1 − α)ε))α/(1−α) poly(N)) such
that ‖|ψ〉 − |ψMPS〉‖22 < ε.

To be precise, the proofs in Refs. [21, 22] of the area law for ground states of local gapped
Hamiltonians in 1D only explicitly establish an area law for the von Neumann entropy. However,
Theorem 3.3 breaks down for α = 1 and moreover, it has been shown that merely looking at
area laws with respect to the von Neumann entropy turns out to be inconclusive in general [24].
Hence, strictly speaking, the established versions of the area laws for ground states of gapped
Hamiltonians in 1D do not a priori imply the existence of a good MPS approximation with
low bond dimension. However, the proof of the 1D area law in [22] using “approximate ground
state projectors” actually also proves that all ground states of local gapped Hamiltonians in
1D can be captured by MPS of polynomial bond dimension. This proven connection ultimately
also gave rise to provably efficient classical algorithms to find the ground state of gapped local
Hamiltonians in 1D in terms of MPS [25–27].

In two (or more) spatial dimensions, the picture is more complicated. While it has been
proven that analogues of PEPS for mixed states with polynomial bond dimension can well ap-
proximate Gibbs states of local gapped Hamiltonians [28], the corresponding claim for ground
states is so far only a (generally believed) conjecture. As a first step to proving it, significant
effort has gone into attempting to prove an area law for ground states of local gapped Hamilto-
nians in 2D. This has been proven in many special cases, including frustration-free Hamiltonians
[29], Hamiltonians in the same gapped phase as other Hamiltonians with area law ground states
[30, 31], or under certain assumptions on the scaling of the specific heat capacity [32]. However,
a general area law in 2D for ground states of local gapped Hamiltonians is still unproven.

Yet, even if a general area law were to be proven, care has to be taken with this approach: In
Core Article II, we show that the analogous statement to Theorem 3.3 does not hold in more
than one spatial dimensions: there exist states which satisfy an area law in an extremely strong
sense, namely with respect to S0 (and hence with respect to Sα for all α > 0), but nevertheless
cannot be approximated by any efficient tensor network description. In fact, the result is more
general and does not only apply to tensor networks, but any efficient classical description of
the state in the sense of having a low Kolmogorov complexity. This in particularly also implies
that 2D area law states cannot in general be prepared by polynomial quantum circuits, even

13

when allowing for post-selections of measurement results. Note that the existence of these
counterexamples has no implications for properties of ground states of gapped Hamiltonians –
in fact, the counterexamples established in Core Article II are provably not eigenstates of any
local Hamiltonian. Yet, it signifies that the characterisation of the “physical corner” of the
many-body Hilbert space via low entanglement properties is incomplete, and that area laws
can only serve as intuitive guidelines for the ability to capture the state by PEPS.

14

4 Important quantum algorithms

In this chapter, we present some elementary techniques and quantum algorithms which are
often used as subroutines or building blocks in subsequent quantum algorithms.

4.1 Amplitude amplification

A common way to obtain (up to quadratic) polynomial speedups over classical algorithms is
to use amplitude amplification techniques, first introduced in Ref. [33]. Suppose that C is
a quantum circuit on n qubits which prepares the state C |0〉⊗n = λ |G〉 +

√
1− λ2 |B〉 with

〈B|G〉 = 0 and λ ∈ (0, 1), and let U be a unitary on n + 1 qubits that satisfies U |G〉|b〉 =
|G〉|1− b〉 and U |B〉|b〉 = |B〉|b〉 for b ∈ {0, 1}. Here, C can be thought of as preparing a state
which has a desired “good” component |G〉 (e.g., |G〉 could be the target state which encodes
the solution to the problem we are trying to solve) and an undesired “bad” component |B〉.
The unitary U acts as an “oracle” which recognises good states. The naive way to obtain a
good state would be to run UC on |0〉⊗(n+1), followed by a measurement of the last qubit.
Then, a good state is found with probability λ2. If λ is very small (which is usually the case in
most practical applications), then Ω(1/λ2) repetitions of this procedure are required to obtain
a bounded-error algorithm.

Amplitude amplification techniques can be used to reduce this to O(1/λ) repetitions. To
illustrate the simplest case, suppose that the value of λ is known, and we write λ = sin θ for some
small θ > 0. Let R0 be the n-qubit unitary which satisfies R0 |0〉⊗n = − |0〉⊗n and R0 |x〉 = |x〉
for x ∈ {0, 1}n\{0 . . . 0}, and U ′ be an n-qubit unitary which satisfies U ′ |G〉 = − |G〉 and
U ′ |B〉 = |B〉 (note that U ′ can be obtained from U using one ancilla in (|0〉 − |1〉)/

√
2).

Then, it is easy to see that in the two-dimensional subspace spanR{|G〉 , |B〉}, the operator
R = CR0C†U ′ acts as a rotation by 2θ. In particular, since θ is small, O(1/θ) = O(1/λ)
repetitions of R will rotate C |0〉⊗n to a state with an Ω(1) overlap with |G〉.

In the above illustration, knowing the value of λ was crucial, since applying R too many times
will “overshoot” the target state and reduce the overlap with |G〉 again. An improvement over
this simple amplitude amplification method, known as fixed point search, generalises this result
to the case when only a lower bound on λ is known.

Theorem 4.1 ([34]). Let C be a quantum circuit on n qubits such that C |0〉⊗n = λ |G〉 +√
1− λ2 |B〉 with 〈B|G〉 = 0 and λ ∈ (0, 1), and let U be a unitary on n+ 1 qubits that satisfies

U |G〉|b〉 = |G〉|1− b〉 and U |B〉|b〉 = |B〉|b〉 for b ∈ {0, 1}. Let λ′, δ ∈ (0, 1) with λ′ ≤ λ. Then,
there exists a quantum circuit FPS(C, U, λ′, δ) on n + 1 qubits using O(log(1/δ)/λ′) calls to
C, C†, U and O(n2 log(1/δ)/λ′) additional gates such that

|〈G, 0|FPS(C, U, λ′, δ)|0〉⊗(n+1)|2 ≥ 1− δ2. (4.1)

In Core Article III, we amongst other things also prove a kind of converse of Theorem 4.1,
namely that the left hand side of (4.1) is at most 2 ln(2/δ)λ/λ′ if λ ≤ λ′, and use this to
propose a quantum algorithm to find the smallest ancilla “label” amongst terms with at least
some given amplitude in a given superposition.

15

4.2 Hamiltonian simulation

The dynamics of a quantum state in a closed system described by a Hamiltonian H is governed
by the Schrödinger equation1,

i
d

dt
|ψ〉 = H |ψ〉 . (4.2)

The problem of simulating this evolution of a given Hamiltonian and initial state on a quan-
tum computer is known as Hamiltonian simulation. For time-independent Hamiltonians H,
Eq. (4.2) implies that the state |ψ(t)〉 at time t is simply given by

|ψ(t)〉 = e−iHt |ψ(0)〉 , (4.3)

so that Hamiltonian simulation essentially amounts to approximating the unitary e−iHt by a
short quantum circuit.

Many efficient quantum algorithms for this task are known. The earliest and simplest of
these algorithms [35] is based on “trotterisation” techniques. Suppose that H acts on n qubits
and can be decomposed into M = O(poly(n)) “local” terms, H =

∑M
k=1 hk, where each hk only

acts non-trivially on O(1) qubits. Then, using the Trotter formula [36, 37]

e−iHt =
(
e−ih1t/r . . . e−ihM t/r

)r
+O(t2/r), (4.4)

with r = Ω(t2/ε) and approximating each e−ihkt/r as a quantum circuit with O(polylog(Mr/ε))
gates, one obtains a quantum circuit that approximates e−iHt to error O(ε) using at most
O(Mt2ε−1 polylog(M, t, ε−1)) gates.

In recent years, Hamiltonian simulation algorithms with significantly better runtimes have
been developed for various input models of H [38–41]. Here, we exemplarily state one of these
results, whose runtime scaling can be shown to be essentially optimal [39]:

Theorem 4.2 ([41]). Let H be an N × N Hermitian matrix such that there is an Nd × Nd
unitary U and a d× d unitary G such that H = (〈G| ⊗ 1)U(|G〉 ⊗ 1), where |G〉 = G |0〉 ∈ Cd.
Let t > 0. Then, e−iHt can be simulated to error ε and failure probability O(ε) using at most
dlog2Ne + dlog2 de + 2 qubits, O(t + log(1/ε)) calls to controlled-G, controlled-U , and their
inverses, and O(t log d+ log(1/ε) log d) additional elementary gates.

In a certain sense, Hamiltonian simulation can be considered the most fundamental problem
in quantum computing. Indeed, it is easy to see that every quantum circuit can be implemented
by a series of Hamiltonian evolutions and thus, the problem is BPQ-hard, where BQP is the
class of decision problems that can be solved in polynomial time with bounded error on a
quantum computer.

4.3 Phase estimation

Suppose that we are given a description of a unitary U as a quantum circuit and a copy of an
eigenstate |λ〉 of U with U |λ〉 = e2πiλ |λ〉 and λ ∈ [0, 1). The phase estimation algorithm, first
introduced in Ref. [42], provides a way to obtain an estimate of the unknown value of λ given
access to a controlled version of U , i.e. cU = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ U .

1In quantum mechanics literature, the Schrödinger equation is often given with an additional multiplicative
constant ~, which for convenience we have simply normalised to ~ = 1 since its precise value does not matter
here.

16

. . .

. . .

. . .

. . .

H

H

H

U20 U21 U2k−1

QFT †k|0〉

|0〉

|0〉

|λ〉

|ϕλ〉

|λ〉

...

Figure 4.1: Phase estimation. The algorithm uses k ancilla qubits, k Hadamard gates (green), con-

trolled versions of U20 , . . . , U2k−1

(red) and an inverse quantum Fourier transform (blue)

to map |λ〉|0〉⊗k to |λ〉|ϕλ〉 for any eigenstate |λ〉 of U .

First, we introduce some k ancilla qubits, where the value of k will be chosen later. The phase
estimation algorithm uses k Hadamard gates, cU20 , cU21 , . . . , cU2k−1

, as well as a standard
operation known as the inverse “quantum Fourier transform” which uses O(k2) elementary
gates (we refer to Ref. [10] for details of this operation) to perform the map

|λ〉|0〉⊗k 7→ |λ〉|ϕλ〉 , (4.5)

where |ϕλ〉 is a k-qubit state which can be used to estimate the value of λ (see Fig. 4.1). Indeed,
it can be shown that |ϕλ〉 has large overlap with the computational basis states that encode
the first n binary digits of λ if k > n is chosen sufficiently large.

Theorem 4.3 ([10]). Let U be a unitary acting on a finite-dimensional state space and |λ〉 be
an eigenstate of U with U |λ〉 = e2πiλ |λ〉 with λ ∈ [0, 1). Let n be a positive integer, ε > 0, and
k = n + dlog

(
2 + 1

2ε

)
e. Suppose that applying phase estimation of U with k ancilla qubits to

|λ〉|0〉⊗k results in the state |λ〉|ϕλ〉. Then, a measurement of the first n qubits of |ϕλ〉 in the
computational basis yields the first n binary digits of λ with probability at least 1− ε.

Moreover, it is easy to see that by expanding any state in an orthonormal eigenbasis of U ,
the algorithm can also be extended to any state.

Corollary 4.4 ([10]). Let U =
∑

i e
2πiλj |λj〉〈λj | be a unitary acting on a finite-dimensional

state space H with an orthonormal eigenbasis {|λj〉} and eigenvalues {e2πiλj}, where λj ∈ [0, 1).
Let n be a positive integer, ε > 0, k = n+ dlog

(
2 + 1

2ε

)
e, and |φ〉 =

∑
j φj |λj〉,

∑
j |φj |2 = 1, be

an arbitrary state in H. Then, applying phase estimation of U with k ancilla qubits to |φ〉|0〉⊗k
followed by a measurement of the first n ancilla qubits in the computational basis yields the first
n binary digits of λj with probability at least |φj |2(1− ε).

In the context of Corollary 4.4, phase estimation can be intuitively seen as approximately
simulating a projective measurement of the observable2

∑
j λj |λj〉〈λj | on the state |φ〉. How-

ever, the scaling of the number k of ancillas required turns out to be unfavourable if good
approximations of not just the eigenvalues but also the residual states are desired. We discuss
this aspect in more detail in Section 5.3.
2In quantum mechanics, an observable is a Hermitian operator acting on the state space. If the observable has

spectral decomposition
∑
E EPE , where PE is the projector onto the eigenspace with eigenvalue E, then a

projective measurement of that observable on a system in a state |ψ〉 yields the outcome E with probability
‖PE |ψ〉‖22 and leaves the system in the state PE |ψ〉 /‖PE |ψ〉‖2.

17

5 Quantum algorithms for state preparation

In this chapter, we present several quantum algorithms for preparing physically relevant states
on quantum computers. The central problem we consider here is the preparation of ground
states of a given Hamiltonian. Although we will also look at preparing other states, those
problems can be reformulated as ground state problems.

The ability to efficiently prepare certain ground states on a quantum computer would have
many important applications. Indeed, state preparation tasks are often important in simulation
problems. For example, the simulation of quenches in quantum many-body systems using
Hamiltonian simulation requires the preparation of the initial ground state of this process.
Moreover, many optimisation problems can naturally be formulated as ground state problems.

Yet, ground state preparation is in general a hard problem. Indeed, many variations of the
problem of determining the ground energy of a given Hamiltonian – including under various
locality constraints – have been shown to be complete for the complexity class QMA [43]. The
latter can be thought of as the analogous complexity class to NP for quantum computers,
and as such it is generally conjectured that quantum computers cannot solve these problems
efficiently. Nevertheless, given the profound applications of ground state preparation in several
fields of science, quantum algorithms for this task which at least perform better than naive
brute-force algorithms are highly desired. This could include e.g. heuristic algorithms which,
despite having exponentially bad worst-case runtime bounds, may work significantly better in
practice when applied to physically relevant systems.

Most existing quantum algorithms for ground state preparation are based on one of two
methods. First, one could take a trial state |φ〉 (e.g. a random product state) and attempt
to project it into the ground state, e.g. using phase estimation. The probability of success
of such methods generally depend inverse polynomially on |φ0|, where φ0 is the inner product
of |φ〉 with the ground state. We discuss this class of ground space projection algorithms in
Section 5.3 below.

The second class of algorithms are based on variants of the adiabatic theorem, which we
will review below. Rigorous runtime bounds on adiabatic algorithms however generally depend
inverse polynomially on the minimum spectral gap along a path of Hamiltonians, which in
general is exponentially small, and moreover difficult to calculate or bound in practice. Thus,
adiabatic algorithms are usually treated as heuristic methods to obtain states with (hopefully)
good overlap with the ground state. The resulting states could e.g. be subsequently used as a
trial state in a ground space projection method.

This combined approach of first generating a potentially good trial state with a heuristic
method followed by attempting to project it onto its ground state component is expected
to work significantly better than just using random trial states in ground space projection
algorithms. Moreover, it is also the current paradigm envisioned e.g. for quantum chemistry
applications [44].

This dissertation contributes to both parts of this approach. Core Article I presents an
adiabatic algorithm for preparing injective PEPS and certain kinds of Gibbs states. Core
Article III presents a quantum algorithm that projects a given trial state onto its ground space
component which performs significantly better than phase estimation.

19

5.1 Adiabatic algorithms

Adiabatic algorithms are a common strategy to prepare ground states of a given Hamiltonian
by connecting the target Hamiltonian H(1) = H along a path of Hamiltonians H(s), s ∈ [0, 1],
to a “trivial” Hamiltonian H(0) whose ground state can be easily prepared (e.g., a product
state). The adiabatic theorem guarantees that if the initial state is in the ground state of H(0),
and evolves under a time-dependent Schrödinger equation whose Hamiltonian is slowly changed
from H(0) to H(1), then for sufficiently long runtimes, the resulting final state will be close to
the ground state of H. This runtime can be bounded in terms of the spectral gap of H and
the norms of its derivatives:

Theorem 5.1 ([45, 46]). Let H(s), s ∈ [0, 1], be a twice continuously differentiable path of
Hamiltonians acting on a finite-dimensional Hilbert space. Suppose that for all s ∈ [0, 1], H(s)
has a non-degenerate ground state |λ0(s)〉 and a spectral gap of ∆(s). For τ > 0, let |ψτ (t)〉 be
the solution to the time-dependent Schrödinger equation

i
d

dt
|ψτ (t)〉 = H(t/τ) |ψτ (t)〉 , |ψτ (0)〉 = |λ0(0)〉 . (5.1)

Then,

min
θ∈[0,2π]

‖|ψτ (τ)〉 − eiθ |λ0(1)〉‖2 = O(ε), (5.2)

provided that

τ = Ω

(
1

ε

(
‖Ḣ(0)‖op

∆(0)2
+
‖Ḣ(1)‖op

∆(1)2
+

∫ 1

0
ds
‖Ḣ‖2op

∆3
+

∫ 1

0
ds
‖Ḧ‖op

∆2

))
. (5.3)

In many cases, the inverse polynomial dependence on mins ∆(s) will dominate this run-
time bound. Moreover, the adiabatic theorem only provides a Schrödinger evolution – i.e., a
time-dependent Hamiltonian and a runtime bound. To turn this into a quantum circuit, the
Schrödinger evolution has to be simulated using Hamiltonian simulation algorithms. This will
in general result in additional overheads for the number of gates compared to the adiabatic run-
time τ . For example, if H(s) is a local Hamiltonian acting on a lattice of N sites for all s ∈ [0, 1],
then the currently best Hamiltonian simulation algorithms require O(τN2 +N log(1/ε)) gates
[41, 47, 48].

The dependence on ε in Theorem 5.1 can in fact be exponentially improved using a suitable
reparameterisation H(s) 7→ H(f(s)), where f : [0, 1] → [0, 1] is a sufficiently smooth function.
More precisely, recall that f is in the Gevrey class 1 +α if f is smooth and there exist c,K > 0
such that for all positive integers k and s ∈ [0, 1], |dkf(s)/dsk| < Kck(k!)1+α. It is well known
that f(s) =

∫ s
0 fα(t)dt/

∫ 1
0 fα(t)dt with fα(t) = exp

(
−1/((1− t)t)1/α

)
is in the Gevery class

1 + α for α > 0 [49]. Using such a reparameterisation, one obtains the following improvement:

Theorem 5.2 ([1, 50]). Let H(s), s ∈ [0, 1], be a smooth path of Hamiltonians acting on a
finite-dimensional Hilbert space. Suppose that for all s ∈ [0, 1], H(s) has a non-degenerate
ground state |λ0(s)〉 and a spectral gap of ∆(s). Suppose moreover that all derivatives of H
vanish at 0 and 1, and that H satisfies the Gevrey condition, i.e. there exist c,K, α > 0 such
that for all positive integers k,

‖dkH(s)/dsk‖op < Kck(k!)1+α. (5.4)

20

For τ > 0, let |ψτ (t)〉 be the solution to the time-dependent Schrödinger equation

i
d

dt
|ψτ (t)〉 = H(t/τ) |ψτ (t)〉 , |ψτ (0)〉 = |λ0(0)〉 . (5.5)

Then,

min
θ∈[0,2π]

‖|ψτ (τ)〉 − eiθ |λ0(1)〉‖2 = O(ε), (5.6)

provided that

τ = Ω

(
(cK)2

∆3
log1+α

(
cK

∆ε

))
, (5.7)

where ∆ = mins∈[0,1] ∆(s).

The polylogarithmic dependence of the adiabatic runtime with respect to the allowed error
has been proven in [50], which is based on the adiabatic expansion of [51]. In the supplemental
material of Core Article I, we rederive this result by largely following the proof in [50], but
unlike [50], we also explicitly establish the dependence on all other parameters, such as the
spectral gap and the derivatives of the Hamiltonian.

5.2 Preparing injective PEPS on a quantum computer

PEPS with polynomial bond dimension are generally conjectured to be able to capture ground
states of local gapped Hamiltonians. Hence, the problem of preparing ground states of local
Hamiltonians is closely liked to the problem of preparing PEPS on a quantum computer. While
preparing any MPS with low bond dimension on a quantum computer can be done efficiently
[52], PEPS preparation is in general a very hard problem: it has been shown to be PP-hard
[53]. The complexity class PP is extremely large since it contains QMA and hence in particular
also NP.

Nevertheless, preparing certain subclasses of PEPS could be done efficiently under suitable
conditions. The first such quantum algorithm to efficiently prepare “well-conditioned” injective
PEPS has been proposed in Ref. [54]. Here, well-conditioned means that the condition numbers
of all PEPS projectors Q(v) of

∣∣ψPEPS[{Q(v)}v∈V]
〉

are upper bounded by a positive constant κ =
O(1). PEPS preparation problems are usually turned into ground state preparation problems
by constructing a so-called parent Hamiltonian of which the injective PEPS is the unique ground
state. One way to construct such a parent Hamiltonian is by inverting the PEPS projectors
Q(v) in (3.3) followed by projecting into the orthogonal complement of the maximally entangled
pair state. More precisely, it is easy to see that

∣∣ψPEPS[{Q(v)}v∈V]
〉

is the unique ground state

of the Hamiltonian Hparent[{Q(v)}v∈V] defined as follows.

Definition 5.3. Let (V,E) be a bounded degree graph, D, d be positive integers and Q(v) :
(CD)⊗deg v → Cd be invertible linear maps. Then, the parent Hamiltonian Hparent[{Q(v)}v∈V]
of
∣∣ψPEPS[{Q(v)}v∈V]

〉
is defined as

Hparent[{Q(v)}v∈V] =
∑

e∈E

(∏

v∈e
Q(v)−1

)†
Pe

(∏

v∈e
Q(v)−1

)
, (5.8)

where Pe is the projector onto the orthogonal complement of
∣∣φ+D

〉
e
.

21

Note indeed that (5.8) is a sum of nearest-neighbour terms. Alternative parent Hamilto-
nian constructions using projectors onto the orthogonal complement of “PEPS tensors” with
arbitrary boundaries are also widely considered [55].

The most natural approach to prepare a PEPS is by “growing” it site by site. Accordingly,
one considers an ordering v1, . . . , vN of the vertices of V , as well as the intermediate states,
which are “partial” PEPS where only the first k of the N PEPS projectors are applied, i.e.

|ψk〉 =
∣∣∣ψPEPS[{Q̃(v)

k }v∈V]
〉

(5.9)

for k = 0, . . . , N , where

Q̃
(vi)
k =

{
Q(vi) i ≤ k
1
(vi) i > k,

(5.10)

and 1
(v) is a natural embedding of (CD)⊗ deg v into Cd. Note that |ψ0〉 is just a product state of

|E| maximally entangled pair states, which can be trivially prepared, while |ψN 〉 is our target
state. The central result of Ref. [54] can now be stated as follows:

Theorem 5.4 ([54]). Let D, d be positive integers, (V,E) be a simple graph of N vertices and
bounded degree, and Q(v) : (CD)⊗ deg v → Cd be invertible linear maps for v ∈ V . Let κ > 0
be an upper bound of the condition numbers of all Q(v), and let v1, . . . , vN be an ordering of
the vertices in V . For each k = 0, . . . , N , let ∆k be the spectral gap of the parent Hamilto-

nian Hparent[{Q̃(v)
k }v∈V] of the kth partial PEPS

∣∣∣ψPEPS[{Q̃(v)
k }v∈V]

〉
, where Q̃

(v)
k is given by

Eq. (5.10), and let ∆ = mink ∆k. Then, there exists a bounded-error quantum algorithm gen-
erating an ε-close state to

∣∣ψPEPS[{Q(v)}v∈V]
〉

in runtime Õ(N4κ2/∆), where Õ denotes the
complexity up to subpolynomial factors in N,∆−1, ε−1, κ.

In most physically relevant injective PEPS, κ can be assumed to be a constant, κ = O(1). In
particular, this is true for translationally invariant injective PEPS since we assume D, d = O(1).
Thus, in many cases, the main limiting factor to the runtime of [54] is the contribution coming
from the minimum spectral gap ∆. This dependence comes from the fact that the algorithm uses
phase estimation1 to transition from |ψk〉 to |ψk+1〉, whose runtime scales inversely proportional
to the gap.

A particularly interesting case however arises in the presence of a uniform gap, i.e. when
∆ = Ω(1). For suitable orderings of the vertices, this is essentially the condition that the parent
Hamiltonian remains gapped for arbitrary system sizes. In Core Article I, we propose an adia-
batic approach for preparing injective PEPS, and show that in the presence of such a uniform
gap, an ε-close state to |ψN 〉 can be prepared by a quantum circuit with O(N polylog(N/ε))
gates (instead of Õ(N4)) and depth O(polylog(N/ε)). The algorithm moreover applies to
more general states, including purifications of Gibbs states of Hamiltonians with commuting
local terms as well as the semi-injective PEPS introduced in Contributed Article V, provided
that analogous uniform gap conditions for similar parent Hamiltonian constructions are sat-
isfied. In fact, the algorithm applies to any state that is obtained by acting with invertible
operators on any product of few-body states of nearby particles, which clearly also includes
semi-injective PEPS. To see that purifications of Gibbs states of local Hamiltonians H =

∑
i hi

1Strictly speaking, the proof provided in [54] only yields a runtime of Õ(N6κ2/(∆ε)) rather than the one given
in Theorem 5.4, since the runtime analysis in [54] does not take the error in the residual state resulting from
phase estimation into account. The latter would incur an additional factor of Õ(N2/ε) in the runtime for a
final error of ε. The runtime of Õ(N4κ2/∆) could however be obtained by replacing phase estimation with
one of the other ground space projection algorithms discussed in Section 5.3.

22

Figure 5.1: Purification of a Gibbs state for nearest-neighbour interactions. Each physical site is placed
into a maximally entangled pair state with an ancilla system of the same dimension (blue).
By applying e−βhi/2 (red) to the corresponding system vertices for each hi, the reduced
state on the physical sites is proportional to e−βH .

with [hi, hi′] = 0 also fall into this category, consider the graph which contains sites composed
of two vertices, one of which we call the “system” vertex and the other the “ancilla” vertex,
each of which are placed in a maximally entangled pair state with the other. Then, by applying
e−βhi/2 to the system vertices of the support of each hi (see Fig. 5.1), is easy to see that by
taking the partial trace over all ancilla vertices, we obtain ρ ∝ e−βH . Since Hamiltonians with
commuting local terms include classical Hamiltonians as a special case, the algorithm can also
be used to sample from Gibbs distributions of classical Hamiltonians.

5.3 Ground space projection algorithms

Ground space projection algorithms take a trial state |φ〉 and attempt to project it onto its
ground state component. Their performance will generally depend on the overlap of |φ〉 with
the ground state, such that these algorithms are best used in combination with e.g. adiabatic
or other heuristic algorithms to obtain a good trial state.

For the remainder of this section, let H be an N × N Hermitian matrix. For convenience,
we assume that H has been rescaled such that its spectrum is contained in [0, 1]. We assume
that we are given the ability to efficiently perform Hamiltonian simulation of H at a “base
cost” of Λ (e.g., if the simulation algorithm works in the oracle model [39], Λ is the gate cost
of the oracles). Let λ0 be the lowest eigenvalue of H, and |λ0〉 be the corresponding eigenstate.
We assume for simplicity that λ0 is non-degenerate (although most results presented in this
section generalise to degenerate ground spaces). Suppose that ∆ is a known lower bound on
the spectral gap of H.

We assume that the trial state |φ〉 can be prepared with a circuit Cφ using Φ elementary
gates. Let φ0 = 〈λ0|φ〉 be its (generally unknown) overlap with the ground state, and χ be
a known lower bound on |φ0|. We assume that χ = e−O(logN). This is an extremely weak
assumption, indeed, this is satisfied even for random states with high probability.

The aim here is to obtain a state ε-close to |λ0〉 by (approximately) projecting |φ〉 onto its
ground state component. If the value of λ0 is unknown, we also wish to obtain an estimate for its
value. A comparison of the runtimes as well as the qubit requirements of various ground space
projection and ground energy estimation algorithms is given in Table 5.1. The stated space
complexities do not account for qubits needed to perform Hamiltonian simulation. However,
depending on the input model of H, there are Hamiltonian simulation algorithms (such as

23

the ones in Refs. [39–41]) that do not change the asymptotic expressions in Table 5.1 (c.f.
Theorem 4.2; we also refer to Table 1 of Ref. [41] for an overview).

Algorithm Gates Qubits
Required
precision

Phase estimation Õ

(
Λ

|φ0|2∆ε
+

Φ

|φ0|

)
O

(
logN + log

1

ε
+ log

1

∆

)
O (|φ0|ε∆)

Filtering Õ

(
Λ

|φ0|∆
+

Φ

|φ0|

)
O

(
logN + log

1

ε
+

log 1
χε

log log 1
χε

× log
1

∆

)
Õ(∆)

Core Article III, Thm. 1 Õ

(
Λ

|φ0|∆
+

Φ

|φ0|

)
O

(
logN + log log

1

ε
+ log

1

∆

)
Õ(∆)

(a) Ground state preparation algorithms for the case when the ground energy is known beforehand to the
required precision.

Algorithm Gates Qubits

Phase estimation Õ

(
Λ

χ4∆ε
+

Φ

χ

)
O

(
logN + log

1

ε
+ log

1

∆

)
Filtering Õ

(
Λ

χ∆3/2
+

Φ

χ
√

∆

)
O

(
logN + log

1

ε
+

log 1
χε

log log 1
χε

× log
1

∆

)
Core Article III, Thm. 2 Õ

(
Λ

χ∆3/2
+

Φ

χ
√

∆

)
O

(
logN + log log

1

ε
+ log

1

∆

)
Core Article III, Thm. 3 Õ

(
Λ

χ3∆
+

Φ

χ

)
O

(
logN + log

1

ε
+ log

1

∆

)
(b) Ground state preparation algorithms for the case when the ground energy is not known beforehand. The

last algorithm has been adjusted to yield the optimal scaling in ∆.

Algorithm Gates Qubits

Phase estimation Õ

(
Λ

χ3ξ
+

Φ

χ

)
O

(
logN + log

1

ξ

)
Filtering Õ

(
Λ

χξ3/2
+

Φ

χ
√
ξ

)
O

(
logN +

log 1
χ

log log 1
χ

× log
1

ξ

)
Core Article III, Thm. 4 Õ

(
Λ

χξ3/2
+

Φ

χ
√
ξ

)
O

(
logN + log

1

ξ

)
Core Article III, Thm. 4 Õ

(
Λ

χ3ξ
+

Φ

χ

)
O

(
logN + log

1

ξ

)
(c) Algorithms for estimating the ground energy to an additive precision of ξ � ∆. The last algorithm has

been adjusted to yield the optimal scaling in ξ.

Table 5.1: Comparisons of different ground space projection and ground energy estimation algorithms.
Here, Õ denotes the complexity up to polylogarithmic factors in N , ∆−1, ε−1, |φ0|−1 and
χ−1. The stated runtime complexities already take suitable amplitude amplification tech-
niques into account.

The most straightforward approach to implement a ground space projection in this setting is
to use the phase estimation algorithm to approximately perform a measurement of the energy.
Indeed, the relation of phase estimation to ground space projection is evident if one takes
U = eiHt for some suitable t > 0 in Corollary 4.4. One would expect that for a suitable choice
of the number k of ancilla qubits in phase estimation, if the measurement of the latter yields
a good approximation of λ0, then the state should be left in a state close to |λ0〉. One would
moreover naively expect the probability of success for this approach to be ≈ |φ0|2, meaning

24

that O(1/|φ0|2) repetitions would naively be necessary, and that perhaps an improvement to
O(1/|φ0|) using suitable amplitude amplification techniques may be possible.

In Appendix A and B of Core Article III, we however show that the performance of phase
estimation for ground state problems is actually significantly worse than one would naively
expect (see Table 5.1). This is especially true if the value of the ground energy is not known
beforehand. Roughly speaking, suppressing measurement outcomes significantly lower than the
ground energy as well as ensuring a small distance of the residual state to the ground state lead
to a required value of k which scales unfavourably with |φ0|, thus leading to the poor runtime.
Moreover, an inverse polynomial dependence on ε is common to almost all algorithms based on
phase estimation.

The one exception to this is a “filtering” method proposed by Poulin and Wocjan [56], which
was originally designed to obtain a state with low expected energy faster than with phase
estimation. With a little extra work, it can be shown that this method can also be used for
ground state projection as well as ground energy estimation with a significantly faster runtime
than the original phase estimation algorithm. This however comes at the cost of requiring a
much larger number of ancillas.

This filtering method works as follows. Suppose that Ak is the phase estimation circuit with
k qubits for the unitary U . Then, with the notation of Corollary 4.4, Ak |λj〉|0〉⊗k = |λj〉|ϕj〉
for some k-qubit states |ϕj〉, and thus, for any k-qubit state |µ〉, A†k maps |φ〉|µ〉 to

∑

j

φj〈ϕj |µ〉|λj〉|0〉⊗k + |R〉 , (5.11)

where |R〉 has no overlap with |0〉⊗k on the k ancilla qubits. Hence, starting with some η copies

of the state |µ〉 on ηk ancilla qubits, an application of η copies of A†k maps |φ〉|µ〉⊗η to

∑

j

φj〈ϕj |µ〉η|λj〉|0〉⊗ηk +
∣∣R′
〉
, (5.12)

where |R′〉 has no overlap with |0〉⊗ηk on the ηk ancilla qubits. The main observation of
Ref. [56] is that if |µ〉 is a computational basis state encoding the binary representation of some
µ ∈ {0, . . . , 2k−1}, then if |µ/2k−λJ | is sufficiently small and η is suitably large, the coefficients
〈ϕj |µ〉η act as a “filter function” which keeps only the |λJ〉 component of |φ〉 while exponentially
suppressing all other components, thus ultimately leading to an exponential improvement in
the runtime dependence on ε compared to phase estimation. However, since η needs to be
chosen sufficiently large for this to be achieved, this improvement in the runtime comes at the
cost of requiring many more ancilla qubits. We refer to Table 5.1 for the precise scalings and
Ref. [56] as well as Appendix C of Core Article III for the exact analysis.

The central result of Core Article III is to provide a new approach of ground space projection
algorithms that can also be used to determine an unknown ground energy. Like the above fil-
tering method, our algorithms achieve significant runtime improvements over phase estimation,
but without the caveat of adding a large number of ancillas.

25

6 Hybrid quantum-classical approaches for
small quantum computers

In this chapter, we explore the potential of quantum computers when the number of available
logical qubits is constrained. This restriction will likely apply to early quantum computers.
Given the current effort to construct prototypes of small quantum computers [8], the tasks of
finding applications for such devices becomes increasingly important. A particularly promising
approach is to extend the usefulness of such devices by supplementing them with classical
computation. Algorithms that combine quantum and classical computational resources are
commonly referred to as hybrid quantum-classical algorithms.

Clearly, quantum computers with only few qubits can be readily used to solve a given problem
using a correspondingly space-efficient quantum algorithm if the size of the instance is small
enough, i.e. if the workspace required by the quantum algorithm for the given problem size is
at most the number of available qubits. Many simulation or ground state problems, including
the ones presented in Chapter 5, potentially fit this category. Indeed, solving these problems
even for small system sizes would already be interesting, firstly because they are inaccessible
classically, but also because small system sizes may already provide important insights into
some of the large-scale behaviour of the simulated systems.

Hybrid quantum-classical algorithms for problem sizes that are sufficiently small in the above
sense have been proposed in the context of “Quantum Approximate Optimisation Algorithms”
(QAOA) [57, 58] or “Variational Quantum Eigensolvers” (VQE) [59, 60]. These are generally
relevant in the regime when the quantum devices available are not only constrained in the
number of qubits, but also in the number of gates they can perform. These algorithms generally
attempt to prepare a state |ψ(θ)〉 which encodes an approximate solution to the given problem,
where |ψ(θ)〉 depends on some parameters θ = (θ1, . . . , θl). QAOA is mostly proposed for
classical optimisation problems such as the Max-Cut problem, which asks for a subset of vertices
of a given graph that maximises the number of edges between the subset and its complement.
In this algorithm, a classical pre-processing scheme first optimises the expected value of the
objective function over θ in a reasonably-sized parameter space, and then prepares |ψ(θ)〉
on the quantum computer, followed by a measurement to obtain the approximate solution to
the optimisation problem. In VQE algorithms, the objective function is usually the expected
energy 〈ψ(θ)|H |ψ(θ)〉 with respect to some given Hamiltonian H. These algorithms iteratively
optimise θ, where in each iteration, a short θ-dependent quantum circuit is applied to a given
initial state followed by measurements and using their outcomes in a classical optimisation
scheme to update the value of θ. Both of these hybrid algorithms can only be applied if the
instance size strictly fits the number of available qubits.

The complementary approach for employing small quantum computers would be to utilise
them for solving larger problem instances, even when the latter do not immediately fit the
number of available qubits when using established quantum algorithms. Typically, quantum
algorithms require a number of qubits at least comparable to the size of the problem instance,
meaning that direct application of those algorithms to small devices would restrict their po-
tential to only attacking small problem sizes. Especially for more “classical” problems, such as

27

certain optimisation or decision problems, ways to attack larger instances using small quantum
computers combined with classical processing would be highly desirable.

There have been some “circuit level” approaches [61, 62] to this challenge, which we will
discuss in Section 6.1 below. Broadly speaking, these approaches try to simulate a general
quantum circuit acting on strictly more than M qubits using only M qubits supplemented with
additional classical computation. One could apply these results to the circuits of established
quantum algorithms which use more qubits than are available, and thus in principle enable the
solving of larger problem instances than straightforwardly possible. These circuit simulation
approaches do not utilise any “algorithmic” structure of the circuit however, and as such their
performances are necessarily constrained by structural properties of the circuit itself.

In Contributed Articles IV and VI, we propose a new approach on the “algorithmic level” for
this problem: in a given overarching classical algorithm, we identify the most computationally
expensive subroutines and replace them with more efficient quantum algorithms that can be
run on the number of available qubits. In Contributed Article VI, the potential of size-limited
quantum computers for large problem sizes is explored in the context of Schöning’s algorithm
for 3SAT. Contributed Article IV turns these ideas into a more general framework for divide-
and-conquer algorithms under certain technical conditions, and demonstrates the applicability
of these results in the context of Eppstein’s algorithm for the cubic Hamiltonian cycle problem.

6.1 Techniques on the circuit level

In Refs. [61, 62], circuit simulation schemes have been proposed. There, an arbitrary quantum
circuit C on n qubits is given, and the goal is to simulate the action of C using only M < n
qubits and classical computation. Whilst a fully classical simulation of C is generally expected
to be exponentially costly [63], the general strategy of these methods is to trade off some of the
classical runtime by running parts of the circuit on the availabe M qubits. For simplicity, we
first restrict the meaning of a “simulation” of C to estimating a binary outcome obtained from
a measurement of C |0〉⊗n.

Definition 6.1. Let C be a quantum circuit on n qubits and consider the following process:
first C is applied to |0〉⊗n, then each qubit is measured in the computational basis, and finally
the measurement outcomes are classically post-processed into a single output bit b taking at
most O(poly(n)) time. We say that a process ε-simulates C if with probability at least 2/3 it
estimates the probability of b = 1 to an additive error of at most ε.

The first method for such a simulation was proposed in Ref. [61], which describes a scheme
for adding “virtual qubits” to an existing quantum computer. The performance of this method
is however dependent on the sparseness of the circuit.

Definition 6.2. A quantum circuit composed of one- and two-qubit gates is called d-sparse if
every qubit of the circuit participates in at most d two-qubit gates.

Although quantum circuits of low sparsity are only a small subclass of general quantum
circuits, they already contain many non-trivial examples which are generally believed to be
hard to simulate classically [64]. In particular, any quantum circuit of depth ≤ d is also d-
sparse, and several interesting quantum algorithms requiring only low depth circuits are known
[65]. The central result of Ref. [61] provides a simulation of d-sparse quantum circuits using
slightly fewer qubits than the original circuits act on.

28

Theorem 6.3 ([61]). Let M,k, d be positive integers with M > kd. Then, any d-sparse quantum
circuit on M+k qubits can be ε-simulated by O(2O(kd) log(1/ε)/ε2) repetitions of a (d+3)-sparse
quantum circuit on M qubits plus classical computation of runtime O(2O(kd) poly(M)).

Note in particular that the simulation has runtime O(poly(M)) if k, d = O(1), and that the
runtime scales exponentially only in k rather than M + k, as in the case of a fully classical
simulation. However, due to the condition ofM > kd, the applicability of this result is restricted
to the case where only few qubits are missing. Moreover, although sparse quantum circuits are
non-trivial, the limitation to small d is unsatisfactory. Some of these restriction were later
overcome in the results of Ref. [62].

Theorem 6.4 ([62]). Let C be a quantum circuit on n qubits and t gates with the following
property: C can be partitioned into clusters such that K qubits in total are exchanged between
different clusters. Suppose that each cluster can be run on M qubits. Then, C can be ε-simulated
using M qubits in a total runtime of O(24K(n+ t)/ε2).

Ref. [62] also provides a few examples of algorithms where their result is applicable, such
as the simulation of Hamiltonians with special interaction graphs as well as certain VQE al-
gorithms. However, the general difficulty with such circuit simulation techniques is that often,
given a higher-level description of a quantum algorithm, it is unclear to what extent the rele-
vant properties, such as the decomposability properties required by Theorem 6.4, are fulfilled
for the underlying quantum circuit.

6.2 Techniques on the algorithmic level

Approaches on the “algorithmic level”, in contrast to the circuit level techniques discussed in
the previous section, exploit the structure of the algorithm and potentially modify the latter
to obtain hybrid quantum-classical algorithms. One way to utilise few qubits is to take a clas-
sical algorithm and replace certain subroutines with faster quantum algorithms that can be
run on the number of available qubits. One major challenge of designing hybrid algorithms
this way is to identify ways to utilise small quantum computers to actually lead to genuine
speedups of the overarching classical algorithm. Indeed, while it is usually possible to speed up
smaller structure-independent subroutines, e.g. in the preparation or post-processing phase,
such improvements rarely change the asymptotic runtime complexity. To achieve significant
(e.g. polynomial) speedups, one needs to attack the computational bottlenecks of the algorithm.
Doing this with few qubits is generally non-trivial, as straightforward “bottom-up” methods
often break a global structure exploited by the classical algorithm, leading to a suboptimal
overarching classical algorithm whose runtime may dominate the overall runtime. Thus, while
arbitrarily sized quantum computers can speed up many classical algorithms (e.g. using ampli-
tude amplification techniques), the potential of size-limited quantum computers is significantly
less clear given large inputs.

The first result of Contributed Article IV is a general framework to attack the computational
bottleneck of classical algorithms with few qubits whilst preserving the structure exploited by
the algorithm. This framework applies to classical divide-and-conquer algorithms (as well
as algorithms which can be reformulated as such), which are recursive algorithms that call
themselves on ever smaller problem instances, according to a suitable problem size metric. The
basic idea of the approach is to replace the recursive call with a suitable quantum algorithm
deep in the recursion tree once the problem size is small enough to fit the number of available

29

qubits. The second result of Contributed Article IV is a general method to reversibly and time-
efficiently generate very space-efficient encodings of large sets using few ancillas. The result
specifically bridges the gap between the seemingly irreconcilable properties of reversibility on
the one hand, and low runtime and memory overheads on the other (c.f. Section 2.4) such that
a polynomial speedup in the general framework can be achieved.

6.2.1 Schöning’s algorithm for 3SAT

In Boolean satisfiability (or SAT) problems, one is given a Boolean formula F : {0, 1}n → {0, 1}
over n binary variables. The problem is to decide if a satisfying assignment x ∈ {0, 1}n, which
satisfies F (x) = 1, exists. In 3SAT, F is restricted to be a conjunction of L clauses, where each
clause is a disjunction of at most three literals, i.e., F (x) =

∧L
j=1(l

j
1∨ lj2∨ lj3), where each literal

lji specifies one of the n binary variables or its negation.
3SAT is the canonical NP-complete problem [66], and thus only exponential-time algorithms

for both classical and quantum computers are expected to exist. There are however many
classical 3SAT algorithms which are significantly faster than brute-force search, which has
a runtime of O∗(2n), where O∗ denotes the complexity up to polynomial factors in n. The
performance of these algorithms can usually be characterised by a constant γ ∈ (0, 1), meaning
that they provably solve 3SAT in a runtime of O∗(2γn). One of the best and most famous ones
is the simple algorithm of Schöning [67], described in Algorithm 6.1.

Algorithm 6.1 Schöning’s randomised algorithm for 3SAT.

Schoening(F):

1. Pick an initial assignment x ∈ {0, 1}n uniformly at random

2. While F (x) = 0 and we have repeated this at most 3n times

a) Pick an arbitrary clause that is unsatisfied under x

b) Pick one of the variables in that clause uniformly at random and flip its value in x

3. Return x

Schöning proved in Ref. [67] that if F is satisfiable, Schoening(F) returns a satisfying
assignment with probability at least (3/4)n. Thus, by repeating this process O((4/3)n) times,
a randomised algorithm is obtained which solves 3SAT with bounded probability of error.

Theorem 6.5 ([67]). There exists a classical randomised bounded-error algorithm that solves
n-variable 3SAT in a runtime of O∗(2γ0n), where γ0 = log(4/3) ≈ 0.4150.

Schöning’s algorithm has later been improved from O∗((4/3)n) ≈ O∗(1.3333n) to O∗(1.3302n)
[68], O∗(1.3297n) [69], O∗(1.3290n) [70], and O∗(1.3211n) [71]. Moreover, most classical 3SAT
algorithms with provable runtime bounds are either based on the ideas of Schöning, the alter-
native approach of Ref. [72], which is often termed the “PPSZ” approach, or a combination
of those two techniques. Such combined algorithms lead to runtimes of O∗(1.3237n) [73] or
O∗(1.3222n) [74], while the PPSZ algorithm, originally with a proven runtime of O∗(1.3633n)
[72], has subsequently been improved to O∗(1.3207n) [75] and O∗(1.3070n) [76].

In Ref. [77] Ambainis provided a quadratic quantum speedup over Schöning’s original algo-
rithm. The quantum algorithm uses O(n) qubits, and essentially quantum-enhances Schöning’s
algorithm using amplitude amplification.

Theorem 6.6 ([77]). There exists a bounded-error quantum algorithm which solves n-variable
3SAT in a runtime of O∗(2γ0n/2) ≈ O∗(1.1547n) using O(n) qubits, where γ0 = log(4/3) ≈
0.4150.

30

It is not immediately clear how Theorem 6.6 can be utilised if fewer qubits than necessary are
available. To demonstrate the problem, assume for concreteness that the quantum algorithm
in Theorem 6.6 requires βn qubits for some constant β > 0. Given a quantum computer
with only a small fraction of this, say βm qubits for some m � n, a naive approach would
be to use it as an m-variable 3SAT solver. The straightforward approach to solve the n-
variable instance would then be to go through all possible assignments of some fixed n − m
of the n variables. Each such partial assignment induces an m-variable 3SAT instance which
can then be solved on the available quantum computer. The total runtime of this algorithm
would however be O∗(2n−m+γ0m/2) = O∗(2((1−a)+aγ0/2)n), where a = m/n. In particular, the
hybrid algorithm becomes slower than the original classical algorithm if a . 0.74. Broadly
speaking, this “threshold effect” is caused by the naive hybrid approach breaking the global
structure exploited by Schöning’s algorithm, which in turn leads to suboptimal classical routines
dominating the overall runtime.

The main result of Contributed Article VI is a hybrid quantum-classical speedup of Schöning’s
algorithm that avoids this threshold effect. More precisely, we show that there exists a function
f : R+ → R+ such that given a quantum computer with M = cn qubits, where c > 0 is an
arbitrary constant, n-variable 3SAT can be solved in a runtime of O∗(2(γ0−f(c))n). The function
f is somewhat involved, but can be shown to scale as f(c) = Θ(c/ log(1/c)) for small values
of c. Critically, irrespective of the exact form of f(c), this result constitutes a polynomial
speedup over Schöning’s algorithm for any c > 0. The speedup is achieved by considering the
derandomised formulation of Schöning’s algorithm as a divide-and-conquer algorithm provided
in [78, 79] and using some of the hybrid techniques which are later generalised to a general
framework in Contributed Article IV.

6.2.2 Eppstein’s algorithm for the cubic Hamiltonian cycle problem

A similar result can be obtained for speeding up Eppstein’s algorithm for solving the cubic
Hamiltonian cycle problem. This problem asks whether a given cubic graph G = (V,E) with
n vertices has a Hamiltonian cycle, i.e. a cycle going through every vertex exactly once.

This special case of the general Hamiltonian cycle problem, where no restrictions on the
maximum degree of the graphs are placed, is known to be NP-complete [80]. Whilst a trivial
brute-force search over vertex-orderings would take O∗(n!) runtime, there exists a straightfor-
ward path search algorithm of runtime O∗(2n). In Ref. [81], Eppstein proposed a divide-and-
conquer algorithm that solves the problem in a runtime of O∗(2n/3). The algorithm is described
in Algorithm 6.2.

The main idea of the algorithm is to introduce a subset F ⊂ E of “forced” edges, which
are edges that the target Hamiltonian cycle is required to contain. Then, by selecting an edge
(step 3 of Algorithm 6.2) and creating two sub-instances of either forcing or deleting that edge
(steps 4 and 5), the cubic structure of the graph ensures that in either case, additional edges
can be forced or deleted in further “trivial reductions” (step 1), thus reducing the problem’s
overall complexity and leading to the given runtime.

Theorem 6.7 ([81]). Algorithm 6.2 solves the cubic Hamiltonian cycle problem for n-vertex
cubic graphs in a runtime of O∗(2n/3).

Eppstein’s algorithm has subsequently been improved from O∗(2n/3) ≈ O∗(1.2599n) to
O∗(1.2509n) [82] and O∗(1.2312n) [83]. However, the currently fastest known classical algorithm
for the cubic Hamiltonian cycle problem with runtime O∗(1.2009n) is based on a Monte-Carlo
approach [84].

31

Algorithm 6.2 Eppstein’s algorithm for the cubic Hamiltonian cycle problem.

Eppstein(G,F):

1. Repeat the following steps until none of the conditions apply

a. If G contains a vertex with degree two with at least one unforced incident edge, add
all its incident edges to F

b. If G contains a vertex with degree three with exactly two forced edges, remove the
unforced edge

c. If G contains a cycle of four unforced edges such that two of its opposite vertices are
each incident to a forced edge and at least one of the other vertices is incident to an
unforced edge that is not part of the cycle, then add to F all non-cycle edges that
are incident to a vertex of the cycle

2. Check if any of the following conditions apply

a. If G contains a vertex of degree 0 or 1, or if F contains three edges meeting at a
vertex, return false

b. If G\F is a collection of disjoint 4-cycles and isolated vertices

i. If G is disconnected, return false

ii. Otherwise, return true

c. If F contains a non-Hamiltonian cycle, return false

3. Choose an edge yz according to the following cases

a. If G\F contains a 4-cycle, exactly two vertices of which are incident to an edge in
F , let y be one of the other two vertices of the cycle and let yz be an edge of G\F
that does not belong to the cycle

b. If there is no such 4-cycle, but F is nonempty, let xy be any edge in F and yz be
an adjacent edge in G\F such that yz is not part of an isolated 4-cycle in G\F

c. Otherwise, let yz be any edge in G that is not part of an isolated 4-cycle in G\F
4. Call Eppstein(G,F ∪ {yz})
5. Call Eppstein(G\{yz}, F)

6. Return the disjunction (logical OR) of steps 4 and 5

A quadratic quantum speedup of the improvement to Eppstein’s algorithm by Xiao and
Nagamochi [83] has been proposed in Ref. [85]. Rather than directly using amplitude ampli-
fication, which in this case turns out to only yield a sub-quadratic advantage, they use more
recent quantum backtracking techniques [86] to obtain a full quadratic improvement.

Theorem 6.8 ([85]). There exists a bounded-error quantum algorithm that solves the cubic
Hamiltonian cycle problem for n-vertex cubic graphs in a runtime of O∗(23n/20) ≈ O∗(1.1096n)
using O(poly(n)) qubits.

As with Theorem 6.6, this algorithm requires arbitrarily-sized quantum computers and it
is not immediately clear whether it can be applied if the number of qubits is constrained. In
Contributed Article IV, we show that there exists a function f : R+ → R+ such that given
a quantum computer with M = cn qubits, where c > 0 is an arbitrary constant, the cubic
Hamiltonian cycle problem for n-vertex graphs can be solved in a runtime of O∗(2(1/3−f(c))n).
The function f takes a similar form to the one obtained for the case of speeding up Schöning’s
algorithm.

32

Bibliography

[1] Y. Ge, A. Molnár, and J. I. Cirac, “Rapid adiabatic preparation of injective projected
entangled pair states and Gibbs states”, Physical Review Letters 116, 080503 (2016).

[2] Y. Ge and J. Eisert, “Area laws and efficient descriptions of quantum many-body states”,
New Journal of Physics 18, 083026 (2016).

[3] Y. Ge, J. Tura, and J. I. Cirac, “Faster ground state preparation and high-precision
ground energy estimation with fewer qubits”, Journal of Mathematical Physics 60, 022202
(2019).

[4] Y. Ge and V. Dunjko, “A hybrid algorithm framework for small quantum computers with
application to finding Hamiltonian cycles”, arXiv preprint (2019).

[5] A. Molnar, Y. Ge, N. Schuch, and J. I. Cirac, “A generalization of the injectivity condition
for projected entangled pair states”, Journal of Mathematical Physics 59, 021902 (2018).

[6] V. Dunjko, Y. Ge, and J. I. Cirac, “Computational speedups using small quantum de-
vices”, Physical Review Letters 121, 250501 (2018).

[7] G. Scarpa, A. Molnar, Y. Ge, J. J. Garcia-Ripoll, N. Schuch, D. Perez-Garcia, and S.
Iblisdir, “Computational complexity of PEPS zero testing”, arXiv preprint (2018).

[8] J. Preskill, “Quantum computing in the NISQ era and beyond”, Quantum 2, 79 (2018).

[9] R. Feynman, “Simulating physics with computers”, International Journal of Theoretical
Physics 21, 467–488 (1982).

[10] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 10th
anniversary edition (Cambridge University Press, 2011).

[11] H. Buhrman, J. Tromp, and P. Vitányi, “Time and space bounds for reversible simula-
tion”, Journal of Physics A: Mathematical and General 34, 6821–6830 (2001).

[12] S. R. White, “Density matrix formulation for quantum renormalization groups”, Physical
Review Letters 69, 2863–2866 (1992).

[13] F. Verstraete, D. Porras, and J. I. Cirac, “Density matrix renormalization group and peri-
odic boundary conditions: a quantum information perspective”, Physical Review Letters
93, 227205 (2004).

[14] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, “Matrix product state rep-
resentations”, Quantum Information and Computation 7, 401 (2007).

[15] X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of gapped symmetric phases in one-
dimensional spin systems”, Physical Review B 83, 035107 (2011).

[16] N. Schuch, D. Pérez-Garćıa, and I. Cirac, “Classifying quantum phases using matrix
product states and projected entangled pair states”, Physical Review B 84, 165139 (2011).

[17] F. Verstraete and J. I. Cirac, “Renormalization algorithms for quantum-many body sys-
tems in two and higher dimensions”, arXiv preprint (2004).

33

[18] D. Pérez-Garćıa, M. Sanz, C. E. González-Guillén, M. M. Wolf, and J. I. Cirac, “Char-
acterizing symmetries in a projected entangled pair state”, New Journal of Physics 12,
025010 (2010).

[19] J. Eisert, M. Cramer, and M. B. Plenio, “Area laws for the entanglement entropy”,
Reviews of Modern Physics 82, 277 (2010).

[20] P. Hayden, D. W. Leung, and A. Winter, “Aspects of generic entanglement”, Communi-
cations in Mathematical Physics 265, 95–117 (2006).

[21] M. B. Hastings, “An area law for one-dimensional quantum systems”, Journal of Statis-
tical Mechanics: Theory and Experiment 2007, P08024–P08024 (2007).

[22] I. Arad, A. Kitaev, Z. Landau, and U. Vazirani, “An area law and sub-exponential algo-
rithm for 1D systems”, arXiv preprint (2013).

[23] F. Verstraete and J. I. Cirac, “Matrix product states represent ground states faithfully”,
Physical Review B 73, 094423 (2006).

[24] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, “Entropy scaling and simulability
by matrix product states”, Physical Review Letters 100, 030504 (2008).

[25] Z. Landau, U. Vazirani, and T. Vidick, “A polynomial time algorithm for the ground state
of one-dimensional gapped local Hamiltonians”, Nature Physics 11, 566–569 (2015).

[26] Y. Huang, “A polynomial-time algorithm for the ground state of one-dimensional gapped
Hamiltonians”, arXiv preprint (2015).

[27] I. Arad, Z. Landau, U. Vazirani, and T. Vidick, “Rigorous RG algorithms and area laws
for low energy eigenstates in 1D”, Communications in Mathematical Physics 356, 65–105
(2017).

[28] A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, “Approximating Gibbs states of
local Hamiltonians efficiently with projected entangled pair states”, Physical Review B
91, 045138 (2015).

[29] N. de Beaudrap, M. Ohliger, T. J. Osborne, and J. Eisert, “Solving frustration-free spin
systems”, Physical Review Letters 105, 060504 (2010).

[30] K. Van Acoleyen, M. Mariën, and F. Verstraete, “Entanglement rates and area laws”,
Physical Review Letters 111, 170501 (2013).

[31] M. Mariën, K. M. R. Audenaert, K. Van Acoleyen, and F. Verstraete, “Entanglement
rates and the stability of the area law for the entanglement entropy”, Communications in
Mathematical Physics 346, 35–73 (2016).

[32] F. G. S. L. Brandão and M. Cramer, “Entanglement area law from specific heat capacity”,
Physical Review B 92, 115134 (2015).

[33] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and
estimation”, in Quantum computation and information, Vol. 305, Contemporary Mathe-
matics (AMS, 2002), pp. 53–74.

[34] T. J. Yoder, G. H. Low, and I. L. Chuang, “Fixed-point quantum search with an optimal
number of queries”, Physical Review Letters 113, 210501 (2014).

[35] S. Lloyd, “Universal quantum simulators”, Science 273, 1073–1078 (1996).

[36] H. F. Trotter, “On the product of semi-groups of operators”, Proceedings of the American
Mathematical Society 10, 545–551 (1959).

34

[37] P. R. Chernoff, “Note on product formulas for operator semigroups”, Journal of Functional
Analysis 2, 238–242 (1968).

[38] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamil-
tonian dynamics with a truncated Taylor series”, Physical Review Letters 114, 090502
(2015).

[39] D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian simulation with nearly optimal
dependence on all parameters”, in Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science, FOCS’15 (2015), pp. 792–809.

[40] G. H. Low and I. L. Chuang, “Optimal Hamiltonian simulation by quantum signal pro-
cessing”, Physical Review Letters 118, 010501 (2017).

[41] G. H. Low and I. L. Chuang, “Hamiltonian simulation by qubitization”, Quantum 3, 163
(2019).

[42] A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem”, arXiv preprint
(1995).

[43] S. Gharibian, Y. Huang, Z. Landau, and S. W. Shin, “Quantum Hamiltonian complexity”,
Foundations and Trends in Theoretical Computer Science 10, 159–282 (2015).

[44] M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, and A. Aspuru-Guzik, “Introduc-
tion to quantum algorithms for physics and chemistry”, in Quantum information and
computation for chemistry (John Wiley & Sons, Inc., 2014), pp. 67–106.

[45] S. Jansen, M.-B. Ruskai, and R. Seiler, “Bounds for the adiabatic approximation with ap-
plications to quantum computation”, Journal of Mathematical Physics 48, 102111 (2007).

[46] A. M. Childs, Lecture notes on quantum algorithms (2017).

[47] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, “Quantum singular value transformation
and beyond: exponential improvements for quantum matrix arithmetics”, arXiv preprint
(2018).

[48] S. Chakraborty, A. Gilyén, and S. Jeffery, “The power of block-encoded matrix powers:
improved regression techniques via faster Hamiltonian simulation”, arXiv preprint (2018).

[49] J.-P. Ramis, “Dévissage Gevrey”, Astérisque 59–60, 173–204 (1978).

[50] G. Nenciu, “Linear adiabatic theory. Exponential estimates”, Communications in Math-
ematical Physics 152, 479–496 (1993).

[51] G. A. Hagedorn and A. Joye, “Elementary exponential error estimates for the adiabatic
approximation”, Journal of Mathematical Analysis and Applications 267, 235–246 (2002).

[52] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-
state engineering driven by dissipation”, Nature Physics 5, 633–636 (2009).

[53] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, “Computational complexity of
projected entangled pair states”, Physical Review Letters 98, 140506 (2007).

[54] M. Schwarz, K. Temme, and F. Verstraete, “Preparing projected entangled pair states on
a quantum computer”, Physical Review Letters 108, 110502 (2012).

[55] D. Perez-Garcia, F. Verstraete, J. I. Cirac, and M. M. Wolf, “PEPS as unique ground
states of local Hamiltonians”, Quantum Information and Computation 8, 650–663 (2008).

[56] D. Poulin and P. Wocjan, “Preparing ground states of quantum many-body systems on
a quantum computer”, Physical Review Letters 102, 130503 (2009).

35

[57] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algo-
rithm”, arXiv preprint (2014).

[58] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm
applied to a bounded occurrence constraint problem”, arXiv preprint (2014).

[59] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational
hybrid quantum-classical algorithms”, New Journal of Physics 18, 023023 (2016).

[60] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-
Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a photonic quantum pro-
cessor”, Nature Communications 5, 4213 (2014).

[61] S. Bravyi, G. Smith, and J. A. Smolin, “Trading classical and quantum computational
resources”, Physical Review X 6, 021043 (2016).

[62] T. Peng, A. Harrow, M. Ozols, and X. Wu, “Simulating large quantum circuits on a small
quantum computer”, arXiv preprint (2019).

[63] S. Aaronson and L. Chen, “Complexity-theoretic foundations of quantum supremacy
experiments”, in Proceedings of the 32nd Computational Complexity Conference, CCC’17
(2017), 22:1–22:67.

[64] B. M. Terhal and D. P. DiVincenzo, “Adaptive quantum computation, constant depth
quantum circuits and Arthur-Merlin games”, Quantum Information and Computation 4,
134 (2004).

[65] R. Cleve and J. Watrous, “Fast parallel circuits for the quantum Fourier transform”, in
Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science,
FOCS’00 (2000), pp. 526–536.

[66] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of
NP-completeness (W. H. Freeman & Co., 1990).

[67] T. Schöning, “A probabilistic algorithm for k-SAT and constraint satisfaction problems”,
in Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science,
FOCS’99 (1999), pp. 410–414.

[68] T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe, “A probabilistic 3-SAT algo-
rithm further improved”, in Proceedings of the 19th Annual Symposium on Theoretical
Aspects of Computer Science, STACS’02 (2002), pp. 192–202.

[69] D. Rolf, “3-SAT ∈ RTIME(1.32971n)”, Diploma thesis (Department of Computer Sci-
ence, Humboldt University Berlin, 2003).

[70] S. Baumer and R. Schuler, “Improving a probabilistic 3-SAT algorithm by dynamic search
and independent clause pairs”, in Proceedings of the 6th International Conference on
Theory and Applications of Satisfiability Testing, SAT’03 (2003), pp. 150–161.

[71] K. Iwama, K. Seto, T. Takai, and S. Tamaki, “Improved randomized algorithms for 3-
SAT”, in Proceedings of the 21st International Symposium on Algorithms and Compu-
tation, ISAAC’10 (2010), pp. 73–84.

[72] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane, “An improved exponential-time algorithm
for k-SAT”, Journal of the ACM 52, 337–364 (2005).

[73] K. Iwama and S. Tamaki, “Improved upper bounds for 3-SAT”, in Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’04 (2004), pp. 328–328.

36

[74] D. Rolf, “Improved bound for the PPSZ/Schöning-algorithm for 3-SAT”, Journal on
Satisfiability, Boolean Modeling and Computation 1, 111–122 (2006).

[75] T. Hertli, R. A. Moser, and D. Scheder, “Improving PPSZ for 3-SAT using critical vari-
ables”, in Proceedings of the 28th Annual Symposium on Theoretical Aspects of Computer
Science, STACS’11 (2011), pp. 237–248.

[76] T. Hertli, “3-SAT faster and simpler – Unique-SAT bounds for PPSZ hold in general”,
SIAM Journal on Computing 43, 718–729 (2014).

[77] A. Ambainis, “Quantum search algorithms”, SIGACT News 35, 22–35 (2004).

[78] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P.
Raghavan, and U. Schöning, “A deterministic (2−2/(k+1))n algorithm for k-SAT based
on local search”, Theoretical Computer Science 289, 69–83 (2002).

[79] R. A. Moser and D. Scheder, “A full derandomization of Schöning’s k-SAT algorithm”,
in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC’11
(2011), pp. 245–252.

[80] M. R. Garey, D. S. Johnson, and R. E. Tarjan, “The planar Hamiltonian circuit problem
is NP-complete”, SIAM Journal on Computing 5, 704–714 (1976).

[81] D. Eppstein, “The traveling salesman problem for cubic graphs”, Journal of Graph Algo-
rithms and Applications 11, 61–81 (2007).

[82] K. Iwama and T. Nakashima, “An improved exact algorithm for cubic graph TSP”, in
Proceedings of the 13th Annual International Conference on Computing and Combina-
torics, COCOON’07 (2007), pp. 108–117.

[83] M. Xiao and H. Nagamochi, “An exact algorithm for TSP in degree-3 graphs via circuit
procedure and amortization on connectivity structure”, Algorithmica 74, 713–741 (2016).

[84] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. v. Rooij, and J. O. Woj-
taszczyk, “Solving connectivity problems parameterized by treewidth in single exponential
time”, in Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer
Science, FOCS’11 (2011), pp. 150–159.

[85] D. J. Moylett, N. Linden, and A. Montanaro, “Quantum speedup of the traveling-salesman
problem for bounded-degree graphs”, Physical Review A 95, 032323 (2017).

[86] A. Montanaro, “Quantum-walk speedup of backtracking algorithms”, Theory of Comput-
ing 14, 1–24 (2018).

37

A Core articles

A.1 Rapid adiabatic preparation of injective projected entangled
pair states and Gibbs states

39

Rapid adiabatic preparation of injective projected entangled pair states
and Gibbs states

Yimin Ge, András Molnár, and J. Ignacio Cirac

In this work, we propose a quantum algorithm to efficiently prepare a particular set of states.
This set contains two classes relevant for lattice problems: injective PEPS and purifications of
Gibbs states of locally commuting Hamiltonians. The latter contains all classical Hamiltonians,
and thus our algorithm can be used to simulate classical problems at finite temperatures.

Our algorithm outperforms all other previously known algorithms for these two problems
under the uniform gap condition: we show that the number of elementary quantum gates
scales only as O (N polylog (N/ε)), where N is the system size, ε the allowed error in trace
distance, and the degree of the polynomial depends on the geometry of the lattice. This is
essentially optimal. We moreover show that the algorithm is parallelisable, and that a circuit
depth of O (polylog(N/ε)) can be obtained.

The class of states we consider in this work can more generally be thought of as commuting,
finite range, and invertible operators acting on a set of maximally entangled pair states which
are distributed on a lattice. We first construct a parent Hamiltonian G, i.e., a local Hamiltonian
acting on the same lattice that has the desired state as its unique ground state (for Gibbs states
of Hamiltonians with non-commuting local terms, we also show that an approximate quasi-
local parent Hamiltonian can be considered above some constant temperature that allows the
preparation in polynomial time – this is explored in Section IV of the supplemental material).

This state can in principle be adiabatically prepared by connecting G to a trivial Hamiltonian
by a continuous path that has a unique ground state along the entire path. While constructing
such a path is simple, this naive approach results in an non-optimal runtime even if the minimum
spectral gap is constantly lower bounded. Indeed, the adiabatic theorem only gives an adiabatic
runtime of O(N2ε−1). Moreover, the actual runtime (which is measured by the number of
elementary gates in a quantum circuit) is even worse and scales as O(N4ε−1 polylog(N/ε)),
which results from the overhead of implementing the adiabatic evolution with Hamiltonian
simulation. To obtain the almost optimal runtime, our algorithm uses three main ingredients.

First, we prove a variant of the adiabatic theorem with an almost exponentially better runtime
dependence on ε (Theorem 1 in the supplemental material). The main idea of this variant is
to use a smooth reparameterisation of the Hamiltonian path using Gevrey class functions.

Second, the locality of the Hamiltonian allows the change of only a few local terms at a
time instead of the entire Hamiltonian. More precisely, we construct a sequence of O(N)
Hamiltonian paths such that along each path, only O(1) local terms change. The improved
adiabatic theorem ensures that the accumulated error along the sequence remains small.

Finally, we exploit the locality of the Hamiltonian further by using Lieb-Robinson bounds to
show that for the locally changed Hamiltonian paths, local terms which are far away from the
local change do not significantly contribute to the evolution (Theorem 8 of the supplemental
material). This is essential to obtain a small number of elementary gates. Indeed, while the
sequence of local changes is sufficient to obtain a small adiabatic runtime, using Hamiltonians
acting on the whole lattice would lead to a large overhead from Hamiltonian simulation. This
final ingredient shows that at each step, it is in fact sufficient to evolve with a Hamiltonian that
acts only on O(polylogN) sites, which almost exponentially reduces the overhead from Hamil-
tonian simulation, rendering it almost negligible. Moreover, the small subsystems required at

40

each step means that the evolution of disjoint subsystems can be parallelised, which finally
results in only a polylogarithmic circuit depth.

Our analysis relies on the existence of a gap ∆ = Ω(1) along the entire path, we however also
show that this assumption can be significantly relaxed to only a gap at the beginning of each
path in the sequence of the Hamiltonians (Theorem 9 of the supplemental material). We call
this the uniform gap condition. The Hamiltonians for which we require a gap coincide with the
final target Hamiltonian at smaller system sizes. Thus, the uniform gap condition is a natural
assumption in the context of local Hamiltonians as it informally only requires that the spectral
gap is well-behaved with respect to varying system sizes.

Statement of individual contribution

This work is the result of frequent discussions between András Molnár, J. Ignacio Cirac, and
myself. J. Ignacio Cirac initially proposed the idea of preparing Gibbs states and injective
PEPS adiabatically. I recognised the obstacle to the runtime coming from Hamiltonian sim-
ulation, especially when comparing our algorithm with classical Gibbs sampling algorithms,
and guided our results and methods towards the finally obtained runtime. With regular advice
from J. Ignacio Cirac, András Molnár and I jointly worked out the details of the algorithm
and proofs involved. I was in charge of writing all parts of this article with the exception of
Sections I, II and IV of the supplemental material.

I, Yimin Ge, am the principal author of this article and was extensively involved in all parts of it.

41

Permission to include:

Yimin Ge, András Molnár, and J. Ignacio Cirac.
Rapid adiabatic preparation of injective projected entangled pair states and Gibbs states.
Physical Review Letters, 116, 080503 (2016).

c© 2016 American Physical Society

42

https://journals.aps.org/copyrightFAQ.html 03/12/2019

December 2017

APS Copyright Policies and Frequently
Asked Questions

(…)

As the author of an APS-published article, may I include my article or a portion of my
article in my thesis or dissertation?

Yes, the author has the right to use the article or a portion of the article in a thesis or dissertation
without requesting permission from APS, provided the bibliographic citation and the APS
copyright credit line are given on the appropriate pages.

(…)

FAQ Version: December 12, 2017

Rapid Adiabatic Preparation of Injective Projected
Entangled Pair States and Gibbs States

Yimin Ge, András Molnár, and J. Ignacio Cirac
Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany

(Received 14 August 2015; revised manuscript received 22 December 2015; published 25 February 2016)

We propose a quantum algorithm for many-body state preparation. It is especially suited for injective
projected entangled pair states and thermal states of local commuting Hamiltonians on a lattice. We show
that for a uniform gap and sufficiently smooth paths, an adiabatic runtime and circuit depth ofOðpolylogNÞ
can be achieved for OðNÞ spins. This is an almost exponential improvement over previous bounds. The
total number of elementary gates scales as OðNpolylogNÞ. This is also faster than the best known upper
bound of OðN2Þ on the mixing times of Monte Carlo Markov chain algorithms for sampling classical
systems in thermal equilibrium.

DOI: 10.1103/PhysRevLett.116.080503

Quantum computers are expected to have a deep impact
in the simulation of quantum many-body systems, as
initially envisioned by Feynman [1]. In fact, quantum
algorithms have potential applications in diverse branches
of science, ranging from condensed matter physics, atom
physics, high-energy physics, to quantum chemistry [2].
Lloyd [3] was the first to devise a quantum algorithm to
simulate the dynamics generated by few-body interacting
Hamiltonians. When combined with the adiabatic theorem
[4,5], the resulting algorithms allow one to prepare ground
states of local Hamiltonians, and thus to investigate
certain quantum many-body systems at zero temperature.
Quantum algorithms have also been introduced to prepare
so-called projected entangled pair states (PEPS) [6–8],
which are believed to approximate ground states of local
gapped Hamiltonians. Furthermore, quantum algorithms
have also been proposed to sample from Gibbs distributions
[9–14], which describe physical systems in thermal equi-
librium. The computational time of most of these algo-
rithms is hard to compare with that of their classical
counterparts, as it depends on specific (e.g., spectral)
properties of the Hamiltonians which are not known
beforehand. However, they do not suffer from the sign
problem [15], which indicates that they could provide
significant speedups.
Quantum computers may also offer advantages in the

simulation of classical many-body systems. For instance,
quantum annealing algorithms [16,17] have been devised to
prepare the lowest energy spin configuration of a few-body
interacting classical Hamiltonian, which has obvious
applications in optimization problems. Quantum algo-
rithms have also been proposed to sample from their
Gibbs distributions at finite temperature [18–23]. Apart
from applications in classical statistical mechanics, similar
problems appear in other areas of intensive research, e.g.,
machine learning. Speedups as a function of spectral gaps
have been analyzed in Refs. [12,21,22]; the scaling with

large system sizes, which is of particular interest for
applications in deep machine learning [24], is however
not optimal.
In this Letter we propose and analyze a quantum

algorithm to efficiently prepare a particular set of states.
This set contains two classes relevant for lattice problems:
(i) injective PEPS [25]; (ii) Gibbs states of locally
commuting Hamiltonians. Class (ii) contains all classical
Hamiltonians, and thus the quantum algorithm allows us to
sample Gibbs distributions of classical problems at finite
temperature.
Our algorithm outperforms all other currently known

algorithms for these two problems in the case that the
minimum gap Δ occurring in the adiabatic paths (to be
defined below) is lower bounded by a constant. We show
that the computational time for a quantum computer, given
by the number of elementary gates in a quantum circuit,
scales only as

T ¼ O(NpolylogðN=ϵÞ); ð1Þ

where N is the number of local Hamiltonian terms, ε the
allowed error in trace distance and the degree of the
polynomial depends on the geometry of the lattice. Note
that an obvious lower bound on the computational time is
ΩðNÞ, as each of the spins has to be addressed at least once.
Thus, Eq. (1) is almost optimal. Furthermore, the algorithm
is parallelizable, so that the depth of the circuit becomes

D ¼ O(polylogðN=εÞ): ð2Þ

This parallelization may also become very natural and
relevant in analog quantum simulation, as is the case for
atoms in optical lattices [26].
One of the best classical algorithms to sample according to

theGibbs distribution of a general classicalHamiltonian is the
well-known Metropolis algorithm [27]. The currently best

PRL 116, 080503 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 FEBRUARY 2016

0031-9007=16=116(8)=080503(5) 080503-1 © 2016 American Physical Society

upper bound to its computational time is T ¼ OðN2=ΔstochÞ
[28], whereΔstoch is the gap of the generator of the stochastic
matrix. We will see that given any stochastic matrix, one can
alwaysconstruct a quantumadiabatic algorithmwith the same
gap Δ ¼ Δstoch, and thus we obtain a potential quantum
speedup of almost a factor of N. Under parallelization, the
circuit depth is almost exponentially shorter. Our algorithm to
prepare injective PEPS also provides a better scaling than the
one presented in Ref. [7].
The class of states we consider in this Letter can be

thought of as commuting finite range operators acting on a
set of maximally entangled pair states (Fig. 1). More
precisely, consider a regular lattice in some dimension,
and let G ¼ ðV; EÞ be the associated (infinite) graph. We
endow G with a distance d, the minimum number of edges
separating two vertices in V. We associate a d-dimensional
Hilbert space, Hv, to each of the vertices v ∈ V. Consider
the set Λ of interaction supports, i.e., Λ is a collection of
sets of vertices whose relative distance is at most a constant
R, the interaction length, and consider for each λ ∈ Λ an
interaction Qλ which is an operator supported on⊗v∈λ Hv.
We assume that they are strictly positive, 1 ≥ Qλ > q01,
and mutually commute, ½Qλ; Qλ0 � ¼ 0. Consider also a set
ϒ of mutually excluding pairs of neighboring vertices.
Moreover, let ΛN be a finite subset of Λ with jΛN j ¼ N,
and define

jϕNi ∝
Y
λ∈ΛN

Qλ ⊗
μ∈ϒN

jϕþiμ; ð3Þ

where ϒN ¼ fμ ∈ ϒjμ∩ð⋃λ∈ΛN
λÞ ≠ ∅g is the set of pairs

with a vertex in ΛN , and jϕþi ¼Pd
i¼1 jiii is an unnor-

malized maximally entangled state between the pairs of
vertices inϒN . Wewill give a quantum algorithm to prepare
the state, Eq. (3), and analyze the runtime as a function ofN
and other spectral properties. In the following, we drop the
subindex N to ease the notation.
As mentioned above, Eq. (3) includes two relevant

classes of states. The first is the class of injective PEPS.
The graph is composed of nodes, each of them including a
set of vertices [Fig. 2(a)]. In this case, ϒ contains pairs of
vertices in nearest neighbor nodes, whereas Λ contains

each node. The operators Qλ act on different nodes, and
therefore trivially commute. The resulting state is just a
PEPS, which is injective since eachQλ is invertible. In fact,
every injective PEPS can be expressed in this form up to a
local unitary using a QR decomposition. The second class
is the class of Gibbs states of commuting Hamiltonians
[29]. To see this, consider the graph which contains
sites composed of two vertices, one of them is called
“system” and the other “ancilla.” The set ϒ contains all
sites, whereas Λ contains interacting system vertices
[Fig. 2(b)]. The relation with Gibbs states is evident if
we write Qλ ¼ e−βhλ=2, where ∥hλ∥ < 1, and take into
account that they mutually commute. It is easy to see that if
we trace the ancillas, we obtain

ρ ∝ e−βH; ð4Þ

where H ¼Pλ∈Λhλ.
The state Eq. (3) is the unique ground state of a

frustration-free local Hamiltonian that can be written as

G ¼
X
μ∈ϒ

Gμ; ð5Þ

with

Gμ ¼
 Y

λ∈Λμ

Q−1
λ

!
Pμ

 Y
λ∈Λμ

Q−1
λ

!
; ð6Þ

where Λμ ¼ fλ ∈ Λjλ∩μ ≠ ∅g is the set of supports whose
interactions act nontrivially on μ, and Pμ is the projector
onto the subspace orthogonal to jϕþiμ. Notice that since
each Gμ is supported in a region of radius R around μ, G is
indeed local.
The state Eq. (3) can be prepared using an adiabatic

algorithm. For that, we define a path QλðsÞ with unique
ground state jϕðsÞi, where s ∈ ½0; 1�, with Qλð0Þ ¼ 1 and
Qλð1Þ ¼ Qλ. We can choose QλðsÞ ¼ ð1 − sÞ1þ sQλ.

FIG. 1. The general class of states, Eq. (3). Finite range
operators (red) acting on a collection of maximally entangled
pair states (blue) distributed on a graph.

(a) (b)

FIG. 2. (a) Projected entangled pair states. (b) Purification of a
thermal state. For each system qudit, we introduce an ancilla to be
placed in a maximally entangled pair with its system particle, then
apply e−βH=2 to the system.

PRL 116, 080503 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 FEBRUARY 2016

080503-2

In the case of the thermal state, we can also choose
QλðsÞ ¼ e−βshλ=2. Then, by starting with jϕð0Þi and chang-
ing the parameter s∶0 → 1 sufficiently slowly, we will end
up in the desired state jϕð1Þi. The runtime for this
preparation, as measured by the number of elementary
quantum gates, is unpractical, however, as it scales as
T ¼ O(N4Δ−3ε−1polylogðN=εÞ), where ε is the tolerated
error and Δ is the minimum spectral gap along the path.
Indeed, the adiabatic theorem [30] gives an adiabatic
runtime of τ ¼ OðN2Δ−3ε−1Þ so that Hamiltonian simu-
lation [31] gives T ¼ O(τN2polylogðN=εÞ).
To obtain a better scaling, we first use a variant

of the adiabatic theorem with almost exponentially
better runtime dependence on the error using a suffi-
ciently smooth reparameterization of the Hamiltonian
path. The quadratic scaling of the runtime with the
derivative of the Hamiltonian, however, leads to an
unpractical dependence on N since the Hamiltonian
contains OðNÞ terms that change with time. To avoid
this, we change the Q’s individually, leading to an
adiabatic runtime of τ ¼ O(Nlog1þαðN=εΔÞΔ−3). This,
however, uses Hamiltonians acting on the whole system,
despite only the change of a singleQ, which would result in
an additional factor of O(N2polylogðN=εÞ) for the compu-
tational time measured by the number of elementary gates.
We circumvent this problem by using Lieb-Robinson
bounds [32] and the frustration freeness to show that
under the assumption of a uniformly lower bounded
spectral gap, it is at each step sufficient to evolve with a
Hamiltonian acting only on O(polylogðN=εÞ) sites instead
of the full lattice.
Thus, define a sequence of N Hamiltonian paths by

enumerating the elements of Λ as λ1;…; λN , and define

GnðsÞ ¼
X
μ∈ϒ

dðμ;λnÞ<χlog1þαðN=εÞ

Gn;μðsÞ ð7Þ

for n ¼ 1;…; N, where χ is a constant control parameter,
and

Gn;μðsÞ ¼
 Y

m
λm∈Λμ

A−1
n;mðsÞ

!
Pμ

 Y
m

λm∈Λμ

A−1
n;mðsÞ

!
ð8Þ

with

An;mðsÞ ¼
8<
:

Qλmð1Þ m < n
QλmðsÞ m ¼ n
Qλmð0Þ ¼ 1 m > n:

ð9Þ

Notice that Gn is supported on a region of radius
O(log1þαðN=εÞ) and dGn=ds is supported on a region
of bounded size. By reparameterizing GnðsÞ → Gn(fðsÞ)
with f, a function in the Gevrey class 1þ α, we can assume
Gn to be in the same Gevrey class [33].

Consider the sequence of Schrödinger equations

i
d
dt
jψni ¼Gn

�
t
τn

�
jψni; jψnþ1ð0Þi ¼ jψnðτnÞi ð10Þ

for times τn ¼ O(logðN=εÞ1þα), starting in jψ1ð0Þi ¼
jϕð0Þi, the trivial ground state of G1ð0Þ. The algorithm
proceeds by running Hamiltonian simulation [31] on this
sequence of adiabatic evolutions. Since at all times we only
evolve with Hamiltonians acting on O(polylogðN=εÞ)
sites, the number of gates only grows as Eq. (1).
Moreover, the evolution of consecutive Gn’s can be
parallelized if their support is disjoint, i.e., if Gn;…; Gnþl
have disjoint supports, the subsequence can be replaced
by their sum without altering the evolution. Since
jsuppGnj ¼ O(polylogðN=εÞ), it is clear that an ordering
of the λn can be chosen such that subsequences of length
Ω(N=polylogðN=εÞ)of theGns can be parallelized at a time,
resulting in a circuit of depth Eq. (2), an almost exponential
improvement over previous bounds.
In the following, we show that for a uniformly lower

bounded gap, the error of the above algorithm is bounded
by ε. First, we use that under sufficient smoothness
conditions on a Hamiltonian path GðsÞ, the final error
can be almost exponentially small in the adiabatic runtime.
Indeed, as proven in the Supplemental Material [36], if G is
in the Gevrey class 1þ α and dkG=dsk ¼ 0 at s ¼ 0, 1 for
all k ≥ 1, then an adiabatic runtime of

τ ¼ O

�
log1þα

�
K
εΔ

�
K2

Δ3

�
ð11Þ

is sufficient for an error ε, where Δ is the minimum gap
of GðsÞ and K ¼ jsuppdG=dsj if G is local. The required
smoothness conditions can always be achieved with a
suitable reparametrization of the path GðsÞ → G(fðsÞ).
This allows us to implement the global change of the

Hamiltonian, Eq. (5), as a sequence of N local changes.
Define the sequence of Hamiltonian paths,

~GnðsÞ ¼
X
μ∈ϒ

Gn;μðsÞ: ð12Þ

Notice thatEq. (12) is the sameasEq. (7), but contains all local
termsGn;μ. The weak dependence on ε−1 in Eq. (11) ensures
that the accumulated error under the sequential evolution
with Eq. (12) remains small. Indeed, for a final error ε, it is
sufficient that the evolutionwith each ~Gn in this sequenceonly
generates an error of at most ε=N. Equation (11) and
jsuppd ~Gn=dsj ¼ Oð1Þ imply that this can be achieved in a
time τn ¼ O(log1þαðN=εΔnÞΔ−3

n), where Δn is the mini-
mum spectral gap of ~Gn. A decomposition into a circuit then
requires T ¼ O(N3polylogðN=εΔÞΔ−3) elementary gates,
where Δ ¼ minnΔn. This is already an improvement by a
factor N over the naive change of the entire Hamiltonian,
assuming similar behaviour ofΔ compared to the spectral gap
of the original path GðsÞ.

PRL 116, 080503 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 FEBRUARY 2016

080503-3

Assuming that Δ ¼ Ωð1Þ, we can further improve
on this using Lieb-Robinson bounds to localize the
effect of the adiabatic change. Indeed, we show in the
Supplemental Material [36] that local terms in Eq. (12)
which are supported at a distance Ω(log1þαðN=εÞ) away
from the support of d ~Gn=ds do not significantly contribute
to the unitary evolution generated by Eq. (12). This allows
the replacement of Eq. (12) with Eq. (7) without signifi-
cantly altering the evolution and thus the final state.
Notice that Gn only acts on O(polylogðN=εÞ) sites and
τn ¼ O(polylogðN=εÞ) for all n. Thus, its unitary evolution
can be simulated with onlyO(polylogðN=εÞ) gates. Hence,
we finally obtain a number of gates in the circuit model that
grows only as Eq. (1) for a constant error and lower bounded
spectral gap. Using the described parallelization, we finally
obtain a circuit depth, Eq. (2), as claimed.
In the analysis above, we have assumed a gap ≥ Δ along

all N paths. This assumption can in fact be relaxed to a gap
at either s ¼ 0 or s ¼ 1 (see Supplemental Material [36]),
using the positivity condition on Qλ. We thus say that the
system has a uniformly lower bounded gapΔ if for all finite
subsets Λ ⊂ Λ, the Hamiltonian, Eq. (5), has a spectral gap
≥ Δ. Under this assumption [47], the circuit depth, Eq. (2),
can be guaranteed [48].
For the preparation of thermal states of classical

Hamiltonians H, it is natural to compare these results with
the performance of classical Monte Carlo Markov chain
algorithms for Gibbs sampling such as the Metropolis
algorithm or Glauber dynamics. Notice that due to the
nature of their implementation, a fair comparison of
performance should compare the mixing time of a
discrete-time Markov chain to the number of elementary
quantum gates, whereas the mixing time of a continuous-
time Markov chain should be compared to the circuit depth.
The best known upper bound on the discrete mixing time for
Monte Carlo Markov chain algorithms for sampling from
Gibbs distributions of classical Hamiltonians given just the
promise of a spectral gap scales as OðN2Þ. Although under
certain additional assumptions such as translational invari-
ance [49,50], weak mixing in two dimensions [51], or high
temperature [52], the existence of a logarithmic Sobolev
constant and hence the rapid (discrete) mixing time of
OðN logNÞ can be proven, no such proof exists for the
general case to the best of our knowledge. Our scheme thus
outperforms classical Monte Carlo algorithms whenever
rapid mixing cannot be shown even in the presence of a
uniform gap.
Note that any classical Monte Carlo algorithm can be

realized as an adiabatic algorithm, as has, e.g., been
observed in Ref. [20]. Indeed, if S is the generator matrix
of a continuous-time Monte Carlo algorithm that satisfies
detailed balance with respect to the Gibbs distribution,
G ¼ −eβH=2Se−βH=2 is Hermitian. This Hamiltonian has
the same spectrum as −S and has the unique ground state
e−βH=2jþi⊗N . For classical Hamiltonians H, this state has

the same measurement statistics as ρβ for observables that
are products of σZ. By introducing an ancilla for every
particle and applying the map jii↦jiii, the purified version
of the thermal state can also be recovered, and its parent
Hamiltonian has the same spectrum as −S within the
symmetric subspace. Thus, any classical system with a
uniform spectral gap for the generator matrix can be turned
into a rapid adiabatic algorithm.
For quantum Hamiltonians, notice the restriction to

commuting local terms. For noncommuting local terms,
an approximate quasilocal parent Hamiltonian can be
considered above some constant temperature that allows
the preparation in polynomial time. We describe this
procedure in the Supplemental Material [36].
For the preparation of injective PEPS, the given algo-

rithm is similar to Ref. [7], which, however, requires a
runtime of OðN4Þ in the uniformly gapped case, due to the
use of phase estimation and the “Marriot-Watrous trick,”
which are computationally expensive for large systems.
The better runtime of the present algorithm is largely due to
replacing these subroutines by a local adiabatic change.
Throughout the analysis of this Letter, we focused on the

casewhere a uniform constantly lower-bounded spectral gap
is assumed. This assumption is only used to obtain a small
number of elementary gates and circuit depth, whereas the
adiabatic runtime of τ ¼ O(N log1þαðN=εΔÞΔ−3) is inde-
pendent of this assumption [53]. In contrast, the runtime of
the algorithm topreparePEPSgiven inRef. [7] only grows as
T ∼ Δ−1 for small gaps, and for thermal states, algorithms
based on quantumwalks, phase estimation, and the quantum
Zeno effect have been proposedwith a runtime of T ∼ Δ−1=2

[12,21,22], albeit with worse scaling in the system size.
We believe that similar techniques can be applied to our
scheme of local changes to obtain a good scaling of the
runtime for both large system sizes and small spectral gaps.
Moreover, it would be interesting to investigate if this
scheme of local changes can also be applied to speed up
classical Monte Carlo algorithms.
We have also shown that the algorithm can be paral-

lelized, thus giving rise to a circuit depth that scales only
polylogarithmically with N. This is particularly attractive for
certain experimental realizations of analog quantum simu-
lators, such as with atoms in optical lattices [54] or trapped
ions [55],where this could becarried out in averynaturalway.

We thank A. Lucia, D. Pérez-García, A. Sinclair, and
D. Stilck França for helpful discussions. This work was
supported by the EU Integrated Project SIQS.

[1] R. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[2] Special issue on quantum simulation, edited by A.

Trabesinger, Nature Physics Insight—Quantum Simulation
8, 263 (2012).

[3] S. Lloyd, Science 273, 1073 (1996).
[4] T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950).

PRL 116, 080503 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 FEBRUARY 2016

080503-4

[5] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv:
quant-ph/0001106.

[6] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066.
[7] M. Schwarz, K. Temme, and F. Verstraete, Phys. Rev. Lett.

108, 110502 (2012).
[8] M. Schwarz, K. Temme, F. Verstraete, D. Perez-Garcia, and

T. S. Cubitt, Phys. Rev. A 88, 032321 (2013).
[9] B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 61,

022301 (2000).
[10] E. Bilgin and S. Boixo, Phys. Rev. Lett. 105, 170405 (2010).
[11] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and

F. Verstraete, Nature (London) 471, 87 (2011).
[12] M.-H. Yung and A. Aspuru-Guzik, Proc. Natl. Acad. Sci.

U.S.A. 109, 754 (2012).
[13] A. Riera, C. Gogolin, and J. Eisert, Phys. Rev. Lett. 108,

080402 (2012).
[14] M. J. Kastoryano and F. G. S. L. Brandão, arXiv:1409.3435.
[15] Proceedings of the Ninth Taniguchi International Sympo-

sium, Monte Carlo Methods in Equilibrium and Nonequili-
brium Systems, edited by M. E. Suzuki (Springer, Susono,
Japan, 1987).

[16] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
[17] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren,

and D. Preda, Science 292, 472 (2001).
[18] P. C. Richter, Phys. Rev. A 76, 042306 (2007).
[19] D. A. Lidar and O. Biham, Phys. Rev. E 56, 3661 (1997).
[20] R. D. Somma, C. D. Batista, and G. Ortiz, Phys. Rev. Lett.

99, 030603 (2007).
[21] P. Wocjan and A. Abeyesinghe, Phys. Rev. A 78, 042336

(2008).
[22] R. D. Somma, S. Boixo, H. Barnum, and E. Knill, Phys.

Rev. Lett. 101, 130504 (2008).
[23] M.-H. Yung, D. Nagaj, J. D. Whitfield, and A.

Aspuru-Guzik, Phys. Rev. A 82, 060302 (2010).
[24] See, for example, Y. Bengio, Found. Trends Mach. Learn. 2,

1 (2009).
[25] D. Perez-Garcia, F. Verstraete, J. I. Cirac, and M.M. Wolf,

Quantum Inf. Comput. 8, 0650 (2008).
[26] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,

885 (2008).
[27] N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
[28] D. A. Levin, Y. Peres, and E. L. Wilmer,Markov Chains and

Mixing Times (American Mathematical Society, Providence,
2008).

[29] See also A. E. Feiguin and I. Klich, arXiv:1308.0756, for a
similar parent Hamiltonian construction.

[30] S. Jansen, M.-B. Ruskai, and R. Seiler, J. Math. Phys. (N.Y.)
48, 102111 (2007).

[31] D.W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, in Proceedings of the 46th Annual ACM Sympo-
sium on Theory of Computing STOC ’14 (ACM, New York,
2014), p. 283.

[32] E. H. Lieb and D.W. Robinson, Commun. Math. Phys. 28,
251 (1972).

[33] Recall that a function f∶½0; 1� → Rm is in the Gevrey class
1þ α [34] (with respect to the norm ∥ � � � ∥) if there exist

constants c; K > 0 such that ∥dkfðsÞ=dsk∥ ≤ Kckðk!Þ1þα

for all k. It is well known [35] that fðsÞ ¼ R s0 fαðtÞdt=R
1
0 fαðtÞdt, with fαðtÞ¼ expf−1=½ð1− tÞt�1=αg, is in the
Gevrey class 1þ α for all α > 0.

[34] M. Gevrey, Annales scientifiques de l’École Normale
Supérieure 35, 129 (1918).

[35] J.-P. Ramis, Astérisque 59–60, 173 (1978).
[36] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.116.080503 for the
proof of the adiabatic theorem with almost exponential
error decay, the locality of the local adiabatic change,
relaxations on the assumption of the uniform gap, and
Gibbs state preparation in the non-commuting case for high
temperatures, which includes Refs. [37–46].

[37] G. Nenciu, Commun. Math. Phys. 152, 479 (1993).
[38] G. A. Hagedorn and A. Joye, J. Math. Anal. Appl. 267, 235

(2002).
[39] M. Hastings and T. Koma, Commun. Math. Phys. 265, 781

(2006).
[40] B. Nachtergaele and R. Sims, Commun. Math. Phys. 265,

119 (2006).
[41] S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev. Lett.

97, 050401 (2006).
[42] R. Kotecký and D. Preiss, Commun. Math. Phys. 103, 491

(1986).
[43] A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, Phys.

Rev. B 91, 045138 (2015).
[44] D. A. Klarner, Can. J. Math. 19, 851 (1967).
[45] D. A. Lidar, A. T. Rezakhani, and A. Hamma, J. Math. Phys.

(N.Y.) 50, 102106 (2009).
[46] A. T. Rezakhani, A. K. Pimachev, and D. A. Lidar, Phys.

Rev. A 82, 052305 (2010).
[47] In fact, this assumption can be relaxed to only hold for the N

subsets Λn ¼ fλ1;…; λng; n ¼ 1;…; N, for each problem
size N, i.e., the sets being used in the algorithm, instead of
all finite subsets.

[48] For thermal states, it can be shown perturbatively that
there exists some constant value βc such that the condition
on the uniform spectral gap is always satisfied for β < βc.
For practical applications, it can however be hoped that this
condition is satisfied for significantly higher β.

[49] F. Martinelli and E. Olivieri, Commun. Math. Phys. 161,
447 (1994).

[50] F. Martinelli and E. Olivieri, Commun. Math. Phys. 161,
487 (1994).

[51] F. Martinelli, E. Olivieri, and R. H. Schonmann, Commun.
Math. Phys. 165, 33 (1994).

[52] T. Hayes, in 47th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’06 (2006),
(IEEE, Los Alamitos, 2006) pp. 39–46.

[53] See also S. Boixo and R. D. Somma, Phys. Rev. A 81,
032308 (2010) for lower bounds on generic adiabatic
runtimes.

[54] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267
(2012).

[55] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).

PRL 116, 080503 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 FEBRUARY 2016

080503-5

Rapid adiabatic preparation of injective PEPS and Gibbs sates: Supplemental
Material

Yimin Ge,1 András Molnár,1 and J. Ignacio Cirac1

1Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany

I. PROOF OF THE ADIABATIC THEOREM WITH ALMOST EXPONENTIAL ERROR DECAY

In this section, we prove a variant of the adiabatic theorem that only requires a runtime almost exponentially small in
the allowed error. Our proof largely follows the proof given in [1], which is based on the method of adiabatic expansion
[2]. The adiabatic expansion in [2] establishes an approximation of the time-dependent Schrödinger evolution in terms
of the instantaneous ground state and its derivatives, but on its own does not necessarily imply an adiabatic theorem
because it assumes a special initial state. Our proof, like [1], resolves this problem by exploiting the Gevrey-class
condition which allows to satisfy these initial conditions, and uses this expansion to establish a bound on the required
runtime. However, unlike [1], which only proves the almost exponential dependence of the runtime with respect to
accuracy, our proof also explicitly establishes the dependence on all other parameters such as the spectral gap and
the bound on the Hamiltonian derivatives [3].

Consider a smooth path of Hamiltonians, G(s), s ∈ [0, 1], acting on a finite-dimensional Hilbert space H. Let φ(s)
[4] be the ground state of G(s) and ψ(ε, s) the solution of the following Schrödinger equation:

iεψ̇(ε, s) = G(s)ψ(ε, s), ψ(0) = φ(0), (13)

where 1/ε = τ is the runtime of the adiabatic algorithm, and ˙ denotes derivative with respect to s. We assume
furthermore that the ground state energy of G(s) is 0 (i.e., we fix the phase of ψ) and that it has a gap at least ∆
throughout the whole path. By an appropriate choice of the phase of φ, we can without loss of generality assume that〈
φ̇(s)

∣∣∣ φ(s)
〉

= 0. In the following, we will sometimes drop the explicit dependence on s to simplify the notation.

Unless otherwise stated, ‖.‖ will always denote the operator norm for operators and the Euclidean vector norm for
vectors (it will always be clear from the context which one is used). In this section, we prove the following theorem.

Theorem 1. Suppose that all derivatives of G vanish at 0 and at 1, and moreover that it satisfies the following Gevrey
condition: there exist non-negative constants K, c and α such that for all k ≥ 1,

‖G(k)‖ ≤ Kck [k!]1+α

(k + 1)2
. (14)

Then,

min
θ
‖ψ(ε, 1)− eiθφ(1)‖ ≤ 8ce

K

∆

(
4π2

3

)3

· exp



−

(
1

4ec2

(
3

4π2

)5

τ
∆3

K2

) 1
1+α



 . (15)

Notice that we don’t require the Gevrey condition (14) to hold for k = 0. Therefore, in the application of Theorem 1

in the main text, K = O(1) since along the paths G̃n(s) (as defined in (12) in the main text), only O(1) local terms
change.

Proof of Theorem 1. Following the adiabatic expansion method from [1, 2], we search ψ(ε, s) in the form of an asymp-
totic series expansion by constructing vectors φj(s), s ∈ [0, 1], j ≥ 0, such that for all M > 0,

∥∥∥∥∥∥
ψ(ε, s)−

M−1∑

j=0

φj(s)ε
j

∥∥∥∥∥∥
= O(εM). (16)

We first show an explicit expression for φj provided that such an expansion exists. Second,we prove that the expansion

really exists if G(k)(0) = 0 for all k by giving an explicit error bound. Third, to connect the expansion to the adiabatic
theorem, we show that

min
θ
‖ψ(ε, 1)− eiθφ(1)‖ ≤ 2‖ψ(ε, 1)−

M−1∑

j=0

φj(s)ε
j‖, (17)

2

for some θ for all M if G(k)(1) = 0 for all k. This already proves an error bound of O(εM) for any M . Finally, if
G is Gevrey class, then the error bound can be expressed with the help of the parameters appearing in the Gevrey
condition and using a suitable choice of M yields to the bound in Eq. (15).

Explicit form of φj. To satisfy the equation at s = 0, we require φ0(0) = φ(0) and φj(0) = 0 for all j > 0.
Furthermore, substituting back the ansatz to the Schrödinger equation Eq.(13), following [2], we arrive at the recursion

φj = ϕjφ+ iG−1φ̇j−1, ϕj = i

∫ t

0

dt′
〈
φ̇(t′)

∣∣∣G−1(t′)
∣∣∣φ̇j−1(t′)

〉
, (18)

for all j > 0, where ϕj(s) is a complex number and G−1 is the pseudo-inverse of G, and initial values are

φ0(s) = φ(s) (19)

ϕ0(s) = 1. (20)

Note that ϕj(0) has to be zero in order for φj(0) to be zero, but this is not a sufficient condition. We will investigate
below when φj(0) = 0 can be satisfied.

Existence of the expansion. To satisfy φj(0) = 0 for j > 0, φ̇j−1(0) needs to be parallel to φ(0). This is satisfied if
all derivatives of G are 0 at s = 0 (see Lemma 2 below). We show that if this condition is fulfilled, then the expansion
exists.

Define the truncation of the asymptotic series expansion,

ψM =
M−1∑

j=0

φjε
j . (21)

Note that if ‖ψ−ψM‖ = O(εM−1), then the expansion exists. Indeed, then ‖ψ−ψM‖ = ‖ψ−ψM+1+εMφM‖ = O(εM).

By construction, ψM almost satisfies the Schrödinger equation: iεψ̇M = GψM + iεM φ̇M−1. Let U(s) be the dynamics
generated by G/ε. Then, ‖ψM (ε, s)− ψ(ε, s)‖ = ‖U(s)†ψM (ε, s)− φ(0)‖ and

∥∥U(s)†ψM (ε, s)− φ(0)
∥∥ =

∥∥∥∥
∫ s

0

ds′
d

ds′
(
U†ψM

)∥∥∥∥ =

∥∥∥∥εM−1

∫ s

0

ds′U†φ̇M−1

∥∥∥∥ ≤ εM−1

∫ s

0

ds′
∥∥∥φ̇M−1

∥∥∥ , (22)

where we used that if the first M derivatives of G are 0, then ψM (ε, 0) = φ(0). This proves the existence of the
expansion.

Connecting the expansion to the adiabatic theorem. Using the triangle inequality, we obtain

min
θ
‖ψ(ε, 1)− eiθφ(1)‖ ≤ ‖ψ(ε, 1)− ψM (ε, 1)‖+ min

θ
‖ψM (ε, 1)− eiθφ(1)‖. (23)

In Lemma 2, we prove that if the first M derivatives of G(s) vanish at s = 1, then φj(1) is parallel to φ(1) for
all j = 1, . . . ,M . Therefore, ψM (ε, 1) is parallel to φ(1), so that minθ ‖ψM (ε, 1) − eiθφ(1)‖ = |‖ψM (ε, 1)‖ − 1|. But
1 = ‖ψ(ε, 1)‖, so using the triangle inequality, we get minθ ‖ψM (ε, 1)− eiθφ(1)‖ ≤ ‖ψM (ε, 1)− ψ(ε, 1)‖. Therefore,

min
θ
‖ψ(ε, 1)− eiθφ(1)‖ ≤ 2‖ψ(ε, 1)− ψM (ε, 1)‖. (24)

Choice of M . From Eq. (22) and (24),

min
θ
‖ψ(ε, 1)− eiθφ(1)‖ ≤ 2‖ψ(ε, 1)− ψM (ε, 1)‖ ≤ 2εM−1

∫ 1

0

‖φ̇M−1‖, (25)

so we only need to bound ‖φ̇M−1‖. We do this by using that G is Gevrey class. From Lemma 7 below,

‖φ̇M−1‖ ≤ 2
4π2

3
· 2cK

∆

(
4π2

3

)2

·
[
K2

∆3
4c2
(

4π2

3

)5
]M−1

[M !]1+α

(M + 1)2
. (26)

Therefore,

‖ψ(ε, 1)− φ(1)‖ ≤ εM−1 · 8cK
∆

(
4π2

3

)3

·
[
K2

∆3
4c2
(

4π2

3

)5
]M−1

[M !]1+α

(M + 1)2
. (27)

3

Changing M to M + 1 and using that [(M + 1)!]1+α/(M + 2)2 ≤M (1+α)M , we obtain

‖ψ(ε, 1)− φ(1)‖ ≤ 8c
K

∆

(
4π2

3

)3

·
[
K2

∆3
4c2
(

4π2

3

)5
M1+α

τ

]M
. (28)

This is true for any M , so setting

M =


(

τ∆3

eK24c2
(

4π2

3

)5

) 1
1+α

 , (29)

we obtain

‖ψ(ε, 1)− φ(1)‖ ≤ 8ce
K

∆

(
4π2

3

)3

· exp



−

(
τ

∆3

K2

1

4ec2

(
3

4π2

)5
) 1

1+α



 . (30)

This proves Theorem 1.

We have repeatedly used the following lemma in the proof of Theorem 1.

Lemma 2. If G(k)(s0) = 0 for some s0 ∈ [0, 1] and for all k = 1 . . .M , then

(i) φ(k)(s0) is parallel to φ(s0) for all k = 0, . . . ,M ,

(ii)
[
G(−1)

](k)
(s0) = 0 for all k = 1, . . . ,M ,

(iii) φ
(l)
k (s0) is parallel to φ(s0) for all k = 0, . . . ,M and l = 0, . . . ,M − k.

Proof. Gφ = 0, so (Gφ)(k) =
∑k
j=0

(
k
j

)
G(j)φ(k−j) = 0 for all k. Applying this for k ≤M and evaluating the result at

s0, the derivatives of G vanish, thus Gφ(k) = 0 and therefore φ(k) is parallel to φ at s0, which proves (i).
To prove (ii), use the Cauchy formula

G−1 =
1

2π

∮

Γ

(z −G)−1 1

z
dz, (31)

where Γ = {z ∈ C | |z| = ∆/2} is a fixed curve around 0. Taking the kth derivative of Eq. (31) and evaluating it at
s0, we see that the derivatives of G−1 also disappear.

To prove (iii), we proceed by induction on k. By (i), the claim is true for k = 0. For k > 0, we have φ
(l)
k =

(ϕkφ)(l) + i(G−1φ
(1)
k−1)(l). By (i), the first term is parallel to φ at s0. The second term consists of derivatives of G−1

and derivatives of φ
(1)
k . By (ii), the derivatives of G−1 vanish at s0, so that the only remaining term is iG−1φ

(l+1)
k−1 .

But this term also vanishes at s0 by the induction hypothesis. This proves (iii).

In the remainder of this section, we derive the bound on the norm of φ̇M−1 which was used in the proof of Theorem 1,
following the analysis in [1]. First, we recall two technical lemmas from [1], which will be used repeatedly.

Lemma 3. Let p, q be non-negative integers and r = p+ q. Then,

k∑

l=0

(
k

l

)
[(l + p)!(k − l + q)!]1+α

(l + p+ 1)2(k − l + q + 1)2
≤ [(k + r)!]1+α

(k + r + 1)2

4π2

3
. (32)

Proof. Notice that if r = p+ q, then
(
k

l

)
[(l + p)!(k + q − l)!]1+α =

(
k
l

)
[(k + r)!]1+α

(
k+r
l+p

)1+α ≤ [(k + r)!]1+α. (33)

To upper-bound the summation, divide the sum into two parts at b(k − p + q)/2c. If l < b(k − p + q)/2c, then
(k− l+ q+ 1) > b(k+p+ q)/2c+ 1. Otherwise, if l ≥ b(k−p+ q)/2c, then (l+p+ 1) ≥ b(k+p+ q)/2c+ 1. Therefore,

k∑

l=0

1

(l + p+ 1)2(k − l + q + 1)2
≤ 2

∞∑

l=0

1

(l + 1)2

1

(b(k + p+ q)/2c+ 1)2
. (34)

This can be upper-bounded by 4π2/3 as k+p+q+1 ≤ 2(b(k+p+q)/2c+1). This finishes the proof of Lemma 3.

4

We now use Lemma 3 to prove that if A and B are Gevrey-class, then their product is also Gevrey-class.

Lemma 4. Let A(s), B(s) (s ∈ [0, 1]) be smooth paths of either vectors in H or operators in B(H) satisfying

‖A(k)‖ ≤ Cdk [(k + p)!]1+α

(k + p+ 1)2
and ‖B(k)‖ ≤ Efk [(k + q)!]1+α

(k + q + 1)2
(35)

for some non-negative constants C, d,E, f , non-negative integers p, q, and for all k ≥ 0. Then,

‖(AB)(k)‖ ≤ 4π2

3
CEgk

[(k + r)!]1+α

(k + r + 1)2
(36)

for all k ≥ 0, where g = max(d, f) and r = p+ q.

Proof. We have

‖(AB)(k)‖ ≤
∑

l

(
k

l

)
‖A(l)‖‖B(k−l)‖, (37)

so inserting the bounds (35) and upper-bounding d and f by g, we obtain

‖(AB)(k)‖ ≤ CEgk
∑

l

(
k

l

)
[(l + p)!]1+α

(l + p+ 1)2

[(k − l + q)!]1+α

(k − l + q + 1)2
. (38)

Using Lemma 3 to upper-bound the r.h.s. of this expression proves Lemma 4.

Next we give a bound on the derivatives of the pseudo-inverse G−1. As G is non-invertible, the proof consists of
two steps: first reducing the problem to the invertible case, then proving that the inverse of an invertible Gevrey-class
operator is again Gevrey-class (assuming that the inverse is uniformly bounded).

Lemma 5. If G satisfies Eq. (14), then for all k ≥ 0,

‖(G−1)(k)‖ ≤ 2

∆

(
K

∆
2c

4π2

3

)k
[k!]1+α

(k + 1)2
. (39)

Proof. First, write the pseudo-inverse using the Cauchy formula,

G−1 =
1

2πi

∮

Γ

1

G− z
1

z
dz, (40)

where Γ = {z ∈ C
∣∣|z| = ∆/2} is a fixed, s-independent curve. Taking the kth derivative of Eq. (40) (with respect to

s), we get

(G−1)(k) =
1

2πi

∮

Γ

[(G− z)−1](k) 1

z
dz. (41)

Thus, the norm of the pseudo-inverse can be bounded by the triangle inequality,

‖(G−1)(k)‖ ≤ max
z∈Γ
‖[(G− z)−1](k)‖. (42)

Note that G − z is invertible and ‖(G − z)−1‖ ≤ 2/∆ for z ∈ Γ. We now show that (G − z)−1 is also Gevrey-class,
more precisely that

∥∥∥
[
(G− z)−1

](k)
∥∥∥ ≤ 2

∆

(
2

∆
Kc

4π2

3

)k
[k!]1+α

(k + 1)2
(43)

for k ≥ 0. To show this, we proceed by induction. For k = 0, the bound obviously holds. Taking the kth derivative
of (G− z)(G− z)−1 = 1, we get

[
(G− z)−1

](k)
= (G− z)−1

k∑

l=1

(
k

l

)
(G− z)(l)

[
(G− z)−1

](k−l)
. (44)

5

Using the induction hypothesis and collecting terms (notice that l ≥ 1 and k − l ≤ k − 1), we get

∥∥∥
[
(G− z)−1

](k)
∥∥∥ ≤ 2

∆

(
2

∆
Kc

)k (
4π2

3

)k−1 k∑

l=1

(
k

l

)
[l!(k − l)!]1+α

(l + 1)2(k − l + 1)2
. (45)

Using Lemma 3 to upper-bound the sum in (45), we get

∥∥∥
[
(G− z)−1

](k)
∥∥∥ ≤ 2

∆

(
2

∆
Kc

4π2

3

)k
[k!]1+α

(k + 1)2
. (46)

This proves (43). Substituting this bound into Eq. (42) proves Lemma 5.

Next, we prove that the ground state is also Gevrey-class (with the special choice of the phase as above).

Lemma 6. If G satisfies Eq. (14), then the ground state φ satisfies

∥∥∥φ(k)
∥∥∥ ≤

(
2c
K

∆

(
4π2

3

)2
)k

[k!]1+α

(k + 1)2
. (47)

for all k ≥ 0, where K, c and α are defined in Eq. (14) and ∆ is the minimal gap of G.

Proof. We proceed by induction on k. For k = 0, (47) just reads ‖φ‖ ≤ 1. For k > 0, notice that Gφ = 0 and

φ(1) = −G−1G(1)φ since the phase of φ is chosen such that
〈
φ̇
∣∣∣ φ
〉

= 0. Therefore,

∥∥∥φ(k)
∥∥∥ =

∥∥∥∥
[
G−1G(1)φ

](k−1)
∥∥∥∥ . (48)

Expanding the derivatives, we get

∥∥∥φ(k)
∥∥∥ ≤

k−1∑

l=0

(
k − 1

l

)∥∥∥∥
[
G−1G(1)

](k−l−1)
∥∥∥∥
∥∥∥φ(l)

∥∥∥ . (49)

The right hand side can be bounded using the induction hypothesis as the higest derivative of φ appearing there is
the (k − 1)th. For that, we first derive a bound on the norm of the derivatives of G−1G(1). This can be done by
applying Lemma 4 to G(1) and G−1 and using Lemma 5 to obtain

∥∥∥[G−1G(1)](k)
∥∥∥ ≤

(
Kc

2

∆

4π2

3

)k+1
[(k + 1)!]1+α

(k + 2)2
(50)

for k ≥ 0. Substituting this bound into (49), we obtain

‖φ(k)‖ ≤
k−1∑

l=0

(
k − 1

l

)(
Kc

2

∆

4π2

3

)k−l
[(k − l)!]1+α

(k − l + 1)2

(
Kc

2

∆

(
4π2

3

)2
)l

[l!]1+α

(l + 1)2
. (51)

Notice that l ≤ k − 1, so

‖φ(k)‖ ≤
(
Kc

2

∆

4π2

3

)k (
4π2

3

)k−1 k−1∑

l=0

(
k − 1

l

)
[(k − l)!]1+α

(k − l + 1)2

[l!]1+α

(l + 1)2
. (52)

Thus, using Lemma 3, we obtain

∥∥∥φ(k)
∥∥∥ ≤

(
Kc

2

∆

(
4π2

3

)2
)k

[k!]1+α

(k + 1)2
, (53)

which proves Lemma 6.

6

We are now in the position to bound ‖φ̇M−1‖. Instead of bounding it directly, we prove a general bound on all

‖φ(k)
j ‖. The desired bound is obtained then by setting j = M − 1 and k = 1.

Lemma 7. For all j, k ≥ 0, the vectors φj and scalars ϕj defined in Eq. (18) satisfy

‖φ(k)
j ‖ ≤ A1A

j
2A

k
3

[(k + j)!]1+α

(k + j + 1)2
and |ϕ(k)

j | ≤ Aj2Ak3
[(k + j)!]1+α

(k + j + 1)2
, (54)

where the constants A1, A2 and A3 can be expressed with the constants appearing in Eq. (14):

A1 =
8π2

3
, A3 = 2c

K

∆

(
4π2

3

)2

, A2 = 4c2
K2

∆3

(
4π2

3

)5

. (55)

Proof. We proceed by induction on j, using the recursion in relation (18). We first bound |ϕj | using the induction

hypothesis, then bound |ϕ(k)
j | for k > 0 before bounding ‖φ(k)

j ‖.
Base case. We have ϕ0(s) = 1 and φ0(s) = φ(s), so (54) holds for j = 0 since

A1 ≥ 1 and A3 ≥ 2c
K

∆

(
4π2

3

)2

. (56)

Bound on |ϕj |, j ≥ 1. |ϕj | can be bounded by the maximum value of the integrand in Eq. (18),

|ϕj | ≤ ‖G−1φ̇‖‖φ̇j−1‖ ≤ ‖G−1‖ · ‖φ̇‖ · ‖φ̇j−1‖. (57)

Using the bound on ‖φ̇‖ from Lemma 6, ‖G−1‖ from Lemma 7 and the induction hypothesis on ‖φ̇j−1‖, we get

|ϕj | ≤
2

∆
·A3

1

4
·A1A

j−1
2 A3

[(j)!]1+α

(j + 1)2
≤ Aj2

[(j)!]1+α

(j + 1)2
(58)

since

1 ≥ A1
A2

3

A2

2

∆

1

4
. (59)

Bound on ‖ϕ(k)
j ‖. We now bound |ϕ(k)

j | for k > 0. First, from the induction hypothesis,

‖φ̇(k)
j−1‖ ≤ A1A

j−1
2 Ak+1

3

[(k + j)!]1+α

(k + j + 1)2
. (60)

Then, using Lemma 4 and Lemma 5, we get that for all k ≥ 0,
∥∥∥∥
(
G−1φ̇j−1

)(k)
∥∥∥∥ ≤

4π2

3

2

∆
A1A

j−1
2 Ak+1

3

[(k + j)!]1+α

(k + j + 1)2
. (61)

Moreover, from Lemma 6,

‖φ̇(k)‖ ≤ Ak+1
3

[(k + 1)!]1+α

(k + 2)2
. (62)

Since ϕ̇j =
〈
φ̇
∣∣∣ G−1φ̇j−1

〉
, Lemma 4, Eq. (61) and (62) imply that

|ϕ(k+1)
j | = |ϕ̇(k)

j | ≤
(

4π2

3

)2
2

∆
A3A1A

j−1
2 Ak+1

3

[(k + j + 1)!]1+α

(k + j + 2)2
(63)

for k ≥ 0. Changing k + 1 to k gives

|ϕ(k)
j | ≤

(
4π2

3

)2
2

∆
A3A1A

j−1
2 Ak3

[(k + j)!]1+α

(k + j + 1)2
≤ Aj2Ak3

[(k + j)!]1+α

(k + j + 1)2
, (64)

since 1 ≥ A1
A3

A2

2
∆

(
4π2

3

)2

.

7

Bound on ‖φ(k)
j ‖. We now bound ‖φ(k)

j ‖. Using the bound on ‖φ(k)‖ from Lemma 6 and |ϕ(k)
j |, Lemma 4 implies

‖(ϕjφ)k‖ ≤ 4π2

3
Aj2A

k
3

[(k + j)!]1+α

(k + j + 1)2
. (65)

Finally, using Eq. (18),

‖φ(k)
j ‖ ≤ 2 max

(∥∥∥(ϕjφ)(k)
∥∥∥ ,
∥∥∥∥
(
G−1φ̇j−1

)(k)
∥∥∥∥
)
. (66)

Hence, since

2
4π2

3
≤ A1 and

4π2

3

2

∆
A3 ≤ A2, (67)

we obtain

‖φ(k)
j ‖ ≤ A1A

j
2A

k
3

[(k + j)!]1+α

(k + j + 1)2
, (68)

which finishes the proof of Lemma 7 and hence the proof of Theorem 1.

II. LOCALITY OF LOCAL ADIABATIC CHANGE

We show in this section that Gn and G̃n, as defined in Eq. (7) and in Eq. (12) in the main text, generate basically

the same dynamics. The proof relies on G̃(0) being frustration-free, and a runtime of τ = O(log1+α(N/ε)), because
it turns out that the achieved locality scales linearly with the runtime. We also use the Lieb-Robinson bound [5–8],
which states that if H is a local (possibly time-dependent) Hamiltonian with uniformly bounded interaction strengths,
U(t) is the unitary evolution generated by H, and OA, OB are operators supported on regions A,B, respectively, then

‖[U(t)OAU
†(t), OB]‖ ≤ cmin(|A|, |B|)‖OA‖‖OB‖ exp (γt− νL) , (69)

where L is the distance between A and B, and c, γ, ν are constants depending only on the geometry of the lattice and
the maximum interaction strength.

The following theorem justifies the replacement of (12) with (7) in the main text, without significantly altering the
evolution and thus the final state.

Theorem 8. Let G̃(s) =
∑
µ∈ΥGµ(s) be a frustration-free Hamiltonian path with O(N) local terms such that

| supp d
ds G̃| = O(1), and let G be a localised version of G̃, i.e.,

G(s) =
∑

µ∈Υ′

Gµ(s), Υ′ =

{
µ ∈ Υ | d

(
supp

d

ds
G̃, suppGµ

)
< χτ

}
(70)

for some constant χ and adiabatic runtime τ . Let ψ and ψ̃ be the evolved states under G and G̃ respectively, i.e.,

i
d

dt
ψ(t) = G

(
t

τ

)
ψ(t), i

d

dt
ψ̃(t) = G̃

(
t

τ

)
ψ̃(t), t ∈ [0, τ], ψ(0) = ψ̃(0) = φ(0), (71)

where φ(0) is the ground state of G̃(0). Then, for sufficiently large χ = O(1),

‖ψ̃(τ)− ψ(τ)‖ ≤ cN2τ2e(γ−vχ/2)τ , (72)

where c, γ, v are the constants from (69). In particular, if τ = O(log1+α(N/ε)), then

‖ψ̃(τ)− ψ(τ)‖ ≤ ε/N (73)

for sufficiently large χ = O(1).

8

Proof. For any Ω ⊆ Υ, let GΩ =
∑
µ∈ΩGµ and UΩ(t, s) be the unitary dynamics generated by GΩ. Then UΩ satisfies

∂tUΩ(t, s) = −iGΩ(t/τ)UΩ(t, s), (74)

∂sUΩ(t, s) = −iUΩ(t, s)GΩ(s/τ), (75)

UΩ(t, s) = T exp



−i

t∫

s

dt′GΩ(t′/τ)



 . (76)

Notice that GΥ′ = G and GΥ = G̃. We write U = UΥ′ and Ũ = UΥ. Let B be the boundary of Υ′, that is,
B = {µ ∈ Υ | d(λ, µ) = dχτe} and B̄ = Υ\B. Then, since G̃(0) is frustration-free and all terms outside of Υ′ are
constant, UB̄(t, 0)φ(0) = U(t, 0)φ(0) as UB̄ = U ⊗ UB̄\Υ′ and UB̄\Υ′φ(0) = φ(0). In other words, GB̄ generates the
same dynamics as G. Thus,

‖ψ̃(τ)− ψ(τ)‖ = ‖Ũφ(0)− Uφ(0)‖ = ‖Ũφ(0)− UB̄φ(0)‖ = ‖φ(0)− Ũ†UB̄φ(0)‖, (77)

where Ũ and UB̄ are evaluated at (τ, 0). Let V (t) = Ũ†(t, 0)UB̄(t, 0). Then, since GB = G̃−GB̄ , Eq. (74) implies

d

dt
V = iŨ†(t, 0)GB(t/τ)Ũ(t, 0)V (t). (78)

We now approximate V with a local unitary to obtain a bound for (77). Let X = {µ ∈ Υ | d(µ,B) ≤ r} for some r
to be specified below, and let

VX(t) = T exp

{
i

∫ t

0

dt′U†X(t′, 0)GB(t′/τ)UX(t′, 0)

}
(79)

For r = 1
2χτ and sufficiently large χ = O(1), X and supp Ġ are disjoint since | supp Ġ| = O(1), so GX(t/τ) = GX(0) for

all t ∈ [0, τ]. Because of frustration-freeness, GX(t/τ)φ(0) = 0, and thus the dynamics generated by GX acts trivially
on the initial state, i.e., UX(t, 0)φ(0) = φ(0). Thus, VX also acts trivially on the initial state, VX(t)φ(0) = φ(0).
Hence, substituting this into Eq. (77), we get

‖φ(0)− Ũ†Uφ(0)‖ = ‖VXφ(0)− Ũ†UB̄φ(0)‖ = ‖φ(0)− V †XV φ(0)‖. (80)

From the definition of V and of VX ,

d

dt
(V †XV) = iV †X(Ũ†GBŨ − U†XGBUX)V, (81)

where GB is evaluated at t/τ . Thus, by integrating (81) and using the triangle inequality and unitary invariance of
the operator norm,

‖φ(0)− V †XV φ(0)‖ ≤
∫ τ

0

dt‖Ũ†GBŨ − U†XGBUX‖ =

∫ τ

0

dt‖GB − ŨU†XGBUX Ũ†‖, (82)

where the unitary evolutions are taken from 0 to t and GB is evaluated at t/τ . Observe that

∂s

(
Ũ(t, s)U†X(t, s)

)
= −iŨ(t, s)GX̄(s/τ)U†X(t, s), (83)

where X̄ = Υ\X. Integrating (83) over s, we get

GB(t/τ)− ŨU†XGB(t/τ)UX Ũ
† = −i

∫ t

0

dsŨ(t, s)
[
GX̄(s/τ), U†X(t, s)GB(t/τ)UX(t, s)

]
Ũ†(t, s). (84)

Therefore, using the triangle inequality and the unitary invariance of the norm, we get

‖ψ(τ)− ψ̃(τ)‖ ≤
∫ τ

0

dt

∫ t

0

ds
∥∥∥
[
U†X(t, s)GB(t/τ)UX(t, s), GX̄(s/τ)

]∥∥∥ (85)

≤
∫ τ

0

dt

∫ t

0

ds cN2eγ(t−s)−νr ≤ cN2τ2eγτ−νr, (86)

where the second line follows from the Lieb-Robinson bound as B and X̄ are separated by a distance r = 1
2χτ . This

proves Theorem 8.

9

III. RELAXATIONS ON THE ASSUMPTION OF A UNIFORM GAP ALONG THE PATH

In this section, we show that the assumption of a spectral gap along the entire path of G̃n can be relaxed.

Theorem 9. Suppose that G̃n(0) has a spectral gap of at least δ > 0. Then G̃n(s) has a spectral gap of at least q2
0δ

for all s ∈ [0, 1], where q0 satisfies that 1 ≥ Qλ ≥ q01 (with Qλ as in Eq. (3) in the main text). In particular, a
uniform gap as defined in the main text implies a constantly lower bounded gap along the entire Hamiltonian path in
the given algorithm.

Proof. Since G̃n(0) is positive semidefinite and has a non-trivial kernel, the spectral gap condition of G̃n(0) is equivalent

to Gn(0)2 ≥ δGn(0). Note that 1 ≥ An,m(s) ≥ q01 (with An,m as in Eq. (9)). Let Xn(s) = q2
0A
−1
n,n(s)G̃n(0)A−1

n,n(s).
Then,

G̃n(s) =
∑

µ∈Υ


 ∏

m:λm∈Λµ

A−1
n,m(s)


Pµ


 ∏

m:λm∈Λµ

A−1
n,m(s)


 (87)

≥ q2
0A
−1
n,n(s)

∑

µ∈Υ




∏

m:λm∈Λµ
m 6=n

A−1
n,m(s)


Pµ




∏

m:λm∈Λµ
m 6=n

A−1
n,m(s)


A−1

n,n(s) (88)

= q2
0A
−1
n,n(s)G̃n(0)A−1

n,n(s) (89)

= Xn(s), (90)

where we used in the second line ‖A−1
n,n(s)‖ ≤ q−1

0 . Notice that G̃n(s) and Xn(s) have the same kernel and are both

positive semidefinite. Thus, the gap of G̃n(s) is lower bounded by the gap of Xn(s). But since Gn(0)2 ≥ δGn(0), we

also have Xn(s)2 ≥ q2
0δXn(s) since A−2

n,n(s) ≥ 1. Thus, G̃n(s) has a spectral gap of at least ∆n ≥ q2
0δ.

IV. GIBBS STATE PREPARATION IN THE NON-COMMUTING CASE FOR HIGH TEMPERATURES

The algorithm we presented to prepare a purifiaction of the Gibbs state of a Hamiltonian used explicitly that the
Hamiltonian is a sum of commuting terms. Thus, one may wonder if one can apply it directly to Gibbs states of
non-commuting Hamiltonians H. The genaral answer is no. The reason is that even though a parent Hamiltonian
can still be defined as

Gnl(β) =
∑

µ∈Υ

Gnlµ (β) =
∑

µ∈Υ

e
β
2HPµe

−βHPµe
β
2H , (91)

now the terms are not local (hence the superscript nl), and the norm of each term may be exponentially large in N .
Thus, adiabatic state preparation using (91) directly takes exponential time. However, in this section we show that
for sufficiently high, but constant temperatures, one can approximate Gnl by an r = O(logN)-local Hamiltonian Gr

which is a sum of O(poly(N)) terms. We also show that in this case, Gnl (and thus also Gr) has a Ω(1) spectral gap
and O(N) norm. Because of the existence of the gap, the ground state of Gr is a good approximation of the ground
state of Gnl.

Using the adiabatic theorem, the following algorithm runs in O(poly(N)) time for high enough (but Ω(1)) temper-
atures and gives a good approximation of the purification of the Gibbs state of a non-commuting Hamiltonian:

1. Prepare the ground state of Gr(0) =
∑
µ∈Υ Pµ

2. Calculate Gr(β)

3. Prepare adiabatically the ground state of Gr(β)

We first use the cluster expansion [9] to construct the approximating Hamiltonian Gr. We also show that the norm
of Gnl is O(N). Finally, we show that the gap of Gnl is Ω(1). For simplicity, assume that H =

∑
λ∈Λ is a sum

of nearest-neighbour interactions, although the results and proofs generalise to other types of interactions. We also
assume that ‖hλ‖ ≤ 1.

10

Cluster expansion. We now show that Gnl can be approximated by an r = O(logN)-local Hamiltonian Gr. More
precisely, we show the following result.

Theorem 10. For sufficiently small (but constant) β, there exists an r = O(logN)-local Hamiltonian Gr with
O(poly(N)) terms such that

‖Gnl −Gr‖ < O(1/ poly(N)). (92)

Moreover, the terms of Gr can be calculated in O(poly(N)) time.

For any function f defined on the subsets of Λ, define the Möbius transformations

f̂(Ω) :=
∑

Θ⊆Ω

f(Θ), (93)

f̌(Ω) :=
∑

Θ⊆Ω

(−1)|Ω\Θ|f(Θ). (94)

It is straightforward to check that the following Lemma holds [10].

Lemma 11 (Möbius inversion).

ˆ̌f =
ˇ̂
f = f. (95)

For any Ω ⊆ Λ, let HΩ =
∑
λ∈Ω hλ, and let fµ(Ω) = eβHΩPµe

−2βHΩPµe
βHΩ for any µ ∈ Υ. Using Lemma 11, one

can express Gnlµ as

Gnlµ = fµ(Λ) =
∑

Ω⊆Λ

f̌µ(Ω). (96)

This so-called cluster expansion has many interesting properties.

Lemma 12. Let µ ∈ Υ. If Ω ⊆ Λ is such that µ is disjoint from Ω and Θ ⊆ Λ is disjoint from Ω, then

f̌µ(Ω ∪Θ) = 0. (97)

Proof. We have

f̌µ(Ω ∪Θ) =
∑

Ω′⊆Ω,Θ′⊆Θ

(−1)|Ω\Ω
′|(−1)|Θ\Θ

′|eβHΘ′Pµe
−2βHΘ′Pµe

βHΘ′ = 0, (98)

since HΩ′ commutes with Pµ and with HΘ′ , and the sum over Ω′ is 0.

Lemma 12 states that f̌µ is non-zero only for connected sets of edges that, in addition, contain µ. Another interesting

property of f̌µ is that its norm can be bounded as follows.

Lemma 13. For any Ω ⊂ Λ and any edge µ,

‖f̌µ(Ω)‖ ≤ (e4β − 1)|Ω|. (99)

Proof. Expanding the exponentials, one gets

f̌µ(Ω) =
∑

Θ⊆Ω

(−1)|Ω\Θ|
∑

w1,w2,w3∈Θ∗

(−β)|w1| · (2β)|w2| · (−β)|w3|

|w1|! · |w2|! · |w3|!
hw1Pµhw2Pµhw3 , (100)

where Θ∗ is the set of all finite sequences of elements of Θ, and for any w ∈ Θ∗, |w| denotes the length of w and
hw = hλ1

. . . hλ|w| if w = (λ1, . . . , λ|w|).
Consider the set A = supp(w1)∪ supp(w2)∪ supp(w3). If A 6= Ω, then the alternating sum in (100) over all Θ such

that A ⊆ Θ ⊆ Ω is 0. Thus,

‖f̌µ(Ω)‖ ≤
∑

w1, w2, w3 ∈ Ω∗

supp(w1) ∪ supp(w2) ∪ supp(w3) = Ω

β|w1| · (2β)|w2| · β|w3|

|w1|! · |w2|! · |w3|!
. (101)

11

But this is exactly a Möbius transform, so

‖f̌µ(Ω)‖ ≤
∑

Θ⊆Ω

(−1)|Ω\Θ|
∑

w1,w2,w3∈Θ∗

β|w1| · (2β)|w2| · β|w3|

|w1|! · |w2|! · |w3|!
=
∑

Θ⊆Ω

(−1)|Ω\Θ|e4β|Θ| = (e4β − 1)|Ω|. (102)

We are now in a position to prove Theorem 10.

Proof of Theorem 10. Using (96), we can write Gnlµ as a sum of local terms where the norm of the terms decay
exponentially with their support. As the number of terms with a given size is bounded by the lattice growth constant
[11], ‖Gnlµ ‖ = O(1) above some temperature. Indeed, let η be the lattice growth constant, so that the number of sets

of connected edges containing µ and of size M is bounded by eηM . Then,

‖Gnlµ ‖ ≤
∑

Ω⊆Λ

‖f̌µ(Ω)‖ ≤
∑

M≥0

eηM (e4β − 1)M = O(1) (103)

if β is sufficiently small (but constant). In this case, Gnlµ can be approximated by an r-local operator Grµ by omitting
all connected sets Ω of size at least r. The error of this approximation is

‖Gnlµ −Grµ‖ ≤
∑

|Ω|≥r
‖f̌µ(Ω)‖ ≤

∑

M≥r
eηM (e4β − 1)M =

(
eη
(
e4β − 1

))r

1− eη (e4β − 1)
=

yr

1− y , (104)

where y = eη
(
e4β − 1

)
. Therefore, above some constant temperature, the cluster expansion can be truncated at

|Ω| ≤ O(logN), giving an error of O(1/ poly(N)). This results in a O(log(N))-local Hamiltonian

Gr =
∑

µ

∑

|Ω|≤O(logN)

f̌µ(Ω) (105)

with O(poly(N)) terms. Note that this Hamiltonian can now be calculated in O(poly(N)) time. Indeed, there are
O(poly(N)) terms f̌µ(Ω), and each term can be evaluated in O(poly(N)) time since there are at most O(poly(N))
subsets of each Ω.

Gap of Gnl. It remains to be shown that at sufficiently high (but constant) temperatures, the parent Hamiltonian
is gapped.

Theorem 14. For sufficiently small (but constant) β, Gnl has a spectral gap of Ω(1).

Proof. To show the existence of a gap, we use that Gnl ≥ 0 is frustration-free, so it is enough to show that

(Gnl)2 ≥ ∆Gnl (106)

for some ∆ = Ω(1). Expanding Gnl, (106) is equivalent to

∑

µ

(Gnlµ)2 +
∑

µ 6=ν
Gnlµ G

nl
ν ≥

∑

µ

∆Gnlµ . (107)

Using Eq. (104) with r = 1, we get that Gnlµ is close to Pµ = Gr=1
µ for high temperatures and thus it is gapped and

the gap is close to 1. Therefore, it is enough to show that for some other constant ∆′ < 1,

∑

µ6=ν
Gnlµ G

nl
ν ≥ −

∑

µ

∆′Gnlµ . (108)

We upper bound the r.h.s. by lower bounding
∑
µG

nl
µ as

∑

µ

Gnlµ ≥
1

x

∑

r

e−r
∑

d(µ,ν)=r

Gnlµ +Gnlν , (109)

12

where x = 2
∑
r e
−rCdrd = O(1) is the number of times a single term is counted, and d is the dimension of the lattice.

Therefore, it is enough to prove that for a given r and any pair µ, ν with d(µ, ν) = r,

Gnlµ G
nl
ν ≥ −∆′

1

x
e−r(Gnlµ +Gnlν). (110)

Note that the kernel of the LHS of (110) is contained in the kernel of the RHS. Next, Gnlµ +Gnlν can be lower bounded
by

Gnlµ +Gnlν ≥
1

2

(
1− PKer(Gnlµ +Gnlν)

)
, (111)

since Gnlµ + Gnlν ≈ Pµ + Pν , which has gap 1, and at sufficiently high (but constant) temperature the difference is
sufficiently small.

To lower bound the l.h.s of (110), write Gnlµ =
∣∣∣Gdr/2eµ

∣∣∣ + Xµ and Gnlν =
∣∣∣Gdr/2eν

∣∣∣ + Xν .
∣∣∣Gdr/2eν

∣∣∣ and
∣∣∣Gdr/2eµ

∣∣∣
commute as they are supported on two disjoint regions, and they are positive, thus their product is also positive. The
norm of Xµ, Xν is bounded by (with y = eη

(
e4β − 1

)
as defined in the proof of Theorem 10)

‖Xµ‖ = ‖Gµ − |Gdr/2eµ |‖ ≤ ‖Gµ −Gdr/2eµ ‖+ ‖Gdr/2eµ − |Gdr/2eµ |‖ ≤ 3
ydr/2e

1− y , (112)

since ‖Gnlν − G
dr/2e
ν ‖ ≤ ydr/2e/(1− y) by (104), and thus G

dr/2e
ν ≥ −ydr/2e/(1− y), so

∣∣∣Gdr/2eν − |Gdr/2eν |
∣∣∣ ≤

2ydr/2e/(1− y). Using that above some constant temperature ‖Grµ‖ < 2, we get that

∥∥∥Gnlµ Gnlν − |Gdr/2eµ ||Gdr/2eν |
∥∥∥ ≤ 18

ydr/2e

1− y ≤ ∆′
1

2x
e−r (113)

for sufficiently small (but constant) β. Therefore for any µ, ν pair, the following is true:

Gnlµ G
nl
ν ≥ −18

ydr/2e

1− y [1− PKer(Gnlµ Gnlν)] ≥ −∆′
1

2x
e−r[1− PKer(Gnlµ +Gnlν)] ≥ −∆′

1

x
e−r(Gnlµ +Gnlν), (114)

as the kernel of Gnlµ G
nl
ν contains the kernel of Gnlµ +Gnlν . This proves Eq. (110) and thus Theorem 14.

[1] G. Nenciu, Comm. Math. Phys. 152, 479 (1993).
[2] G. A. Hagedorn and A. Joye, Journal of Mathematical Analysis and Applications 267, 235 (2002).
[3] Exponentially small errors have also been reported in [12], however, ξ(n) appearing in Eq. (22) of that paper should be

defined as the supremum over Sγ instead of [0, 1], which implies a dependence of this quantity on N . Once this is taken into
account, it is unclear how the arguments of that paper imply an exponentially small error for arbitrarily large runtimes.
Nevertheless, numerical evidence in [13] suggests that the error can be viewed as exponentially small for sufficiently small
runtimes.

[4] In the following, we will omit kets and bras to simply notation.
[5] E. H. Lieb and D. W. Robinson, Comm. Math. Phys. 28, 251 (1972).
[6] M. Hastings and T. Koma, Comm. Math. Phys. 265, 781 (2006), arXiv:math-ph/0507008 [math-ph].
[7] B. Nachtergaele and R. Sims, Comm. Math. Phys. 265, 119 (2006), arXiv:math-ph/0506030 [math-ph].
[8] S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev. Lett. 97, 050401 (2006), arXiv:quant-ph/0603121 [quant-ph].
[9] R. Kotecký and D. Preiss, Comm. Math. Phys. 103, 491 (1986).

[10] See also A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, Phys. Rev. B 91, 045138 (2015), arXiv:1406.2973 [quant-ph].
[11] D. A. Klarner, Canad. J. Math. 19, 851 (1967).
[12] D. A. Lidar, A. T. Rezakhani, and A. Hamma, Journal of Mathematical Physics 50, 102106 (2009).
[13] A. T. Rezakhani, A. K. Pimachev, and D. A. Lidar, Phys. Rev. A 82, 052305 (2010), arXiv:1008.0863 [quant-ph].

A.2 Area laws and efficient descriptions of quantum many-body
states

61

Area laws and efficient descriptions of quantum many-body states

Yimin Ge and Jens Eisert

Prior to this work, it was a common jargon that quantum many-body states on regular lattices
which satisfy a so-called area law are, in some sense, “easy” to describe. Such area laws require
that certain Rényi entropies Sα of the partial state with respect to a subregion of the lattice
scale at most with the boundary of that subregion rather than with its volume, as is the case for
randomly chosen quantum many-body states with high probability. Proving such an area law
for ground states of all local gapped Hamiltonians in two or more spatial dimensions has become
a milestone open problem in the quantum information theory approach to condensed-matter
physics. Yet, the quest for proving a general area law should only be seen as an intermediate
step towards the bigger programme of understanding whether all ground states of local gapped
Hamiltonians can be faithfully represented by efficient tensor network states. In this endeavour,
it seems a key step to ask whether satisfying an area law automatically implies the existence of
an efficient tensor network description. This has indeed been proven in one spatial dimension:
any state that satisfies an area law for some Sα with α ∈ (0, 1) can be approximated to constant
trace distance error by an MPS with polynomial bond dimension. This lead to the common
belief that also in two or more spatial dimensions, any area law state can be captured by a
PEPS with polynomial bond dimension.

In this work, we prove the existence of counterexamples to this conjecture: strictly speaking,
area laws and the existence of efficient tensor network descriptions are unrelated. We show that
there exist states which satisfy an area law for every Sα but still, no efficient tensor network
description can be found. In fact, they cannot be captured by any states that have – in the
broadest possible sense – an efficient classical description. The more general conclusion of this
work is that while indeed, the set of area law states, commonly referred to as the “physical
corner”, is a very small subset of the large many-body Hilbert space, the set of efficiently
describable states is in turn tiny compared to the “corner” of area law states.

In Section 2, we introduce a precise definition of our very general notion of efficient (i.e.,
polynomial) classical descriptions of quantum states (Definition 1). We only require that the
Kolmogorov complexity of the list of coefficients of the quantum state in the standard basis
scales at most polynomially with the system size. Hence, this definition includes an extremely
large range of states. Three important examples of such efficient descriptions are highlighted:
tensor networks, quantum circuits with post-selection, and eigenstates of local Hamiltonians.

The central observation of this work, stated as Theorem 6 in Section 3, is that roughly
speaking, in two or more spatial dimensions, the set of states that satisfy an area law for Sα
contains a subspace whose dimension scales exponentially with the system size. This remains
true even if in addition we also require the states to be translationally invariant. The main
idea of the proof is the observation that any state on a (D − 1)-dimensional lattice satisfies a
D-dimensional area law when that state is embedded into a D-dimensional lattice, and that
this embedding can also be performed in a translationally invariant way.

Section 4 then makes precise the notion of approximability by polynomially classically de-
scribable states, and we show that any Hilbert space of exponentially large dimension contains
a state that cannot be approximated by polynomially classically describable states to constant
trace distance error (Theorem 8). In particular, there exist translationally invariant quantum
many-body states in two or more spatial dimensions which satisfy an area law for all Sα but can-
not be approximated by efficient tensor network states, quantum circuits with post-selection,

62

or eigenstates of local Hamiltonians (Corollaries 9-11). The proof of Theorem 8 uses a counting
argument of ε-nets. An alternative proof using communication complexity is later given in
Appendix A.

Corollary 12 and Theorem 16 (which is proven in Appendix B) generalise Theorem 6 to
states that are both translationally and rotationally invariant, while Corollary 13 (proven in
Appendix C) uses error-correcting codes to show a variant with decaying correlation functions
– a well-known feature of ground states of gapped Hamiltonians.

Statement of individual contribution

This work was motivated by a discussion between Jens Eisert and myself. Jens Eisert mentioned
his belief that the commonly stated folklore conjecture of area law states automatically being
describable by efficient tensor networks may in fact be wrong. I subsequently formulated
both proofs of the existence of counterexamples, including the variants for translationally and
rotationally invariant states as well as states with decaying correlation functions. I was also in
charge of writing all parts of this article, with the exception of parts of Sections 1 and 7.

I, Yimin Ge, am the principal author of this article and was extensively involved in all parts of it.

63

Permission to include:

Yimin Ge and Jens Eisert.
Area laws and efficient descriptions of quantum many-body states.
New Journal of Physics, 18, 083026 (2016).

c© IOP Publishing & Deutsche Physikalische Gesellschaft. CC BY 3.0. Reproduced with permission.

All rights reserved

https://iopscience.iop.org/article/10.1088/1367-2630/18/8/083026

64

https://iopscience.iop.org/article/10.1088/1367-2630/18/8/083026

Betreff: Re: Permission to use article in thesis (doi:10.1088/1367-2630/18/8/083026)

Von: Permissions <permissions@ioppublishing.org>

Datum: 06.09.2019, 10:40

An: Yimin Ge <yimin.ge@mpq.mpg.de>

Dear Dr Ge

Thank you for your email and for taking the time to seek this permission.

When you transferred the copyright in your article to New Journal of Physics, you were granted back certain rights, including the right to
include the Final Published Version of the article within any thesis or dissertation. Please note you may need to obtain separate permission
for any third party content you included within your article.

Please include citation details, "© IOP Publishing & Deutsche Physikalische Gesellschaft. CC BY 3.0. Reproduced with permission. All rights
reserved” and for online use, a link to the Version of Record.

The only restriction is that if, at a later date, you wanted your thesis/dissertation to be published commercially, further permission would
be required.

I wish you the best of luck with the completion of your thesis/dissertation.

Kind regards,

Tom Slader
Editorial Assistant

Copyright & Permissions Team
Gemma Alaway – Senior Rights & Permissions Adviser
Christina Colwell - Rights & Permissions Assistant

Contact Details

E-mail: permissions@iop.org
For further information about copyright and how to request permission: https://publishingsupport.iopscience.iop.org/copyright-journals/
See also: https://publishingsupport.iopscience.iop.org/
Please see our Author Rights Policy https://publishingsupport.iopscience.iop.org/author-rights-policies/

New J. Phys. 18 (2016) 083026 doi:10.1088/1367-2630/18/8/083026

PAPER

Area laws and efficient descriptions of quantummany-body states

YiminGe1 and Jens Eisert2,3

1 Max-Planck-Institut fürQuantenoptik, D-85748Garching, Germany
2 DahlemCenter for ComplexQuantumSystems, FreieUniversität Berlin, D-14195Berlin, Germany
3 Author towhomany correspondence should be addressed.

E-mail: jenseisert@gmail.com

Keywords: entanglement, area laws, tensor network states, Kolmogorov complexity

Abstract
It is commonly believed that area laws for entanglement entropies imply that a quantummany-body
state can be faithfully represented by efficient tensor network states—a conjecture frequently stated in
the context of numerical simulations and analytical considerations. In this work, we show that this is
in general not the case, except in one-dimension.We prove that the set of quantummany-body states
that satisfy an area law for all Renyi entropies contains a subspace of exponential dimension.We then
show that there are states satisfying area laws for all Renyi entropies but cannot be approximated by
states with a classical description of small Kolmogorov complexity, including polynomial projected
entangled pair states or states ofmulti-scale entanglement renormalisation.Not even a quantum
computer with post-selection can efficiently prepare all quantum states fulfilling an area law, andwe
show that not all area law states can be eigenstates of localHamiltonians.We also prove translationally
and rotationally invariant instances of these results, and show a variationwith decaying correlations
using quantum error-correcting codes.

1. Introduction

Complex interacting quantum systems show awealth of exciting phenomena, ranging fromphase transitions of
zero temperature to notions of topological order. A significant proportion of condensedmatter physics is
concernedwith understanding the features emergent in quantum lattice systemswith local interactions.
However, naive numerical descriptions of such quantum systems require prohibitive resources, for the simple
reason that the dimension of the underlyingHilbert space grows exponentially in the system size.

Yet, it has become clear in recent years that ground states—and a number of other natural states—usually
occupy only a tiny fraction of thisHilbert space. This subset, which is sometimes referred to as the ‘physical
corner’ of theHilbert space (figure 3(a)), is commonly characterised by states having little entanglement.More
precisely, they are characterised by the area law [1]: entanglement entropies growonly like the boundary area of
any subsetA of lattice sites

() (∣ ∣) ()r = ¶S O A 1A

and not extensively like its volume ∣ ∣A (figure 1). Such area laws have been proven for all gapped spinmodels in
D=1 [2–6]. In D 2, area laws have only been proven in special cases, including free gapped bosonic and
fermionicmodels [7–9], ground states in the same gapped phase as ones satisfying an area law [10, 11], models
which have a suitable scaling for heat capacities [12], models whoseHamiltonian spectra satisfy related
conditions [13, 14], frustration-free spinmodels [15], andmodels exhibiting local topological order [16]. The
general expectation is that all gapped latticemodels satisfy an area law. Proving a general area law for gapped
latticemodels in D 2 has indeed become amilestone open problem in condensed-matter physics.

Area laws are at the core of powerful numerical algorithms, such asDMRG [17]. InD=1, the situation is
particularly clear:matrix-product states [18] essentially ‘parameterise’ those one-dimensional quantum states
that satisfy an area law for someRenyi entropy Sαwith ()a Î 0, 1 . They approximate all such states provably
well, which explains why essentiallymachine precision can be reachedwith such numerical tools [19, 20]. A

OPEN ACCESS

RECEIVED

24 February 2016

REVISED

23May 2016

ACCEPTED FOR PUBLICATION

31May 2016

PUBLISHED

5August 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

common jargon is that similarly, projected entangled pair states (PEPS) [21], can approximate all states satisfying
area laws in higher dimensions. In the sameway, one expects those instances of tensor network states to capture
the ‘physical corner’.

In this work, we show that this jargon is not right: strictly speaking, area laws and the existence of efficient
tensor network descriptions are unrelated.We show that there exist states that satisfy an area law for everyRenyi
entropy4

() () [) ()r
a

r a=
-

Î ¥a
aS

1

1
log tr , 0, , 22

but still, no efficient PEPS can be found. The same holds formulti-scale entanglement renormalisation (MERA)
ansatzes [22], as well as all classes of states that have a short description (the precisemeaning of this will be
defined below). Not even a quantum computer with post-selection can efficiently prepare all states satisfying
area laws.Moreover, not all states satisfying area laws are eigenstates of localHamiltonians.

These conclusions follow from themain result of this work: in D 2, the set of states satisfying area laws for
all Sα contains a subspacewhose dimension scales exponentially with the system size. By considering a very
general notion of quantum state descriptions based on the theory of quantumKolmogorov complexity [23], we
then infer that this large subspace cannot be captured by efficient tensor network states.

However, our results should not be seen to indicate that area laws are not appropriate intuitive guidelines for
approximationswith tensor network states.We rather provide a significant step towards precisely delineating
the boundary between those quantummany-body states that can be efficiently captured and those that cannot.
We thus contribute to the discussionwhy PEPS and other tensor network states approximate natural states so
well. Area lawswithout further qualifiers are, strictly speaking, inappropriate for this purpose as the ‘corner’ they
parameterise is exponentially large. This work is hence a strong reminder that the programme of identifying that
boundary is not finished yet.

2. Classically efficiently described states

Wefirst review the concept of efficient classical descriptions of quantum states. The focus is on tensor network
states, but the notion of efficient classical descriptions can be formulated in amuchmore general way. For our
purposes, the following definition of efficiently describable quantum states will suffice (see also [23] for
alternative definitions).

Definition 1 (Classical descriptions).A classical description of a pure quantum state ∣ (()) yñ Î Äd N is a
Turingmachine that outputs the coefficients of ∣yñ in the standard basis {∣ [] }ñ Î dx x: N and halts. The length of

Figure 1. (a)There exist quantum states onD-dimensional cubic lattices in D 2 such that () (∣ ∣)r = ¶aS O AA for all a > 0, but
which cannot be approximated by efficient tensor network states, such as (b) polynomial projected entangled pair states.

4
Here, = =a aS S Slim1 1 is the familiar von-Neumann entropy and S0 the binary logarithmof the Schmidt rank.

2

New J. Phys. 18 (2016) 083026 YGe and J Eisert

the classical description is the size of the Turingmachine5.We say that the description is polynomial if its length
is polynomial inN.

We emphasise that for a polynomial classical descriptionwe only require the size of the Turingmachine to be
polynomial, but not the run-time (which is necessarily exponential). Notice that the shortest length of a classical
description for a given quantum state is a natural generalisation of theKolmogorov complexity6 to quantum
states [23].

Example 2 (Tensor networks). States that can bewritten as polynomial tensor networks (i.e., they are defined on
arbitrary graphswith bounded degree, have atmost (())O Npoly bond-dimension and their tensor entries’
Kolmogorov complexity is atmost (())O Npoly) are polynomially classically described states in the sense of
definition 1. In particular, PEPS andMERA states with (())O Npoly bond-dimension and tensor entries of at
most (())O Npoly Kolmogorov complexity are polynomially classically described states.

As a further interesting special case, we highlight that states that can be prepared by polynomial quantum
circuits, evenwith post-selectedmeasurement results, fall under our definition of classically described states.

Example 3 (Quantumcircuits with post-selection). Suppose that ∣yñcan be prepared by a quantum circuit of
(())O Npoly gates from ∣ (())ñÄ0 O Npoly , wherewe allow for post-selectedmeasurement results in the

computational basis. Then, a Turingmachine that classically simulates the circuit constitutes a polynomial
classical description in the sense of definition 1.

Example 4 (Eigenstates of localHamiltonians). Suppose that ∣yñ is an eigenvector of a localHamiltonianwith
bounded interaction strength. SuchHamiltonians can be specified to arbitrary (but fixed) precisionwith
polynomial Kolmogorov complexity. Thus, a Turingmachine that starts from a polynomial description of the
Hamiltonian and computes ∣yñby brute-force diagonalisation constitutes a polynomial classical description of
∣yñ in the sense of definition 1.

3. Area laws and the exponential ‘corner’ ofHilbert space

Throughout the remainder of this work, we consider quantum lattice systems of local dimension d, arranged on
a cubic lattice []L D offixed dimension >D 1, where [] ≔ { }¼ -L L0, , 1 .We show in this section that the set
of states satisfying area laws for all Sα contains subspaces of exponential dimension. This result is then used in
section 4 to conclude that such states in general do not have an efficient classical description. The caseD=1 is
excluded since in this case, the question at hand has already been settledwith the opposite conclusion [19, 20].
The local dimension is small and taken to be d=3 formost of this work. There is no obvious fundamental
reason, however, why such a construction should not also be possible for d=2.

In the focus of attention are states that satisfy an area law for allα-Renyi entropies, in particular also
for a < 1.

Definition 5 (Strong area laws).Apure state ∣ (()) yñ Î Äd LD
is said to satisfy a strong area law if there exists a

universal constant c such that for all regions []ÌA L D, we have () ∣ ∣y ¶S c AA0 , where ∣ ∣¯y y y= ñátrA A .

Since () ()r raS S0 for all a > 0, strong area law states in this sense also exhibit area laws for all Renyi
entropies. Definition 5 is hence even stronger than the area laws usually quoted [1, 19, 20]. Here and later, we
write ∣ ∣y y y= ñá . For simplicity, wewill for the remainder of this paper restrict our consideration to cubic
regions only. It should be clear, however, that all arguments generalise to arbitrary regions []ÌA L D.

We now turn to showing that the ‘physical corner’ of states satisfying area laws in this strong sense is still very
large: it contains subspaces of dimension (())W -Lexp D 1 .We prove this by providing a specific class of quantum
states that have that property. At the heart of the construction is an embedding of states defined on a (D−1)-
dimensional qubit lattice into theD-dimensional qutrit one. Denote with {∣ ∣ } Ì ñ ñ Ä -

span 1 , 2L
LD 1

the
subspace of translationally invariant states (with respect to periodic boundary conditions) on a (D−1)-

5
For readerswho are not familiar with Turingmachines, a less formal but for our purposes equivalent definition is that a classical description

of ∣yñ is a (classical) computer program that computes the coefficients of ∣yñ in the standard basis. The length of the description is then
simply the length of the program.
6
Recall that theKolmogorov complexity of a classical stringw is the size of the shortest Turingmachine (or computer program) that outputs

w and halts. It can be thought of as the shortest possible (classical) description ofw. For an introduction to Turingmachines andKolmogorov
complexity, see e.g. [24].

3

New J. Phys. 18 (2016) 083026 YGe and J Eisert

dimensional cubic lattice of -LD 1qubits. It is easy to show that ()  --
Ldim 2L

L D 1D 1
.We start from the

simplest translationally invariant construction on ≔ ()  ÄL3 D
and discuss rotational invariance and decaying

correlations below.

Theorem6 (States satisfying strong area laws).There exists an injective linear isometry  f : L with the
property that for all ∣ f ñ ÎL L, (∣)f ñf L satisfies a strong area law and is translationally invariant in all D directions.

Proof.Given a state vector ∣ f ñ ÎL L, define

∣ ≔ ∣ ∣ ∣ ()() () y fñ ñ Ä ñ Ä ñ ÎÄ - Ä -- -
0 0 , 3k L

k L
L

L k L
,

1 D D1 1

with ∣f ñL at the kth hyperplane of the lattice (figure 2). Define

∣ ≔ ∣ ()åy yñ ñ-

=

L , 4L
k

L

k L
1 2

1
,

which is translationally invariant. Any such state vector will satisfy a strong area law (in fact, a sub-area law): for
any cubic subset [] []= ´ ´A l lD1 , we have for the reduced state () ∣ ∣¯y y y= ñátrL A A L L that

(()) () ∣ ∣ ()  å y + = ¶
= ¹

-S l l Alog 2 1 2 , 5L A
l l

D
j

D

k k j
k0 2

1 ,

D1 1

wherewe used that the Schmidt rankwith respect to the bi-partition ¯A A, for each ∣y ñk L, with []Îk lD is atmost
¼ -2l lD1 1, and that since ∣f ñL is only supported on {∣ ∣ }ñ ñspan 1 , 2 , the Schmidt vectors of ∣y ñk L, and ∣y ñ¢k L, are

orthogonal for []¹ ¢ Îk k lD such that in the distinguishedDth direction, the contribution to the Schmidt rank
is additive and thus linear in lD. Setting (∣) ≔ ∣f yñ ñf L L , we see that f has the desired properties.

4. Area laws and approximation by efficiently describable states

Wenowprecisely state whatwe call an approximation of given pure states by polynomially classically described
states.

Definition 7 (Approximation of quantummany-body states).A family of pure states ∣y ñL can be approximated
by polynomially classically described states if for all e > 0, there exist a polynomial p and pure states ∣w ñL with a
classical description of length atmost ()p L such that for all L, ∣ ∣ ∣ ∣  y y w w eñá - ñáL L L L 1 .

Note that this is exactly the sense inwhichmatrix-product states provide an efficient approximation of all
one-dimensional states that satisfy an area law for some Sαwith ()a Î 0, 1 [19].We remark that definition 7 can
beweakenedwithout altering the results.We now turn to themain result:

Theorem8 (Impossibility of approximating area law states). Let ̃L be aHilbert space of dimension
((()))W Lexp poly . Then there exist states in ̃L that cannot be approximated by polynomially classically described

states. In particular, not all translationally invariant strong area law states can be approximated by polynomially
classically described states.

Theorem 8 can be easily proven using a counting argument of  -nets. Indeed, the number of states that can
be parameterised by (())O Lpoly many bits is atmost (())2O Lpoly . However, an  -net covering the space of pure
states in q requires at least () ()e W1 q elements [25], which ismuch larger than (())2O Lpoly if

((()))= Wq Lexp poly (see also [26, 27] on the topic of ε-nets formany-body states). Thus, the set of quantum
states in ̃L that have a polynomial classical description cannot form an ε-net for ̃L, which proves theorem8.

Figure 2. Schematic drawing of ∣y ñL inD=2. ∣f ñL is an arbitrary translationally invariant state vector on -LD 1 qubits with basis
states ∣ ∣ñ ñ1 , 2 in (D−1)-dimensions. Schmidt decompositions for ∣y ñL with respect to bi-partitions of the lattice can be readily
obtained from the corresponding Schmidt decompositions of ∣f ñL .

4

New J. Phys. 18 (2016) 083026 YGe and J Eisert

Wenevertheless also review themore involved proof from [23] using communication complexity in appendix A.
This proof could, due to itsmore constructive nature, provide some insight into the structure of some strong
area law states that cannot be approximated by polynomially classically described states.

4.1. Tensor network states
We saw that our definition of polynomial classical descriptions encompasses all efficient tensor network
descriptions. Thus

Corollary 9 (Tensor network states cannot approximate area law states).There exist translationally invariant
strong area law states that cannot be approximated by polynomial tensor network states in the sense of example 2. In
particular, not all translationally invariant strong area law states can be approximated by polynomial PEPS orMERA
states.

Notice the restriction to tensor networks whose tensor entries have a polynomial Kolmogorov complexity.
This is required to ensure that the tensor network description is in fact polynomial. Indeed, a classical
description depending on only polynomiallymany parameters (())l l¼, , O N1 poly (e.g., a PEPSwith polynomial
bond-dimension) is not necessarily already polynomial—for the latter, it is also necessary that each of the li

themselves can be stored efficiently. The notion of Kolmogorov complexity allows for themost general
definition of tensor networks that can be storedwith polynomial classicalmemory.

4.2.Quantum circuits
Example 3 shows that states prepared by a polynomial quantum circuit with post-selectedmeasurement results
have a polynomial classical description. Thus

Corollary 10 (Post-selected quantum circuits cannot prepare area law states).There exist translationally
invariant strong area law states that cannot be approximated by a polynomial quantum circuit with post-selection in
the sense of example 3.

In the light of the computational power of post-selected quantum computation [28], thismay be
remarkable.

4.3. Eigenstates of localHamiltonians
Example 4 shows that eigenstates of localHamiltonians with bounded interaction strengths also have a
polynomial classical description. Thus

Corollary 11 (Area law states without parentHamiltonian).There exist translationally invariant strong area law
states that cannot be approximated by eigenstates of local Hamiltonians.

5. Rotationally invarant states and area laws

So far, the states in considerationwere translationally but not rotationally invariant. However, by taking the
superposition of appropriate rotations of (4), one can alter the above argument such that all involved states are
also rotationally invariant, i.e. remain invariant under 90° rotations of the lattice. The details of this construction
are given in appendix B.

Corollary 12 (Approximation for translationally and rotationally invariant states).There exist translationally
and rotationally invariant strong area law states that cannot be approximated by polynomially classically described
states. In particular, corollaries 9–11 also hold for translationally and rotationally invariant states.

6.Decaying correlations and area laws

Onemight wonder whether an exponentially dimensional subspace of strong area law states can be constructed
while imposing decaying two-point correlations for distant observables, a property known to occur in ground
states of local gappedHamiltonians [29, 30]. It follows immediately from their definition that the states
constructed in theorem6 (and theorem16 in appendix B) already satisfy an algebraic decay. Indeed, for all L and
all local observables A B, on disjoint supports separated by an arbitrary distance ℓ,

5

New J. Phys. 18 (2016) 083026 YGe and J Eisert

ℓ∣ ∣ ∣ ∣ ∣ ∣ () () ()y y y y y yá ñ - á ñá ñ = =- -AB A B O L O . 6L L L L L L
1 1

Using quantum error-correcting codes, it is however also possible to construct variations of the previous results
such that for all L and all local observables A B, with disjoint supports,

∣ ∣ ∣ ∣ ∣ ∣ ()y y y y y yá ñ - á ñá ñ =AB A B 0. 7L L L L L L

The details of this construction are given in appendix C.

Corollary 13 (Approximation for area law states with vanishing correlations of local observables).There exist
strong area law states with vanishing two-point correlations of all local observables on disjoint supports that cannot be
approximated by polynomially classically described states. In particular, corollaries 9–11 also hold for states with
vanishing correlations of local observables on disjoint supports.

The translationally and rotationally invariant construction only gives algebraic decay (equation (6)).
However, we conjecture that there also exist strong area law states which are translationally and rotationally
invariant and simultaneously have exponentially small correlations for all local observables, but still cannot be
approximated by polynomially classically described states.

7. Conclusion and outlook

Wehave shown that the set of states satisfying an area law in D 2 comprisesmany states that do not have an
efficient classical description: they cannot be described by efficient tensor networks, cannot be prepared by
polynomial quantum circuits with post-selectedmeasurements, and are also not eigenstates of local
Hamiltonians.We have hence proven that the connection between entanglement properties and the existence of
an efficient description is farmore intricate than anticipated. These results are based on the simple observation
that an arbitrary quantum state in (D−1) dimensions that is embedded intoD dimensions satisfies aD-
dimensional area law, thus implying that the set of area law states contains a subspace of exponential dimension.
In otherwords, in D 2, it is possible to ‘dilute’ the entanglement content and still arrive at a strong area law.
We also demonstrated that the exponential scaling persists even if various physical properties, such as
translational and rotational invariance, or decaying correlations of local observables, are imposed.Wenote
however that while the latter can be extended to non-local observables of size ()-O LD 1 , our notion of decaying
correlations is weaker than the exponential clustering property for ground states of gappedHamiltonians, since
this can involve all regions of unbounded size [5, 29]. It remains openwhether our results are impeded if the
stronger notion of exponential decay of correlations is imposed.

Area laws indeed suggest the expected entanglement behaviour of naturally occurring ground states.
However, when put in precise contact with questions of numerical simulation, it turns out that satisfying an area
law alone is not sufficient for efficient approximation. Picking up themetaphor of the introduction, the ‘corner
of states that can be efficiently described’ is tiny compared to the ‘physical corner’ (figure 3).

A particularly exciting perspective arises from the observation that states with small entanglement content
can go alongwith states having divergent bond dimensions in PEPS approximations. Thismay be taken as a
suggestion that theremay be states that are in the same phase if symmetries are imposed, but are being classified
as being in different phases in a classification of phases ofmatter building upon tensor network descriptions [31–
33]. It is the hope that the present work can be taken as a starting point of further endeavours towards
understanding the complexity of quantummany-body states.

Acknowledgments

We thank JICirac, AFerris,MFriesdorf, CGogolin, Y-KLiu, AMolnár, XNi,NSchuch, andHWilming for
helpful discussions.We acknowledge funding from the BMBF, theDFG (EI 519/7-1, CRC183), the EU
(RAQUEL, SIQS, AQuS), and the ERC (TAQ).

AppendixA. Proof of theorem8using communication complexity

Wenow review the alternative proof of theorem8using communication complexity, whichwas given in [23].
Suppose two distant parties, Alice and Bob, each possess an n-bit string, x and y , respectively. No
communication betweenAlice and Bob is allowed, but they can communicate with a third party, Charlie, whose
task is to guess whether or not =x y .We demand that Charliemay guess thewrong answerwith a small (fixed)
probability of atmost d > 0. This is called the equality problem, whichwe denote by ()nEQ .We now state some

6

New J. Phys. 18 (2016) 083026 YGe and J Eisert

known results [23, 34, 35] on the communication complexity, i.e. theminimumamount of communication
required for solving the equality problem.

Lemma14 (Equality problem for classical communication). If Alice and Bob can only send classical information
to Charlie, at least ()W n bits of communication are required to solve ()nEQ .

Lemma15 (Quantum solution to equality problem).

(1)If Alice and Bob can send quantum information to Charlie, there exists a protocol for ()nEQ using only ()O nlog
qubits of communication that is of the following form: Alice and Bob each prepare ()O nlog qubit states ∣ ()ñh x
and7 ∣ ()ñh y , respectively, which they send to Charlie. Charlie then applies a quantum circuit to ∣ () ∣ () ∣ñ ñ ñh hx y 0 ,
followed by ameasurement of a single qubit whose outcome determines Charlie’s guess.

(2)There exists an e > 0 independent of n such that the protocol in (1) still works if instead, Alice and Bob send states
to Charlie which are e-close in trace distance8 to ∣ ()ñh x and ∣ ()ñh y .

Wenow turn to the proof of theorem 8 .

Proof of theorem8.Weprove the claim by contradiction. Suppose that every state vector in ̃L can be
approximated by polynomially classically described states. Then in particular, allM-qubit states can be
approximated by states with a classical description of length (())O Npoly , where ≔ (˜)⎢⎣ ⎥⎦M log dim L2 . Fix

()d Î 0, 1 and let e > 0 be as in lemma 15 (2). By lemma 15 (1), we can choose nwith ()= Qn Mlog such that
M qubits of communication suffice to solve ()nEQ .

By assumption, ∣ ()ñh x and ∣ ()ñh y can be ε-approximated by states which have an (())O Mpoly classical
description. By lemma 15 (2), these states can be used instead of ∣ ()ñh x and ∣ ()ñh y in the quantumprotocol to
solve ()nEQ . Now consider an alternative protocol using only classical communication to solve ()nEQ as
follows: Alice andBob send the classical description of their states toCharlie, who simulates the quantum circuit
and themeasurement from lemma 15 using the classical descriptions of the states. This protocol solves ()nEQ
using only (()) (())=O M O npoly poly log bits of communication, contradicting lemma 14. Finally, by setting
˜ ≔ () fL L with f andL as in theorem6, the second part of theorem8 follows. ,

Appendix B. Translationally and rotationally invariant states

Corollary 12 follows directly from theorem 8 and the following theorem.

Figure 3. (a)The set of area law states is a tiny ‘corner’ of themany-bodyHilbert space. (b)The set of states that can be efficiently
described is tiny compared to the ‘corner’ of area law states.

7
The exact formof ∣ ()ñh x and ∣ ()ñh y is not important for our purpose—wewill only need that they consist of ()O nlog qubits. Interested

readers are referred to [35].
8
This was argued in [23] for the Euclidean vector distance but it is clear that the same holds for the trace distance.

7

New J. Phys. 18 (2016) 083026 YGe and J Eisert

Theorem16 (Translationally and rotationally invariant area law states).There exists an injective linear
isometry  g: L with () (()) = W -Ldim expL

D 1 such that for all ∣ f ñ ÎL L, (∣)f ñg L satisfies a strong area
law and is translationally and rotationally invariant in all D directions.

Theorem 16 can be provenwith aminormodification of the proof of theorem 6. To start with, we replace
∣f ñL for each L by state vector on the translationally invariant subset () Ì Ä -

L
L2 D 1

which is alsomirror
symmetric, i.e. invariant under reflections, in all (D−1) directions. Notice that the exact choice of the plane of
symmetry in a given direction does notmatter sincewe assume ∣f ñL to be translationally invariant.With ∣y ñL as
in (4), we then consider, for the entire []L D lattice, state vectors of the form

∣ ≔ ∣ ()å yY ñ ñ-

=

D , B1L
j

D

j L
1 2

1

where   = ¼, , D1 rotate the entire lattice system such that ∣f ñL is arranged along each line of the cubic lattice
in dimensionD. Such a state is translationally and rotationally invariant, following frommirror symmetry.
These states satisfy a strong area law: for any cubic subset []ÌA L D,

() ∣ ∣ (∣ ∣) ()¯ ¯ † åy y y y y= ñá = ñá-

=

Dtr tr , B2L A A L L
j

D

A j L L j
1

1

since for ¹j k,

(∣ ∣) ()¯ † y yñá =tr 0. B3A j L L k

This can be seen by taking the partial trace with respect to a setCfirst. For simplicity of notation, forD=2,
consider w.l.o.g. distinguished subsets []ÌA L D for which Ç = ÆA C for ≔ []´C L L . Then

(∣ ∣) ∣ ∣ ∣ ()¯ † ¯ ⧹
† åy y y yñá = á ñá ñ=

Î

x xtr tr 0, B4A L L A C
S

L L
x

2 2

where { ∣ []⧹{ }}= $ ¹  = " ÎS j x x k L jx : 0 0j k . An analogous argument holds for any dimensionD.
From these considerations, it follows that the area law is inherited by the area law valid for each individual

∣ y ñj L . It is furthermore clear that the exponential scaling of the dimension is not affected by restricting to the
subspace  ÌL L ofmirror symmetric states. ,

AppendixC. Stateswith vanishing twopoint correlation functions for local observables

Toprove corollary 13, consider a non-degenerate  Dn k, , -quantum error-correcting codeCwith
()= Qk n 1 and ()D = Qn 1 [36]. Here n denotes the block size and k the number of encoded qubits.Δ is the

so-called distance of the code. SinceC is non-degenerate, the reduced densitymatrix of anyD - 1qubits of any
state in the code space ofC ismaximallymixed. By choosing = -n LD 1 and considering

∣ ≔ ∣ () ∣ ()()y cñ ñ Ä ñ - -
C 0 , C1L L

L L1 D 1

where ∣ ()c ñC L is an arbitrary state vector in the code space ofC, we see that for all L and all observables A B, with
disjoint support andwhose joint support in the top hyperplane contains less than ()D = Q -LD 1 sites,

∣ ∣ ∣ ∣ ∣ ∣ ()y y y y y yá ñ - á ñá ñ =AB A B 0. C2L L L L L L

In particular, equation (C2) holds for local observables A B, . Clearly, states of the form (C1) obey a strong area
law and since ()= Q -k LD 1 , we obtain a subspace of dimension (())W -Lexp D 1 of strong area law states with
vanishing correlations of local observables. Corollary 13 now follows from theorem8. ,

References

[1] Eisert J, CramerMandPlenioMB2010Rev.Mod. Phys. 82 277
[2] HastingsMB2007 J. Stat.Mech.P08024
[3] Arad I, Landau Z andVazirani U 2012Phys. Rev.B 85 195145
[4] Arad I, Kitaev A, LandauZ andVazirani U 2013An area law and sub-exponential algorithm for 1d systems (arXiv:1301.1162)
[5] Brandão FGS L andHorodeckiM2013Nat. Phys. 9 721
[6] HuangY 2014Area law in one-dimension: degenerate ground states and renyi entanglement entropy (arXiv:1403.0327)
[7] PlenioMB, Eisert J, Dreissig J andCramerM2005Phys. Rev. Lett. 94 060503
[8] CramerMandEisert J 2006New J. Phys. 8 71
[9] CramerM, Eisert J, PlenioMBandDreissig J 2006Phys. Rev.A 73 012309
[10] AcoleyenKVan,MariënMandVerstraete F 2013Phys. Rev. Lett. 111 170501
[11] MariënM,Audenaert KM,AcoleyenKV andVerstraete F 2014 Entanglement rates and the stability of the area law for the

entanglement entropy (arXiv:1411.0680)
[12] Brandao FG S L andCramerM2015 Entanglement area law from specific heat capacity Phys. Rev.B 92 115134

8

New J. Phys. 18 (2016) 083026 YGe and J Eisert

[13] HastingsMB2007Phys. Rev.B 76 035114
[14] Masanes L 2009Phys. Rev.A 80 052104
[15] de BeaudrapN,OhligerM,Osborne T J and Eisert J 2010Phys. Rev. Lett. 105 060504
[16] Michalakis S 2012 Stability of the area law for the entropy of entanglement (arXiv:1206.6900)
[17] SchollwöckU2011Ann. Phys. 326 96
[18] Verstraete F,MurgV andCirac J I 2008Adv. Phys. 57 143
[19] SchuchN,WolfMM,Verstraete F andCirac J I 2008Phys. Rev. Lett. 100 030504
[20] Verstraete F andCirac J I 2006Phys. Rev.B 73 94423
[21] Verstraete F andCirac J I 2004 arXiv:cond-mat/0407066
[22] Vidal G 2007Phys. Rev. Lett. 99 220405
[23] MoraC, Briegel H andKraus B 2007 Int. J. Quant. Inf. 05 729
[24] LiM andVitányi PM2008An Introduction to Kolmogorov Complexity and Its Applications 3rd edn (Berlin: Springer)
[25] Hayden P 2010Proc. Symp. in AppliedMathematics vol 68
[26] PoulinD,Qarry A, SommaR andVerstraete F 2011Phys. Rev. Lett 106 170501
[27] KlieschM, Barthel T, Gogolin C, KastoryanoMandEisert J 2011Phys. Rev. Lett. 107 120501
[28] Aaronson S 2005Proc. R. Soc.A 461 3473
[29] HastingsMB andKomaT2006Commun.Math. Phys. 265 781
[30] HastingsMB2004Phys. Rev.B 69 104431
[31] ChenX,GuZ-C andWenX-G2011Phys. Rev.B 83 035107
[32] Turner AM, Pollmann F andBerg E 2011Phys. Rev.B 83 075102
[33] SchuchN, Perez-Garcia D andCirac I 2011Phys. Rev.B 84 165139
[34] Newman I and SzegedyM1996Proc. 28thACMSymp. on the Theory of Computing (NewYork: ACM) pp 561–70
[35] BuhrmanH,Cleve R,Watrous J and deWolf R 2001Phys. Rev. Lett. 87 167902
[36] GottesmanD1996Phys. Rev.A 54 1862

9

New J. Phys. 18 (2016) 083026 YGe and J Eisert

A.3 Faster ground state preparation and high-precision ground
energy estimation with fewer qubits

75

Faster ground state preparation and high-precision ground energy
estimation with fewer qubits

Yimin Ge, Jordi Tura, and J. Ignacio Cirac

In this work, we propose a general-purpose quantum algorithm for preparing ground states
of quantum Hamiltonians from a given trial state. Compared with phase estimation, the
runtime of our algorithm is exponentially better as a function of the allowed error, and at
least quadratically better as a function of the overlap with the trial state. Moreover, we also
show that our algorithm requires significantly fewer ancilla qubits than existing algorithms with
comparable runtimes, and we show that it can also be used to determine an unknown ground
energy to high precisions faster than with phase estimation.

The setup in this paper is as follows: for an N × N Hermitian matrix H̃ with spectrum
contained in [0, 1] and known lower bound ∆ to its spectral gap, the aim is to prepare a state
which is ε-close to the ground state |λ0〉 of H̃ from a trial state |φ〉. The latter is given by
a circuit which prepares |φ〉 using Φ gates. We assume that its (generally unknown) overlap
φ0 = 〈λ0|φ〉 with the ground state has a known lower bound χ = e−O(logN). We also assume
the ability to efficiently perform Hamiltonian simulation of H̃ at a “base cost” of Λ gates.

This paper presents several versions of the algorithm for different setups. In the first case, if
the ground energy λ0 is known to a sufficiently good additive precision, Theorem 1 shows that
an ε-close state to |λ0〉〈λ0| can be prepared with constant probability in a gate complexity of
Õ(Λ/(|φ0|∆) + Φ/|φ0|), and using O(logN + log log ε−1 + log ∆−1) qubits. The main idea of
the algorithm, detailed in Section III, is to implement a suitable ground state projector using
the “linear combination of unitaries” (LCU) Lemma. More precisely, we first transform H̃
into a Hamiltonian H such that |λ0〉 is the unique eigenvector of H of eigenvalue ≈ 0, then
approximate cosM H as a linear combination of terms of the form e−iHtk which we then imple-
ment with some amplitude using Hamiltonian simulation and the LCU Lemma (an alternative
approach using Chebyshev polynomials and quantum walks is presented in Appendix D). The
final step is to use amplitude amplification to boost the overlap with the target state.

In Section IV, we present an adaptation of this algorithm to the case where λ0 is not known
beforehand. In that case, Theorem 2 shows that the same task can be achieved in a gate com-
plexity of Õ(Λ/(χ∆3/2)+Φ/(χ

√
∆)) and the same number of qubits. The main new ingredient

for this version is a subroutine which we call minimum label finding (Proposition 1). Roughly
speaking, given a superposition of states entangled with a “label” register, that subroutine finds
the smallest label value amongst the terms with at least a given amplitude. To implement the
ground state projection, we first adapt the previous algorithm into a circuit controlled on an
ancilla register |E〉, which runs the original algorithm assuming that the ground energy were
E. We then divide [0, 1] into L = Õ(∆−1) equally spaced values E0, . . . , EL−1 and run the algo-
rithm with

√
L−1

∑ |Ej〉 on the ancilla register. Using the minimum label finding subroutine,
we then search for the smallest j for which the residual state of |Ej〉 has large norm.

Theorem 3 then shows that this algorithm can also be combined with phase estimation to
obtain a better scaling in ∆ at the expense of worsening the scaling in χ: by using phase
estimation to first obtain a “crude” estimate of the ground energy, a runtime of Õ(Λ/(χ3∆κ) +
Λ/(χ∆(3−κ)/2) + Φ/(χ∆(1−κ)/2)) is obtained, where κ ∈ [0, 1] can be chosen arbitrarily.

When the minimum label finding subroutine in the final step of Theorems 2 or 3 succeeds,
then with high probability, the resulting Ej is a good approximation of the true ground energy.

76

This can be used to find the ground energy to a high precision, which is formally stated in
Theorem 4.

The article also compares our results to previously known algorithms and we show that our
algorithms exhibit the best scaling for both the runtime as well as the number of required
qubits amongst all known ground space projection algorithms. To that end, in the appendices
of this work, the runtime and qubit scalings for some previously known algorithms are analysed
in greater detail than in the original works.

Statement of individual contribution

This work was motivated by several discussions between Jordi Tura, J. Ignacio Cirac, and
myself. It was my idea to implement a suitable ground state projector using the LCU Lemma
in order to extract the ground state from a trial state. Subsequently, with regular advice from
J. Ignacio Cirac and occasional numerical support from Jordi Tura, I worked out the details of
all variants of the algorithm, the minimum label finding subroutine, all proofs involved, as well
as the comparisons to previously known algorithms. I was in charge of writing all parts of this
article.

I, Yimin Ge, am the principal author of this article and was extensively involved in all parts of it.

77

Permission to include:

Yimin Ge, Jordi Tura, and J. Ignacio Cirac.
Faster ground state preparation and high-precision ground energy estimation with fewer
qubits.
Journal of Mathematical Physics, 60, 022202 (2019).

Reproduced from Yimin Ge, Jordi Tura, and J. Ignacio Cirac, Faster ground state preparation and

high-precision ground energy estimation with fewer qubits, Journal of Mathematical Physics, 60, 022202

(2019), with the permission of AIP Publishing

78

https://publishing.aip.org/resources/researchers/rights-and-permissions/permissions/ 03/12/2019

Permission to Reuse Content
REUSING AIP PUBLISHING CONTENT

Permission from AIP Publishing is required to:

 republish content (e.g., excerpts, figures, tables) if you are not the author

 modify, adapt, or redraw materials for another publication

 systematically reproduce content

 store or distribute content electronically

 copy content for promotional purposes

To request permission to reuse AIP Publishing content, use RightsLink® for the fastest response or
contact AIP Publishing directly at rights@aip.org and we will respond within one week:

For RightsLink, use Scitation to access the article you wish to license, and click on the Reprints and
Permissions link under the TOOLS tab. (For assistance click the “Help” button in the top right corner
of the RightsLink page.)

To send a permission request to rights@aip.org, please include the following:

 Citation information for the article containing the material you wish to reuse

 A description of the material you wish to reuse, including figure and/or table numbers

 The title, authors, name of the publisher, and expected publication date of the new work

 The format(s) the new work will appear in (e.g., print, electronic, CD-ROM)

 How the new work will be distributed and whether it will be offered for sale

Authors do not need permission from AIP Publishing to:

 quote from a publication (please include the material in quotation marks and provide the
customary acknowledgment of the source)

 reuse any materials that are licensed under a Creative Commons CC BY license (please format
your credit line: “Author names, Journal Titles, Vol.#, Article ID#, Year of Publication; licensed
under a Creative Commons Attribution (CC BY) license.”)

 reuse your own AIP Publishing article in your thesis or dissertation (please format your credit
line: “Reproduced from [FULL CITATION], with the permission of AIP Publishing”)

 reuse content that appears in an AIP Publishing journal for republication in another AIP
Publishing journal (please format your credit line: “Reproduced from [FULL CITATION], with
the permission of AIP Publishing”)

 make multiple copies of articles–although you must contact the Copyright Clearance Center
(CCC) at www.copyright.com to do this

(…)

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Faster ground state preparation
and high-precision ground energy
estimation with fewer qubits

Cite as: J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484
Submitted: 2 March 2018 • Accepted: 3 January 2019 •
Published Online: 6 February 2019

Yimin Ge, Jordi Tura, and J. Ignacio Cirac

AFFILIATIONS
Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany

ABSTRACT
We propose a general-purpose quantum algorithm for preparing ground states of quantum Hamiltonians from a given trial state.
The algorithm is based on techniques recently developed in the context of solving the quantum linear system problem. We show
that, compared to algorithms based on phase estimation, the runtime of our algorithm is exponentially better as a function of the
allowed error, and at least quadratically better as a function of the overlap with the trial state. We also show that our algorithm
requires fewer ancilla qubits than existing algorithms, making it attractive for early applications of small quantum computers.
Additionally, it can be used to determine an unknown ground energy faster than with phase estimation if a very high precision is
required.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5027484

I. INTRODUCTION
Quantum computers are expected to have a deep impact on the simulation of large quantum systems, as originally envisioned

by Feynman.1 Of particular interest is the potential ability to study both the dynamics and low energy properties of many-
body quantum systems, which are usually inaccessible classically due to the exponential dimension of the underlying Hilbert
space. Quantum computers do not suffer from this representability problem, as one can store states in a number of qubits
that only scale logarithmically with that dimension. This fact can be used to develop very efficient algorithms to simulate the
dynamics of quantum systems.2–6 However, preparing certain physically relevant states, like the ground state of a many-body
Hamiltonian, may be significantly more difficult. This can be seen as a consequence of ground state preparation likely being hard
in full generality, as indeed many variations of ground state energy problems have been proven to be complete for the class
QMA.7 Nevertheless, preparing ground states of Hamiltonians has profound applications in several fields of science so that more
efficient quantum algorithms than the ones existing8–10 are highly desired. This could allow one, for instance, to prepare the
initial states that are required to simulate quenches in quantum many-body systems, thus enabling the study of many intriguing
and not fully understood phenomena, such as many-body localisation11 or the presence of thermalisation in closed systems,12

with quantum computers. The other applications include single-copy tomography13 and the construction of QMA witnesses.9
Furthermore, the ability to determine the ground energy of a Hamiltonian to a high precision also possesses many applications
in the fields of physics and quantum chemistry,14 and possibly even in quantum machine learning.15

Most existing quantum algorithms for ground state preparation are based on one of two methods. First, one could naively
attempt to project a trial state |φ〉 onto the ground state by measuring the energy of |φ〉 using the phase estimation algorithm.8
The probability of success is proportional to |φ0|2, where φ0 is the overlap of |φ〉 with the ground state. Furthermore, straightfor-
ward application of phase estimation becomes expensive if a very high fidelity of the prepared state with the real ground state is
required. A second class of algorithms is based on variants of the adiabatic algorithm.16 Here, the target Hamiltonian H(1) is con-
nected to a trivial Hamiltonian H(0) via a path H(s), which is slowly changed from H(0) to H(1). The adiabatic theorem guarantees
that if the initial state is the ground state of H(0), which is assumed to be easily prepared, then for sufficiently long runtimes, the

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-1

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

final state will be close to the ground state of H(1). Rigorous bounds17 on the runtime however depend inverse polynomially on
the minimum spectral gap along the entire path H(s), which is generally exponentially small and moreover extremely difficult to
calculate or bound in practice. Thus, adiabatic algorithms are often only employed as heuristic methods to first obtain a state with
(hopefully) non-trivial overlap with the ground state, which can then subsequently be used as the trial state in phase estimation.18

This approach is expected to work significantly better than just using random trial states and is the current paradigm, e.g., for
quantum chemistry applications.14

In this paper, we propose a quantum algorithm that significantly improves the part played by phase estimation in this
approach. More generally, we consider the problem of preparing a good approximation of the ground state from a given trial
state. We show that compared to using phase estimation, the runtime of our ground state preparation algorithm scales expo-
nentially better in the allowed error to the real ground state, and polynomially better with the spectral gap and the overlap
of the trial state with the ground state. We also show that, in case the ground energy is not known beforehand, the same
algorithm can be used to obtain a good estimate of the ground energy to a high precision faster than is possible with phase
estimation.

Unlike algorithms based on the adiabatic theorem, whose runtimes always depend on the minimum spectral gap along an
entire path of Hamiltonians, all algorithms analysed in this paper only require a lower bound on the spectral gap of the target
Hamiltonian. This is a significantly weaker assumption, and indeed, for many systems of interest such as in typical critical points,
this gap is known to scale only inverse polynomially with the system size.

The outline of the remainder of the paper is as follows: in Sec. II, we give an overview of the results and a high-level
overview of the ideas. In Sec. III, we give the technical details of the algorithm in case the ground energy is known before-
hand. In Sec. IV, we present the technical details of the algorithm for both ground state preparation and high-precision ground
energy estimation, in case the ground energy is unknown beforehand. We close the main part of the paper with some conclud-
ing remarks and open questions in Sec. V. Appendix A analyses the cost of finding the ground energy with phase estimation.
In Appendix B, we demonstrate that if phase estimation is used for ground state preparation, an extremely precise estimate of
the ground energy is required beforehand, and analyse the cost of doing so. In Appendix C, we analyse the filtering algorithm
from Ref. 9. Finally, in Appendix D, we sketch an alternative approach (inspired by the “Chebyshev method” of Ref. 19) to the
problem.

II. OVERVIEW OF RESULTS
Throughout this paper, let H̃ be an N ×N Hermitian matrix such that its spectrum is contained in [0, 1]. We assume that we are

given the ability to efficiently perform Hamiltonian simulation of H̃. More precisely, we require that e±iH̃t can be approximated
to error ε ′ using O(Λtpolylog(N, 1/ε ′)) elementary gates,20 where Λ is the “base cost” of the simulation (e.g., if the simulation
algorithm works in the oracle model4 then Λ is the gate cost of the oracles). Let λ0 be the lowest eigenvalue of H̃ and |λ0〉

be the corresponding eigenstate. For simplicity of notation, we will assume that λ0 is non-degenerate (all results in this paper
trivially generalise to the case when λ0 is degenerate, see Sec. V). Suppose that ∆ is a known lower bound on the spectral gap
of H̃.

Suppose moreover that we are given a circuit Cφ using Φ elementary gates which prepares a trial state |φ〉. Let φ0 B 〈λ0 |φ〉

be its (generally unknown) overlap with the ground state and χ be a known lower bound on |φ0|. We will assume that χ = e−O(log N)

throughout this paper. Notice that this is an extremely weak assumption, indeed, this is satisfied even for random states with
high probability. The aim of this paper is to prepare a state ε-close to |λ0〉 by (approximately) projecting |φ〉 onto its ground state
component.

Throughout this paper, we will use the computer science convention for the big-O notation. We furthermore use Õ to
denote the complexity up to polylogarithmic factors in N, ∆−1, ε−1, |φ0|−1, and χ−1. Our first result can now be stated as
follows:

Theorem 1 (Ground state preparation for known ground energy). Suppose that λ0 is known to an additive precision of
O(∆/ log 1

χε), i.e., there exists a known real number E > 0 such that |λ0 − E | = O(∆/ log 1
χε) with certainty. Then, an ε-close state

to |λ0〉〈λ0 | can be prepared with constant probability in a gate complexity of

Õ
(
Λ

|φ0|∆
+
Φ

|φ0|

)
(1)

and using

O
(
log N + log log

1
ε

+ log
1
∆

)
(2)

qubits. Moreover, a flag qubit indicates success.

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-2

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Although other quantum algorithms for this or similar purposes have previously been proposed,8–10 to the best of our knowl-
edge, the algorithm in this paper, for the case of known ground energy, exhibits the best scaling for both the runtime and the
number of qubits amongst all existing algorithms so far (see Table I). For example, the common approach of combining phase
estimation with amplitude amplification21 has a runtime that is exponentially worse in ε and moreover quadratically worse in
|φ0| (see Appendix B). In fact, an inverse polynomial dependence on ε is common to almost all algorithms that are based on phase
estimation.8,10 To the best of our knowledge, the only exception is a filtering method proposed by Poulin and Wocjan,9 which
was originally designed to quadratically improve the runtime dependence on |φ0| to obtain a state with low expected energy, and
which, as we prove in Appendix C, can also be used to obtain the ground state with a runtime scaling that is polylogarithmic in ε−1

with a suitable choice of parameters. This however comes at the cost of requiring significantly more ancilla qubits, which makes
it challenging for early applications of small quantum computers.

The algorithm can also be adapted for the case when the ground energy is not known beforehand.

Theorem 2 (Ground state preparation for unknown ground energy). If the ground energy is not known beforehand and
χ = e−O(log N), the same task as in Theorem 1 can be achieved in a gate complexity of

Õ*
,

Λ

χ∆3/2
+
Φ

χ
√
∆

+
-

(3)

and the same number (2) of qubits.

Provided Φ is not too large (which can be assumed in most practical scenarios), our algorithm for the case of unknown
ground energy also has a better runtime scaling than naive phase estimation and uses significantly fewer qubits than an adaption
of Poulin and Wocjan’s filtering method9 for this task [see Table II(a)].

Furthermore, for very small ∆, we show that alternatively, the scaling in ∆ can be improved to ∼1/∆ at the expense of wors-
ening the scaling in χ by combining our algorithm with a prior run of phase estimation to first obtain an estimate of the ground
energy.

Theorem 3 (Combined algorithm for ground state preparation). If χ = e−O(log N), the same task as in Theorem 2 can be achieved
in a gate complexity of

Õ
(
Λ

χ3∆κ
+

Λ

χ∆(3−κ)/2
+

Φ

χ∆(1−κ)/2

)
(4)

for any choice of κ ∈ [0, 1], and the same number (2) of qubits.

In particular, choosing κ = 1 in Theorem 3 yields the optimal scaling in ∆ of ∼1/∆.
We show moreover that, with high probability, the algorithms for the case of unknown ground energy also find the ground

energy to a precision of Õ(∆). Since ∆ can be any reliable lower bound on the spectral gap, this yields a general algorithm for
estimating the energy.

Theorem 4 (High-precision ground energy estimation). Let ξ = Õ(∆). If χ = e−O(log N), then we can find a real number E such
that |E − λ0| < ξ with constant probability in a gate complexity of

Õ
(
Λ

χξ3/2
+
Φ

χ
√
ξ

)
, (5)

TABLE I. Algorithms for ground state preparation for the case when the ground energy is known beforehand to the required precision.

Preparation (ground energy known) Gates Qubits Required precision

This paper Õ
(
Λ

|φ0|∆
+
Φ

|φ0|

)
O

(
log N + log log

1
ε

+ log
1
∆

)
Õ(∆)

Phase estimation + amp. amplif. Õ
(
Λ

|φ0|
2∆ε

+
Φ

|φ0|

)
O

(
log N + log

1
ε

+ log
1
∆

)
O(|φ0|ε∆)

Filtering (Poulin and Wocjan) Õ
(
Λ

|φ0|∆
+
Φ

|φ0|

)
O*.

,
log N + log

1
ε

+
log 1

χε

log log 1
χε

× log
1
∆

+/
-

Õ(∆)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-3

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

TABLE II. Algorithms in case the ground energy is not known beforehand. (a) Algorithms for ground state preparation. (b) Algorithms for estimating the ground energy to a
precision of ξ � ∆. The minimum label finding algorithm is a subroutine that we describe in Sec. IV A. The combined approaches have been adjusted to yield the optimal
scaling in ∆ and ξ , respectively.

Gates Qubits

(a) Preparation (ground energy unknown)

This paper Õ*
,

Λ

χ∆3/2
+
Φ

χ
√
∆

+
-

O
(
log N + log log

1
ε

+ log
1
∆

)

Phase estimation + min. label finding Õ
(
Λ

χ4∆ε
+
Φ

χ

)
O

(
log N + log

1
ε

+ log
1
∆

)

Filtering + min. label finding Õ*
,

Λ

χ∆3/2
+
Φ

χ
√
∆

+
-

O*.
,
log N + log

1
ε

+
log 1

χε

log log 1
χε

× log
1
∆

+/
-

Combined approaches

This paper + phase estimation Õ
(
Λ

χ3∆
+
Φ

χ

)
O

(
log N + log

1
ε

+ log
1
∆

)

Filtering + phase estimation Õ
(
Λ

χ3∆
+
Φ

χ

)
O*.

,
log N + log

1
ε

+
log 1

χε

log log 1
χε

× log
1
∆

+/
-

(b) Ground energy estimation

This paper Õ
(
Λ

χξ3/2
+
Φ

χ
√
ξ

)
O

(
log N + log

1
ξ

)

Phase estimation + min. label finding Õ
(
Λ

χ3ξ
+
Φ

χ

)
O

(
log N + log

1
ξ

)

Filtering + min. label finding Õ
(
Λ

χξ3/2
+
Φ

χ
√
ξ

)
O*.

,
log N +

log 1
χ

log log 1
χ

× log
1
ξ

+/
-

Combined approaches

This paper + phase estimation Õ
(
Λ

χ3ξ
+
Φ

χ

)
O

(
log N + log

1
ξ

)

Filtering + phase estimation Õ
(
Λ

χ3ξ
+
Φ

χ

)
O*.

,
log N +

log 1
χ

log log 1
χ

× log
1
ξ

+/
-

using O(log N + log ξ−1) qubits. Alternatively, the combined approach of Theorem 3 achieves this task in a gate complexity of

Õ
(
Λ

χ3ξ κ
+

Λ

χξ (3−κ)/2
+

Φ

χξ (1−κ)/2

)
(6)

and the same number of qubits.

Provided that Φ is not too large, this also scales better than performing the same task with phase estimation and amplitude
amplification [see Table II(b)].

In terms of query complexities, the coefficients of Φ and Λ in Tables I and II are, up to polylogarithmic factors, the number of
calls to Cφ and (unit time) Hamiltonian simulation, respectively. Note that the qubit requirements stated in Tables I and II exclude
ancilla qubits required to perform Hamiltonian simulation.22

Our algorithms are inspired by classical power iteration methods.23 They are based on techniques (termed the
“Fourier method”) that were recently developed for the quantum linear systems problem19 and are based on the obser-
vation that the Linear Combination of Unitaries, or LCU Lemma,4 can be used to implement other functions of a
Hamiltonian.24

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-4

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

We now briefly outline the basic idea of the algorithms. It is easy to see that for positive-semidefinite H with non-degenerate
lowest eigenvalue 0, high powers of cos H approximately project any given state into a state proportional to the unique ground
state of H. In case the ground energy of H̃ is known, H̃ can be easily transformed into another Hamiltonian H such that |λ0〉 is the
unique eigenvector of H of eigenvalue ≈0. The outline of the algorithm in that case is as follows:

1. Approximate cosM H as a linear combination of terms of the form e−iHtk .
2. Using the techniques in Ref. 19, we implement this linear combination with some amplitude using Hamiltonian simulation

and the LCU lemma.
3. We use amplitude amplification to boost the overlap with the target state. Alternatively, the fixed point search algorithm25

can be used for this step.

The outline of the algorithm in case the ground energy is unknown beforehand is as follows:

1. Adapt the previous algorithm into a circuit controlled on an ancilla register |E〉, which runs steps 1 and 2 of the previous
algorithm, assuming that the ground energy were E.

2. Divide [0, 1] into L = Õ(∆−1) equally spaced values E0, . . ., EL−1. Run the algorithm with
√

L−1 ∑���Ej
〉

on the ancilla register.
3. Use the minimum label finding algorithm (Sec. IV A) to search for the smallest j such the residual state of |Ej〉 has large norm.
4. When this search succeeds, then with high probability the resulting Ej is within ξ of the true ground energy and the residual

state is a good approximation of the ground state.

The outline of the combined approaches is as follows:

1. Use phase estimation and amplitude amplification to obtain a “crude” estimate of the ground energy. This provides an
interval I which is known to contain the real ground energy.

2. Take L ≈ |I|/ξ equally spaced values E0, E1, . . ., EL−1 in I, and run the previous algorithm with these values of Ej.

III. ALGORITHM FOR THE CASE OF KNOWN GROUND ENERGY
In this section, we present the main technical analysis of our algorithm and prove Theorem 1. The method presented here is

based on the observation that if the ground energy of H ≥ 0 is close to 0, then high powers of cos H are approximately proportional
to projectors onto the ground state:

Lemma 1. Let E ∈ [0, λ0] and τ ∈ [0, 1/2] be arbitrary, and let H B H̃ − (E − τ)1. Then

cosM H |φ〉
‖ cosM H |φ〉‖

− |λ0〉

= O(ε), (7)

provided that

M = Ω
(

1
∆(τ + δE)

log
1
|φ0|ε

)
, (8)

where δE B λ0 − E.

Proof. We have

cosM H |φ〉 = φ0 cosM(τ + δE)
(
|λ0〉 +

1
φ0

cosM H
cosM(τ + δE)

|λ⊥0 〉

)
. (9)

The norm of the second term is bounded by |φ0|
−1e−Ω(M(τ+δE)∆). Indeed, since cos x is concave and decreasing on [τ, 1 + τ],

cosM H

cosM(τ + δE)
|λ⊥0 〉

<

(
cos(τ + δE) − sin(τ + δE)∆

cos(τ + δE)

)M

, (10)

= (1 − tan(τ + δE)∆)M, (11)

= e−Ω(M tan(τ+δE)∆) = e−Ω(M(τ+δE)∆), (12)

where in the last step we used tan x ≥ x for x ∈ [0, 1 + τ]. Thus, Eq. (8) implies Eq. (7). ◽

Note that δE is not required to be small in Lemma 1.

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-5

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Proof of Theorem 1. Suppose that the value of λ0 is known to a precision of δ = O
(
∆/ log 1

χε

)
with certainty, and let E be a

known value such that 0 ≤ E ≤ λ0 and δE B λ0 − E < δ. Define H B H̃ − (E − τ)1 for some small value of τ chosen below. Then,
|λ0〉 is the (unique) ground state of H with eigenvalue τ + δE, and by assumption all other eigenvalues of H are ≥τ + δE + ∆. Using
Lemma 1,

cosM H |φ〉
‖ cosM H |φ〉‖

− |λ0〉

= O(ε), (13)

provided that

M = Ω
(

1
∆(τ + δE)

log
1
|φ0|ε

)
. (14)

On the other hand, using that cos x > 1 − x2/2,

cosM(τ + δE) > *
,
1 −

(τ + δE)2

2
+
-

M

(15)

= e−O((τ+δE)2M). (16)

Thus,

‖ cosM H |φ〉‖ = Ω(|φ0|), (17)

provided that τ + δE = O(1/
√

M). Hence, since by assumption δE < δ, choosing

τ = Θ
*.
,

∆

log 1
χε

+/
-

(18)

and

M = Θ
(

1
∆2

log2 1
χε

)
(19)

satisfies both (13) and (17).
Our aim in the following is to prepare cosM H |φ〉. The strategy we employ is as follows: First, we approximate cosM H as a

linear combination of few unitaries of the form e−iHtk for suitable values of tk. Second, we implement this linear combination with
some amplitude using Hamiltonian simulation and the LCU lemma.4 Third, we use amplitude amplification or fixed point search
to boost the overlap with the target state.

In the following, assume for simplicity that M = 2m is even (the algorithm can be adapted to odd M with minor modifications).
Observe that

cos2m x =
(

eix + e−ix

2

)2m

= 2−2m
m∑

k=−m

(
2m

m + k

)
e2ikx. (20)

Note that

2−2m
m∑

k=m0+1

(
2m

m + k

)
≤ e−m2

0/4m. (21)

Indeed, the LHS is the probability of seeing more than m + m0 heads when flipping 2m coins, and (21) follows from the Chernoff
bound. Thus,

cos2m H =
m0∑

k=−m0

αke−2iHk + O(χε), (22)

where

αk B 2−2m
(

2m
m + k

)
(23)

and

m0 = Θ
*.
,

√
M log

1
χε

+/
-
= Θ

(
1
∆

log3/2 1
χε

)
. (24)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-6

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Next, e−2iHk can be implemented using Hamiltonian simulation algorithms. To implement the RHS of (22), we employ the LCU
lemma: let B be a circuit on b B d log2(2m0 + 1) e qubits that maps |0〉⊗b to

B |0〉⊗b B
1
√
α

m0∑
k=−m0

√
αk

��k
〉
, (25)

where α =
∑m0

k=−m0
αk and let U be the controlled Hamiltonian simulation U��k

〉
|φ〉 = ��k

〉
e−2iHk |φ〉. Then,

(B† ⊗ 1)U(B ⊗ 1) |φ〉 =
1
α
|0〉⊗b

m0∑
k=−m0

αke−2iHk |φ〉 + |R〉, (26)

where (|0〉〈0 |⊗b ⊗ 1) |R〉 = 0.
The final step of the algorithm is to boost the overlap with amplitude amplification or fixed point search. Measuring the

ancillas will then project the state onto

|λ′0〉 B

∑m0
k=−m0

αke−2iHk |φ〉

‖
∑m0

k=−m0
αke−2iHk |φ〉‖

(27)

with probability close to 1. From (22), ∑m0
k=−m0

αke−2iHk |φ〉

‖
∑m0

k=−m0
αke−2iHk |φ〉‖

=
cos2m H |φ〉
‖ cos2m H |φ〉‖

+ O(ε). (28)

Thus, (13) implies

|λ′0〉 = |λ0〉 + O(ε), (29)

as required. Eq. (17) implies that the number of repetitions is O
(
α/‖

∑m0
k=−m0

αke−2iHk |φ〉‖
)
= O(α/ |φ0|).

We now calculate the gate count of the entire algorithm. First note that B can be implemented with O(2b) = O(m0) elementary
gates.26 Next, the gate cost to implement e±2iH to accuracy ε ′ in operator norm is O(Λpolylog(N, 1

ε ′)), depending on the precise
model and Hamiltonian simulation algorithm used (see Table 1 of Ref. 6 for an overview). Here, we require ε ′ = O(ε |φ0|/m0). Thus,
the gate cost of U is O(m0Λpolylog(N, m0

ε |φ0|
)) (Lemma 8 of Ref. 19). Note that Hamiltonian simulation with respect to H can be

trivially obtained from Hamiltonian simulation with respect to H̃, either by a phase shift or absorbing these phases into the values
of the αk. Finally, note that α = O(1), and each iteration of amplitude amplification or fixed point search requires O(1) uses of Cφ ,
B, and U. The final gate complexity is thus

O
(

1
|φ0|

(
m0Λpolylog

(
N,

m0

ε |φ0|

)
+ Φ

))
= O

(
Λ

|φ0|∆
polylog

(
N,

1
∆

,
1
|φ0|ε

)
+
Φ

|φ0|

)
. (30)

Note that if fixed point search is used for the final step, we also require a good lower bound of |φ0|. However, we can simply
run the algorithm with O(1/χ′) repetitions in fixed point search for χ′ = 1, 1

2 , 1
4 , . . . until we successfully project the ancillas

into |0〉⊗(b+q). Indeed, this only results in an overall multiplicative overhead of O(log 1/|φ0|), yielding (1). Moreover, whenever we
succeed, the resulting state is |λ′0〉 independently of the value of χ′ that was used. The number of ancilla qubits required is b plus
any ancillas necessary for performing Hamiltonian simulation. Note that the number of ancilla qubits required for implementing
U is essentially the same as the number of ancilla qubits required for a single run of e±2iH̃, since the latter can be re-used. Thus,
the total number of qubits required is given by (2), plus any ancilla qubits required for Hamiltonian simulation (see also Table 1 of
Ref. 6). This proves Theorem 1. ◽

IV. ALGORITHM FOR THE CASE OF UNKNOWN GROUND ENERGY
The algorithm of Theorem 1 presented in Sec. III requires an estimate E of λ0 to a precision of O(1/

√
M). Since E can simply

be viewed as an input parameter, the algorithm can in principle also be run with different values of E. It is easy to see that for
any E ∈ [0, λ0], the algorithm would, if successful, produce a good approximation of |λ0〉 but may have an exponentially small
probability of success. Thus, if the ground energy is not known beforehand, one could simply run the algorithm for increasing
values of E, using a step size O(1/

√
M) and stop when first successful. It is moreover easy to see that the value of E at which we

first succeed is with high probability a good estimate of λ0. Clearly, the runtime of this algorithm would result in an overall factor
of O(

√
M) = Õ(1/∆) compared to Eq. (1).

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-7

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

It turns out that this “classical search” for the correct value of E can be replaced by a “quantum search” that quadratically
improves the overhead from O(

√
M) to Õ(4√M). We call this search the minimum label finding algorithm, which we describe in

Sec. IV A as a general subroutine, and which may be of independent interest. We then apply this algorithm to the ground state
preparation and ground energy estimation problem in Sec. IV B.

A. Minimum label finding
In this section, we describe a general subroutine to find the minimum “label” in an ancilla register amongst terms with at

least some given amplitude in a given superposition. To motivate this result, consider the following scenario. Suppose we have
L unitaries U0, . . ., UL−1 that prepare the states Ui |0〉 |0〉 = |0〉 |Φi〉 + |Ri〉, where (|0〉〈0 | ⊗ 1) |Ri〉 = 0. Let χ ∈ (0, 1) be a known real
number. Suppose we want to approximately find the smallest i (or alternatively, prepare the corresponding |Φi〉) such that ‖|Φi〉‖

≥ χ. The naive way to do this is to use amplitude estimation (or fixed point search) to increase the amplitude of |0〉 on the first
register of Ui |0〉 |0〉 for i = 0, 1, . . ., each time using only O(1/χ) repetitions of Ui, until we first succeed. This requires Õ(L/χ)
calls to the individual Ui ’s in total. Below, we show that a quadratic improvement in L to Õ(

√
L/χ) can be achieved, provided that

performing the controlled version U =
∑

i |i〉〈i | ⊗Ui can be done with essentially the same cost as the individual Ui ’s. The algorithm
is based on a simple binary search technique to successively find the binary digits of the smallest “label” i amongst the terms in
the superposition

√
L−1 |0〉

∑
i |i〉 |Φi〉 + |R〉 with a norm of at least χ/

√
L.

Proposition 1 (Minimum label finding). Let CΦ be a circuit on q + n + m qubits that prepares the state

|Φ〉 B CΦ |0〉⊗(q+n+m) = |0〉⊗q
2n−1∑
i=0

|i〉 |Φi〉 + |R〉, (31)

where |Φi〉 are non-normalised m-qubit states and |R〉 has no overlap with |0〉⊗q on the first q qubits. Let ζ ∈ (0, 1) and δ ∈ (0, 1/4) be
known real numbers, and let J̃, J ∈ {0, . . . , 2n − 1} be (unknown) integers such that ‖|ΦJ〉‖≥ ζ and

J̃∑
i=0

‖ |Φi〉‖
2 < ζ2 δ

8n log2
n
δ ln2 (

4n
δ log2

n
δ

) . (32)

Then, there exists a quantum algorithm on q + n + m + 1 qubits which, with probability at least 1 − 4δ, prepares the state | j〉 |Φj〉/‖ |Φj〉‖

for some j ∈ [J̃, J], and which uses

O
(

n
ζ

log2 n
δ

)
(33)

calls to CΦ and

O
(

poly(q, n, m)
ζ

log2 n
δ

)
(34)

additional elementary gates.

Note that at the end of the algorithm, the register containing j is in a computational basis state and that the state |Φj〉/‖|Φj〉‖

is prepared exactly.
The minimum label finding algorithm uses the fixed-point search algorithm,25 which can be thought of as a variation of

amplitude amplification, with the additional features that it is not possible to “overshoot” the target state, and that only a lower
bound on the initial overlap is required to be known. More precisely, let C be a circuit on n′ qubits that prepares the state
C |0〉⊗n′ = λ |T〉 +

√
1 − λ2 |T̄〉 with 〈T |T̄〉 = 0, and U be a unitary that satisfies U |T〉��b

〉
= |T〉 |1 − b〉 and U |T̄〉��b

〉
= |T̄〉��b

〉
for b ∈ {0, 1}.

Then, given input parameters λ′, δ ∈ (0, 1), the fixed point search FPS(C, U,λ′, δ) is a circuit on n′ + 1 qubits using O(log(1/δ)/λ′)
calls to C,C†, U and O(n′2 log(1/δ)/λ′) elementary gates such that the following hold:27

Lemma 2. (i) If λ ≥ λ′, then |〈T, 0 |FPS(C, U,λ′, δ) |0〉⊗(n′+1)|2 ≥ 1 − δ2.
(ii) If λ ≤ λ′, then |〈T, 0 |FPS(C, U,λ′, δ) |0〉⊗(n′+1)| ≤ 2 λ

λ′ ln 2
δ .

Proof. Part (i) is the central result proven in Ref. 25. To prove part (ii), let t B d 1
λ′ ln 2

δ e be the number of calls to C. From
Eq. (1) of Ref. 25, the success probability P can be expressed in terms of (generalised) Chebyshev polynomials Tt(x) of the first
kind,

P B |〈T, 0 |FPS(C, U,λ′, δ) |0〉⊗(n′+1)|2 = 1 − δ2Tt

(
T1/t(1/δ)

√
1 − λ2

)2
. (35)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-8

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Without loss of generality, assume that t ≥ 5, so t(t + 1) ≤ 2
(

1
λ′ ln 2

δ

)2
. It thus suffices to prove that P ≤ 2t(t + 1)λ2. Write λ = sin θ

and τ B T1/t(1/δ) = cosh(t−1 arccosh(1/δ)) ≥ 1. Note that Tt(τ) = 1/δ. Then, using the mean value theorem on the function Tt(x)2, we
obtain

P = 1 −
Tt(τ cos θ)2

Tt(τ)2
, (36)

= τ(1 − cos θ)
2Tt(ξ)T ′t (ξ)

Tt(τ)2
, (37)

= tτ(1 − cos θ)
2Tt(ξ)Ut−1(ξ)

Tt(τ)2
(38)

for some ξ ∈ [τ cos θ, τ], where we used that T ′t (x) = tUt−1(x) and Ut(x) are the (generalised) Chebyshev polynomials of the second
kind. Note that since τ ≥ 1 and ξ ≤ τ, |Tt(ξ) | ≤ Tt(τ) and |Ut−1(ξ) | ≤ Ut−1(τ). Indeed, both Tt(x) and Ut−1(x) attain their maximum
moduli on [−1, 1] at x = 1 and are monotonically increasing on [1, ∞). Finally, using the relations

Ut(τ) =




1 + 2
∑t/2

k=1 T2k(τ), t even,

2
∑(t−1)/2

k=0 T2k+1(τ), t odd
(39)

and 0 < Tk′ (τ) ≤ Tk(τ) for k′ ≤ k and τ ≥ 1, we obtain

2τUt−1(τ) = Ut(τ) + Ut−2(τ) ≤ 2Ut(τ) ≤ 2(t + 1)Tt(τ). (40)

Hence,

P ≤ 2t(t + 1)(1 − cos θ) ≤ 2t(t + 1) sin2 θ = 2t(t + 1)λ2, (41)
as claimed. ◽

Proof of Proposition 1. The algorithm proceeds by successively attempting to find the binary digits a1, . . ., an ∈ {0, 1} of an
integer such that 2n−1a1 + · · · + an ∈ [J̃, J]. The algorithm runs in two stages. Broadly, the first stage of the algorithm tries to find a
sufficient number of leading digits a1, . . ., ak, while the second stage then attempts to prepare the state |j〉 |Φj〉 for some j ∈ [J̃, J].
Concretely, the algorithm runs as follows: in the first stage, suppose that a1, . . ., ak−1 have already been found. To obtain ak, we
use fixed point search25 to search for |0〉⊗q|a1 . . . ak−10〉 on the first q + k qubits, using at most O(1

ζ log 1
δ′) repetitions of CΦ. We

repeat this search K times. We choose δ′ = δ/(2n log2(n/δ)) and K = d log2(n/δ) e. If it succeeds all K times, we set ak = 0 and
move on to the next digit ak+1 (unless k = n, in which case the algorithm terminates). Otherwise, we search K times for |0〉⊗q|a1 . . .

ak−11〉 on the first q + k qubits. If we succeed all K times, we set ak = 1 and move on to the next digit ak+1 (unless k = n, in which
case the algorithm terminates). If we fail at least once, we say that the result is “inconclusive,” and we abort the first stage of the
algorithm and move on. In the second stage of the algorithm, we successively search for |0〉⊗q|a1 . . . ak−1〉, |0〉⊗q|a1 . . . ak−2〉, etc.,
where each search is repeated K times, using O(1

ζ log 1
δ′) calls to CΦ, until we succeed at least once. Once successful, we measure

the remaining ancillas and the algorithm terminates.
We now show that this algorithm produces the required results. Let J = 2n−1b1 + 2n−2b2 + · · · + bn and J̃ = 2n−1c1 +2n−2c2 + · · ·+cn

be the binary representations of J, J̃, respectively. Let i0 be the maximum integer such that bl = cl for all l = 1, . . ., i0. Since J̃ < J, it
follows that i0 < n and bi0+1 = 1, ci0+1 = 0. Moreover, we say that binary digits a1, . . ., ak are “consistent” if they are the dominating
k binary digits of at least one integer in [J̃, J].

Let a1, . . ., ak be the digits that the first stage of the algorithm finds, and let i1 ≤ k be the largest integer such that al = bl for l
= 1, . . ., i1. We first show that with probability at least 1 − 2δ, we find k ≥ i0 + 1 consistent digits (implying i1 ≥ i0) and either k > i1
or k = n. For a given k′, the probability of finding ak′ such that a1, . . ., ak′ are not consistent, given that a1, . . ., ak′−1 are consistent,
is at most δ/n. Indeed, finding too large a value means that al = bl for l = 1, . . ., k′ − 1, bk′ = 0 and finding ak′ = 1. The probability
of this happening is bounded by the probability of the algorithm failing to find |0〉⊗q|b1 . . . bk′−10〉 at least once out of the K trials,
which is at most δ′2K < δ/n.25 On the other hand, from Lemma 2(ii), using λ′ = ζ , the probability of finding too small a value for a
single trial of the search is upper bounded by

4 ln2 2
δ′

ζ2

J̃∑
j=0

‖ |Φj〉‖
2 < δ. (42)

Thus, the probability of finding too small a value is at most δK < δ/n. Note that since a1, . . ., ak′−1 are assumed to be consistent,
this can only happen if bk′ = 1.

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-9

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Moreover, if al = bl for l = 1, . . ., k′ − 1, the probability of finding an inconclusive result for ak′ is at most δ′2K < δ/n. Thus, with
probability at least

1 − n(max(δ′2K, δK) + δ′2K) ≥ 1 − 2δ, (43)

the first stage finds consistent digits a1, . . ., ak with the following property: either the algorithm that never finds an inconclusive
result (i.e., k = n) or the algorithm that finds al = bl for l = 1, . . ., i1 for some i1 ≥ i0, does not find an inconclusive result on ai1+1
(which implies k > i1) and later finds an inconclusive result at ak+1. Indeed, in the LHS of Eq. (43), the two terms inside the max
correspond to finding a wrong digit leading to an inconclusive result, and the last term corresponds to finding an inconclusive
result at k ≤ i0 or k = i1 + 1.

In the following, we bound the probability of the algorithm failing in the second stage. This can happen in two ways. First,
fixed point search could successfully find |0〉⊗q|a1 . . . al〉 for some l > i1, but, upon measuring the remaining ancillas, we get a value
of j < [J̃, J]. Second, fixed point search could fail to find |0〉⊗q |a1 . . . ai1+1〉.

We now address the first way of the second stage failing. Suppose that in the first stage, we found k ≥ i0 + 1 consistent digits
and then found an inconclusive result. We can thus assume k > i1 ≥ i0. Clearly, ai1+1 = 0 and bi1+1 = 1, since a1, . . ., ak are consistent.
Thus, for all l > i1, if the algorithm successfully finds |0〉⊗q|a1 . . . al〉, then upon measuring the other ancillas, we obtain a value
j < J.

We now show that for a single trial, the probability of first successfully finding |0〉⊗q|a1 . . . al〉 and then finding j < J̃ upon
measuring the remaining n − l ancillas is at most δ/nK. Let Al be the event that a single trial of fixed point search successfully
finds |0〉⊗q|a1 . . . al〉, and let Bl be the event that measuring the remaining ancillas then yields j < J̃. Write ãl B 2n−1a1 + 2n−2an−2
+ · · · + 2n−lal and

λ2
l B

ãl+2n−l−1∑
j=ãl

‖ |Φj〉‖
2. (44)

Suppose first that λl ≤ ζ . Then, using Lemma 2(ii) with λ′ = ζ , we have P(Al) ≤ 4
λ2

l
ζ 2 ln2 2

δ′ , and

P(Bl |Al) =
1
λ2

l

J̃−1∑
j=ãl

‖ |Φj〉‖
2. (45)

Hence,

P(Al ∩ Bl) ≤
4 ln2 2

δ′

ζ2

J̃−1∑
j=ãl

‖ |Φj〉‖
2 <

δ

nK
, (46)

as claimed. On the other hand, if λl > ζ , then

P(Al ∩ Bl) ≤ P(Bl |Al) <
1
ζ2

J̃−1∑
j=ãl

‖ |Φj〉‖
2 <

δ

nK
, (47)

as claimed. Since there are at most nK points in the algorithm where the event Al ∩ Bl can occur (K times for each value of l), the
probability of finding j < J̃ in the second stage for some l > i1 is at most δ.

The last possibility for the algorithm to fail is if the algorithm fails to find |a1 . . . ai1+1〉 in the second stage. Note that this is
only possible if the algorithm does the following: in the first stage, we find a1, . . ., ak for some k > i1, and then in the second
stage, we fail to find |0〉⊗q|a1 . . . ak〉 on K trials, then fail to find |0〉⊗q|a1 . . . ak−1〉 on K trials, etc., until ultimately we also fail to find
|0〉⊗q |a1 . . . ai1+1〉 on K trials. Call this event Ci1 . Let pi1 be the probability of a single run of the search finding |0〉⊗q |a1 . . . ai1+1〉. Note
that Ci1 includes both successfully finding a1, . . . , ai1+1 K times and failing to find a1, . . . , ai1+1 K times. Thus,

P(Ci1) ≤ pK
i1

(1 − pi1)
K ≤ 4−K, (48)

where we used that p(1 − p) ≤ 1/4 for p ∈ [0, 1]. Thus, the probability of the algorithm failing in the second stage is at most

δ +
n−1∑

i1=i0

P(Ci1) ≤ δ + n4−K ≤ 2δ, (49)

where the first δ comes from the upper bound on the probability of finding j < J̃ in the second stage upon measuring the remaining
n − l ancillas after successfully finding a1, . . ., al for some l > i1. Thus, the total probability of the algorithm failing is at most (43)
plus (49), as claimed. The number of calls to CΦ and additional elementary gates is

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-10

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

O
(
nK

1
ζ

log
1
δ′

)
= O

(
n
ζ

log2 n
δ

)
, (50)

as claimed. ◽

Notice that if only the first n′ < n dominant binary digits of an integer in [J̃, J] are needed, n can be replaced with n′ in (32)
and (33). Moreover, it is clear that the ζ2 dependence in (32) is optimal.

B. Proof of Theorems 2–4
With M and τ defined as in Sec. III, let L = Θ(

√
M) be a power of 2 and define Ej B j/L. Clearly, Ej+1 − Ej ∈ O(1/

√
M). Define δj

B λ0 − Ej and Hj B H̃ − (Ej − τ)1. Let J ∈ {0, . . ., L − 1} be the largest integer such that EJ ≤ λ0. Clearly, δJ ∈ O(1/
√

M). Using the
construction from Sec. III, we have unitaries Vj such that

Vj |0〉⊗(b+q) |φ〉 = |0〉⊗(b+q)Gj |φ〉 + |R〉, (51)

where

Gj =
1
α

m0∑
k=−m0

αke−2iHjk (52)

and (|0〉〈0 |⊗(b+q)
⊗ 1) |R〉 = 0. The gate cost of a single Vj is given by

Õ
(
Λ

∆

)
. (53)

We now introduce an additional ancilla system L on l B d log2 L e qubits. Let V be the Vj ’s controlled on L, i.e.,
V =

∑L−1
j=0

�� j
〉〈

j��L ⊗ Vj. Then,

V | + 〉⊗l
L |0〉

⊗(b+q) |φ〉 =
1
√

L

L−1∑
j=0

|j〉L |0〉⊗(b+q)Gj |φ〉 + |R〉, (54)

where (1L ⊗ |0〉〈0 |⊗(b+q)
⊗ 1) |R〉 = 0. From Lemma 1 and (22),

Gj |φ〉

‖Gj |φ〉‖
− |λ0〉

= O(ε), (55)

whenever Ej ≤ λ0, and ‖Gj |φ〉‖ = Θ
(
|φ0| cos(τ + δj)M

)
. In particular, ‖GJ |φ〉‖ = Ω(|φ0|).

We now show that we can use the minimum label finding algorithm to project (54) onto the state |j〉LGj |φ〉/‖Gj |φ〉‖ for some
j ∈ [J̃, J] and suitable J̃. Indeed, for any integer J̃,

J̃∑
j=0

‖Gj |φ〉‖
2
= O*.

,

J̃∑
j=0

|φ0|
2 cos(τ + δj)2M+/

-
(56)

= O*.
,
|φ0|

2
J̃∑

j=0

e−(τ+δj)2M+/
-

(57)

= O*.
,
|φ0|

2
J̃∑

j=0

e−2δjτM+/
-

(58)

= O*.
,
|φ0|

2
J̃∑

j=0

e−2(λ0−j/L)τM+/
-

(59)

= O
(
|φ0|

2e−2(λ0−J̃/L)τM
)

(60)

= O
(
|φ0|

2e−2δJ̃τM
)

(61)

= O
(
|φ0|

2e−Θ(δJ̃

√
M)

)
, (62)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-11

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where the last step follows from (18). Thus, since χ is a known lower bound on |φ0| satisfying log(|φ0|/χ) = O(log N), we can ensure
that

J̃∑
j=0

‖Gj |φ〉‖
2
= O

*...
,

χ2ε

L log L log log L
ε log2

(
log L
ε log log L

ε

) +///
-

, (63)

provided that

δJ̃ = Θ

(
1
√

M
log

(
|φ0|

2

χ2ε
L log L log

log L
ε

log2
(

log L
ε

log
log L
ε

)))
= Θ̃(∆). (64)

To prove Theorem 2, observe that using Proposition 1 with ζ = χ/
√

L, n = log L, and δ = ε/4, we can, with probability at least
1 − ε , prepare the state |j〉LGj |φ〉/‖Gj |φ〉‖ for some j ∈ [J̃, J] using Õ(

√
L/χ) repetitions of V and Cφ . The value in the L register gives

an estimate of the ground energy to a precision of (64). Since this process succeeds with probability at least 1 − ε , (55) implies that
the second register then contains a (mixed) state that is O(ε)-close to |λ0〉〈λ0 |.

Notice that V can be implemented with essentially the same cost as a single Vj. Indeed, the only explicit dependence of Vj on
j is in the call to Hamiltonian simulation, e±2iHj = e±2i(τ−Ej)e±2iH̃. Thus, given access to e±2iH̃, it is easy to implement

L−1∑
j=0

�� j
〉〈

j�� ⊗ e±2iHj =

L−1∑
j=0

�� j
〉〈

j�� ⊗ e±2i(τ−Ej)e±2iH̃ (65)

with a single call to e±2iH̃ and O(log L) = Õ(1) additional elementary gates implementing the phases e±2i(τ−Ej). Hence, the overall
gate cost of this algorithm is

Õ*
,

√
L
χ

(
Λ

∆
+ Φ

)
+
-
= Õ*

,

Λ

χ∆3/2
+
Φ

χ
√
∆

+
-
, (66)

as claimed. This proves Theorem 2.
To prove Theorem 3, one can alternatively combine the algorithm of Theorem 2 with the prior use of phase estimation. This

approach improves the scaling with ∆ at the cost of a worse scaling in χ and is hence useful if ∆ is very small.
First we use Proposition 2 from Appendix A with δ = ε to obtain a “crude” estimate of the ground energy, to a precision of

ξ = O(∆κ) for some κ ∈ [0, 1] to be chosen later. The runtime of this is

Õ
(
Λ

χ3∆κ
+
Φ

χ

)
(67)

gates (see Appendix A). With probability at least 1 −ε , this provides us with an interval [a, b] 3 λ0 with b − a = O(∆κ). Let
E′j = a + (b − a)j/L′, where L′ = Θ(

√
M∆κ). Writing H′j = H̃ − (E′j − τ)1 and

G′j =
1
α

m0∑
k=−m0

αke−2iH′jk, (68)

we run the previous algorithm but with

V′ |+〉⊗l′

L′ |0〉
⊗(b+q)

|φ〉 =
1
√

L′

L′−1∑
j=0

|j〉L′ |0〉
⊗(b+q)G′j |φ〉 + |R〉 (69)

instead of (54), and an ancilla system L′ on l′ = d log2 L′ e qubits instead of L. Since the use of Proposition 2 succeeds with
probability at least 1 − ε , an additional error of only O(ε) is added to the final (mixed) state.

The algorithm now requires Õ(
√

L′/χ) repetitions of V′ and Cφ . As before, the cost of V′ is given by (53). Hence, the number
of gates for projecting (69) onto the target state is

Õ*
,

√
L′

χ

(
Λ

∆
+ Φ

)
+
-
= Õ

(
Λ

χ∆(3−κ)/2
+

Φ

χ∆(1−κ)/2

)
. (70)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-12

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

The total number of gates for the algorithm is thus (70) plus the gate cost (67) from the prior use of phase estimation, i.e.,

Õ
(
Λ

χ3∆κ
+

Λ

χ∆(3−κ)/2
+

Φ

χ∆(1−κ)/2

)
. (71)

This proves Theorem 3.
Finally, to prove Theorem 4, it is easy to see that both algorithms can be used to estimate the ground energy to an arbitrarily

small precision ξ . Indeed, note that both algorithms, with constant probability, find λ0 to a precision of δJ̃ given by Eq. (64), and
the latter depends on the input parameter ∆. However, for the algorithms to function, ∆ is only required to be a lower bound on
the spectral gap rather than the spectral gap itself. Hence, if we run the algorithm with ∆′ � ∆ instead of ∆ as the input parameter,
we obtain an estimate of the ground state to a precision of δ(∆′), where δ(∆′) is given by Eq. (64), but with ∆ replaced by ∆′. The
algorithm can thus be used to estimate the ground energy to an arbitrary precision ξ in a gate complexity of

Õ
(
Λ

χξ′3/2
+
Φ

χ
√
ξ′

)
(72)

for the first algorithm and

Õ
(
Λ

χ3ξ′κ
+

Λ

χξ′(3−κ)/2
+

Φ

χξ′(1−κ)/2

)
(73)

for the combined approach, where ξ′ = min(ξ , δJ̃). This proves Theorem 4. ◽

Note that choosing κ = 1 in the combined algorithm gives the optimal scaling of ∼1/∆ with ∆. However, it is obviously also
possible to choose different values of κ that also take the other parameters into account.

V. CONCLUSION
In this paper, we presented quantum algorithms to prepare the ground state of a Hamiltonian faster and with fewer qubits

than with previous methods, both in the case of known and unknown ground energy. In the latter scenario, the algorithm
also provides a high precision estimate of the ground energy in a complexity faster than with phase estimation and amplitude
amplification.

Perhaps surprisingly, the straightforward use of phase estimation and amplitude amplification has a significantly worse
scaling in the overlap of the trial state with the ground state than what one would naively expect. In Appendix B, we show that
straightforward phase estimation requires

Õ
(
Λ

|φ0|
2∆ε

+
Φ

|φ0|

)
(74)

gates to prepare the ground state, provided the ground energy is known to a precision of O(|φ0|ε∆) beforehand. Notice in par-
ticular the 1/|φ0|2 scaling, even after using amplitude amplification. The scaling becomes even worse if the ground energy is not
known beforehand [see Table II(a)].

Previous improvements by Poulin and Wocjan9 to the phase estimation approach quadratically improved the dependence on
|φ0|. Moreover, we prove in Appendix C that for suitable choices of parameters, this algorithm can prepare the ground state in
the same runtime as our algorithm. The algorithms in this paper however use significantly fewer qubits, which make them more
attractive for early applications of quantum computing.

In the case of known ground energy, no non-trivial prior knowledge of the value of |φ0| is required for any algorithm discussed
in this paper (although for the filtering method, the number of qubits required becomes worse if no non-trivial lower bound is
known). However, in the case of unknown ground energy, the runtime dependences on |φ0| are replaced by dependences on
the known lower bound χ of |φ0|. There appears to be a systematic reason for this which seems difficult to overcome: broadly
speaking, all methods discussed in this paper produce a state of the form

∑
j|Ej〉|Φj〉, where |Φj〉 is approximately proportional to

the ground state and ‖|Φj〉‖ ≈ |φ0| if Ej ≈ λ0, and ‖|Φj〉‖ � |φ0| if Ej � λ0. Suppose that λ(1)
0 ,λ(2)

0 ,φ(1)
0 ,φ(2)

0 are real numbers in [0, 1]

satisfying λ(1)
0 � λ

(2)
0 and φ(1)

0 � φ
(2)
0 . Any search for the “correct” value of j needs to be able to distinguish the following two cases:

(i) λ0 = λ
(1)
0 and φ0 = φ

(1)
0 , and (ii) λ0 = λ

(2)
0 and φ0 = φ

(2)
0 . Any use of amplitude amplification to distinguish these cases would require

many, i.e., O
(
1/φ(1)

0

)
repetitions to “see” if (i) is the case, which means that if in fact (ii) is the case, significantly more repetitions

than O
(
1/φ(2)

0

)
have been performed. On the other hand, if only O

(
1/φ(2)

0

)
repetitions are performed, one would accidentally find a

much larger value (e.g., λ(2)
0) than the true ground energy λ(1)

0 (and hence also prepare the wrong state) if in fact (i) is the case. We
currently do not see a way to get around this problem.

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-13

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

For simplicity of notation, we assumed throughout this paper that the ground energy of H̃ is non-degenerate. The algorithm
however trivially generalises to degenerate ground spaces. Indeed, the only thing that changes in this case is that the resulting
state |λ′0〉 is ε-close to |λ0〉 = P |φ〉/‖P |φ〉‖, where P is the projector onto the ground space of H̃. The algorithm also generalises to
the case of only approximately degenerate ground spaces, i.e., when the spectrum of H̃ is contained in [λ0, λ0 + ε] ∪ [λ0 + ∆, 1]
with ε � ∆.

Finally, given the close relation of this work to Ref. 19, it is also natural to expect that the alternative approach of Ref. 19
using Chebyshev polynomials and quantum walks can be used to get a different algorithm with the same runtime scaling. This is
indeed possible, as shown in Appendix D. These algorithms however are restricted to the case where H̃ is a sparse Hamiltonian
with quantum oracle access. By contrast, the advantage of the approach based on Hamiltonian simulation is that it can be applied
outside the framework of given oracle access to H̃, as efficient Hamiltonian simulation algorithms exist for other models of
accessing the Hamiltonian.3,6

ACKNOWLEDGMENTS
Y.G. thanks H. Buhrman, V. Dunjko, A. Gilyén, D. Gosset, R. Kothari, G. Low, A. Molnár, A. Montanaro, and N. Schuch for helpful

discussions. This work was supported by the ERC grant QUENOCOBA, ERC-2016-ADG (Grant No. 742102). J.T. acknowledges
funding from the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement
No. 748549.

APPENDIX A: FINDING THE GROUND ENERGY USING PHASE ESTIMATION
We now demonstrate how to combine phase estimation and the minimum label finding algorithm to find the unknown ground

energy of a quantum Hamiltonian to a precision of ξ in a gate complexity of

Õ
(
Λ

χ3ξ
+
Φ

χ

)
(A1)

with probability at least 1 − δ, where δ ∈ (0, 1) is a real number and we assume throughout this section that polylogarithmic
factors in δ−1 are suppressed by the Õ notation. Notice that straightforward amplitude amplification cannot be used to amplify
the ground energy since the latter is not known.

Let U be an N × N unitary with eigenvectors |λi〉 and eigenvalues e2πiλi with λi ∈ [0, 1). We are interested in finding a good
approximation of the minimum value λ0, say, to n = d log2 1/ξ e binary digits of precision.

Let |φ〉 =
∑

i φi |λi〉 be an arbitrary trial state. Suppose that we are given a circuit Cφ which prepares |φ〉 using Φ elementary
gates. Recall that the phase estimation algorithm8 takes |φ〉 |0〉⊗k for some k > n to

|Φ〉 B
∑

i

φi |λi〉 |ϕ̃i〉 (A2)

using controlled U, U2, . . . , U2k−1
and an inverse quantum Fourier transform on k qubits, where |ϕ̃i〉 can be shown to have a large

overlap with the computational basis state that encodes the first n binary digits of λi.
Let

|ϕ̃i〉 =

2k−1∑
x=0

γix |x〉 (A3)

be its expansion in the computational basis. Then,

|Φ〉 =

2k−1∑
x=0

|Φx〉 |x〉, (A4)

where

|Φx〉 =
∑

i

φiγix |λi〉 (A5)

are non-normalised states.
Naively, one would expect that simply measuring the ancillas would give a good approximation x ≈ 2kλ0 of the ground energy

with probability ≈|φ0|2 so that O(1/|φ0|2) repetitions would be needed to find the ground energy. One would also expect that this
could be quadratically reduced to O(1/|φ0|) using suitable amplitude amplification techniques. However, we show below that the

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-14

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

overall gate cost is much higher if the ground energy is not known beforehand. Indeed, due to the finite precision and error in the
phase estimation algorithm, ‖ |Φx〉‖

2 could in principle be large even when x � 2kλ0. This means that the algorithm could fail by
accidentally finding a value that is much smaller than the true ground energy. We show below that in order to guarantee that this
does not happen, one needs to choose 2k = Õ(2n/|φ0|2). Since the runtime of phase estimation scales linearly with 2k, and only a
lower bound χ on |φ0| is assumed to be known, this would lead to an overall runtime that scales as ∼1/χ3. We also demonstrate
at the end of this section that this dependence is essentially tight.

Proposition 2 (Ground energy estimation with phase estimation). Let δ ∈ (0, 1) be a real number. Then, in a gate complexity of
(A1) and using O(log N + log 1/ξ) qubits, phase estimation can be used to find a real number E > 0 such that with probability at least 1
− δ, |E − λ0| < ξ .

Proof. Recall first the well-known29 relations

γix =
1

2k
*
,

1 − e2πi(2kλi−x)

1 − e2πi(λi−x/2k)
+
-

(A6)

and

|γix | ≤
1

2 |2kλi − x |
. (A7)

Let D B 2k−n. Then, using (A7), we have ∑
x<2kλ0−D

‖ |Φx〉‖
2 =

∑
i

x<2kλ0−D

|φi|
2 |γix |

2 (A8)

≤
∑

i
x<2kλ0−D

|φi |
2

�����
1

2 |2kλi − x |

�����

2

(A9)

≤
∑

i
x<2kλ0−D

|φi |
2

�����
1

2 |2kλ0 − x |

�����

2

(A10)

≤
∑

x<2kλ0−D

�����
1

2 |2kλ0 − x |

�����

2

(A11)

<
∑
y>D

1
y2

<
1
D

. (A12)

Moreover, when x satisfies |λi − x/2k| < 1/2k+1,

|γix | ≥
2
π

, (A13)

using that
|θ | ≥ |1 − eiθ | ≥ 2 |θ |/π (A14)

for θ ∈ [−π, π]. Thus,

 |Φb2kλ0e

〉

 ≥

2
π
|φ0|. (A15)

Let χ be a known lower bound on |φ0|. Using Proposition 1, we can thus find an integer x ∈ [b 2kλ0 e − D, b 2kλ0 e] with
probability at least 1 − δ, provided that 1/D = Õ(χ2). The number of calls to phase estimation is Õ(1/χ). The number of gates
required for each run of phase estimation is Õ(2kΛ). Thus, taking U = e−2πiH̃ and ξ = 2−n, we arrive at a total gate count of (A1).
Moreover, the number of qubits required is O(log N + k) = O(log N + log 1/ξ). ◽

It is not difficult to show that for suitable H̃ and |φ〉, the dependence of this algorithm on χ is optimal. Indeed, suppose that
H̃ = 1

2k (H′ + c1), where c ∈ (0, 1/2) is a constant and H′ is any Hamiltonian with integer spectrum in {2k−2, . . ., 2k−1 − 1}. Then from
(A14),

|γix | ≥
2c

π |2kλi − x |
. (A16)

Suppose that our trial state |φ〉 is such that |φ1|2 ≥ 1/2. Then,

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-15

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

∑
x<2kλ0−D

‖ |Φx〉‖
2 =

∑
i

x<2kλ0−D

|φi|
2 |γix |

2 (A17)

≥
c
π

∑
x<2kλ0−D

1
|2kλ1 − x |2

(A18)

= Ω*
,

∫ 2kλ1

D+2k∆

1
x2

dx+
-

(A19)

= Ω

(
1

2k

(
1

ξ + ∆
−

1
λ1

))
. (A20)

Suppose now that ∆ = O(ξ) and ξ = o(1). Then ∑
x<2kλ0−D

‖ |Φx〉‖
2 = Ω

(
1

2kξ

)
, (A21)

which is much larger than χ2 unless 2k = Ω

(
1

χ2ξ

)
, and the claim follows.

APPENDIX B: PREPARING THE GROUND STATES USING PHASE ESTIMATION
Naively, one would expect that upon successfully projecting the ancillas of (A2) into the first n (or even k) digits of λ0,

the residual state should be a good approximation of |λ0〉, provided that ξ = Õ(∆). Unfortunately, this is not true because the
“imperfections” in |ϕ̃i〉 build up to a non-negligible error in the residual state. This phenomenon was also observed in Ref. 9.
Below, we analyse these errors and show a non-negligible bound on the minimum precision to which the ground energy needs
to be known beforehand.

Proposition 3 (Ground state preparation with phase estimation for known ground energy). Suppose that the value of λ0 is
known to a precision of O(|φ0|ε∆), i.e., there exists a known real number E > 0 such that |E − λ0| = O(|φ0|ε∆) with certainty. Then
phase estimation can be used to prepare a state ε-close to the ground state with constant probability in a gate complexity of

Õ
(
Λ

|φ0|
2∆ε

+
Φ

|φ0|

)
(B1)

and using O(log N + log 1/ε + log 1/∆) qubits.

Proof. Suppose that z B b 2kλ0 e, i.e., z encodes the first k binary digits of λ0 (k will be specified below) and we apply phase
estimation on k qubits. Then, post-selecting the ancillas of (A2) to be in |z〉, the residual state is

|λ〉 B

∑
i φiγiz |λi〉

‖
∑

i φiγiz |λi〉‖
. (B2)

Thus, the error in the residual state is

‖ |λ〉 − |λ0〉‖ = Θ

(
‖
∑

i,0 φiγiz |λi〉‖

‖
∑

i φiγiz |λi〉‖

)
. (B3)

For i , 0, (A7) implies that

|γiz| ≤
1

2k+1∆
. (B4)

Moreover, (A13) implies |γ0z| ≥ 2/π. Hence,

(
‖
∑

i,0 φiγiz |λi〉‖

‖
∑

i φiγiz |λi〉‖

)2

=

∑
i,0 |φi|

2 |γiz|
2∑

i |φi|
2 |γiz|

2
(B5)

≤

(
1

π |φ0|2k∆

)2

. (B6)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-16

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Thus, it is sufficient if k satisfies

2k = O
(

1
|φ0|ε∆

)
(B7)

for an error ‖ |λ〉 − |λ0〉‖ = O(ε). Notice in particular the scaling with |φ0|.
Suppose that the value of z, i.e., the ground energy to a precision of k binary digits, is known, where k is known to satisfy

(B7). The cost of a single run of phase estimation is Õ
(
2kΛ

)
, up to polylogarithmic factors. Fixed point search requires O(1/|φ0|)

applications of phase estimation and Cφ . We thus arrive at a total gate count of

Õ
(

2kΛ + Φ
|φ0|

)
= Õ

(
Λ

|φ0|
2∆ε

+
Φ

|φ0|

)
, (B8)

as claimed. ◽

Suppose next that the ground energy is not known beforehand. If phase estimation and minimum label finding (Proposition
1) are first used to find the ground energy, we require a precision of O(|φ0|ε∆). Since |φ0| is not assumed to be known, we need to
run phase estimation to find the energy to a precision of ξ = O(χε∆). Thus, from Proposition 2, the number of gates to first find
the ground energy to the required precision takes

Õ
(
Λ

χ4∆ε
+
Φ

χ

)
(B9)

gates.

Corollary 1 (Ground state preparation with phase estimation for unknown ground energy). If the ground energy is not known
beforehand, phase estimation can be used to prepare a state ε-close to |λ0〉〈λ0| with constant probability in a gate complexity of

Õ
(
Λ

χ4∆ε
+
Φ

χ

)
(B10)

and using O(log N + log 1/ε + log 1/∆) qubits.

We now argue that the dependence of 2k on |φ0| in (B7), and thus the quadratic dependence on |φ0| in (B1), is essentially tight
for this algorithm. Suppose that ∑

i,0 |φi|
2 |γiz|

2∑
i |φi|

2 |γiz|
2
≤ ε2. (B11)

Then,

ε2 ≥

∑
i,0 |φi|

2 |γiz|
2∑

i |φi|
2 |γiz|

2
(B12)

=

∑
i,0 |φi|

2 |γiz|
2

|φ0|
2 |γ0z |

2 +
∑

i,0 |φi|
2 |γiz|

2
(B13)

≥ (1 − ε2)
∑

i,0 |φi|
2 |γiz|

2

|φ0|
2 |γ0z |

2
(B14)

≥ (1 − ε2)
1
|φ0|

2

∑
i,0

|φi|
2 |γiz|

2. (B15)

Suppose that for all i , 0,
r(2kλi − z) ≥ c, (B16)

where r(x) B |x − b x e| ∈ [0, 1/2], for some constant c > 0. Notice that this can be achieved for any Hamiltonian of the form
H = 1

2k (H̃ + c1), where H̃ is any Hamiltonian with the integer spectrum. Then, using Eq. (A14),

|γiz | =
1

2k
*
,

1 − e2πir(2kλi−z)

1 − e2πi(λi−z/2k)
+
-
≥

c
2k−1

. (B17)

Thus,

ε2 ≥ (1 − ε2)
c2(1 − |φ0|

2)
4k−1 |φ0|

2
. (B18)

Therefore, 2k = Ω
(

1
|φ0|ε

)
, and the claim follows.

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-17

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

One can also show that the linear dependence on 1/∆ is tight: if our trial state is |φ〉 = φ0 |λ0〉 + φ1 |λ1〉 with λ1 = λ0 + ∆, then
(B17) can be replaced by

|γiz | =
1

2k
*
,

1 − e2πir(2kλ1−z)

1 − e2πi(λ1−z/2k)
+
-
≥

c
π2k−1∆

, (B19)

which follows from Eq. (A14). Thus, 2k = Ω
(

1
|φ0|ε∆

)
, and the claim follows.

APPENDIX C: FILTERING METHOD BY POULIN AND WOCJAN
Previously, Poulin and Wocjan proposed a filtering method9 as an improvement to phase estimation that only has an inverse

dependence on the overlap |φ0|. We briefly review this algorithm here and show that it can be adapted to achieve a runtime that
scales only polylogarithmically in the allowed error (the analysis provided in Ref. 9 only yields a state with low expected energy,
and only an error analysis for the expected energy rather than the residual state is given there). We also show that this method
can be combined with the minimum label finding algorithm in case the ground energy is not known beforehand to first find
the ground energy to the required precision. We remark that the filtering method can also be formulated as a majority voting
scheme.19,28

The Poulin-Wocjan algorithm is based on the following idea: let A be the circuit of phase estimation with k ancilla qubits,
but without the inverse Fourier transform. Then A |λi〉 |0〉⊗k = |λi〉 |ϕi〉, where

|ϕi〉 B
1
√

2k

2k−1∑
x=0

e2πiλix |x〉 (C1)

is a momentum state encoding of λi. Since A maps |λi〉 |0〉⊗k to |λi〉|ϕi〉, then for any state |µ〉 on k qubits, A† maps |φ〉 |µ〉 to∑
i

φi〈ϕi〉µ |λi〉 |0〉⊗k + |R〉, (C2)

where |R〉 has no overlap with |0〉⊗k on the ancillas. Hence, starting with η copies of |µ〉 on ηk ancillas (η will be specified later),
applying η copies of A† that maps |φ〉 |µ〉⊗η to ∑

i

φi〈ϕi〉µ
η |λi〉 |0〉⊗ηk + |R′〉, (C3)

where |R′〉 has no overlap with |0〉⊗η k on the ancillas. The central idea of Ref. 9 is that for suitable choices of η and |µ〉, |〈ϕi |µ〉|η is
a “filter function” that is centered around λ0 and falls off quickly, thus suppressing all terms in (C3) except for the contribution
from |λ0〉. We now show that this idea can be used to obtain a ground state preparation algorithm whose runtime also only scales
polylogarithmically with ε .

Proposition 4 (Ground state preparation with the filtering method for known ground energy). Suppose that the value of λ0 is
known to a precision of

O
*..
,

∆√
log3 1

|φ0|ε
log log 1

|φ0|ε

+//
-

(C4)

with certainty, i.e., there exists a known real number E > 0 such that |E − λ0| is at most (C4). Then, the filtering method can prepare
a state ε-close to |λ0〉〈λ0 | with constant probability in a gate complexity of

Õ
(
Λ

|φ0|∆
+
Φ

|φ0|

)
(C5)

and using

O*.
,
log N + log

1
ε

+
log 1

χε

log log 1
χε

× log
1
∆

+/
-

(C6)

qubits.

Proof. Suppose that we know a value of µ ∈ [0, 1) such that

|µ − λ0 | <
1

2k+1π
√
η

, (C7)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-18

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where k and η will be specified later. Note that this is the same as assuming that we know λ0 up to k + l binary digits, where
l B d log2(2π

√
η) e, and we can assume, without loss of generality, that 2k+lµ ∈ Z. Choose

|µ〉 B
1
√

2k

2k−1∑
x=0

e2πiµx |x〉. (C8)

Note that |µ〉 can be efficiently prepared from the computational basis state |2k+lµ〉 by first applying the quantum Fourier trans-
form on k + l qubits, then applying Hadamard gates on the last l qubits, and finally discarding the last l qubits. The circuit Cµ
preparing |µ〉 from |0〉⊗ (k+l) thus only requires O((k + l)2) gates.29 Similarly to (A7) and (B4), for i , 0,

|〈ϕi |µ〉| ≤
1

2k+1 |λi − µ |
≤

1
2k+1∆

. (C9)

Moreover, it can be shown9 that (C7) implies

|〈ϕ0 |µ〉|
η ≥

1
2

. (C10)

Thus, using amplitude amplification or fixed point search to search for |0〉⊗ηk on (C3), we obtain with constant probability the
state

|σ〉 B

∑
i φi〈ϕi〉µ

η |λi〉

‖
∑

i φi〈ϕi〉µη |λi〉‖
, (C11)

with O(η/|φ0|) uses of A† and Cµ , and O(1/|φ0|) uses of Cφ .
We now show that |σ〉 is a good approximation of |λ0〉 for appropriate choices of k and η. We have that

1
2
‖ |σ〉 − |λ0〉‖

2 ≤
‖
∑

i,0 φi〈ϕi|µ〉
η |λi〉‖

2

‖
∑

i φi〈ϕi|µ〉η |λi〉‖
2

(C12)

=

∑
i,0 |φi |

2 |〈ϕi|µ〉|
2η∑

i |φi |
2 |〈ϕi|µ〉|2η

(C13)

≤ 4
(

1
2k+1∆

)2η 1
|φ0|

2
. (C14)

Thus, in order to obtain

‖ |σ〉 − |λ0〉‖ < ε , (C15)
it suffices if k and η satisfy

k =
⌈
log2

1
∆

⌉
+ O

(
log log

1
|φ0|ε

)
(C16)

and

η = O*.
,

log 1
|φ0|ε

log log 1
|φ0|ε

+/
-
. (C17)

But since η is a parameter of the algorithm that needs to be chosen beforehand, and |φ0| is unknown, we need to choose

η = O*.
,

log 1
χε

log log 1
χε

+/
-

(C18)

to ensure the algorithm works. The full algorithm thus requires

Õ
(
η2kΛ + Φ
|φ0|

)
= Õ

(
Λ

|φ0|∆
+
Φ

|φ0|

)
(C19)

gates and

O(log N) + ηk = O*.
,
log N + log

1
ε

+
log 1

χε

log log 1
χε

× log
1
∆

+/
-

(C20)

qubits. ◽

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-19

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

There does not appear to be an obvious way, such as a recycling scheme, to reduce the number of qubits required.
Suppose now that the value of µ is not known beforehand. We show now that in this case, one can combine the filtering

method with the minimum label finding algorithm to determine a suitable value of µ beforehand.

Proposition 5 (Ground state preparation with the filtering method for unknown ground energy). If the ground energy is not
known beforehand, the same task as in Proposition 4 can be achieved in a gate complexity of

Õ*
,

Λ

χ∆3/2
+
Φ

χ
√
∆

+
-

(C21)

and the same number (C6) of qubits.

Proof. Let k and η be defined as in the Proof of Proposition 4. Let µj = j/2k1 , where k1 ≥ k will be chosen later. It is easy to
prepare the state

1
√

2k1

2k1−1∑
j=0

| j〉 |µj〉
⊗η1 |φ〉, (C22)

where η1 will be chosen later, and

|µj〉 =
1
√

2k1

2k−1∑
x=0

e2πiµjx |x〉. (C23)

We now run a controlled version of the filtering algorithm with η1 × k1 ancilla qubits. This produces the state

2k1−1∑
j=0

| j〉 |Φj〉, (C24)

where

|Φj〉 =
1
√

2k1

∑
i

φi〈ϕi |µj〉
η1 |λi〉. (C25)

Let J be the smallest integer such that |µJ − λ0 | <
1

2k+2π
√
η

. Then from (C10), ‖ |ΦJ〉‖ ≥
|φ0|

2
√

2k1
≥

χ

2
√

2k1
. Let J̃ < J be an integer such

that
J̃∑

j=0

‖ |Φj〉‖
2 = O

(
χ2

2k1

)
. (C26)

Then, the minimum label finding algorithm with δ = ε/4 finds an integer j ∈ [J̃, J] with probability at least 1 − ε . To obtain a
value of j that gives rise to a good approximation of λ0, we need to ensure that µJ − µJ̃ <

1
2k+2π

√
η

, since the latter then implies

|µj − λ0 | <
1

2k+1π
√
η

for all j ∈ [J̃, J].

Let D = J − J̃. We have

J̃∑
j=0

‖ |Φj〉‖
2 =

1
2k1

J̃∑
j=0

∑
i

|φi |
2 |〈ϕi |µj〉 |

2η1 (C27)

≤
1

2k1

J̃∑
j=0

∑
i

|φi |
2 1

(2k1+1 |λi − µj |)2η1
(C28)

<
1

2k1

J̃∑
j=0

1
(2k1+1 |λ0 − µj |)2η1

(C29)

<
1

2k1

∑
j>D

1
j2η1

(C30)

<
1

2k1

1
D2η1−1

. (C31)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-20

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

We thus require

1
D2η1−1

< χ2, (C32)

with D = O(2k1ξF), where ξF = 1/(2k+1π
√
η) is the required precision (C7). Thus, it suffices to choose

2k1 = O
(

1
ξF

log
1
χ

)
= O*.

,

1
∆

log3/2 1
χε

√
log log

1
χε

log
1
χ

+/
-

(C33)

and

η1 = O*.
,

log 1
χ

log log 1
χ

+/
-
. (C34)

This will, with probability at least 1 − ε , provide an estimate of λ0 that can be used for the state preparation. The probabil-
ity of not finding such an estimate of λ0 only induces an error of O(ε) in the final (mixed) state. The number of gates for this
estimation is

Õ*
,

√
2k1

χ

(
2k1Λ + Φ

)+
-
= Õ

(
Λ

χ∆3/2
+
Φ

χ∆1/2

)
, (C35)

as claimed. ◽

Note that in analogy to Sec. IV B, the algorithm can be used to estimate the ground energy to an arbitrary precision ξ = Õ(∆),
by simply running the algorithm with a smaller value of ∆.

Corollary 2 (Ground energy estimation with the filtering method). Let ξ = Õ(∆). Then, the filtering method can be used to find
a real number E > 0 such that |E − λ0| < ξ with constant probability in a gate complexity of

Õ
(
Λ

χξ3/2
+
Φ

χ
√
ξ

)
(C36)

and using

O*.
,
log N +

log 1
χ

log log 1
χ

× log
1
ξ

+/
-

(C37)

qubits.

Alternatively, one can also use a combined approach by using a prior run of phase estimation to first get a “crude” estimate
of λ0, similarly to the method in Sec. IV of the main text. This approach is useful if ∆ is very small.

Proposition 6 (Combining the filtering method with phase estimation). By combining the filtering method with phase
estimation,

(i) The same task as in Proposition 5 can be achieved in a gate complexity of

Õ
(
Λ

χ3∆κ
+

Λ

χ∆(3−κ)/2
+

Φ

χ∆(1−κ)/2

)
(C38)

and the same number (C6) of qubits.
(ii) The same task as in Corollary 2 can be achieved in a gate complexity of

Õ
(
Λ

χ3ξ κ
+

Λ

χξ (3−κ)/2
+

Φ

χξ (1−κ)/2

)
(C39)

and the same number (C37) of qubits, where κ ∈ [0, 1] is arbitrary.

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-21

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Proof. To prove (i), first use Proposition 2 from Appendix A with δ = ε to obtain the ground energy to a precision of ξ′ = ∆κ

for some κ ∈ [0, 1] chosen below. With probability at least 1 − ε , this provides us with an interval [a, b] 3 λ0 with b − a = O(∆κ).
Let µ′j = a + (b − a)j/L with L = Θ(∆κ/ξ). Note that µ′j+1 − µ

′
j < ξ . We now run the algorithm from Proposition 5, but replacing

(C22) with

1
√

L

L∑
j=0

|j〉 |µ′j 〉
⊗η |φ〉. (C40)

Then, the total number of gates is

Õ*
,

Λ

χ3ξ′
+
√

L
χ

(2k1Λ + Φ)+
-
= Õ

(
Λ

χ3∆κ
+

Λ

χ∆(3−κ)/2
+

Φ

χ∆(1−κ)/2

)
. (C41)

This proves part (i). Part (ii) follows from the same argument as Corollary 2. ◽

Note that choosing κ = 1 gives the optimal inverse scaling in ∆ and ξ , respectively, for this algorithm. Similarly as in Sec. IV,
however, other values of κ can be chosen to take the other parameters into account.

APPENDIX D: CHEBYSHEV METHOD
We now show that the alternative approach of Ref. 19 of using quantum walks and Chebyshev polynomials can be used

to obtain an algorithm with essentially the same runtime. We assume in this section that H̃ has at most d = O(log N) non-zero
entries in each row/column.30 We also assume that the spectrum of H̃ is contained in [0, 1/2] for simplicity.31 Moreover, as in
previous work,4,6,19 we assume that we are given quantum oracle access to the positions and values of the non-zero elements of
H̃. Specifically, we assume that we are given unitaries O1,O2 such that O1 |j, l〉 = |j,ν(j, l)〉 and O2 |j, k, z〉 = |j, k, z ⊕ H̃jk〉, where ν(j,
l) is the column index of the lth nonzero entry in the jth row of H̃, and the third register on which O2 acts encodes a bit string
representation of an entry of H̃. In this section, let Λ denote the gate complexity of the oracles.

Suppose that the value of λ0 is known to a precision of δ = O
(
∆/ log 1

χε

)
. Let E be a known real number such that 0 ≤ E ≤ λ0

and δE B λ0 − E < δ. Define H B H̃ − (E − τ)1. Then |λ0〉 is the unique eigenvector of H with minimum eigenvalue τ + δE and by
assumption, all other eigenvalues of H are ≥τ + δE + ∆. This method is based on the observation that a high power of 1 − (H/d)2 is
approximately proportional to a projector onto |λ0〉. More precisely, for any trial state |φ〉 = φ0 |λ0〉 + |λ⊥0 〉,

*
,
1 −

(
H
d

)2
+
-

M

|φ〉 = φ0

(
1 −

(
τ + δE

d

)2)M
*.
,
|λ0〉 +

1
φ0

*
,

1 − (H/d)2

1 − ((τ + δE)/d)2
+
-

M

|λ⊥0 〉
+/
-
. (D1)

The norm of the second term in the brackets is bounded by |φ0|
−1e−Ω(M(τ+δE)∆). Indeed, for small ∆,

*
,
1 −

(
H
d

)2
+
-

M

|λ⊥0 〉

<

*..
,

1 −
(
∆+τ+δE

d

)2

1 −
(
τ+δE

d

)2

+//
-

M

(D2)

=
*...
,

1 −
2∆(τ + δE) + ∆2

d2
(
1 −

(
τ+δE

d

)2
) +///

-

M

(D3)

= e−Ω(M(τ+δE)∆/d2). (D4)

Thus,

(
1 − (H/d)2

)M
|φ〉

(
1 − (H/d)2

)M
|φ〉

− |λ0〉

= O(ε), (D5)

provided that

M = Ω
(

d2

∆(τ + δE)
log

1
|φ0|ε

)
. (D6)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-22

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

On the other hand, (
1 −

(
τ + δE

d

)2)M

= e−O((τ+δE)2M/d2). (D7)

Thus,

*
,
1 −

(
H
d

)2
+
-

M

|φ〉

= Ω(|φ0|), (D8)

provided that τ + δE = O(d/
√

M). Hence, since by assumption δE < δ, choosing

τ = Θ
*.
,

∆

log 1
χε

+/
-

(D9)

and

M = Θ
(

d2

∆2
log2 1

χε

)
(D10)

satisfies both (D5) and (D8).
Our aim in the following is to prepare (1−(H/d)2)M |φ〉. The strategy we employ is as follows: first, we approximate (1−(H/d)2)M

as a linear combination of low order Chebyshev polynomials in H/d. Second, we implement this linear combination with some
amplitude using quantum walks and the non-unitary LCU lemma (Lemma 7 of Ref. 19). Third, we use amplitude amplification or
fixed point search to boost the overlap with the target state.

In the following, assume for simplicity that M = 2m is even (the algorithm can also be adapted to odd M with minor mod-
ifications). Let Tk(x) and Uk(x) be the kth Chebyshev polynomials of the first and second kind, respectively. It is well-known
that

(1 − x2)M =
M∑

k=0

αkT2k(x), (D11)

where

αk =




21−2M(2M
M) −

(2M − 1)!!
2MM!

, k = 0,

(−1)k21−2M(2M
M+k), k ≥ 1.

(D12)

Since ‖H‖ ≤ 1 and |Tk(x) | ≤ 1 for |x| ≤ 1, (21) implies that

*
,
1 −

(
H
d

)2
+
-

2m

=

m0∑
k=0

αkT2k

(
H
d

)
+ O(χε), (D13)

provided that

m0 = Θ
*.
,

√
M log

1
χε

+/
-
= Θ

(
d
∆

log3/2 1
χε

)
. (D14)

Next, recall that Tk(H/d) can be implemented with some amplitude using quantum walks (cf. Sec. 4.1 of Ref. 19) on a larger
Hilbert space, which is obtained by first adding an ancilla qubit and then doubling the entire system: for j ∈ [N]B {1, . . ., N}, define
|ψj〉 ∈ C2N

⊗C2N as

|ψj〉 B ��j0
〉
⊗

1
√

d

∑
l∈[N]
Hjl,0

��l
〉(√

H∗jl |0〉 +
√

1 − |Hjl | |1〉
)

(D15)

and
T B

∑
j∈[N]

���ψj
〉〈

j��. (D16)

Note that the entries of H have modulus at most 1. Let S be the swap operator on C2N
⊗ C2N, i.e., S|jb1〉 |lb2〉 = |lb2〉 | jb1〉 and

W = S(2TT† − 1). By Lemma 16 of Ref. 19, within the invariant subspace span{T|j〉, ST|j〉 : j ∈ [N]}, Wk has the form

Wk =
*..
,

Tk(H/d) −

√
1 − (H/d)2Uk−1(H/d)√

1 − (H/d)2Uk−1(H/d) Tk(H/d)

+//
-
, (D17)

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-23

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where the first block corresponds to the space span{T|j〉 : j ∈ [N]}. Hence, using k steps of the walk, we can implement the
transformation

Wk |0〉
⊗q
|φ〉 = |0〉⊗qTk(H/d) |φ〉 + |R′k〉, (D18)

where q B d log2 N e + 3 and (|0〉〈0 |⊗q
⊗ 1) |R′k〉 = 0.

To implement the RHS of (D13), we employ the non-unitary LCU lemma: let B be a circuit on b = d log2(m0 + 1) e qubits that
map |0〉⊗b to

B |0〉⊗b B
1
√
α

m0∑
k=0

√
αk

��k
〉
, (D19)

where α =
∑m0

k=0 αk. Let U =
∑m0

k=0
�� k

〉〈
k�� ⊗W2k be the controlled quantum walk. Then,

(B† ⊗ 1)U(B ⊗ 1) |0〉⊗(b+q)
|φ〉 =

1
α
|0〉⊗b

m0∑
k=0

αk(|0〉⊗qT2k(H/d) |φ〉 + |R′2k〉) + |R′〉 (D20)

=
1
α
|0〉⊗(b+q)

m0∑
k=0

αkT2k(H/d) |φ〉 + |R〉, (D21)

where (|0〉〈0 |⊗b
⊗ 1) |R′〉 = 0 and (|0〉〈0 |⊗(b+q)

⊗ 1) |R〉 = 0.
The final step of the algorithm is to boost the overlap with amplitude amplification or fixed point search. Note that amplitude

amplification can be used without prior knowledge of the overlap.21 Alternatively, fixed point search25 can be used for this step.
Measuring the ancillas will then project the state onto

|λ′0〉 B

∑m0
k=0 αkT2k(H/d) |φ〉

‖
∑m0

k=0 αkT2k(H/d) |φ〉‖
, (D22)

provided we successfully obtain |0〉⊗(b+q) on the ancillas. From (D13),

|λ′0〉 =
(1 − (H/d)2)2m |φ〉

‖(1 − (H/d)2)2m |φ〉‖
+ O(ε), (D23)

and thus (D5) implies
|λ′0〉 = |λ0〉 + O(ε), (D24)

as required. The probability of success is close to 1, provided that the number of repetitions is

O*
,

α

‖
∑m0

k=0 αkT2k(H/d) |φ〉‖
+
-
= O(α/ |φ0|), (D25)

where Eq. (D25) follows from (D8).
We now calculate the gate count of the entire algorithm. First note that B can be implemented with O(2b) = O(m0) elementary

gates.26 Next, note that the oracle to H can be obtained from the oracle to H̃ with O(log M) additional gates and qubits. The gate
cost to implement W to accuracy ε ′ is O(Λ + log M + log N + log5/2(1/ε ′)).4 Here, we require ε ′ = O(ε |φ0|/m0d). Thus, the gate
cost of U is O (m0(Λ + log M + log N + log5/2(m0d/ε |φ0|)) (Lemma 8 of Ref. 19). Note that α = O(1), and each iteration of amplitude
amplification or fixed point search requires O(1) uses of Cφ , B, and U. The final gate complexity is thus

O
(

1
|φ0|

(
m0

(
Λ + log M + log N + log5/2 m0d

ε |φ0|

)
+ Φ

))
= O

(
Λ

|φ0|∆
polylog

(
N,

1
∆

,
1
|φ0|ε

)
+
Φ

|φ0|

)
. (D26)

The total number of qubits required is O(log N + log M + log m0). ◽

It is moreover easy to see that, analogously to Sec. IV B, this approach can also be used for ground state preparation in the
case of unknown ground energy, and for estimating the ground energy.

REFERENCES
1R. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
2S. Lloyd, Science 273, 1073 (1996).
3D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys. Rev. Lett. 114, 090502 (2015).
4D. W. Berry, A. M. Childs, and R. Kothari, in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (IEEE, 2015), pp. 792–809.
5G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501 (2017).
6G. H. Low and I. L. Chuang, preprint arXiv:1610.06546 [quant-ph] (2016).

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-24

Published under license by AIP Publishing

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

7S. Gharibian, Y. Huang, Z. Landau, and S. W. Shin, Found. Trends Theor. Comput. Sci. 10, 159 (2015).
8A. Y. Kitaev, preprint arXiv:quant-ph/9511026 [quant-ph] (1995).
9D. Poulin and P. Wocjan, Phys. Rev. Lett. 102, 130503 (2009).
10D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162 (1999).
11D. A. Abanin and Z. Papi, Ann. Phys. 529, 1700169 (2017).
12A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011). L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv. Phys. 65,
239 (2016).
13E. Farhi, D. Gosset, A. Hassidim, A. Lutomirski, D. Nagaj, and P. Shor, Phys. Rev. Lett. 105, 190503 (2010).
14M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, and A. Aspuru-Guzik, “Introduction to quantum algorithms for physics and chemistry,” in Quantum
Information and Computation for Chemistry (John Wiley & Sons, Inc., 2014), pp. 67–106.
15J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017).
16E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, preprint arXiv:quant-ph/0001106 [quant-ph] (2000).
17S. Jansen, M.-B. Ruskai, and R. Seiler, J. Math. Phys. 48, 102111 (2007).
18S. Oh, Phys. Rev. A 77, 012326 (2008).
19A. Childs, R. Kothari, and R. Somma, SIAM J. Comput. 46, 1920 (2017).
20Examples of such algorithms include Refs. 3–6. Notice that algorithms based on Trotter product formulas such as Ref. 2 do not meet this requirement.
21G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum Computation and Information, AMS Contemporary Mathematics Series (AMS, 2002), Vol. 305.
22In fact, the Hamiltonian simulation algorithms4–6 only require few ancilla qubits and leave the O(·) expressions in Tables I and II unchanged. Reference 3

requires O
(

log(d) log(β∆−1 log(χ−1)/ε)
log log(β∆−1 log(χ−1)/ε)

)
additional qubits, where H̃ =

∑d
j=1 βjUj with unitaries Uj costing O(Λ) elementary gates and β =

∑
j |βj | (see Table 1 of Ref. 6

for an overview).
23R. V. Mises and H. Pollaczek-Geiringer, Z. Angew. Math. Mech. 9, 152 (1929).
24J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf, IEEE 58th Annual Symposium on Foundations of Computer Science (IEEE, 2017), pp. 403–414.
25T. J. Yoder, G. H. Low, and I. L. Chuang, Phys. Rev. Lett. 113, 210501 (2014).
26V. V. Shende, S. S. Bullock, and I. L. Markov, IEEE Trans. Comput. -Aided Des. Integr. Circuits Syst. 25, 1000 (2006).
27Note that unlike Ref. 26, where

√
λ denotes the overlap, here we write the overlap as λ.

28R. Kothari, private communication (2017).
29M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, New York,
NY, USA, 2011).
30Notice that this includes many-body Hamiltonians, as Hamiltonians consisting of n terms acting on at most k qubits are sparse with d = 2kn.
31In fact, it is sufficient to assume that the spectrum of H̃ is contained in [0, 1 − τ], where τ is defined in (D9). This ensures that H, as defined below, has
entries with modulus at most 1.

J. Math. Phys. 60, 022202 (2019); doi: 10.1063/1.5027484 60, 022202-25

Published under license by AIP Publishing

B Further articles as principal author currently
under review

B.1 A hybrid algorithm framework for small quantum computers
with application to finding Hamiltonian cycles

105

A hybrid algorithm framework for small quantum computers with
application to finding Hamiltonian cycles

Yimin Ge and Vedran Dunjko

In this work, we generalise the approach of Contributed Article VI by developing a general
framework for hybrid quantum-classical algorithms which only use quantum computers signifi-
cantly smaller than the problem size. We prove general criteria such that, given an arbitrarily
small ratio of the number of available qubits to the instance size, a polynomial speedup for clas-
sical divide-and-conquer algorithms can be achieved. We also demonstrate the applicability of
this framework by speeding up Eppstein’s algorithm for the cubic Hamiltonian cycle problem.

Section III of this work develops the so-called divide-and-conquer hybrid approach, which is
a general framework for speeding up classical divide-and-conquer algorithms. The main idea is
to replace the recursive call with a call to a suitable quantum algorithm once the instance size
becomes sufficiently small for the number of available qubits. Theorem 1 formalises this idea,
and explicitly makes the trade-off between the number of available qubits, the resource require-
ment of the quantum subroutine, and the speedup obtained. We also explicitly demonstrate
how the results of Contributed Article VI fit into this framework (Example 3).

Although the basic idea of the divide-and-conquer hybrid approach is simple, in order to
obtain a polynomial speedup over the original classical algorithm, the underlying quantum
subroutine needs to fulfil strict criteria for space-efficiency whilst also being (at least) polyno-
mially faster than the original algorithm. In many cases, the main contribution to the space
requirement of the quantum subroutine comes from the necessity of generating and storing large
sets. Indeed, a naive encoding of large sets as ordered lists is demonstrated to usually lead to
a less-than-polynomial speedup (Example 2). On the other hand, straightforward encodings as
genuine sets would naively lead to problems with reversibility, which is naturally required for
quantum algorithms. Turning non-reversible computations into reversible ones in the canonical
way either introduces many ancillas, or can incur exponential overheads, both of which would
prevent any reasonable speedup. Indeed, combining the seemingly competing requirements of
reversibility, space-efficiency and time-efficiency for our purposes is non-trivial.

In Section IV, we show how to overcome this problem. In particular, Theorem 2 provides a
classical reversible set generation routine which can be used to obtain quantum algorithms that
are compatible with a polynomial speedup in the divide-and-conquer hybrid approach. For this,
specialised data-structures to encode large sets are first introduced in Section IV A, which will
later allow the required trade-off between space-efficiency and efficient uncomputation. The
main idea here is to split the large set into smaller subsets of suitable sizes, thus adding just
enough ordering information to be able to uncompute only the smaller subsets individually.
This allows us to keep the overall number of ancillas used low. Afterwards, in Section IV B, we
provide the general algorithm to generate an efficient encoding of a large set, given only access
to operations which generate single elements.

Section IV then provides a novel example of how these tools can be applied in practice.
Eppstein’s algorithm, which decides if a cubic graph of n vertices has a Hamiltonian cycle in
runtime O∗(2n/3), is a classical divide-and-conquer algorithm that naturally fits the framework
of Theorem 1. The main ingredient for a speedup then becomes a polynomially faster quan-
tum algorithm that solves the “forced” version of this problem using sufficiently few qubits.
Theorem 3 proves the existence of such a quantum algorithm. The proof of Theorem 3 heavily

106

utilises the set generation routine of Theorem 2, which reduces the task to implementing a
small number of problem-specific, i.e. graph-theoretic, operations. Theorem 3, together with
Theorem 1, then immediately imply a polynomial speedup of Eppstein’s algorithm of runtime
O∗(2(1/3−f(c))n) using only M = cn qubits, where c > 0 is an arbitrary constant and f(c) > 0.
This is formally stated in Theorem 4.

Statement of individual contribution

This work was motivated by several discussions between Vedran Dunjko and myself. I had
the idea of speeding up Eppstein’s algorithm using similar methods to the ones we developed
in Contributed Article VI, and subsequently worked out the details of the algorithm and the
proofs involved. Afterwards, with regular advice from Vedran Dunjko, I formulated the more
general framework for developing hybrid algorithms. I was in charge of writing all parts of this
article.

I, Yimin Ge, am the principal author of this article and was extensively involved in all parts of it.

107

Permission to include:

Yimin Ge and Vedran Dunjko.
A hybrid algorithm framework for small quantum computers with application to finding
Hamiltonian cycles.
arXiv:1907.01258 [quant-ph], 2019
Submitted to Journal of Mathematical Physics, July 2019.

Reproduced from Yimin Ge and Vedran Dunjko, A hybrid algorithm framework for small quantum

computers with application to finding Hamiltonian cycles, arXiv:1907.01258 [quant-ph], 2019 (submitted

to Journal of Mathematical Physics, July 2019), with the permission of AIP Publishing

108

https://publishing.aip.org/resources/researchers/rights-and-permissions/permissions/ 03/12/2019

Permission to Reuse Content
REUSING AIP PUBLISHING CONTENT

Permission from AIP Publishing is required to:

 republish content (e.g., excerpts, figures, tables) if you are not the author

 modify, adapt, or redraw materials for another publication

 systematically reproduce content

 store or distribute content electronically

 copy content for promotional purposes

To request permission to reuse AIP Publishing content, use RightsLink® for the fastest response or
contact AIP Publishing directly at rights@aip.org and we will respond within one week:

For RightsLink, use Scitation to access the article you wish to license, and click on the Reprints and
Permissions link under the TOOLS tab. (For assistance click the “Help” button in the top right corner
of the RightsLink page.)

To send a permission request to rights@aip.org, please include the following:

 Citation information for the article containing the material you wish to reuse

 A description of the material you wish to reuse, including figure and/or table numbers

 The title, authors, name of the publisher, and expected publication date of the new work

 The format(s) the new work will appear in (e.g., print, electronic, CD-ROM)

 How the new work will be distributed and whether it will be offered for sale

Authors do not need permission from AIP Publishing to:

 quote from a publication (please include the material in quotation marks and provide the
customary acknowledgment of the source)

 reuse any materials that are licensed under a Creative Commons CC BY license (please format
your credit line: “Author names, Journal Titles, Vol.#, Article ID#, Year of Publication; licensed
under a Creative Commons Attribution (CC BY) license.”)

 reuse your own AIP Publishing article in your thesis or dissertation (please format your credit
line: “Reproduced from [FULL CITATION], with the permission of AIP Publishing”)

 reuse content that appears in an AIP Publishing journal for republication in another AIP
Publishing journal (please format your credit line: “Reproduced from [FULL CITATION], with
the permission of AIP Publishing”)

 make multiple copies of articles–although you must contact the Copyright Clearance Center
(CCC) at www.copyright.com to do this

(…)

A hybrid algorithm framework for small quantum computers with application to
finding Hamiltonian cycles

Yimin Ge1, ∗ and Vedran Dunjko2, †

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
2LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands

Recent works have shown that quantum computers can polynomially speed up certain SAT-solving
algorithms even when the number of available qubits is significantly smaller than the number of
variables. Here we generalise this approach. We present a framework for hybrid quantum-classical
algorithms which utilise quantum computers significantly smaller than the problem size. Given an
arbitrarily small ratio of the quantum computer to the instance size, we achieve polynomial speedups
for classical divide-and-conquer algorithms, provided that certain criteria on the time- and space-
efficiency are met. We demonstrate how this approach can be used to enhance Eppstein’s algorithm
for the cubic Hamiltonian cycle problem, and achieve a polynomial speedup for any ratio of the
number of qubits to the size of the graph.

I. INTRODUCTION

Although fully scalable quantum computers may be far off, small quantum computers may be achievable in the
forseeable future. Such devices may able to provide solutions to toy or specialised problems of small size (e.g.
in quantum chemistry), it was however until recently unclear whether they could also be utilised for speeding up
more general and common computations of much larger problem instances. Indeed, quantum and classical algorithms
usually exploit global structures inherent to the problem, and it is generally difficult to utilise small quantum computers
without breaking that structure. For example, the ability to factor n/10-digit integers is unlikely to be of much help
for the task of factoring n-digit integers. One would therefore naively expect that for structured problems, small
quantum computers would only be useful for small problem sizes.

Recently in [1], it was show that this is not generally true: given a quantum computer with only M qubits, it was
shown that one can obtain a significant speedup of Schöning’s algorithm for solving 3SAT involving n�M variables.
More precisely, the speedup can be expressed in terms of the ratio c = M/n of available qubits to the problem size,
and it was shown that an asymptotic polynomial speedup can be achieved for arbitrarily small values of c. The latter
is non-trivial, since it was also shown that employing a naive approach to speed up the classical algorithm breaks the
exploited problem structure, thus resulting in no improvement unless c is quite large.

One of the main insights of [1] was that classical divide-and-conquer algorithms inherently don’t suffer from this
“threshold effect” since they naturally maintain the structure of the problem despite breaking it into smaller subprob-
lems, and are thus well-suited for being enhanced using small quantum computers. Yet, to achieve genuine speedups,
the quantum subroutines employed must meet stringent criteria for space- and time-efficiency, which in general are
non-trivial to fulfil and, in the case of [1], required specialised data-structures and careful memory management.
Moreover, [1] exclusively considers the example of Schöning’s 3SAT algorithm, and while it demonstrated how divide-
and-conquer structures can in principle be exploited, it left open a formal characterisation of the criterion for when
this approach works, and whether other examples beyond Schöning’s 3SAT algorithm exist where similar speedups
can be obtained [2]. Given the ubiquity of classical divide-and-conquer algorithms, a general framework for developing
such hybrid algorithms to obtain speedups using only small quantum computers would thus be highly desirable.

In this work, we formalise and generalise the criteria for the hybrid approach of [1], and show that indeed, there
are other problems and algorithms that can be enhanced with that approach, using only small quantum computers.
Specifically, we develop a general framework for constructing hybrid algorithms that speed up certain classical divide-
and-conquer algorithms using significantly fewer qubits than the problem size, which also makes precise the relation
between the speedup obtained on the one hand, and the space requirements and runtime of the underlying quantum
subroutines on the other. We then apply this formalism to finding Hamiltonian cycles on cubic graphs, which is
another fundamental NP-complete problem. This provides the first example of the applicablity of these techniques
beyond the example of Schöning’s 3SAT algorithm given in [1]. Our framework operates on the algorithmic level and
is distinct from the circuit-level techniques of [3, 4], which aim to simulate general quantum circuits on fewer qubits.

∗ yimin.ge@mpq.mpg.de
† v.dunjko@liacs.leidenuniv.nl

2

The efficiency of the latter depends on sparseness or decomposability assumptions on the original circuits which will
in general prevent speedups for the algorithms we consider here.

We provide our formalism for constructing hybrid algorithms from classical algorithms in the form of a “toolkit”
comprising two parts. The first part, which we term the divide-and-conquer hybrid approach, shows general criteria
for the kind of classical algorithms one can speed up using our techniques, and relates the speedup to the number
of available qubits. The second part, which we term efficient reversible set generation, comprises specialised data-
structures. These are specifically designed to bridge the gap between two seemingly irreconciliable properties required
of the quantum algorithm for a polynomial speedup in the divide-and-conquer hybrid approach: reversibility on the
one hand, and being extremely space-efficient on the other. The set generation procedure we develop makes the task
of developing quantum algorithms suitable for our hybrid approach significantly easier: we show that it suffices to
find space-efficient implementations for a few problem-specific quantum operations.

Finally, we illustrate how this framework is applied to speed up Eppstein’s algorithm [5] for the cubic Hamiltonian
cycle problem with only a small quantum computer. The cubic Hamiltonian cycle problem asks if a given cubic graph
of n vertices has a Hamiltonian cycle, i.e. a cycle visiting every vertex exactly once. This problem is NP-complete, and
a special case of the general Hamiltonian cycle problem (where no restrictions on the maximum degree of the graph is
assumed), which in turn is closely linked to the travelling salesman problem. Brute-force search requires O(n! poly(n))
time, there is however also a trivial path-search algorithm with runtime O(2n poly(n)). In 2004, Eppstein [5] gave
a divide-and-conquer algorithm of runtime O(2n/3 poly(n)) = O(1.2599n poly(n)), which heavily exploits the cubic
structure of the graph. Quantum speedups for Eppstein’s algorithm have previously been obtained using arbitrarily-
sized quantum computers [6]. In this work, we obtain a polynomial speedup using only M = cn qubits for arbitrarily
small c > 0.

The outline of the remainder of this paper is as follows. In Section II, we give a brief overview of the results and
clarify some notation. In Section III, we formulate the divide-and-conquer hybrid approach for a general class of
classical algorithms. In Section IV, we provide the details of the efficient and reversible set generation procedure. In
Section V, we apply these tools to Eppstein’s algorithm for the cubic Hamiltonian cycle problem. Finally, we close
the paper with some concluding remarks and open questions in Section VI.

II. OVERVIEW

A. Overview of results

We briefly summarise the results and main ideas of this paper.

Sections III and IV set up the general framework for designing hybrid algorithms for quantum computers significantly
smaller than the problem size. Specifically, Section III introduces the divide-and-conquer hybrid approach, and outlines
the general criteria for the kind of classical algorithms which our framework is applicable to. Theorem 1 then formalises
the trade-off between the number of available qubits, the space-requirement of the underlying quantum subroutine,
and the speedup obtained. The main idea of this hybrid approach is to take a classical divide-and-conquer algorithm,
which calls itself on ever smaller problem instances, and to replace the recursive call with a suitable quantum algorithm
once the problem instance is sufficiently small to fit the number of available qubits. While the basic idea is simple, in
order to obtain a polynomial speedup over the original classical algorithm, the replacing quantum algorithm has to
fulfill strict criteria for space-efficiency whilst also being polynomially faster. In many cases, the main contribution
to the quantum algorithm’s space-requirement comes from the necessity of generating and storing large sets.

Section IV then shows how to do the latter efficiently. In particular, Theorem 2 provides a (classical) reversible set
generation routine which can be used to obtain quantum algorithms that are compatible with a polynomial speedup
when used in Theorem 1. To that end, specialised set encodings are first introduced which are designed to overcome the
main challenge of such an implementation: the ability to uncompute encodings of previously generated sets without
resulting in either large computational overheads or large memory requirements.

Section V then provides an example of how these tools can be applied in practice. Eppstein’s algorithm for finding
Hamiltonian cycles on cubic graphs is a classical divide-and-conquer algorithm that naturally fits the framework of
Theorem 1. The main ingredient for a speedup then becomes a polynomially faster quantum algorithm that solves
this problem using sufficiently few qubits. Theorem 3 proves the existence of such a quantum algorithm. The proof of
Theorem 3 heavily utilises the set generation routine of Theorem 2, which reduces the task to implementing a small
number of problem-specific, i.e. graph-theoretic, operations. Theorem 3, together with Theorem 1, then immediately
imply a polynomial speedup of Eppstein’s algorithm using only significantly fewer qubits than the size of the graph,
which is formally stated in Theorem 4.

3

B. Related work

The present work is closely linked to the results obtained in [1], which however exclusively focuses on speeding
up Schöning’s algorithm for 3SAT. By contrast, the results presented in Sections III and IV of this work provide a
general framework which is not tied to any specific algorithm. In Section III, we provide general criteria for when
similar speedups as the one in [1] can be obtained for other classical algorithms, and moreover explicitly relate the
degree of the speedup to the resource requirements of the underlying quantum subroutine and the number of qubits
available. The main ideas of the efficient and reversible set generation procedure given in Section IV can also be
found in [1]. However, the presentation in [1] is specific to speeding up Schöning’s algorithm, and potentially more
general structures are often strongly interwoven with 3SAT-specific constructions there. By contrast, in this work and
specifically in Theorem 2, we provide a clean formulation that explicitly separates the more abstract structures from
problem-specific implementations, thus obtaining a general framework that can be more easily applied in different
scenarios. For example, the general formulation of the set generation procedure vastly simplifies the construction of
a suitable quantum subroutine for polynomially speeding Eppstein’s algorithm later in Section V.

C. Notation

Throughout this paper, we will use standard bra/ket notation for quantum states. We will also use bra/ket notation
in the context of classical reversible circuits, since they can be seen as special cases of quantum circuits.

Moreover, for simplicity of notation, we will often make several notational simplifications. First, we often simply

write |0〉 for |0〉⊗L for any known L ∈ N. The value of L will always be clear from context. Second, for operators acting
on some registers of a multi-register state, we will normally not explitly write the complementing identiy operators
(e.g., we will simply write A |a〉 |b〉 |c〉 |d〉 instead of (1⊗A⊗ 1) |a〉 |b〉 |c〉 |d〉 if A acts on the middle two registers). It
will always be clear from context which registers which operators act on.

III. THE DIVIDE-AND-CONQUER HYBRID APPROACH

In this section, we formalise the divide-and-conquer hybrid approach, generalising the techniques of [1], for designing
hybrid algorithms using only quantum computers significantly smaller than the problem size. The main idea is to
take a classical divide-and-conquer [7] algorithm that calls itself on ever smaller (effective) problem sizes, and replace
the recursive calls with a quantum algorithm once the problem size becomes sufficiently small.

Let P be a countable set, A : P → {0, 1} be a decision problem [8], and n : P → N be a problem parameter. We
refer to n(P) as the problem size of P .

1: procedure Alg(P)
2: if Trivial(P) = 1
3: return f(P)
4: else
5: return g(Alg(R1(P)), . . . ,Alg(Rl(P)))
6: end procedure

ALG 1: General algorithm for the divide-and-conquer hybrid approach

Suppose that A(P) can be decided by a classical recursive algorithm [9] of the form given in Alg. 1, where
l ≥ 2 is an integer, R1, . . . , Rl : P → P, g : {0, 1}l → {0, 1}, and f,Trivial : P → {0, 1}. We assume
that Trivial(P), R1(P), . . . , Rl(P) can be calculated in O(poly(n(P))) time, and that f(P) can be calculated in
O(poly(n(P))) time if Trivial(P) = 1. The maps R1, . . . , Rl can be thought of as “reduction operations”, mapping
the problem to a smaller instance, whereas Trivial(P) signifies if P is sufficiently simple to be solved directly. We
assume that for all P ∈ P and i = 1, . . . , l, n(Ri(P)) ≤ n(P).

The runtime of such divide-and-conquer algorithms can often be bounded by introducing an effective problem size
s : P → N. In general, s(P) and n(P) can be different, we assume however that for all P ∈ P, s(P) ≤ n(P). We
assume that both n(P) and s(P) can be calculated in time O(poly(n(P))). We moreover assume that there is a
universal constant C ∈ N such that s(P) ≤ C implies Trivial(P) = 1.

To ensure that Alg(P) has a runtime of the form O(2γs(P) poly(n(P))) for some constant γ > 0, we assume that
there exist integers k > 0, Cij > 0 for 1 ≤ i ≤ l, 1 ≤ j ≤ k, and l1, . . . , lk ∈ {1, . . . , l} such that for all P ∈ P with

4

Trivial(P) = 0, there exists some j ∈ {1, . . . , k} such that for all i = 1, . . . , l, we have

s(Ri(P)) ≤ s(P)− Cij or Trivial(Ri(P)) = 1 (1)

for i = 1, . . . , lj , and Trivial(Ri(P)) = 1 for i = lj + 1, . . . , l. Here, j ∈ {1, . . . , k} labels one of k possible cases
for effective problem size reductions, and lj ≤ l the effective number of recursive branches of that case, whereas the
positive integers Cij are lower bounds on the decrease of the effective problem size, guaranteeing that the algorithm
terminates.

Under these assumptions, it is easy to derive the stated upper bound on the runtime of running Alg(P). Indeed,
(1) implies a recursive runtime bound T (s(P)) depending only on s(P) given by

T (s′) ≤ max
j=1,...,k

(T (s′ − C1j) + · · ·+ T (s′ − Cljj)) +O(poly(n(P))) (2)

and T (s′) = O(poly n(P)) for s′ ≤ C. Using standard methods for solving recurrence relations [10], this leads to a

runtime of T (s′) = O(2γs
′
poly(n(P))) for some γ > 0. Thus, Alg(P) has a runtime of O(2γs(P) poly(n(P))).

Our aim is to provide criteria for when a reduction of the value of γ, i.e. a polynomial speedup, can be achieved.

Theorem 1 (Divide-and-conquer hybrid approach). Suppose that there is a quantum algorithm QAlg that decides
A(P) using at most G(s(P), n(P)) qubits in time O(2γQs(P) poly(n(P))) for some constant γQ ∈ [0, γ). Suppose that
G : [0,∞)× [0,∞)→ [0,∞) has the property that for all nonnegative integers s ≤ n′ ≤ n, G(s, n′) ≤ G(s, n). Suppose

moreover that there exists some λ̃ ∈ (0, 1) such that for all λ ∈ [0, λ̃] and n ∈ N,

G(λn, n) = nF (λ) +O(log n) (3)

for some strictly monotonically increasing and continuously differentiable F : [0, λ̃]→ [0,∞) such that F (0) = 0 and
F ′ is bounded away from 0.

Let c ∈ (0, F (λ̃)) be an arbitrary constant. Then, given a quantum computer with M = cn(P) qubits, there exists
a hybrid quantum-classical algorithm that decides A(P) in a runtime of O(max(2γs(P)−f(c)n(P), 2γQs(P)) poly(n(P))),
where f(c) = (γ − γQ)F−1(c) > 0. In particular, A(P) can be decided in O(2(γ−f(c))n(P) poly(n(P))).

Alg

QAlg

s > s̃

s ≤ s̃

P

R1(P) R2(P)

R1(R1(P)) R2(R1(P)) R1(R2(P)) R2(R2(P))

. . .

...

FIG. 1: Schematic view of the hybrid algorithm for l = 2. Recursive calls to Alg are replaced with calls to QAlg
once the effective problem size becomes sufficiently small.

Proof. The proof is based on the ideas developed in [1] in the context of 3SAT. The main idea of the hybrid algorithm
is to call QAlg(P ′) instead of Alg(P ′) in the recursive step of Alg when s(P ′) is sufficiently small (see Fig. 1).

By assumption, running QAlg(P ′) for any P ′ ∈ P with n(P ′) ≤ n(P) requires at most G(s(P ′), n(P ′)) ≤
G(s(P ′), n(P)) ≤ n(P)F (s(P ′)/n(P)) + a lnn(P) qubits for some constant a > 0. Hence, if n(P ′) ≤ n(P), then

s(P ′) ≤ n(P)F−1

(
c− a lnn(P)

n(P)

)
=: s̃ (4)

5

is a sufficient condition for being able to run QAlg(P ′) with M = cn(P) qubits. Note that since F is strictly
increasing and continuously differentiable with its derivative bounded away from 0, the same applies to F−1. Thus,
by the mean value theorem, s̃ = F−1(c)n(P)−O(log n(P)).

Let HybridAlg(P ′) be the algorithm which calls QAlg(P ′) if s(P ′) ≤ s̃ and Alg′(P ′) otherwise, where Alg′ is
the same algorithm as Alg except that in line 5 of Alg, the calls to Alg are replaced by calls to HybridAlg. Note
that since n(Ri(P

′)) ≤ n(P ′) for all P ′ ∈ P and i = 1, . . . , l, M = cn(P) qubits suffice to run HybridAlg(P).
We now analyse the runtime of HybridAlg. Note that its runtime can be bounded by the function TH(s(P))

depending only on s(P), where TH is given recursively by

TH(s′) = O(2γQs
′
poly(n(P))) (5)

for s′ ≤ s̃ and

TH(s′) ≤ max
j=1,...,k

(TH(s′ − C1j) + · · ·+ TH(s′ − Cljj)) +O(poly(n(P))) (6)

for s′ > s̃. Using standard recurrence relation techniques, we therefore obtain

TH(s′) = O(2γ(s′−s̃)+γQs̃ poly(n(P))) = O(2γs
′−(γ−γQ)s̃ poly(n(P))) = O(2γs

′−f(c)n(P) poly(n(P))), (7)

for s′ > s̃, which proves the claim.

We remark that the assumptions of Theorem 1 can be relaxed in various ways. First, it is sufficient for QAlg

to only decide A(P) for P ∈ ⋃li=1Ri(P). Second, F being continuously differentiable can be relaxed to F−1 being
locally Lipschitz-continuous.

Note moreover that the assumption that F ′ is bounded away from 0 ensures that the degree of the polynomial
overhead of the hybrid algorithm can be bounded by a constant independent of c. More precisely, if F ′(λ) ≥ κ > 0

for all λ ∈ [0, λ̃], then the hybrid algorithm decides A(P) in a runtime of O(max(2γs(P)−f(c)n(P), 2γQs(P))n(P)O(1/κ)).

Example 1. Suppose that in Theorem 1, running QAlg(P) requires O(s log(n/s) + s + log n) qubits, where here
we just write s, n instead of s(P), n(P) for simplicity. In that case, G(s, n) = As ln(n/s) + Bs + O(log n) for some
constants A,B > 0. Then, F (λ) = Aλ ln(1/λ) + Bλ, which is monotonically increasing on (0, eB/A−1). It can be
shown that F−1(c) = −c/(AW−1(−ce−B/A/A)), where W−1 is the −1 branch of the Lambert W function. It is easy
to see that for small values of c, F−1(c) = Θ(c/ log(1/c)).

The curious expression O(s log(n/s) + s) stems from the information-theoretic cost of encoding a subset of
{1, . . . , O(n)} of size O(s). It is moreover the scaling obtained in Ref [1] (see Example 3 below) and also later
in Section IV and V. �

Example 2. Suppse that QAlg requires ≥ s log2 n qubits instead. Note that this does not satisfy the requirements
of Theorem 1. Then, with the same notation as in the proof of Theorem 1, s̃ = cn/ log2 n, and hence

TH(n) = O(2(γ− c
log2 n)n poly(n))). (8)

Note that this does not yield a polynomial speedup over Alg, since the value of γ is not reduced by a constant.
The importance of this example lies in that while a qubit scaling of O(s log n) is, in many cases, easy to achieve

(e.g. through storing an ordered list of O(s) numbers in {1, . . . , O(poly n)}), it however does not lead to a polynomial
(albeit still asymptotic) speedup. A similar result can also be seen for a scaling of O(s log s). �

Note that the strictness of the space requirement for QAlg to obtain a polynomial speedup comes from the premise
of only having a quantum computer of size M = cn. Note that if in Example 2, we were given a quantum computer
with M = cn log n qubits instead, a polynomial speedup would still be obtained. The strength of the speedup therefore
critically depends what is considered a “natural” scaling of M relative to n. In many of the typical applications, the
search space of typical classical algorithms (e.g. brute-force search) can be enumerated using O(n) classical bits.
Using amplitude amplification, one can then often obtain a quantum algorithm using O(n) qubits that is usually
polynomially (and often quadratically) faster than the corresponding classical algorithm [11]. In these cases, M = cn
is the natural scaling because if the scaling were to be relaxed to M = cq(n) qubits with q(n) being superlinear in
n, then even for arbitrarily small c, the above quantum algorithm would require asymptotically fewer qubits than
the hybrid algorithm, which would be inconsistent with the notion that M should be significantly smaller than the
number of qubits required by a full quantum algorithm.

6

Example 3. We now show that the results of [1] also fit in this paradigm. We use the nomenclature of [1], and refer
the interested reader to [1, 12] for further details.

In [1], Alg was taken to be the algorithm from [12] for the Promise-Ball-SAT problem. There, P = (F,x, r)
comprises an n-variable 3SAT formula F , a trial assignment x ∈ {0, 1}n and a radius r ∈ {1, . . . , n}. The effective
problem size s(P) was simply taken to be its radius r of P .

In [12], it was shown that there are two possible cases (k = 2) in the recursive algorithm. In the first case, two
subproblems of radius r − 1 are created. In the second case, at most t22∆ subproblems of radius r −∆ are created,
where ∆ ∈ N is a constant chosen below and t = 3∆.

Then, with the notation of this section, l = t22∆, k = 2, l1 = 2, l2 = l, and

C =




1 ∆
1 ∆
0 ∆
...

...
0 ∆



. (9)

This leads to a recursive runtime bound of

T (r) ≤ max
(
2T (r − 1), t22∆T (r −∆)

)
, (10)

leading to a runtime of T (r) = O((2t2/∆)r poly(n)) = O(2(1+ε)r poly(n)), where ε = 2∆−1 log2(3∆). Note that ε→ 0
as ∆→∞.

Ref [1] then constructs a quantum algorithm solving the Promise-Ball-SAT problem in time O(2γQr poly(n)) with
γQ = log2(3)/2 < 1, and using at most O(r log(n/r) + r + log n) qubits. Thus, Theorem 1 and the observation

in Example 1 implies that Promise-Ball-SAT can be solved in time O(max(2(1+ε)r−f̃(c)n, 2γQr) poly(n)) with f̃(c) =

Θ(c/ log(1/c)). Note that ∆ can be chosen such that ε < f̃(c)/2. The results from [13], which reduce 3SAT to
Promise-Ball-SAT, then imply that given a quantum computer with M = cn qubits, n-variable 3SAT can be solved
in time O(2(γ−f(c))n poly(n)), where f(c) = f̃(c)/2 and γ = log2(4/3). This is a polynomial speedup of the 3SAT
algorithm obtained in [12] (which in turn can be seen as a derandomised version of Schöning’s algorithm [14]), which
is the central result of [1]. �

IV. EFFICIENT AND REVERSIBLE SET GENERATION

The previous section highlights the importance of the space-efficiency of the quantum algorithm used in Theorem 1.
In many instances, this quantum algorithm require the storing and manipulation large sets, e.g. to keep track of
changes to P . As observed in [1], this is in general a non-trivial task when constrained by limited memory.

In this section, we formulate a general process to space- and time-efficiently generate an encoding of a set in a
reversible manner, designed to be compatible with the use of Theorem 1 to obtain a polynomial speedup using small
quantum computers.

Note that most of the required subroutines can trivially be implemented space-efficiently if one assumes that an-
cillary memory registers can be erased at will. However, we naturally require our computations to be reversible.
This is in general an issue, since turning non-reversible computations into reversible ones in the canonical fash-
ion either introduces many ancillas, or can incur exponential overheads (see e.g. [15]), both of which are non-
starters for our needs. Combining the seemingly competing requirements of reversibility, small memory require-
ments and computational efficiency for our purposes is non-trivial. To illustrate the problem (see also [1]), note
that if sets S = {x1, . . . , xr} ⊂ {1, . . . , N} are simply stored as ordered lists |x1〉 . . . |xr〉, the memory requirement
of O(r logN) qubits is too large for a polynomial speedup if r = O(s(P)) and N = O(n(P)) (see Example 2).
On the other hand, if sets are encoded as genuine sets (i.e., without storing any ordering of the elements in the
set), the operation |{x1, . . . , xi−1}〉 |xi〉 7→ |{x1, . . . , xi}〉 is non-reversible, because the information on which ele-
ment was added last is lost. The naive way to make this reversible would be to first implement the operation
|{x1, . . . , xi−1}〉 |xi〉 7→ |{x1, . . . , xi−1}〉 |xi〉 |{x1, . . . , xi}〉 and then to uncompute the |{x1, . . . , xi−1}〉 |xi〉 registers by
applying the inverse of the circuit up to that point. It is easy to see however that this incurs a computational overhead
of O(2i), which is too large. Indeed, suppose that SetGeni |0〉 = |{x1, . . . , xi}〉 and Calculatei |0〉 = |xi〉. Then, the naive
(recursive) implementation of SetGeni would be to first apply CalculateiSetGeni−1 to generate |{x1, . . . , xi−1}〉 |xi〉, then
implementing |{x1, . . . , xi−1}〉 |xi〉 7→ |{x1, . . . , xi−1}〉 |xi〉 |{x1, . . . , xi}〉, and finally applying (CalculateiSetGeni−1)−1

to uncompute the ancillas. The resulting recursive runtime would be |SetGeni| > 2|SetGeni−1|, leading to an expo-
nential gate count of O(2i).

7

In this section, we describe a general formalism to overcome this problem based on the ideas of [1]. Specifically, we
will show how the above task can in fact be implemented with O(r log(N/r) + r + logN) memory and O(poly(N))
runtime. Of course, one of the key aspects of our implementation is the continuous uncomputation of any ancillas
we introduce along the way once they are no longer needed. Once they are uncomputed (i.e., reset to a known initial
state, say |0〉), they can be re-used for later computational steps. This allows us to keep the overall number of ancillas
used low. The primary challenge is to do this in a way which avoids the exponential overhead mentioned above.

In Section IV A, we first introduce the data-structures which allow this suitable trade-off between space-efficiency
and computational overhead of uncomputation. Specifically, we develop a space-efficient encoding of large sets which
adds just enough ordering information to allow for efficient uncomputation. Afterwards, in Section IV B, we describe
the general algorithm for generating such an encoding of a set, given only access to operations which generate single
elements of the set.

All algorithms considered in the remainder of this section are classical and will be written as reversible circuits.
For convenience, we also introduce the following notion of reversible implementation and note the subsequent trivial
observation.

Definition 1. Let q, l, g ∈ N, X ⊂ {0, 1}q and f : X → {0, 1}q be injective. We say that f can be implemented
reversibly using l ancillas and g gates if there exists a classical reversible circuit of at most g elementary gates which
for all x ∈ X implements the operation

|x〉 |0〉⊗l 7→ |f(x)〉 |0〉⊗l . (11)

Proposition 1. Let q, t ∈ N, X1, . . . ,Xt ⊂ {0, 1}q and fi : Xi → {0, 1}q, i = 1, . . . , t, be injective such that fi can
be implemented reversibly using li ancillas and gi gates. Suppose that fi(Xi) ⊂ Xi+1 for i = 1, . . . , t − 1. Then,
ft ◦ ft−1 ◦ · · · ◦ f1 can be implemented reversibly using maxi=1,...,t li ancillas and g1 + · · ·+ gt gates.

A. Efficient set encodings

In this section we describe how to efficiently encode sets in a way which allows for efficient uncomputation whilst
maintaining reversibility. We first describe “basic” set encodings, which use little memory but by themselves do not
allow for efficient uncomputation. After that, we describe an efficient encoding composed of multiple basic encodings
that allows for efficient uncomputation.

Definition 2. Let N, k ∈ N be positive integers with k ≤ N , and let S ⊂ {1, . . . , N} with |S| = k. Define the basic
encoding |EncN S〉 of S to be a sequence of bk log2(N/k + 1)c+ 2k trits set to

|EncN S〉 := |(y1)2〉 |2〉 |(y2 − y1)2〉 |2〉 . . . |(yk − yk−1)2〉 |2〉 |0〉 . . . |0〉 , (12)

where S = {y1, . . . , yk} with y1 < · · · < yk, and for a positive integer y, |(y)2〉 denotes a sequence of dlog2(y + 1)e
trits encoding the binary representation of y on the {0, 1} subspace [16].

Example 4. Suppose N = 20, k = 5, and S = {6, 7, 10, 15, 17}. Then, bk log2(N/k+1)c+2k = 21, and y1 = 6 = 1102,
y2 − y1 = 1 = 12, y3 − y2 = 3 = 112, y4 − y3 = 5 = 1012, and y5 − y4 = 2 = 102. Thus,

|EncN S〉 = |110212112101210200000〉 . (13)

�

To see that bk log2(N/k + 1)c+ 2k indeed suffice for |EncN S〉, note that the number of trits required is

dlog2(y1 + 1)e+ dlog2(y2 − y1 + 1)e+ · · ·+ dlog2(yk − yk−1 + 1)e+ k (14)

≤ log2(y1 + 1) + log2(y2 − y1 + 1) + · · ·+ log2(yk − yk−1 + 1) + 2k (15)

≤ k log2((yk + k)/k) + 2k (16)

≤ k log2(N/k + 1) + 2k, (17)

where (16) follows from Jensen’s inequality. Note that this is significantly less than the naive encoding of S as an
ordered list, which uses O(k logN) bits.

In [1], it was shown how to perform basic set operations on |EncN S〉.

Definition 3. Let N be a positive integer.

8

(i) For any positive integer k ≤ N , let ContainsN,k be the operation that performs

ContainsN,k |EncN S〉 |x〉 |0〉 = |EncN S〉 |x〉 |x ∈ S?〉 (18)

for any S ⊂ {1, . . . , N} with |S| = k, where the last bit on the right-hand side of (18) is 1 if x ∈ S and 0
otherwise.

(ii) Let ConvertN be the operation that performs

ConvertN |x〉 |0〉 = |x〉 |EncN{x}〉 (19)

for any x ∈ {1, . . . , N}.
(iii) For any positive integers k1, k2 with k1 + k2 ≤ N , let UnionN,k1,k2 be the operation that performs

UnionN,k1,k2 |EncN S1〉 |EncN S2〉 |0〉 = |EncN S1〉 |EncN S2〉 |EncN S1 ∪ S2〉 (20)

for any disjoint S1, S2 ⊂ {1, . . . , N} with |S1| = k1 and |S2| = k2.

Proposition 2 ([1], Lemma 2,5,6 in Supplemental Material). Let N be a positive integer. Then,

(i) for any positive integer k ≤ N , ContainsN,k can be implemented reversibly using O(logN) ancillas and
O(poly(N)) gates.

(ii) ConvertN can be implemented reversibly using O(logN) ancillas and O(poly(N)) gates [17].

(iii) for any positive integers k1, k2 with K = k1 + k2 ≤ N , UnionN,k1,k2 can be implemented reversibly using
O(K log(N/K) +K + logN) ancillas and O(poly(N)) gates.

Note in particular that in Proposition 2(i) and (iii), the runtime bound (i.e., the degree of the polynomial) does
not depend on k or k1, k2, respectively. In fact, none of the operations depend on the set-sizes in any relevant way.

Although |EncN S〉 is itself space-efficient, it does not allow for a set generation procedure that is simultaneously
space- and time-efficient as well as reversible, for the reasons explained at the beginning of this section. We now define
a memory-structure that allows for this task.

Definition 4. Let N, k be positive integers with k ≤ N . Let S ⊂ {1, . . . , N} with |S| = k, and let Z = (x1, . . . , xk)
be a permutation of the elements of S. Then, the efficient encoding |EffEncN Z〉 of Z is definded as follows: suppose
that k has binary representation k = 2a1 + · · ·+ 2as with integers blog2 kc = a1 > a2 > · · · > as ≥ 0. For j = 1, . . . , s,
let kj := 2a1 + · · ·+ 2aj . Then, |EffEncN Z〉 is defined as

|EffEncN Z〉 := |EncN{x1, . . . , xk1}〉 |EncN{xk1+1, . . . , xk2}〉 . . .
∣∣EncN{xks−1+1, . . . , xk}

〉
. (21)

Example 5. Suppose k = 13 = 8 + 4 + 1 and Z = (x1, . . . , x13). Then,

|EffEncN Z〉 = |EncN{x1, x2, x3, x4, x5, x6, x7, x8}〉 |EncN{x9, x10, x11, x12}〉 |EncN{x13}〉 . (22)

�
Proposition 3. For any positive integers k ≤ N and distinct integers x1, . . . , xk ∈ {1, . . . , N}, |EffEncN Z〉 comprises
at most b2k log2(N/k + 1)c+ 8k = O(k log(N/k) + k) trits, where Z = (x1, . . . , xk).

Proof. For any S′ ⊂ {1, . . . , N}, |EncN S
′〉 comprises at most |S′| log2(N/|S′|+ 1) + 2|S′| trits. Thus, the number of

trits in |EffEncN Z〉 is at most

blog2 kc∑

l=0

(
2l log2

N + 2l

2l
+ 2l+1

)
=

blog2 kc∑

l=0

2l log2

N + 2l

k
+

blog2 kc∑

l=0

2l+1 +

blog2 kc∑

l=0

2l log2

k

2l
(23)

≤
blog2 kc∑

l=0

2l log2

N + k

k
+

blog2 kc∑

l=0

2l+1 + k

blog2 kc∑

l=0

2l

k
log2

k

2l
(24)

≤ 2k log2

(
N

k
+ 1

)
+ 4k + 2k

blog2 kc∑

l=0

1

2dlog2 ke−l
(dlog2 ke − l) (25)

≤ 2k log2

(
N

k
+ 1

)
+ 4k + 2k

∞∑

j=0

j

2j
(26)

≤ 2k log2

(
N

k
+ 1

)
+ 8k, (27)

which proves the claim.

9

Note that since we always assume that we work with sets of known sizes, basic set operations can be “lifted” from
|EncN S〉 to |EffEncN Z〉.

Definition 5. For any positive integers N, k with k ≤ N , let EffContainsN,k be the operation that performs

EffContainsN,k |EffEncZ〉 |x〉 |0〉 = |EffEncZ〉 |x〉 |x ∈ Z?〉 (28)

for any integer x ∈ {1, . . . , N} and distinct integers x1, . . . , xk ∈ {1, . . . N}, where Z = (x1, . . . , xk) and the last bit
on the right-hand side of (28) is 1 if x = xj for some j ∈ {1, . . . , k} and 0 otherwise.

Proposition 4. For all positive integers N, k with k ≤ N , EffContainsN,k can be implemented reversibly using O(logN)
ancillas and O(poly(N)) gates.

In particular, the runtime bound in Proposition 4 does not depend on k.

Proof of Proposition 4. This follows immediately from Proposition 2(i): Introduce s ≤ log2 k = O(logN) ancilla bits
(where s is defined as in Definition 4), run ContainsN,2aj on

∣∣EncN{xkj−1+1, . . . , xkj}
〉
|x〉 for all j = 1, . . . , s (where

a1, . . . , as and k1, . . . , ks are defined as in Definition 4) such that the outcome is stored in the jth ancilla, apply a logical
OR over the s ancilla bits, and finally uncompute the s ancilla bits by running Contains−1

N,2aj for j = 1, . . . , N .

Note that if N ′ > N are integers and S ⊂ {1, . . . , N}, then |EncN S〉 and |EncN ′ S〉 only differ in the number
of additional |0〉’s at the end of the encoding. For the remainder of the paper, whenever the value of N is clear
from context, we will drop the subindex N for simplicity of notation and simply write |EncS〉, |EffEncZ〉, Containsk,
Convert, Unionk1,k2 and EffContainsk instead.

B. Efficient and reversible set generation

Suppose we want to generate a set X(ν) = {x1 . . . , xr} ⊂ {1, . . . , N} of size r from some input register |ν〉.
We assume that we can generate the elements iteratively, i.e. we have access to circuits that generate xi from ν
and {x1, . . . , xi−1}. As discussed in at the beginning of this section, simply using the basic encoding |EncX〉 and
adding one elment xi to |EncX〉 at a time is problematic, as this incurs problems with reversibility or exponential
computational overheads. In this subsection, we show how this can be circumvented using the |EffEncZ〉 encoding
from the previous subsection.

The intuition for why |EffEncZ〉, unlike |EncX〉, allows for time-efficient uncomputation is that by splitting X
into smaller subsets, we can generate and uncompute these subsets more efficiently, thus avoiding the necessity of
uncomputing the entire set for each newly added element, which can be seen as the reason for the exponential overhead
in the naive reversible implementation given at the beginning of this section.

Theorem 2. Let N, r be known positive integers with r ≤ N , and let I be a finite set. Let X : I → Pr([N]), where
Pr([N]) := {S ⊂ {1, . . . , N}, |S| = r}. Suppose that for i = 1, . . . r, Calculatei are reversible circuits such that for all
ν ∈ I, there is a permutation (x1, . . . , xr) of the elements of X(ν) such that for all i = 1, . . . , r,

Calculatei |ν〉 |EffEncZi−1〉 |0〉 |0〉 = |ν〉 |EffEncZi−1〉 |xi〉 |0〉 , (29)

where Zi = (x1, . . . , xi), and the last register in (29) comprises at most A ancillas. Then, the operation

|ν〉 |0〉 7→ |ν〉 |EffEncZr〉 (30)

can be implemented reversibly using O(r log(N/r) + r + logN + A) ancillas, O(r2) calls to Calculatei for some i ∈
{1, . . . , r}, and O(poly(N)) additional gates.

Proof. For any positive integer i, write g(i) to be the largest integer g such that 2g divides i. Then, for all i ∈
{1 . . . , r − 1} and l ∈ {0, . . . , g(i)} such that i+ 2l ≤ r, let Ri,l be the operation that performs

Ri,l |ν〉 |EffEncZi〉 |0〉 = |ν〉 |EffEncZi〉 |Enc{xi+1, . . . xi+2l}〉 (31)

for all ν ∈ I, where x1, . . . , xr and Z1, . . . , Zr are as in the statement of the theorem. Note that if l ≤ g(i)− 1, then

|EffEncZi〉 |Enc{xi+1, . . . , xi+2l}〉 = |EffEncZi+2l〉 . (32)

10

We also define R0,l for all l ≤ blog2 rc to be the operation that performs

R0,l |ν〉 |0〉 = |ν〉 |Enc{x1, . . . , x2l}〉 = |ν〉 |EffEncZ2l〉 (33)

for all ν ∈ I. Note that since Convert |xi〉 |0〉 = |xi〉 |Enc{xi}〉, a reversible implementation of Ri,l can be obtained
recursively via

Ri,0 = Calculate−1
i+1Convert Calculatei+1 (34)

for all i ∈ {0, . . . , r − 1}, and

Ri,l+1 = R−1
i,l R

−1
i+2l,l

Union2l,2lRi+2l,lRi,l (35)

for all i ∈ {0, . . . , r − 1} and l ∈ {0, . . . , g(i) − 1} such that i + 2l+1 ≤ r. Indeed, for i ∈ {1, . . . , r} and l ≤ g(i) − 1,
(32) implies that

Ri,l |ν〉 |EffEncZi〉 |0〉 = |ν〉 |EffEncZi+2l〉 . (36)

Hence, Ri+2l,lRi,l maps |ν〉 |EffEncZi〉 |0〉 |0〉 |0〉 to

|ν〉 |EffEncZi〉 |Enc{xi+1, . . . , xi+2l}〉 |Enc{xi+2l+1, . . . , xi+2l+1}〉 |0〉 , (37)

and Union2l,2l maps the latter to

|ν〉 |EffEncZi〉 |Enc{xi+1, . . . , xi+2l}〉 |Enc{xi+2l+1, . . . , xi+2l+1}〉 |Enc{xi+1, . . . , xi+2l+1}〉 . (38)

Finally, R−1
i,l R

−1
i+2l,l

uncomputes the registers containing |Enc{xi+1, . . . , xi+2l}〉 |Enc{xi+2l+1, . . . , xi+2l+1}〉, proving

Eq. (35) for i ∈ {1, . . . , r}. A similar argument also shows that (35) holds for i = 0.
Suppose that r has binary expansion r = 2a1 + 2a2 + · · ·+ 2as , with integers blog2 rc = a1 > a2 > · · · > as = g(r).

For j = 1, . . . , s, define rj := 2a1 + · · ·+ 2aj , and

Rj := Rrj−1,aj · · ·Rr1,a2R0,a1 . (39)

Note that aj ≤ g(rj−1) − 1 for all j ∈ {2, . . . , s}, so (32) implies that (39) is well-defined. Note moreover that
Rj |ν〉 |0〉 = |ν〉

∣∣EffEncZrj
〉

for all j ∈ {1, . . . , s}. In particular, Rs performs the desired operation (30).
It follows from (35) that each individual Ri,l constitutes a reversible implementation using at most O(r log(N/r)+r+

logN+A) ancillas. Hence, Proposition 1 implies that Rs can be implemented reversibly using at most O(r log(N/r)+
r + logN +A) ancillas.

To bound the number of calls to Calculatei′ and additional gate count of Rs, let Li,l be the number of calls of
Ri,l to Calculatei′ for some i′ ∈ {1, . . . , r}, and let Mi,l be the number of additional gates of Ri,l, respectively. Let
Ll = max{Li,l : i ∈ {0, . . . , r − 1}, l ≤ g(i), i + 2l ≤ r} and Ml = max{Mi,l : i ∈ {0, . . . , r − 1}, l ≤ g(i), i + 2l ≤ r}.
Eq. (34) and (35) clearly imply Ll = 2 · 4l. Moreover, since Union2l,2l can be implemented using at most p(N) gates,

where p is a polynomial independent of l, it follows from (35) that Ml+1 ≤ 4Ml+p(N), implying Ml = O(4l poly(N)).
Thus, Rs uses at most

La1 + · · ·+ Las ≤ 2(1 + 4 + · · ·+ 4blog2 rc) = O(r2) (40)

calls to Calculatei′ for some i′ ∈ {1, . . . , r}, and

Ma1 + · · ·+Mas = O((1 + 4 + · · ·+ 4blog2 rc) poly(N)) = O(poly(N)) (41)

additional gates.

Theorem 2 generates the efficient encoding |EffEncZr〉 of the set X(ν) instead of the simple encoding |EncX(ν)〉.
For most applications, the former is sufficient, since the value of r is known and simple set queries for checking
properties of X(ν) (e.g. checking if X(ν) contains certain elements) are generally just as simple to implement
reversibly using |EffEncZr〉 as with |EncX(ν)〉 (see Proposition 4). We remark however that |EffEncZr〉 can be
converted to |EncX(ν)〉 using a sequence of calls to Union (for appropriate set sizes) and uncomputations. Since at
most O(log r) union operations are required, is easy to see that this can be implemented with O(poly(N)) calls to
Ri,l (as defined in the proof of Theorem 2) for suitable values of i, l, and O(poly(N)) additional gates.

Corollary 1. With the same notation as in Theorem 2, the operation

|ν〉 |0〉 7→ |ν〉 |EncX(ν)〉 (42)

can be implemented reversibly using O(r log(N/r) + r + logN + A) ancillas, O(poly(N)) calls to Calculatei, and
O(poly(N)) additional gates.

11

V. SPEEDUP OF EPPSTEIN’S ALGORITHM

In this section, we provide an example of how to use the toolkit – the divide-and-conquer hybrid approach from
Section III and the set-generation procedure from Section IV – to polynomially speed up Eppstein’s algorithm [5]
for the cubic Hamiltonian cycle problem using a small quantum computer. The problem asks whether a given cubic
graph G = (V,E) has a Hamiltonian cycle, i.e. a cycle going through every vertex exactly once.

A. Eppstein’s algorithm

In this section, we review Eppstein’s classical algorithm for solving this problem in time O(2n(G)/3 poly(n(G))),
where n(G) denotes the number of vertices of a graph G.

Note first of all that, without loss of generality, one can assume that the graph is triangle-free, since triangles can
be removed by merging the three vertices of a triangle into a single vertex.

Eppstein’s algorithm introduces the concept of “forced” edges that a Hamiltonian cycle has to contain. In other
words, if an edge is forced, we are only looking for Hamiltonian cycles which contain that edge.

Definition 6. Let G = (V,E) be a simple triangle-free graph with maximum degree at most 3, and F ⊂ E. Then,
the forced cubic Hamiltonian cycle (FCHC) problem asks whether G has a Hamiltonian cycle containing all edges in
F . We call edges in F forced, and edges in E\F unforced. We call (G,F) an FCHC instance.

Roughly speaking, Eppstein’s algorithm solves FCHC by recursively selecting an unforced edge and creating two
subinstances by either adding that edge to F or removing it from G. In both cases, the fact that G is cubic induces
additional edges to be either added to F or to be removed.

The details of Eppstein’s algorithm are given in Alg. 2. The formulation of the algorithm here has been modified
from Eppstein’s original formulation in several places. In particular, we adapted it to the Hamiltonian cycle problem
(instead of the travelling salesman problem [18]) and solve it as a decision problem (rather than finding a Hamiltonian
cycle). We also made several smaller changes to make the transition the the quantum algorithm later easier. For
clarity, and to make this section self-contained, Eppstein will in the following always refer to the algorithm in Alg. 2
instead of the original formulation of this algorithm in [5].

We first introduce a few important concepts.

Definition 7. An FCHC instance (G,F) is called trivial-reduction-free if

(i) G does not contain any vertices of degree two with unforced incident edges,

(ii) G does not contain any vertices of degree three with exactly two forced edges, and

(iii) G does not contain any cycles of four unforced edges such that two of its opposite vertices are incident to a
forced edge and at least one of the other vertices is incident to an unforced edge that is not part of the cycle.

In other words, an FCHC instance is trivial-reduction-free if and only if none of the conditions of step 1 of Eppstein
apply.

Definition 8. Let G = (V,E) be a simple, triangle-free graph with maximum degree at most 3, ω be a cycle of four
edges, and F ⊂ E. We say that ω unforced-isolated w.r.t. F if all edges of ω are in E\F , and each of the four vertices
of ω is incident to an edge in F . Moreover, denote by C(G,F) the set of 4−cycles in G which are unforced-isolated
w.r.t. F .

Note that if (G,F) is trivial-reduction-free, then all unforced 4-cycles are unforced-isolated w.r.t. F . The correctness
of Alg. 2 is given by the following proposition.

Proposition 5. Let (G,F) be a trivial-reduction-free FCHC instance. Suppose that G has only vertices of degree 2 or
3, and that no three edges in F meet in a single vertex. Suppose moreover that G\F is a collection of disjoint 4-cycles
and isolated vertices. Then, G has a Hamiltonian cycle containing all edges in F if and only if G is connected.

Proof. The “only if” direction is trivial. Assume that G = (V,E) is connected. Note first of all that all vertices
outside of C(G,F) have degree 2 and both their incident edges are in F .

For each 4-cycle ω ∈ C(G,F), let h1(ω), h2(ω) be two opposite edges in ω and h3(ω), h4(ω) be the other two edges
in ω. Let F1 := F ∪ {h1(ω), h2(ω) : ω ∈ C(G,F)}. Note that every vertex in G is incident to an edge in F1 and that
every vertex in G1 = (V, F1) has degree two. Thus, G1 is a collection of cycles. Consider the graph G2 whose vertices
are the connected components of G1, and two connected components H1, H2 of G1 are joined by an edge in G2 iff there

12

Eppstein(G,F):

1. Repeat the following steps (“trivial reductions”) until none of the conditions apply

a. If G contains a vertex with degree two with at least one unforced incident edge, add all its incident edges to F .

b. If G contains a vertex with degree three with exactly two forced edges, remove the unforced edge.

c. If G contains a cycle of four unforced edges such that two of its opposite vertices are each incident to a forced edge
and at least one of the other vertices is incident to an unforced edge that is not part of the cycle, then add to F all
non-cycle edges that are incident to a vertex of the cycle.

2. Check if any of the following conditions (“terminal conditions”) apply

a. If G contains a vertex of degree 0 or 1, or if F contains three edges meeting at a vertex, return false.

b. If G\F is a collection of disjoint 4-cycles and isolated vertices

i. If G is disconnected, return false.

ii. Otherwise, return true.

c. If F contains a non-Hamiltonian cycle, return false.

3. Choose an edge yz according to the following cases:

a. If G\F contains a 4-cycle, exactly two vertices of which are incident to an edge in F , let y be one of the other two
vertices of the cycle and let yz be an edge of G\F that does not belong to the cycle.

b. If there is no such 4-cycle, but F is nonempty, let xy be any edge in F and yz be an adjacent edge in G\F such that
yz is not part of an isolated 4-cycle in G\F .

c. Otherwise, let yz be any edge in G that is not part of an isolated 4-cycle in G\F .

4. Call Eppstein(G,F ∪ {yz}).
5. Call Eppstein(G\{yz}, F).

6. Return the disjunction (logical OR) of steps 4 and 5.

ALG 2: Eppstein’s algorithm (modified)

exists a 4-cycle ω ∈ C(G,F) which “separates” H1, H2 in G, i.e., h1(ω) ∈ H1 and h2(ω) ∈ H2 or vice-versa. Note that
since G is connected, so is G2. Note moreover that if H1 and H2 are adjacent in G2 and separated by ω ∈ C(G,F) in
G, replacing h1(ω), h2(ω) with h3(ω), h4(ω) in G1 would result in replacing the two disconnected cycles H1, H2 by a
single cycle going through the same vertices. Thus, consider a spanning tree of G2 and let G′1 = (V, F ′1) be the graph
obtained from G1 by replacing h1(ω), h2(ω) with h3(ω), h4(ω) for all ω corresponding to an edge in the spanning tree.
Then, by the previous observation, G′1 is connected. Moreover, since F ⊂ F ′1 and every vertex has degree 2 in G′1, it
follows that G′1 is a Hamiltonian cycle containing all edges in F .

Note in particular that Proposition 5 implies that step 2c of Eppstein is in fact unneccessary and the algorithm
still performs correctly if that step is omitted. We include that step nevertheless, since the early termination of these
instances simplifies the runtime analysis in Appendix A.

The main idea of bounding the runime of Eppstein is to introduce a “problem size metric” defined as follows.

Definition 9. For an FCHC instance (G,F), let s(G,F) := max(n(G)− |F | − |C(G,F)|, 0). We call s(G,F) the size
of (G,F).

Proposition 6. Let (G,F) be an FCHC instance such that no three edges in F meet at a vertex. Suppose moreover
that F is not a collection of cycles. Then, n(G)− |F | − |C(G,F)| > 0.

Proof. First of all, note that the general case can be reduced to the special case of C(G,F) = ∅ by adding one edge
of each ω ∈ C(G,F) to F . Suppose now that C(G,F) = ∅, and let G′ = (V, F), where V is the set of vertices of G.
Then, every vertex has degree at most 2 in G′. Moreover, since F is not a collection of cycles, at least one vertex has
degree < 2 in G′. Hence,

2|F | =
∑

v∈V
degG′ v < 2|V | (43)

and hence n(G)− |F | > 0.

13

It can be shown [5] that every application of steps 3–6 creates two FCHC instances (G1, F1) and (G2, F2) such
that s(G1, F1), s(G2, F2) ≤ s(G,F) − 3 or s(G1, F1) ≤ s(G,F) − 2 and s(G2, F2) ≤ s(G,F) − 5. This leads to a
recursive runtime bound of T (s(G,F)), where T (s) = max(2T (s−3), T (s−2)+T (s−5))+O(poly(n(G))), leading to
T (s) = O(2s/3 poly(n(G))). In particular, Eppstein(G, ∅) solves the cubic Hamiltonian cycle problem in a runtime
of O(2n(G)/3 poly(n(G))). We provide the details of this runtime analysis in the Appendix A.

B. Quantum improvement of Eppstein using small quantum computer

Using Theorem 1, the main part of obtaining a speedup is to provide a quantum speedup of Eppstein using few
qubits.

Theorem 3. There exists a quantum algorithm that, for any FCHC instance (G,F), decides FCHC in a runtime of
O(2s/4 poly(n)) using O(s log(n/s) + s+ log n) qubits, where s = s(G,F) and n = n(G).

We will prove this in Section V C. Theorems 1 and 3 immediately imply an improvement to Eppstein’s algorithm.

Theorem 4. Let c > 0 be an arbitrary constant. Then, given a quantum computer with M = cn qubits, there exists
a hybrid quantum-classical algorithm that solves the cubic Hamiltonian cycle problem for n-vertex graphs in runtime
O(2(1/3−f(c))n poly(n)), where f(c) > 0.

Note that with Theorem 3, we have a quantum algorithm that satisfies all the criteria to apply Theorem 1. However,
to make things fully rigorous, we also need to deal with the fact that Alg. 2 includes initial rewritings and reductions,
and as such is not immediately a special case of Alg. 1. This is a minor technicality, which we resolve as follows for
completeness.

Proof of Theorem 4. Note first of all that it is sufficient to prove that one can solve the FCHC problem in a runtime
of O(max(2γs(G,F)−f(c)n(G), 2γQs(G,F)) poly(n(G))), where γ = 1/3 and γQ = 1/4. Next, note that it is sufficient to
do this only for trivial-reduction-free FCHC instances, since the others can be reduced to the trivial-reduction-free
case by one application of step 1 of Eppstein.

Thus, with the notation of Section III, let P be the set of all trivial-reduction-free FCHC instances. Then Alg
is given as follows: Trivial(P) = 1 if any of the terminal conditions in step 2 of Eppstein apply, and f(P) is the
value returned in step 2. Moreover, l = 2 and R1 and R2 are given by first selecting an edge yz according to step 3 of
Eppstein, forcing and deleting it, respectively, followed by performing all possible trivial reductions (i.e., step 1 of
Eppstein). Note that indeed, R1 and R2 map trivial-reduction-free FCHC instances to trivial-reduction-free FCHC
instances. Finally, the runtime analysis of Eppstein (see Proposition 10 in Appendix A) gives k = 3, l1 = l2 = l3 = 2
and

C =

(
3 2 5
3 5 2

)
. (44)

The result now follows from Theorem 1.

C. Proof of Theorem 3

To prove Theorem 3, note first of all that we can without loss of generality assume that (G,F) is trivial-reduction-
free, because if it is not, G and F can be classically pre-processed by repeated applications of step 1 of Eppstein.
Note that s(G,F) is non-increasing under this step.

The recursive steps 4 and 5 in Eppstein yield a binary recursion tree, with the two branches corresponding to
either step 4 or 5. More formally, consider the binary rooted tree defined as follows.

Definition 10. Let (G,F) be an FCHC instance. Define RecTree(G,F) to the binary rooted tree constructed as

follows: the root of the tree is a vertex labelled (G,F). Then, given a vertex (G̃, F̃), if Eppstein(G̃, F̃) terminates in

step 2, it becomes a leaf of the tree. Otherwise, if Eppstein(G̃, F̃) calls Eppstein(G1, F1) and Eppstein(G2, F2) in

steps 4 and 5, respectively, create two children of (G̃, F̃) labelled (G1, F1) and (G2, F2), respectively.
Moreover, let τ(G,F) be the number of edges that are forced or deleted in step 1 of Eppstein(G,F), before the

algorithm moves on.

Intiutively, RecTree(G,F) is the tree of FCHC instances explored by steps 4 and 5 of Alg. 2. Note that by
Proposition 10 in Appendix A, RecTree(G,F) has depth at most s(G,F)/2. We first show that in a “good” branch
of the recursion tree, a total of at most O(s(G,F)) trivial reductions are performed.

14

Proposition 7. Let (G,F) be trivial-reduction-free and let (G,F) = (G1, F1), (G2, F2), . . . , (Gl, Fl) be a path in
RecTree(G,F), such that Eppstein(Gl, Fl) returns true in step 2. Then,

l∑

j=1

τ(Gj , Fj) ≤ 4s(G,F). (45)

Proof. First, note that no edge which is part of some ω ∈ C(G,F) will be forced at any point of the algorithm. On
the other hand, every Hamiltonian cycle contains exactly two (opposite) edges of each ω ∈ C(G,F). Hence, along
the path from (G1, F1) to (Gl, Fl), a total of at most n(G) − |F | − 2|C(G,F)| ≤ s(G,F) edges will be forced. In
particular, at most s(G,F) edges will be forced in step 1a or 1c of Eppstein(Gj , Fj) over all j = 1, . . . , l. As for
the number of edges deleted in step 1b, note that since (G,F) is trivial-reduction-free, every deletion of an edge in
step 1b of Eppstein(Gj , Fj) for some j ∈ {1, . . . , l} is induced by an additional edge being forced. Each such edge
can induce at most two edges being deleted in step 1b. Therefore, at most 2(s(G,F) + s(G,F)/2) = 3s(G,F) edges
are deleted in step 1b of Eppstein(Gj , Fj) over all j = 1, . . . , l.

The quantum algorithm we construct is essentially a quantum version of a non-recursive variant of Eppstein which
proceeds by successively forcing and deleting edges according to a given input of a suitable search space. Note that
G and F are classical input parameters and as such, the quantum circuit may depend on G and F . We will not
actively modify G or F in the quantum algorithm. Instead, the removal and forcing of additional edges are done by
quantumly storing encodings of a set X ⊂ {1, . . . , 3|E|}, where for e ∈ {1, . . . , |E|}, e ∈ X means that edge number
e is forced, and e+ |E| ∈ X means that edge number e has been removed (we assume that all edges and vertices are
enumerated in a pre-specified order, i.e., with some abuse of notation [19], E = {1, . . . , |E|} and V = {1, . . . , |V |}).
For convenience we also introduce dummy variables which correspond to the values 2|E|+ 1, . . . , 3|E|.

Before moving to the quantum algorithm, we first show how to perform Eppstein non-recursively. By Proposition 7
and Proposition 10 in Appendix A, a given path leading to an accepting leaf of the recursion tree RecTree(G,F)
adds at most r := bs(G,F)/2c+ 4s(G,F) elements to X, corresponding to at most 4s(G,F) edges deleted or forced
in step 1 (Proposition 7) of Alg. 2, and at most s(G,F)/2 in steps 4 or 5 (Proposition 10). Thus, a sequence of
r binary variables ν1, . . . , νr ∈ {0, 1} suffice to enumerate all relevant leafs of RecTree(G,F), where each variable
νi corresponds to an edge deleted or forced in step 1, step 4 or step 5. More precisely, the value of νi is ignored
if the ith element added to X is through a trivial reduction (i.e., in step 1 of Eppstein), otherwise the value of νi
specifies if the edge chosen in step 3 is forced (step 4) or removed (step 5). Thus, Eppstein induces a mapping from
I := {0, 1}r → Pr([3|E|]), ~ν := (ν1, . . . , νr) 7→ X = X(~ν).

Note that although the same task could be achieved by only introducing bs(G,F)/2c binary variables instead of r,
the additional 4s(G,F) variables ensure that at any given point of the implementation, X has a pre-determined size,
which would not be the case otherwise (indeed, Proposition 7 only provides an upper bound to the number of trivial
reductions overall but these are generally distributed in a previously unknown way). This will be important when we
later want to use the results of Section IV.

The non-recursive (classical) variant of Eppstein is given in Alg. 3. Write X = F ′ ∪ D, where F ′ = {e ∈
{1, . . . , |E|} : e ∈ X} and D = {e ∈ {1, . . . , |E|} : e + |E| ∈ X} are the edges which would be forced and deleted
in either of steps 1, 4 or 5 of Eppstein(G,F), respectively. The algorithm first computes X(~ν) from ~ν (we call this
operation Reduce), and then checks the conditions of step 2 for the FCHC instance (G\D,F ∪ F ′) and returns the
corresponding value. We call the second step Check. For completeness, Check also returns false if none of the
conditions of step 2 apply (note that if this is the case, Propostions 5 and 7 imply that ~ν corresponds to a branch that
does not find a Hamiltonian cycle). The full non-recursive version Eppstein simply goes through all 2r values of ~ν,
yielding a runtime of O(2r poly(n(G))). Alternatively, by picking ~ν ∈ I uniformly at random, an expected rutnime
of O(2r/2t poly(n(G))) = O(2s/2 poly(n(G))) can be achieved.

Note that we have omitted checking the conditions of step 2c of Eppstein in the non-recursive formulation, as it
does not affect the correctness of the algorithm (see also remark after Proposition 5). Indeed, for a “good” branch
(i.e., a value of ~ν that corresponds to finding a Hamiltonian cycle), the condition of step 2c of Eppstein is never
fulfilled, whereas Proposition 5 ensures that if F ∪ F ′ contains a non-Hamiltonian cycle, Check will return false.
Instead of checking the condition of step 2c of Eppstein, the condition in line 34 of Alg. 3 has been modified to
account for the case when F is a collection of (non-Hamiltonian) cycles, in which case step 3b of Eppstein cannot
be applied.

To turn Alg. 3 into a quantum algorithm, we first show that Reduce and Check can be performed reversibly in
polynomial time, and with only O(s log(n/s) + s+ log n) bits, where s = s(G,F) and n = n(G), and we assume that
Check simply writes the result on a single output bit. Note that throughout NonRecursiveEppstein(G,F), G
and F are never modified. As such, it is sufficient to write Reduce and Check as reversible circuits ReduceG,F

15

1: procedure NonRecursiveEppstein(G,F)
2: s := n(G)− |F | − |C(G,F)|, r := bs/2c+ 4s
3: for all ~ν ∈ {0, 1}r do
4: X := Reduce(G,F, ~ν)
5: h := Check(G,F,X)
6: if h = 1 then
7: return true
8: end if
9: end for

10: return false
11: end procedure
12:

13: procedure Reduce(G,F, ~ν = (ν1, . . . , νr))
14: X := ∅
15: for i = 1, . . . , r do
16: x := Calculate(G,F,X, νi)
17: X := X ∪ {x}
18: end for
19: return X
20: end procedure
21:

22: procedure Calculate(G = (V,E), F,X, ν)
23: F ′ := {e ∈ {1, . . . , |E| : e ∈ X}, D := {e ∈ {1, . . . , |E| : e+ |E| ∈ X}, G′ := G\D
24: if G′ contains a vertex with degree 2 with at least one edge in E\(F ∪ F ′ ∪D) then
25: e := one of the edges in E\(F ∪ F ′ ∪D) incident to that vertex, a := 0
26: else if G′ contains a vertex with degree 3 with exactly two edges in F ∪ F ′ then
27: e := the third edge incident to that vertex, a := 1
28: else if G′\(F ∪F ′) contains a cycle of 4 edges with two of its opposite vertices being incident to an edge in F ∪F ′ and

one of the other two vertices being incident to a non-cycle edge in E\(F ∪ F ′ ∪D) then
29: e := that non-cycle edge in E\(F ∪ F ′ ∪D), a := 0
30: else if G′ contains a vertex of degree 0 or 1, or if F ∪ F ′ contains three edges meeting at a vertex, or if G′\(F ∪ F ′) is

a collection of disjoint 4-cycles and isolated vertices then
31: e := i+ 2|E|, a := 0
32: else if G′\(F ∪ F ′) contains a 4-cycle, two vertices of which are incident to an edge in F ∪ F ′ then
33: e := an edge in G′\(F ∪F ′) incident to one of the other two vertices and which does not belong to the cycle, a := ν
34: else if F ∪ F ′ is nonempty and not a collection of cycles then
35: e := any edge in E\(F ∪ F ′ ∪D) that is adjacent to an edge in F ∪ F ′, a := ν
36: else
37: e := any edge in G′ that is not part of a 4-cycle in G′\(F ∪ F ′), a := ν
38: end if
39: return e+ a|E|
40: end procedure
41:

42: procedure Check(G = (V,E), F,X)
43: F ′ := {e ∈ {1, . . . , |E| : e ∈ X}, D := {e ∈ {1, . . . , |E| : e+ |E| ∈ X}, G′ := (V,E\D)
44: if G′ contains a vertex of degree 1 then
45: return false
46: else if F ∪ F ′ contains three edges meeting at a vertex then
47: return false
48: else if G\(F ∪ F ′) is not a collection of disjoint 4-cycles and isolated vertices then
49: return false
50: else if G is disconnected then
51: return false
52: end if
53: return true
54: end procedure

ALG 3: Non-recursive variant of Eppstein. Note that G and F are never modified, and that in the Reduce
subroutine, |X| = i after each cycle of the loop.

16

and CheckG,F , which depend on G and F , and which perform

|~ν〉 |0〉 |0〉 |0〉 |0〉 ReduceG,F−→ |~ν〉 |EffEncZ(~ν)〉 |0〉 |0〉 CheckG,F−→ |~ν〉 |EffEncZ(~ν)〉 |h(Z(~ν))〉 |0〉 , (46)

where Z(~ν) = (x1, . . . , xr), x1, . . . , xr are the elements of X(~ν) in the order in which they are added to X in Reduce,
h(Z(~ν)) is the output bit returned by Check(G,F,X(~ν)), and the last register comprises at most O(s log(n/s) + s+
log n) ancilla bits.

Next, we turn this into a quantum process by replacing every elementary reversible operation by its corresponding
quantum operation. The final step is to use amplitude amplification [20] (or alternatively fixed point search [21])
to quantumly search for the value |h(Z(~ν))〉 = |1〉 on the output register. Note that since t of the r input bits are
irrelevant, the dimension of the target space, if a Hamiltonian cycle exists, is at least 2t. Thus, fixed point search
requires O(

√
2r/2t) = O(2s/4) repetitions of ReduceG,F and CheckG,F .

It thus only remains to show that for any given trivial-reduction-free FCHC instance (G,F), both ReduceG,F
and CheckG,F can be performed reversibly in polynomial time and with only O(s log(n/s) + s + log n) bits, where
s = s(G,F) and n = n(G).

1. Reversible space-efficient implementation of ReduceG,F

The basic idea of the ReduceG,F algorithm is to reversibly generate an efficient encoding of X(~ν) ⊂ {1, . . . , 3|E|}
from |~ν〉 using Theorem 2 by specifying suitable reversible Calculatei operations. For each value of i = 1 . . . , r, let
CalculateG,F,i be the operation that finds the next edge ei and an action bit ai ∈ {0, 1} following the implementation
of Calculate in Alg. 3. That implementation in turn follows the implementation of Eppstein, i.e., an edge ei is
selected according to the rules of step 1 and 3, and ai = 0 if ei will be forced and ai = 1 if ei will be removed. If no
more edges are forced or deleted (i.e., one of the terminal conditions of step 2a or 2b of Eppstein apply), we set ei
to be a dummy variable ei = 2|E|+ i and ai = 0.

The task then becomes to reversibly implement the operations

CalculateG,F,1 |ν1〉 |0〉 = |ν1〉 |x1〉 (47)

and

CalculateG,F,i |νi〉 |EffEncZi−1〉 |0〉 = |νi〉 |EffEncZi−1〉 |xi〉 (48)

for i = 2, . . . , r, where xi = ei+ai|E| and Zi = (x1, . . . , xi). Note that by introducing the dummy variables, we ensure
that for any i ∈ {1, . . . , r}, Xi = {x1, . . . , xi} has exactly i elements, even if no edges have been forced or deleted in
some of the steps.

The primary challenge of the implementation is to maintain reversibility and at the same time use few ancillas.
For this, it is important that any ancillas used are as soon as possible reset to |0〉 in order to avoid accumulating
unnecessary junk bits.

Proposition 8. Let (G,F) be a trivial-reduction-free FCHC instance and i ∈ {1, . . . , r}, where r = bs(G,F)/2c +
4s(G,F). Then, the operation CalculateG,F,i defined by Eq. (47) and (48) can be implemented reversibly using
O(log n(G)) ancillas and O(poly(n(G))) gates.

Proof. The basic idea to maintain reversibility is to introduce a counter, initially set to 0, which is increased once
suitable values for ei and ai have been found. Then, by controlling all operations on that counter being 0, we ensure
that no further edges are selected once an edge and action bit has been found, and hence that only one edge and
action bit is selected.

More precisely, we introduce a counter from 0 to 7, which we call the flag counter, and denote it by FC. We also
introduce an additional ancilla bit, which we call the flag bit, and denote it by FB. Both are initially set to zero. We
denote the register of O(log n) bits containing the value of ei as e and the register containing the value of ai as a. We
assume that e and a are both initially set to zero.

For clarity of notation, we will only cover the case i ≥ 2 here. The case i = 1 is fully analogous, but without
the |EffEncZi−1〉 register and ignoring any operations involving it. As before, we write Zi−1 = (x1, . . . , xi−1),
Xi−1 = {x1, . . . , xi−1}, F ′ = {e ∈ {1, . . . , |E|} : e ∈ Xi−1} and D = {e ∈ {1, . . . , |E|} : e+ |E| ∈ Xi−1}.

The basic building block of the implementation consists of a controlled check-and-select (CCS) operation illustrated
in Fig. 2. We will implement seven different check-and-select operations, each corresponding to lines 24–25, 26–
27, 28–29, 30–31, 32–33, 34–35, and 36–37, of Alg. 3, respectively. For example, the check-and-select operation

17

=0? +1FC

e

a

FB

|0〉anc |0〉anc

|νi〉 |νi〉

|EffEncZi−1〉 |EffEncZi−1〉

Check & Select
=:

CCS

FIG. 2: Controlled check-and-select (CCS) operation. The ancilla register consists of O(log n) bits.

corresponding to lines 24–25 of Alg. 3 does the following: if G\D contains a vertex with degree 2 with at least one
edge in E\(F ∪ F ′ ∪D), it adds to e the value of e of one of the edges in E\(F ∪ F ′ ∪D) incident to such a vertex
(if multiple such vertex/edge combinations exist, e is taken to be the first such edge of the first such vertex), leaves a
invariant (such that it stays in 0), and flips FB.

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

CCS1 CCS7 CCS−1
7 CCS−1

1

+|E|

|0〉FC |0〉FC

|0〉e |0〉e

|0〉a |0〉a

|0〉FB |0〉FB

|0〉anc |0〉anc

|νi〉 |νi〉

|EffEncZi−1〉 |EffEncZi−1〉

|0〉 |xi〉

FIG. 3: Reversible implementation of CalculateG,F,i using O(log n) ancillas. The seven CCS operations use the
check-and-select operations corresponding to lines 24–25, 26–27, 28–29, 30–31, 32–33, 34–35, and 36–37, of Alg. 3,

respectively.

The full reversible implementation of CalculateG,F,i is given in Fig. 3. It consists of these seven CCS operations
concatenated in sequence, then adds e + a|E| to the output register, and finally applies the inverses of the CCS
operations. The latter ensure that all registers except for the input registers (|νi〉 |EffEncZi−1〉) and the ouput
register are reset to |0〉.

It thus remains to show how to reversibly implement each of the seven check-and-select operations. It is easy to see,
however, that each of these can be implemented using O(log n) ancilla bits. Indeed, all check-and-select operations
can be formulated as a search over a set of objects that can be classically enumerated beforehand, since G and F are
classical inputs, and the checking of each individual object can always be implemented using a constant number of
ancillas and calls to EffContainsi−1.

For example, checking whether any given vertex v has any of the properties in question (e.g., whether v has degree
2 with at least one incident edge in E\(F ∪ F ′ ∪D)) reduces to checking which, if any, of its incident edges e have
been forced (i.e, e ∈ Xi−1) or deleted (i.e, e+ |E| ∈ Xi−1). The latter can be done using a constant number of calls to
EffContainsi−1. Controlled on the outcome, a suitable edge and action bit is added to etemp and atemp, respectively,

18

and FBtemp flipped, where etemp, atemp and FBtemp are ancilla registers of the same sizes as e, a, and FB, respectively.
The full CCS operation is then implemented by introducing a counter from 0 to n initially set to 0, and then, controlled
on the counter being 0, performing the previous operation for all n vertices in sequence, followed by incrementing that
counter controlled on FBtemp (this is conceptually the same as the sequence of CCS operations in Fig. 2–3, except
with FC replaced by a counter from 0 to n, and e, a, and FB replaced by etemp, atemp, and FBtemp, respectively).
Note that the final value of the counter is then n + 1− the first vertex with the property (if the counter is 0, no
vertex has that property). Then, the values of etemp, atemp and FBtemp are added to e, a, and FB, respectively. After
that, applying the inverse of the property checks for all vertices resets all ancillas. This covers the CCS operations
corresponding to lines 24–25, 26–27, 34–35, and all but one of the subcases of lines 30–31 of Alg. 3.

A similar iteration through all edges in E covers the CCS operation corresponding to lines 36–37 of Alg. 3.

One can similarly check if G\(F ∪ F ′ ∪ D) contains 4-cycles with certain properties, and select incident edges
accordingly if it does. Indeed, note that G\F has at most O(n) 4-cycles, which can be enumerated in a pre-specified
order, so a counter using O(log n) bits suffices. This covers the CCS operations corresponding to lines 28–29 and
32–33 of Alg. 3.

Finally, to check if G\(F ∪F ′ ∪D) is a collection of disjoint 4-cycles and isolated vertices, note that this is the case
if and only if every edge in E\(F ∪F ′ ∪D) is part of exactly one 4-cycle in G\(F ∪F ′ ∪D). This can thus be checked
in a similar manner by sequentially going through all edges e, and then, for each (not necessarily unforced-isolated)
4-cycle ω 3 e in G\F , checking if any of its edges are in F ′ ∪D. This covers the final subcase of the CCS operation
corresponding lines 30–31 of Alg. 3.

Using Theorem 2, we obtain the efficient reversible implementation of Reduce from Proposition 8.

Corollary 2. Let (G,F) be a trivial-reduction-free FCHC instance. Then, the operation ReduceG,F defined by
Eq. (46) can be implemented reversibly with O(s log(n/s)+s+log n) ancillas and O(poly(n)) gates, where s = s(G,F)
and n = n(G).

2. Reversible space-efficient implementation of CheckG,F

The reversible and space-efficient implementation of CheckG,F follows the (non-reversible) implementation of
Check in Alg. 3 by checking in turn whether the conditions in lines 44, 46, 48, and 50, respectively, apply.

It is clear that checking the first three conditions of Check, namely whether G′ contains a vertex of degree 1,
whether F ∪ F ′ contains three edges meeting at a vertex, or whether G\(F ∪ F ′ ∪ D) is a collection of disjoint
4-cycles and isolated vertices, can each be done in the same way as the check-and-select operations in the proof of
Proposition 8, and thus can be implemented reversibly using O(log n(G)) ancillas and O(poly(n(G))) gates. Hence,
it only remains to check whether G\D is connected. We use the fact that there is a classical reversible space-efficient
algorithm to check that. Indeed, [22] shows that there is a (not necessarily reversible) classical algorithm that decides
in time O(poly(n(G))) and space O(log n(G)) if a graph G is connected. Ref. [23] then shows that any given (not
necessarily reversible) computation requiring memory S and time T can be implemented reversibly using S ancillas
and 2O(S) gates (see also [15, 24]). This implies the following.

Proposition 9 ([22, 23]). There exists a classical deterministic algorithm that checks if a given graph G is connected
in time O(poly n(G)), which can be implemented reversibly using O(log n(G)) ancillas.

Note that Proposition 9 only requires oracular access to the adjacency matrix of the graph in question [22]. Moreover,
we can easily access the required adjacency matrix, i.e., the map

|EffEncZ(~ν)〉 |v〉 |w〉 |0〉 7→ |EffEncZ(~ν)〉 |v〉 |w〉 |v ∼G′ w〉 (49)

can be implemented reversibly with O(1) ancillas and at most three call to EffContainsr , where the last bit in (49) is
1 if the vertices v and w are connected in G′ = G\D, and 0 otherwise. This completes our space-efficient reversible
implementation of CheckG,F .

Corollary 3. Let (G,F) be a trivial-reduction-free FCHC instance. Then, the operation CheckG,F defined by Eq. (46)
can be implemented reversibly using O(log n(G)) ancillas and O(poly(n(G))) gates.

This concludes the proof of Theorem 3.

19

VI. CONCLUSION AND OUTLOOK

The recent progress in experimental quantum computing [25–27] increases confidence that fully scalable quantum
computers will be realised at some point in the upcoming decades. However, the rate at which the number of qubits
we can manipulate with relevant precision and coherence times currently grows provides significant motivation for
studying potential uses of size-limited quantum computers. Complementary to research dedicated to solving small-
yet-hard simulation and ground-state problems [28–31], which are promising applications for really small quantum
computers, in this work, we investigated ways to achieve speedups of classical algorithms by exploiting quantum
computers significantly smaller than the problem size. Concretely, we provide a framework for designing hybrid
quantum-classical algorithms, which can allow for polynomial asymptotic speedups given a quantum computer which
is any constant fraction of the problem size.

Our result also implies that we can achieve a trade-off between the speedup we obtain, and the size of problem we
wish to tackle. Thus, a small quantum computer can dramatically speed up the solving of small problems, but can be
used to achieve more modest speedups of larger instances as well. Such trade-offs have, to our knowledge, not been
explored before our works.

We provided the general formalism in the form of the so-called divide-and-conquer hybrid approach, which enables
us to realise such trade-offs for a broad class of recursive classical algorithms, and we provided a characterisation of
the space-efficiency of the quantum subroutines required to achieve polynomial speedups. Moreover, we provided a
toolkit for the space-efficient reversible generation and manipulation of sets, which is often the bottleneck of the space
requirements of many such algorithms. As an illustration, we show how this framework can be applied to speed up
the algorithm of Eppstein for detecting Hamilton cycles in cubic graphs.

We also identify a number of questions that remain unresolved, both from a purely theoretical and from an applied
perspective.

First, the algorithms which we so far have applied our hybrid approach to are not the absolutely best known
algorithms for their respective problems. Indeed, Eppstein’s algorithm has subsequently been improved from
O(1.2599n poly(n)) to O(1.2509n poly(n)) [32] and O(1.2312n poly(n)) [33], and a Monte-Carlo algorithm with
runtime O(1.2009n poly(n)) is known [34]. It would be interesting to apply our framework to speed up the actually
best classical algorithms, which would yield an asymptotic speedup over the best classical algorithms for a quantum
computer the size of any constant fraction of the problem size.

Second, our approach currently focuses on Grover-based speedups; however, the quantum backtracking techniques
[6, 35] and subsequent improvements [36] lead to better performing quantum algorithms. It remains an open question
whether these methods can also be made to fit in our hybrid approach, and whether they would thus yield better
speedups.

0.5 1.0 1.5 2.0
c

0.0001

0.0002

0.0003

0.0004

0.0005

f(c)

FIG. 4: Plot of f(c) in Theorem 4.

From a more applied perspective, there are three key issues which currently prevent our algorithms from being
practical. First, the precise degree of the speedup we obtain is still quite small (see Fig. 4 for the plot of f(c) obtained
for speeding up Eppstein’s algorithm using a straightforward trit encoding [37]). Our results are primarily conceptual,
however, in that a polynomial speedup can in principle be obtained even for arbitrarily small values of c, and we
remark that there is likely to be room for significantly improving the actual degree of that speedup.

Second is the fact that we deal with asymptotic speedups, and focus on algorithm performance in the worst-case
exponential run-times. For the issue of asymptotic statements, there has lately been increasing interest in analysing
performance for finite-size settings [38], which were moderately promising, but required arbitrarily-sized quantum
computers. It would be interesting to see if a similar claim could be made for size-limited quantum computers.

Finally, we assume ideal noiseless settings, which is still remote [39]. Note that exponential run-times essentially
require full fault tolerance to yield reliable results. It would be interesting to consider our hybrid approach for

20

heuristic algorithms, which run for low-polynomial times, and while they may fail to find solutions for most truly
hard instances, still perform very well in practice. These much more efficient algorithms would be more important for
real-world solutions to NP-hard problems. Furthermore, in this case, it is more likely that intermediary efficient error
mitigation schemes, as opposed to full fault tolerance, suffices to achieve quantum-enhanced and usable NP heuristics.

ACKNOWLEDGMENTS

We thank J.I. Cirac for helpful discussions. VD is partially funded through the Quantum Software Consortium.

[1] V. Dunjko, Y. Ge, and J. I. Cirac, Phys. Rev. Lett. 121, 250501 (2018).
[2] Note that since reductions of one NP-complete problem to another generally incur significant polynomial slowdowns, and

we only expect polynomial speedups, a speedup for 3SAT does not imply a speedup for other NP-complete problems.
Consequently, each problem and algorithm must be treated individually.

[3] S. Bravyi, G. Smith, and J. A. Smolin, Phys. Rev. X 6, 021043 (2016).
[4] T. Peng, A. Harrow, M. Ozols, and X. Wu, “Simulating large quantum circuits on a small quantum computer,” (2019),

arXiv:1904.00102.
[5] D. Eppstein, Journal of Graph Algorithms and Applications 11, 61 (2007).
[6] D. J. Moylett, N. Linden, and A. Montanaro, Phys. Rev. A 95, 032323 (2017).
[7] Many algorithms that are not a priori given in this form can be formulated as such.
[8] For simplicity, we formulate the divide-and-conquer hybrid approach for decision problems here. The approach can be

generalised to algorithms with more general outputs, subject to size constraints of the output.
[9] In general, the recursive algorithm can also take additional parameters, but these can be incorporated into P .

[10] J. L. Bentley, D. Haken, and J. B. Saxe, SIGACT News 12, 36 (1980).
[11] A. Ambainis, SIGACT News 35, 22 (2004).
[12] R. A. Moser and D. Scheder, in Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing , STOC

’11 (ACM, New York, NY, USA, 2011) pp. 245–252.
[13] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan, and U. Schöning,

Theoretical Computer Science 289, 69 (2002).
[14] T. Schöning, in 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039) (1999) pp. 410–414.
[15] H. Buhrman, J. Tromp, and P. Vitányi, in Automata, Languages and Programming, edited by F. Orejas, P. G. Spirakis,

and J. van Leeuwen (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001) pp. 1017–1027.
[16] Note that the binary representation without leading zeros of a positive integer y has dlog2(y + 1)e bits.
[17] Note that in the Supplemental Material of [1], ConvertN was called Append0.
[18] The result can be generalised to the travelling salesman problem, subject to constraints on the distances depending on the

number of available qubits.
[19] For simplicity of notation, we will in this section not distinguish between an edge e and its number in the enumeration,

and simply write e = 10 to mean that e is the 10th edge according to the enumeration. We do the same for vertices.
[20] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, in Quantum Computation and Information, AMS Contemporary Mathe-

matics Series, Vol. 305 (AMS, 2002).
[21] T. J. Yoder, G. H. Low, and I. L. Chuang, Phys. Rev. Lett. 113, 210501 (2014).
[22] O. Reingold, in Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing , STOC ’05 (ACM,

New York, NY, USA, 2005) pp. 376–385.
[23] K.-J. Lange, P. McKenzie, and A. Tapp, Journal of Computer and System Sciences 60, 354 (2000).
[24] R. Williams, “Space-efficient reversible simulations,” (2000).
[25] “Ieee spectrum. ibm edges closer to quantum supremacy with 50-qubit processor,” https://spectrum.ieee.org/

tech-talk/computing/hardware/ibm-edges-closer-to-quantum-supremacy-with-50qubit-processor (2017).
[26] “American Physical Society meeting. engineering superconducting qubit arrays for quantum supremacy,” http://

meetings.aps.org/Meeting/MAR18/Session/A33.1 (2018).
[27] “Intel newsroom. 2018 ces: Intel advances quantum and neuromorphic computing research,” https://newsroom.intel.

com/news/intel-advances-quantum-neuromorphic-computing-research/ (2018).
[28] S. Lloyd, Science 273, 1073 (1996).
[29] D. Wecker, M. B. Hastings, and M. Troyer, Phys. Rev. A 92, 042303 (2015).
[30] M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, and A. Aspuru-Guzik, “Introduction to quantum algorithms for

physics and chemistry,” in Quantum Information and Computation for Chemistry (John Wiley & Sons, Inc., 2014) pp.
67–106.

[31] Y. Ge, J. Tura, and J. I. Cirac, Journal of Mathematical Physics 60, 022202 (2019).
[32] K. Iwama and T. Nakashima, in Proceedings of the 13th Annual International Conference on Computing and Combinatorics,

COCOON’07 (Springer-Verlag, Berlin, Heidelberg, 2007) pp. 108–117.

21

[33] M. Xiao and H. Nagamochi, Algorithmica 74, 713 (2016).
[34] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. v. Rooij, and J. O. Wojtaszczyk, in 2011 IEEE 52nd Annual

Symposium on Foundations of Computer Science (2011) pp. 150–159.
[35] A. Montanaro, Theory of Computing 14, 1 (2018).
[36] A. Ambainis and M. Kokainis, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing ,

STOC 2017 (ACM, New York, NY, USA, 2017) pp. 989–1002.
[37] The value of f(c) depends on the constants A and B defined in Example 1. Straightforwardly encoding each trit using two

qubits yields A ≈ 39 and B ≈ 137 for the FCHC quantum algorithm in Theorem 3. These values can likely be improved
significantly.

[38] E. Campbell, A. Khurana, and A. Montanaro, “Applying quantum algorithms to constraint satisfaction problems,” (2018),
arXiv:1810.05582.

[39] J. Preskill, Quantum 2, 79 (2018).

Appendix A: Runtime analysis of Eppstein

In this section, we prove the runtime of Eppstein (as defined in Alg. 2) of O(2s(G,F)/3 poly(n(G))). Note that since
s(G,F) ≤ n(G), this in particular implies a runtime of O(2n(G)/3 poly(n(G))), which is the bound commonly cited in
literature. The analysis is essentially the same as that in [5].

We first introduce a few notions for convenience.

Definition 11. For any FCHC instance (G,F), let TrivRed(G,F) be the FCHC instance obtained from (G,F) by
applying step 1 of Eppstein to (G,F).

In other words, TrivRed is the first step of Eppstein which performs all possible trivial reductions (step 1a, 1b,
and 1c) until no more such reductions are possible. In particular, TrivRed(G,F) is trivial-reduction-free for any
FCHC instance (G,F), and TrivRed(G,F) = (G,F) whenever (G,F) is trivial-reduction-free.

Definition 12. Let (G,F) be a trivial-reduction-free FCHC instance. We say that (G,F) is non-terminal if

(i) G does not contain any vertices of degree 0 or 1,

(ii) F does not contain three edges meeting at a vertex,

(iii) G\F is not a collection of disjoint 4-cycles and isolated vertices, and

(iv) F does not contain a non-Hamiltonian cycle.

Otherwise, we call (G,F) terminal.

In other words, a trivial-reduction-free FCHC instance is non-terminal if and only if none of the terminal conditions
in step 2 of Eppstein apply.

Definition 13. For any trivial-reduction-free and non-terminal FCHC instance (G,F), let EdgeSelect(G,F) be
the edge selected in step 3 of Eppstein(G,F).

In other words, if (G,F) is trivial-reduction-free and non-terminal, then steps 4 and 5 of Eppstein(G,F) call
Eppstein(G,F ∪ {EdgeSelect(G,F)}) and Eppstein(G\{EdgeSelect(G,F)}, F), respectively.

Eppstein’s key idea to bounding the runtime was to show that with each recursive call, s(G,F) reduces by a constant
larger than 1, leading to a runtime that is polynomially better than a trivial path-search algorithm (see also Lemma 7
in [5]).

Proposition 10. Let (G,F) be a trivial-reduction-free and non-terminal FCHC instance and let e = EdgeSelect(G,F).
Suppose that F is nonempty, and let (G1, F1) = TrivRed(G,F ∪{e}) and (G2, F2) = TrivRed(G\{e}, F). Suppose
that (G1, F1) and (G2, F2) are non-terminal. Then,

• s(G1, F1), s(G2, F2) ≤ s(G,F)− 3, or

• s(G1, F1) ≤ s(G,F)− 2 and s(G2, F2) ≤ s(G,F)− 5, or vice-versa.

Proof. We prove the claim by going through all possible cases that can occur in EdgeSelect(G,F).
Suppose first that e is selected according to step 3a of Eppstein (see Fig. 5), i.e., G\F contains a 4-cycle ω with

exactly two vertices incident to edges in F , and e is one of the other two edges adjacent to vertices in the cycle. Note
that indeed, since (G,F) is trivial-reduction-free, every vertex in ω is adjacent to a non-cycle edge. Note moreover

22

e

FIG. 5: If EdgeSelect(G,F) selects e according to step 3a of Eppstein, C(G1, F1) ≥ C(G,F) + 1, |F1| ≥ |F |+ 2,
and |F2| ≥ |F |+ 3.

that since (G,F) is trivial-reduction-free, the two vertices of ω which are incident to edges in F must be adjacent.
Hence, ω has two opposite vertices which are incident to an edge in F ∪ {e}. Thus, TrivRed(G,F ∪ {e}) forces
the last non-cycle edge adjacent to ω. It follows that |F1| ≥ |F | + 2 and |C(G1, F1)| ≥ |C(G,F)| + 1, and hence
s(G1, F1) ≤ s(G,F) − 3. On the other hand, removing e leads to two unforced edges in ω, which will be forced,
leading to one of the vertices in ω to have two incident forced edges. This leads to the removal of the third (cycle)
edge, hence forcing the final edge in ω. It follows that |F2| ≥ |F |+ 3, and hence s(G2, F2) ≤ s(G,F)− 3.

Next, suppose that e = yz is selected according to step 3b of Eppstein. Let w be the third vertex adjacent to y in
G. Note that since (G,F) is trivial-reduction-free, yw 6∈ F and deg z = degw = 3. We distinguish two cases.

e

FIG. 6: If EdgeSelect(G,F) selects e according to step 3b of Eppstein, and neither z nor w have an incident
edge in F , then |F1|, |F2| ≥ |F |+ 3.

In the first case, suppose that neither z nor w have an incident edge in F (Fig. 6). Then, TrivRed(G,F ∪ {e})
first removes yw and then adds both remaining edges incident to w to F . Hence, s(G1, F1) ≤ s(G,F)− 3. Similarly,
s(G2, F2) ≤ s(G,F)− 3.

In the second case, suppose that z or w, have an incident edge in F . Note that since xy ∈ F , yz and yw cannot
be part of a 4-cycle of unforced edges, because otherwise EdgeSelect(G,F) would choose e according to step 3a of
Eppstein. Thus, z, y, w are part of an unforced, and possibly closed, chain of k ≥ 4 vertices, with the inner vertices
each having an incident edge in F . There are two subcases here.

(a) k even (b) k odd

FIG. 7: EdgeSelect(G,F) selects e according to step 3b of Eppstein, and z, y, w are part of an unforced chain of
k ≥ 4 vertices such that the inner k − 2 vertices each have an incident edge in F and the outer two vertices each

have three unforced incident edges. (a) If k is even, then |F1| ≥ |F |+ 5 and |F2| ≥ |F |+ 2 or vice-versa. (b) If k is
odd, then |F1|, |F2| ≥ |F |+ 4.

In the first subcase, suppose that this chain terminates (see Fig. 7). Thus, z, y, w are part of an unforced chain of
k ≥ 4 vertices such that the inner k− 2 vertices each have an incident edge in F and the outer two vertices have three
unforced incident edges. Then, TrivRed(G,F ∪ {e}) and TrivRed(G\{e}, F) force and delete alternating edges of
that chain. If k = 2l is even, then one of (G1, F1) and (G2, F2) has l − 1 edges of that chain which are forced, and

23

the other has l (Fig. 7a). Assume without loss of generality that (G1, F1) has l− 1 edges of that chain forced. Then,
both outer vertices of the chain will eventually have degree two, and thus TrivRed forces four additional edges. It
follows that |F1| ≥ |F | + 4 + (l − 1) ≥ |F | + 5 and |F2| ≥ |F | + l ≥ |F | + 2, and hence s(G1, F1) ≤ s(G,F) − 5 and
s(G2, F2) ≤ s(G,F)−2. On the other hand, if k = 2l+1 is odd, then TrivRed(G,F ∪{e}) and TrivRed(G\{e}, F)
both force l edges of the chain, and leave one of the two outer vertices with degree two, thus forcing its other two
incident edges (Fig. 7b). It follows that |F1|, |F2| ≥ |F |+ l+ 2 ≥ |F |+ 4 and hence s(G1, F1), s(G2, F2) ≤ s(G,F)− 4.

FIG. 8: If EdgeSelect(G,F) selects e according to step 3b of Eppstein, and z, y, w are part of an unforced cycle
of k ≥ 6 vertices with k even, each of which is incident to an edge in F , then |F1|, |F2| ≥ |F |+ 3.

In the second subcase, this unforced chain is a cycle of k vertices (Fig. 8), each of which is incident to an edge in F .
Then, TrivRed(G,F ∪ {e}) and TrivRed(G\{e}, F) force and delete alternating edges of that chain. Clearly, by
the definition of Step 3b of Eppstein, k > 4. Moreover, if k is odd, TrivRed(G,F ∪ {e}) and TrivRed(G\{e}, F)
would both have three forced edges meeting in a vertex, and hence would be terminal. Hence, k ≥ 6, and thus
|F1|, |F2| ≥ |F |+ 3. Hence, s(G1, F1), s(G2, F2) ≤ s(G,F)− 3.

Finally, note that since F is assumed to be non-empty and (G,F) to be non-terminal, EdgeSelect(G,F) does
not choose e according to step 3c of Eppstein.

Corollary 4. For any FCHC instance (G,F), Eppstein(G,F) decides the FCHC problem in a runtime of
O(2s(G,F)/3 poly(n(G))).

Proof. Clearly, if (G,F) is trivial-reduction-free and terminal, Eppstein(G,F) only takes O(poly(n(G))) time. More-
over, if (G,F) is trivial-reduction-free, then by Propostion 6, s(G,F) = 0 implies that (G,F) is terminal. Hence,
Proposition 10 implies that the runtime of Eppstein(G,F) can be bounded by some function T (s(G,F)) depending
only on s(G,F), where T (s) satisfies T (s) = O(poly(n(G))) for s ≤ 0, and

T (s) ≤ max(2T (s− 3), T (s− 2) + T (s− 5)) (A1)

for s > 0. Using standard techniques for solving linear recurrence relations, one obtains T (s) = O(2s/3 poly(n(G)))
for s ≥ 0.

C Further articles as co-author

C.1 A generalization of the injectivity condition for projected
entangled pair states

133

A generalization of the injectivity condition for projected entangled pair
states

Andras Molnar, Yimin Ge, Norbert Schuch, and J. Ignacio Cirac

In this work, we introduce and study the notion of “semi-injective” PEPS, a generalisation of the
well-studied injective PEPS. We construct parent Hamiltonians for which these states are the
unique ground states. We then prove a “fundamental theorem of semi-injective PEPS”, which
provides necessary and sufficient conditions for when two tensors generate the same family of
such states. Finally, we use these results to show that the third cohomology classification of
symmetry protected topological (SPT) phases extends to semi-injective PEPS.

Tensor network states are local descriptions of quantum many-body states which are generally
expected to be able to capture ground states of local Hamiltonians. In one spatial dimension,
MPS are highly successful, giving rise not only to very good numerical methods for simulating
such systems, but also a framework to classify SPT phases in one dimension. One reason for
the success of MPS is that a general structure theory of MPS is known. The central component
of the latter is the “fundamental theorem of MPS”, which fully characterises when two MPS
tensors give rise to the same family of states, namely when the two tensors are related by a
“gauge” transformation acting on their virtual indices.

PEPS are the natural two-dimensional generalisations of MPS. However, in the case of PEPS,
an analogous fundamental theorem was only known for the class of so-called “injective PEPS”.
Although a randomly chosen PEPS tensor gives rise to an injective PEPS with probability
1, there are many important examples which are not described by an injective PEPS. These
include the AKLT model on the square lattice, the RVB state, certain Gibbs states, as well as
all topologically ordered states.

The notion of semi-injective PEPS, which we introduce in Section II, comprises states that
are constructed from distributing plaquette states of four virtual particles on a two-dimensional
torus and acting with local invertible 4-body operators on the four corners where such plaquette
states meet. We show that this class not only includes injective PEPS, but also many of the
important examples which are not injective, including the CZX model, purifications of thermal
states of commuting nearest neighbour Hamiltonians on square lattices, as well as the AKLT
model on square lattices.

In Section IV, we construct different types of parent Hamiltonians for semi-injective PEPS.
These are local, frustration-free Hamiltonians for which they are the unique ground states. The
central result, stated as Theorem 1 and proven in Section V, is a fundamental theorem for semi-
injective PEPS, which shows that any two tensors generating the same class of semi-injective
PEPS are related by an invertible Matrix Product Operator (MPO) acting on their auxiliary
indices. We also show that the product of the invertible 4-body operator corresponding to one
of the semi-injective PEPS and the inverse of the one corresponding to the other has a special
two-layer structure.

As in the case of MPS and injective PEPS, the fundamental theorem allows for a charac-
terisation of symmetries of semi-injective PEPS: Theorem 2, which is proven in Section VI,
shows that for semi-injective PEPS with an on-site symmetry, the corresponding MPOs form
a projective representation of the symmetry group, and that these MPOs can be labelled by
the third cohomology group H3(G,C∗). We moreover show that the two-layer structure of
the symmetry operators can also be assigned a cohomology label, and we show that the latter
coincides with the H3(G,C∗) label of the boundary.

134

Statement of individual contribution

This work is the result of frequent discussions between Andras Molnar, Norbert Schuch, J.
Ignacio Cirac, and myself. Andras Molnar, who is the principal author of this article, carried
out the majority of the scientific work and was moreover in charge of writing almost all parts
of this article. I was significantly involved in the initial formulation of the class of states under
consideration as well as the parent Hamiltonian constructions. I was partially involved in the
work on the fundamental theorem. I was only marginally involved in the remainder of the
work, particularly the characterisation of SPT phases under this framework.

135

Permission to include:

Andras Molnar, Yimin Ge, Norbert Schuch, and J. Ignacio Cirac.
A generalization of the injectivity condition for projected entangled pair states.
Journal of Mathematical Physics, 59, 021902 (2018).

Reproduced from Andras Molnar, Yimin Ge, Norbert Schuch, and J. Ignacio Cirac, A generalization of

the injectivity condition for projected entangled pair states, Journal of Mathematical Physics, 59, 021902

(2018), with the permission of AIP Publishing

136

https://publishing.aip.org/resources/researchers/rights-and-permissions/permissions/ 03/12/2019

Permission to Reuse Content
REUSING AIP PUBLISHING CONTENT

Permission from AIP Publishing is required to:

 republish content (e.g., excerpts, figures, tables) if you are not the author

 modify, adapt, or redraw materials for another publication

 systematically reproduce content

 store or distribute content electronically

 copy content for promotional purposes

To request permission to reuse AIP Publishing content, use RightsLink® for the fastest response or
contact AIP Publishing directly at rights@aip.org and we will respond within one week:

For RightsLink, use Scitation to access the article you wish to license, and click on the Reprints and
Permissions link under the TOOLS tab. (For assistance click the “Help” button in the top right corner
of the RightsLink page.)

To send a permission request to rights@aip.org, please include the following:

 Citation information for the article containing the material you wish to reuse

 A description of the material you wish to reuse, including figure and/or table numbers

 The title, authors, name of the publisher, and expected publication date of the new work

 The format(s) the new work will appear in (e.g., print, electronic, CD-ROM)

 How the new work will be distributed and whether it will be offered for sale

Authors do not need permission from AIP Publishing to:

 quote from a publication (please include the material in quotation marks and provide the
customary acknowledgment of the source)

 reuse any materials that are licensed under a Creative Commons CC BY license (please format
your credit line: “Author names, Journal Titles, Vol.#, Article ID#, Year of Publication; licensed
under a Creative Commons Attribution (CC BY) license.”)

 reuse your own AIP Publishing article in your thesis or dissertation (please format your credit
line: “Reproduced from [FULL CITATION], with the permission of AIP Publishing”)

 reuse content that appears in an AIP Publishing journal for republication in another AIP
Publishing journal (please format your credit line: “Reproduced from [FULL CITATION], with
the permission of AIP Publishing”)

 make multiple copies of articles–although you must contact the Copyright Clearance Center
(CCC) at www.copyright.com to do this

(…)

JOURNAL OF MATHEMATICAL PHYSICS 59, 021902 (2018)

A generalization of the injectivity condition for projected
entangled pair states

Andras Molnar, Yimin Ge, Norbert Schuch, and J. Ignacio Cirac
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

(Received 29 September 2017; accepted 2 February 2018; published online 26 February 2018)

We introduce a family of tensor network states that we term semi-injective Pro-
jected Entangled-Pair States (PEPSs). They extend the class of injective PEPSs and
include other states, like the ground states of the AKLT and the CZX models in
square lattices. We construct parent Hamiltonians for which semi-injective PEPSs
are unique ground states. We also determine the necessary and sufficient conditions
for two tensors to generate the same family of such states in two spatial dimensions.
Using this result, we show that the third cohomology labeling of symmetry protected
topological phases extends to semi-injective PEPSs. Published by AIP Publishing.
https://doi.org/10.1063/1.5007017

I. INTRODUCTION

Tensor Network States (TNS) are expected to approximate ground states of local Hamiltonians
well.1–3 Their local description in terms of simple tensors makes them suitable for both numerical and
analytical investigations. First, this local structure enables calculations in large or infinite systems.
In fact, the Density Matrix Renormalization Group (DMRG) algorithm,4 which proved successful in
simulating one-dimensional systems, can be re-expressed in terms of Matrix Product States (MPSs),5,6

the simplest TNS. This connection also motivated a provably efficient algorithm to find the ground
state of a gapped one-dimensional local Hamiltonian.7 Algorithms based on higher-dimensional
generalizations of MPSs, projected entangled-pair states (PEPSs8,9), are now also giving the best
known numerical results for certain Hamiltonians in two dimensions (see, for example, Refs. 10–12).
Second, TNS are useful for creating and analyzing exactly solvable models with translation symmetry.
Indeed, paradigmatic wavefunctions appearing in different areas of research have a very simple PEPS
description, where one can generate a whole family of many-body states by contracting, according to
a given geometry, the so-called auxiliary indices of N copies of a single tensor. In two-dimensional
systems, this includes, for instance, the cluster state13,14 underlying measurement based computation,
the rotationally invariant spin-liquid AKLT15,16 and resonating valence bond (RVB)17 states, and other
chiral18,19 and non-chiral states20–23 embodying topological order. In particular, PEPSs encompass
all known non-chiral topological orders.24 All these states allow for the construction of local parent
Hamiltonians and, by making use of their local description, the ground space structure and the
behavior of the low-energy excitations can be fully analyzed.

In the last years, the theory of TNS has been considerably developed. In particular, in one dimen-
sion a general structural theory of MPS is known. First, the “fundamental theorem of MPS”25,26 states
that any two tensors generating the same family of wavefunctions can always be related by a “gauge”
transformation acting on the auxiliary indices of each tensor independently. This result allowed for the
classification of symmetry-protected topological (SPT) phases in one dimension.27,28 Indeed, let us
consider an MPS invariant under a symmetry group G. Then, the local gauge transformations which
relate the tensor generating the MPS and that obtained by a symmetry action form themselves a pro-
jective representation of G.29,30 The equivalence classes formed by those projective representations,
which are labeled by the second group cohomology H2(G, U(1)), thus characterize the different SPT
phases under the action of G. Second, for any MPS, there exists a systematic way of constructing
parent Hamiltonians with a controlled ground space.25,31,32 All this renders MPSs a general framework
for the study of solvable models and the classification of phases in one dimension.

0022-2488/2018/59(2)/021902/45/$30.00 59, 021902-1 Published by AIP Publishing.

021902-2 Molnar et al. J. Math. Phys. 59, 021902 (2018)

In two dimensions, considerable progress has been made in understanding the description of
topologically ordered phases in the PEPS framework.20–23,33,34 However, a general structural theory
of PEPSs and, in particular, a “fundamental theorem of PEPS” are only known for a specific class,
termed “injective.”31,35 Those are PEPSs whose generating tensor, when considered as a map from the
auxiliary to the physical indices, can be inverted. While formally, any random PEPS (after blocking
few spins) is injective, many relevant examples such as the square lattice AKLT model,16 the RVB36,37

state, wavefunctions obtained from classical statistical mechanics models,37 and all topologically
ordered states, do not have this property. Their lack of injectivity prevents us from understanding
their behavior under symmetries and, at the same time, makes the canonical construction of parent
Hamiltonians with unique ground states for injective PEPS inapplicable.

In order to analyze SPT phases in two dimensions, one might thus tentatively restrict to injective
PEPSs and apply the fundamental theorem, which yet again yields a projective local symmetry action
on the auxiliary indices. However, in two dimensions, the classification of projective representations
in terms of group cohomology is not stable under blocking and thus cannot be used to label phases
under symmetries unless translational invariance is imposed.38 This is remedied by the CZX model
proposed by Chen et al.38 It is made up from a non-injective PEPS with a corresponding symmetry
action, in a way that it exhibits non-trivial symmetry invariants which are insensitive to blocking.
Specifically, the symmetry action on the auxiliary indices at the boundary of any region is given
by Matrix Product Unitary Operators (MPUOs). Those can be labeled by elements of the third
cohomology group H3(G, U(1)) of the symmetry group G, and therefore those elements are expected
to label the different SPT phases.38,39

In this paper, we introduce semi-injective PEPSs and develop the structure theory for them. They
significantly generalize injective PEPSs and include the square-lattice AKLT model, all wavefunctions
based on classical models, and CZX-like states, among others. Our central result is a “fundamental
theorem of semi-injective PEPS” which states that any two tensors generating the same semi-injective
PEPS are related by an invertible Matrix Product Operator (MPO) acting on their auxiliary indices.
For semi-injective PEPSs with an on-site symmetry, the corresponding MPOs form a representation
of the group. We give a general and fully rigorous proof, based on the arguments of Chen et al.,38

that these MPO representations are labeled by the third cohomology group H3(G,C∗)=H3(G, U(1)),
suggesting that this labels SPT phases for all semi-injective PEPSs, including those away from fixed
point wavefunctions40 or with non-unitary symmetries. We further show that symmetries of semi-
injective PEPSs must have a special two-layer structure. This, by itself, enables the definition of an
MPO acting on the physical indices alone and thus allows one to assign another label H3(G,C∗) to the
symmetry action, which we show to coincide with that of the MPO acting on the boundary. Therefore,
the SPT labeling is just as much a property of the physical symmetry itself as it is of the boundary and
can in fact be directly inferred by analyzing the structure of the physical symmetry action, without
needing to invoke the underlying PEPS. As a corollary, this implies that the H3 label of the MPO
action is well defined and, in particular, the same on the horizontal and vertical boundaries, also in the
absence of rotational symmetry. Furthermore, we also provide two different constructions for parent
Hamiltonians with unique ground states.

The paper is structured as follows. In Sec. II, we introduce the formalism and define semi-injective
PEPSs. In Sec. III, we give an overview of the main results of the paper. Readers who are interested
only in the results rather than the proofs might thus restrict to Secs. II and III. In Sec. IV, we discuss
the parent Hamiltonian for semi-injective PEPSs. In Sec. V, we summarize central results from the
structure theory of MPS needed for the remainder of the paper. In Sec. VI, we develop the structure
theory of semi-injective PEPSs, i.e., we give a local characterization of when two semi-injective
PEPSs generate the same state. In Sec. VII, we apply this to characterize symmetric semi-injective
PEPSs, yielding the characterization in terms of the third cohomology group.

II. FORMALISM

In this section, we introduce MPSs, PEPSs, and the graphical calculus commonly used in the
field of tensor networks (TNs). We modify the standard notations in order to be able to represent
TNs that are concatenations of several layers of two-dimensional TNS. Using this notation, we define

021902-3 Molnar et al. J. Math. Phys. 59, 021902 (2018)

semi-injective PEPSs. We show that this class of PEPSs contains all injective PEPSs as well as some
examples that are not known to have injective PEPS description.

A. Notation

Translationally invariant MPSs are defined in terms of a single rank-three tensor
A ∈CD ⊗CD ⊗Cd , A=

∑
α,β,i Ai

αβ |α〉 〈β | ⊗ |i〉=
∑

i Ai ⊗ |i〉. The corresponding state on n particles
is

|Vn(A)〉=
∑

i

Tr{Ai1 . . . Ain } |i1 . . . in〉 . (1)

The tensor and the corresponding state can be represented graphically as follows. Each tensor is
represented with a square with lines attached to it. The number of lines connected to the rectangle
is the rank of the tensor, and each line represents one index. For example, the single MPS tensor is
represented as

(2)

Tensor contractions are depicted by joining the lines corresponding to the indices contracted. For
example, the contraction of two MPS tensors is∑

αβγij

Ai
αβAj

βγ |α
〉
〈γ | ⊗ |ij〉 = (3)

Same way, the MPS can be depicted as

|Vn(A)
〉
=

∑
i

Tr{Ai1 . . . Ain }|i1 . . . in
〉
= (4)

We refer to the contracted legs as bonds or virtual indices, D as the bond dimension of the MPS tensor
A, the uncontracted leg as physical index, and d as the physical dimension of A.

We will define PEPSs now as generalizations of MPSs. We will consider a square lattice, although
other geometries can also be used. Take a rank-five tensor B,

(5)

Consider an n × m rectangular grid with periodic boundary conditions (that is, on a torus). The
PEPS is defined then by placing the tensor B at every lattice point and contracting the neighboring
tensors,

(6)

An equivalent description is the following. Place maximally entangled pair states on the edges of the
grid. These particles are referred to as virtual particles. At every lattice point, act with an operator on

021902-4 Molnar et al. J. Math. Phys. 59, 021902 (2018)

the four virtual particles closest to the lattice point,

(7)

Here each dot represents a virtual particle, and the lines connecting them represent that they are in
an entangled (here the maximally entangled) state. The red circles depict the operators acting on the
four virtual particles. We call a PEPS injective if these operators are injective maps.

In the following, we use this notation when drawing tensor networks in two dimensions. For
example, a four-partite state will be depicted as

(8)

This four-partite state can equally be thought of as a non-translationally invariant MPS on four sites.
Then each corner depicts an MPS tensor. Operators are depicted as circles or rectangles. For example,

(9)

depicts a four-partite operator acting on the physical indices (black points) of four MPS tensors. In
certain cases, we need more than two layers of tensors. In this case, the upper layer is drawn bigger.
For example, a product of two operators acting on four MPS tensors is depicted as

(10)

In this case, the operator depicted as a solid circle acts first on the four MPS tensors and the dashed
one acts second.

We will often use a minimal rank decomposition of tensors. For convenience, we will refer to the
operators in the decomposition as Schmidt vectors, even though the minimal rank decomposition is
not necessarily a Schmidt decomposition, as we do not require orthogonality. For example, a minimal
rank decomposition of a four-partite operator acting on four MPS tensors will be depicted as

(11)

The Schmidt vectors of a four-partite state |φ〉 can be related to its MPS description. We will therefore
depict the minimal rank decomposition as

(12)

where the Schmidt vectors are denoted as

(13)

021902-5 Molnar et al. J. Math. Phys. 59, 021902 (2018)

B. Semi-injective PEPS

In this section, we define semi-injective PEPSs. We show that this class contains all injective
PEPSs. Moreover, we provide examples that are not known to admit an injective PEPS description,
yet they can be written as semi-injective PEPSs.

Definition 1 (Semi-injective PEPS). Let |φ〉 be a four-partite state with full rank reduced densities
at every site, and let O be an invertible operator. The semi-injective PEPS |Ψn×m(φ, O)〉 is defined
as

(14)

where the green rectangle is |φ〉 and the red circle is O, and the state is defined on a torus with n × m
copies of |φ〉. We will often drop |φ〉 and O and the indices n, m from the notation.

Note that the full rank assumption does not affect which states can be described as semi-injective
PEPSs, it is only needed to avoid unnecessary degrees of freedom in the operator O.

These states can be written as a PEPS, but that PEPS is in general not injective. For example, a
PEPS tensor generating the same state is

(15)

with an arbitrary (not necessarily translational invariant) MPS decomposition of |φ〉 (TN states of this
form have been used in other contexts, see, e.g., Ref. 41).

In the following, we show that these states include injective PEPSs as well as all the examples
mentioned above.

1. Injective PEPS

In this case, the invertible operator is the PEPS tensor, and the four-partite state consists of two
maximally entangled pairs (and a one-dimensional particle),

(16)

where the four-partite states are (the fourth particle is a scalar)

(17)

021902-6 Molnar et al. J. Math. Phys. 59, 021902 (2018)

2. The CZX model

The CZX model readily admits the semi-injective PEPS form: the four-partite states are GHZ
states |0000〉 + |1111〉, whereas the invertible operators are unitary operators UCZX = X ⊗4 ·

∏
〈ij〉CZ ij.

3. Purification of thermal states

Consider a commuting nearest neighbor Hamiltonian on a square lattice and the following
purification of its Gibbs state:

|Ψ〉=
1
√

Z

(
e−βH/2 ⊗ Id

) ⊗
i

��φ+〉
i , (18)

where |φ+〉 =
∑

j |jj〉 is a maximally entangled pair state, and e�βH ⊗ Id acts non-trivially on one of
the entangled pairs at every lattice site. This state admits a PEPS description: as the Hamiltonian
terms are commuting, e�βH /2 is a product of local operators. The PEPS tensors are then simply
the product of the Schmidt vectors of these local operators acting on |φ+〉. This tensor does not
become injective after blocking exactly because of the corners: after blocking, the operators lying
entirely inside the blocked region can be inverted. Note that applying invertible operators on the
tensor does not change injectivity. This factorizes the tensor into a product of tensors on the boundary
and tensors on the corners. The boundary is injective, while the corners are not: the Schmidt vectors
of the Hamiltonian terms commute; therefore, any antisymmetric state on the corner is mapped to
zero.

Nevertheless, these states admit a semi-injective PEPS representation. Indeed, block 2 × 2 pairs
of particles. The four-partite state in the semi-injective PEPS description consists of the four pairs of
particles in the state

=
*.
,

∏
〈ij〉

e−βhij +/
-
⊗ Id⊗4 ·

4⊗
i=1

|φ+〉
i, (19)

where both i and j run over the particles in one block and |φ+〉 is the maximally entangled
state. The dots represent |φ+〉, while the ellipses represent e−βhij ⊗ Id⊗2. The invertible opera-
tor is a product of e−βhij ⊗ Id⊗2 on the 2 × 2 block shifted by half a lattice constant in both
directions,

(20)

With this convention, the state is written as an injective PEPS as follows:

(21)

4. AKLT in two dimensions

The two-dimensional AKLT model is a spin-2 system which is constructed as follows: place a
singlet |01〉 � |10〉 on each edge of a square lattice. Then, at each vertex, project the four virtual qubits

021902-7 Molnar et al. J. Math. Phys. 59, 021902 (2018)

into the 5-dimensional symmetric subspace,

(22)

Here the blue lines represent singlets and the orange circles represent the projectors into the symmetric
subspace. As any virtual boundary state which is anti-symmetric on the two qubits of any corner is in
the kernel of the map after appropriate applications of single-qubit Ys, the PEPS tensors describing
this state cannot be injective, even after blocking.

The two-dimensional AKLT admits a semi-injective PEPS description as follows:

(23)

with the four-partite state

(24)

where the blue lines are singlets, and the orange ellipses are the projectors into the 3-dimensional
symmetric subspace (the four-partite state can thus effectively be viewed as a state on four qutrits:
the one-dimensional AKLT state on four particles), and

(25)

which acts on the qubits represented by the hollow dots, restricted to the symmetric subspace at
each corner. It can be verified that the rank of (25) is 81. Clearly, the image of the adjoint of (25) is
contained in the subspace which is symmetric in the pairs of qubits at each corner. The dimension of
the latter is also 81. Thus, (25) is invertible.

III. SUMMARY AND RESULTS

In this section, we give a summary of the results obtained in this work. The detailed derivations of
all these results are given in Secs. IV–VII. The results extend the properties known for injective PEPSs
to semi-injective ones. First, we show how to construct local Hamiltonians for which they are the
unique ground states. Next, we answer the question under which local conditions two semi-injective

021902-8 Molnar et al. J. Math. Phys. 59, 021902 (2018)

PEPSs generate the same state. We then use this result to characterize symmetries in semi-injective
PEPSs. We also find that the third cohomology classification of SPT phases naturally extends to these
states, and thus these states might be suitable to capture the physics of SPT phases. In the following,
we give a detailed description of the results.

Consider two semi-injective PEPSs generated by (φA, OA) and (φB, OB). Suppose that on an n×m
torus, they generate states that are proportional to each other,

(26)

where the purple circle and the blue rectangle depict OA and |φA〉, respectively, while the orange
dashed circle and the green rectangle depict OB and |φB〉, respectively, and µn,m ∈C. Inverting OB,
we obtain

(27)

where the red circle denotes the invertible operator O=O−1
B OA.

In this setup, we prove the following:

Theorem 1. If Eq. (27) holds for some specific n0, m0 ≥ 3, then for all n, m ∈N:

1. Equation (27) holds with µn,m = µnm.
2. The action of O corresponds to an MPO acting on the boundary as follows: Take a minimal

rank decomposition of the four-partite states with respect to the vertical cut. That is, write

(28)

Then for the Schmidt vectors defined as above, the following holds: There are two MPO tensors
X and Y such that

(29)

where µ ∈C is the proportionality constant from Point 1 above, Vn(Y)= (Vn(X))−1 for every size
n, and both X and Y become injective after blocking two tensors.

021902-9 Molnar et al. J. Math. Phys. 59, 021902 (2018)

3. The operator O is a four-particle non-translationally invariant MPO with the property that
cutting the MPO into two halves yields a minimal rank decomposition of O.

4. The operator O is a product of two-body invertible operators,

O= (O14 ⊗ O23) · (O12 ⊗ O34)=
(
Õ12 ⊗ Õ34

)
·
(
Õ14 ⊗ Õ23

)
, (30)

where the particles are numbered clockwise from the upper left corner and Oij acts on particles
i and j. Pictorially,

(31)

In Sec. VII, we use these results to rederive the third cohomology classification of SPT phases
within the framework of semi-injective PEPSs. The setup in this case is as follows:

Let G be a group and Og be a faithful (not necessarily unitary) representation of G. Let |φ〉 be a
four-partite state with full rank one-particle reduced densities. Suppose ∀g ∈ G, Og is a symmetry of
the semi-injective PEPS defined by |φ〉 and Id,

(32)

where the blue squares represent |φ〉 and the red circles represent operators Og.
Note that this setup can readily be applied for unitary symmetries of semi-injective PEPSs: let

the semi-injective PEPS be defined by the four-partite state |φ〉 and an invertible operator A. Let
the unitary representation of the symmetry group G be Ug. Then, by inverting A in the symmetry
condition, we arrive to Eq. (32) with Og = A�1UgA.

Within this setup, we prove that

Theorem 2. If Eq. (32) holds for some n, m ≥ 3, then

1. g 7→ µ(g) is a one-dimensional representation of G.
2. For every g ∈ G, there are two MPO tensors Xg and Yg such that

(33)

and Vn(Yg)=
(
Vn(Xg)

)−1
for all n. Moreover, Vn(Xg) and Vn(Yg) form projective representations

of G with Vn(Xg)Vn(Xh) = λn(g, h)Vn(XgXh) for a two-cocycle λ. In particular, Vn(Xg)Vn(Xh)
has only one block in its canonical form.

3. There is a canonical way to assign an element from H3(G,C∗) to the one-block MPO
representation g 7→ Xg.

021902-10 Molnar et al. J. Math. Phys. 59, 021902 (2018)

4. Og has a four-particle non-translationally invariant MPO representation with tensors

O(1)
g , O(2)

g , O(3)
g , O(4)

g in the sense of Theorem 1, Point 3, such that the MPO Vn(O(1)
g O(2)

g O(3)
g O(4)

g)
forms a one-block projective MPO representation and its cohomology label coincides with
that of the boundary. In particular, the MPO labels obtained from the vertical and horizontal
boundaries are the same.

IV. PARENT HAMILTONIAN

In this section, we prove that semi-injective PEPSs are unique ground states of their parent
Hamiltonian. Let us consider a semi-injective PEPS |ψ〉. Corresponding to this state, we consider two
parent Hamiltonian constructions. First, one can obtain the usual parent Hamiltonian by writing the
state as a PEPS with the tensors in Eq. (15). That is, consider a 2 × 2 patch of the tensors. Let S be
the subspace generated by the tensors with arbitrary boundary conditions:

(34)

The Hamiltonian term h̃i centered around the plaquette state at position i is just the projector onto S⊥

and the Hamiltonian H̃ is the sum over all positions of these projectors,

h̃i =Proj
(
S⊥

)
i
⊗ Id, (35)

H̃ =
∑

i

h̃i. (36)

The second construction is to invert the operators O around a plaquette state at site i and project
φi to zero,

hi =
*.
,

∏
〈ji〉

O−1
j

+/
-

†

Pi
*.
,

∏
〈ji〉

O−1
j

+/
-

, (37)

where j runs over all positions of operators that (partially) act on the plaquette state at position i and
the projector Pi is the projector to the orthocomplement of C |φ〉: Pi = (Idi � |φ〉i〈φ|) ⊗ Id. Then the
Hamiltonian H is the sum of the different terms,

H =
∑

i

hi. (38)

Proposition 3. The semi-injective PEPS |ψ〉 is the unique ground state of both H and H̃ at all
system sizes.

Proof. We first prove that H has a unique ground state. Then we prove that the kernel of H̃ is
contained in that of H.

To see that ker H is one-dimensional, consider the following similarity transform:

*.
,

∏
j

Oj
+/
-

†

H *.
,

∏
j

Oj
+/
-
=

∑
i

Pi ⊗ Id ⊗
⊗

j

(
O−1

j

)†
O−1

j , (39)

where the product runs over all sites j that are not neighbors of the projector Pi, and the identity acts
on all virtual particles that are neighbors of the four-partite state |φ〉. The kernel of each term in the
sum is |φ〉i ⊗

⊗
j<i Hj, where j runs over all virtual particles that are not in the four-partite state |φ〉.

Clearly the intersection of these subspaces is
⊗

i |φ〉i, that is, the kernel of H is one-dimensional.

021902-11 Molnar et al. J. Math. Phys. 59, 021902 (2018)

To see that ker H̃ ≤ ker H, notice that every state in Si [defined in Eq. (34)] is in the kernel of hi.
Therefore,

ker h̃i ≤ ker hi. (40)

Finally, as ker H = ∩i ker hi and ker H̃ =∩i ker h̃i, the inclusion also holds for the kernel of the total
Hamiltonians. �

V. BACKGROUND: MATRIX PRODUCT STATES

In this section, we recall some basic properties of MPSs. These definitions and theorems are
mainly covered in Ref. 26. First, recall some basic properties of completely positive maps.

Definition 2. A completely positive map T : ρ 7→T (ρ)=
∑

i Ai ρA†i is

• irreducible if there is no non-trivial projector P such that T (ρ) = PT (ρ)P† for all ρ = PρP†,
otherwise T is reducible;

• primitive if ∃n such that Tn(ρ) > 0 for all ρ ≥ 0.

Note that then the following statements hold:

Proposition 4. Let T : ρ 7→T (ρ)=
∑

i Ai ρA†i be a completely positive map with spectral radius
r. Then r is an eigenvalue with at least one positive semidefinite eigenvector. Moreover,

• T is primitive if and only if r has multiplicity one, the corresponding eigenvector is positive
definite, and there are no other eigenvalues of magnitude r.

• if T is irreducible but not primitive, then r has multiplicity one, and all eigenvalues of magnitude
r are r · exp [2πin/K] for some K and n = 1, 2, . . ., K. We call K the periodicity of T.

• T is reducible if and only if AiP = PAiP for some non-trivial projector P.

For proofs, see, e.g., Refs. 42 and 43. Now we define matrix product states.

Definition 3. An MPS tensor is a tensor A ∈CD ⊗ (CD)∗ ⊗ Cd ,

A=
∑
iαβ

Ai
αβ |α〉 〈β | ⊗ |i〉=

∑
i

Ai ⊗ |i〉 . (41)

For any n ∈N, the state Vn(A) ∈ (Cd)⊗n is then defined as

Vn(A)=
∑

i1...in

Tr
{
Ai1 . . . Ain

}
|i1 . . . in〉 . (42)

The transfer matrix of A, TA, is the completely positive map TA : ρ 7→
∑

i Ai ρA†i . We say that A is

• injective, if
∑

i Tr{Ai ρ}|i〉 = 0 implies ρ = 0;
• normal, if TA is primitive;
• periodic, if TA is irreducible but not primitive.

An MPS is called normal, injective, or periodic, if it can be generated by a normal, injective, or
periodic MPS tensor.

We often depict an MPS tensor and the corresponding MPS as follows:

(43)

The horizontal legs of the MPS tensor A are often referred to as the virtual indices, while the vertical
one referred to as the physical index of A. The dimension of the virtual indices, D, is called the bond
dimension of A.

021902-12 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Note that, unlike in Ref. 26, for convenience, we do not suppose that the spectral radius of a
normal tensor is 1. Note also that an MPS tensor is injective if and only if it has a left inverse, C, such
that

∑
i Ai ⊗ Ci = Id in the sense as depicted,

(44)

Here, and in the following, we use the following graphical calculus44 of tensors. A tensor is depicted
as a box or circle, with some lines attached to it. These lines represent the indices of the tensor. Tensor
contraction is depicted by joining the lines. In the picture above, for example, we have contracted
the physical indices of A and C. The result is the identity tensor from the bottom indices to the top
indices. We have omitted drawing a box for the identity.

A frequently used concept in MPS theory is the blocking of tensors.

Definition 4 (Blocking). The MPS tensor B is a blocking of A if B=
∑

i1...ik Ai1 . . . Aik ⊗ |i1 . . . ik〉.
Note that Vn(B) = V kn(A).

We will often write the above contraction of tensors as a product. That is, for any two MPS
tensors C and D, CD B

∑
ij CiDj ⊗ |ij〉. With this notation, B = AA . . . A. We will use this notation

even if one of the tensors does not have a physical index.
Note that a normal tensor stays normal after blocking. Moreover, injective and normal MPSs are

the same up to blocking:

Proposition 5. Any injective tensor is proportional to a normal tensor. Conversely, for any normal
tensor, ∃L0 ∈N such that it becomes injective after blocking any L ≥ L0 tensors. The minimal such
L0 is called the injectivity length.

This statement was proven, e.g., in Ref. 45. Note that L0 might be bigger than the primitivity
length of TA, that is, the minimal n for which Tn

A(ρ)> 0 for all ρ ≥ 0. There is, however, a universal
bound depending only on the bond dimension D.

Note that being normal or injective are properties which are stable under taking the tensor product
of MPS tensors:

Proposition 6. The tensor product of two normal MPS tensors is normal. The tensor product of
two injective MPS tensors is injective.

Proof. First, we prove that the tensor product of two normal tensors A and B is normal. The
transfer matrix of A ⊗ B is TA ⊗ TB, where TA is the transfer matrix of A and TB is the transfer
matrix of B. Denote the spectrum of any operator T by σ(T). Then σ(TA ⊗ TB) = σ(TA) ·σ(TB).
Therefore, TA ⊗ TB has a unique eigenvalue with magnitude (and value) equal to the spectral radius.
The corresponding eigenvector of TA ⊗ TB is ρA ⊗ ρB if ρA and ρB are the eigenvectors of TA

and TB with maximum eigenvalue, respectively. ρA ⊗ ρB is positive and is full rank, so TA ⊗ TB is
primitive.

Second, the tensor product of two injective tensors is injective: if A and B are injective and A�1

and B�1 are their left inverses, then A�1 ⊗ B�1 is a left inverse of A ⊗ B. �

Proposition 7. Given two normal tensors A and B with injectivity length at most L, the two MPSs
generated by them either become perpendicular in the thermodynamic limit, i.e.,

|〈Vn(A)|Vn(B)〉|
‖Vn(A)‖ · ‖Vn(B)‖

→ 0 (45)

as n→∞, or the following three equivalent statements hold:

021902-13 Molnar et al. J. Math. Phys. 59, 021902 (2018)

• Vn(A) = λnVn(B) for some λ ∈C for all n;
• ∃n ≥ 2L + 1 such that Vn(A) = λnVn(B) for some λ ∈C;
• Ai = λX BiX�1, for some λ ∈C; and this X is unique up to a constant.

We call the normal tensors A and B essentially different if the MPSs generated by them are not
proportional in the above sense. The proof of these statements can be found in Ref. 26.

Corollary 7.1. Given a set of pairwise essentially different normal tensors, Ai, ∃N ∈N such that
the MPSs Vn(Ai) are linearly independent for all n > N.

Proposition 8. Any MPS Vn(A) can be decomposed into a linear combination of normal and
periodic MPSs,

Vn(A)=
∑

i

µn
i Vn(Ai), (46)

where each Ai is either normal or periodic.

The proof can be found in Ref. 26. We provide a simplified proof here.

Proof. We prove this by induction on the bond dimension D. If D = 1, Ai is proportional to a
normal MPS. Suppose now that the statement is true for all D < D0. Consider an MPS tensor A with
bond dimension D0. If its transfer matrix TA is irreducible, then A is either periodic or proportional
to a normal MPS tensor. Otherwise, there exists a non-trivial projector P such that AiP = PAiP; see
Proposition 4. Then Vn(A) = Vn(PAP) + Vn(QAQ) with Q = 1 � P. Finally, the bond dimension of
PAP (and QAQ) can be compressed to the rank of P (corr. Q): write P = Y X for some X :CD0→CD,
Y :CD→CD0 , XY = IdD. Then XAY generates the same MPS as PAP. The bond dimension of the
resulting MPS is smaller than D0; thus, by the induction hypothesis, they can be written as a linear
combination of normal or periodic MPSs. �

Proposition 9. Let A be a periodic MPS tensor with periodicity K. After blocking K tensors,
Vn(A) decomposes into K essentially different normal MPSs,

VKn(A)=
K∑

i=1

Vn(Bi), (47)

where the Bi’s are pairwise essentially different normal MPS tensors on K spins. Moreover,
Vn(A) = 0 if n <KN.

This statement has been proven as Lemma 5 in Ref. 46. Proposition 9 from Ref. 26 is a corollary
of this:

Corollary 9.1. For any MPS tensor A∃K such that after blocking K tensors, VKn(A) decomposes
into the following linear combination of normal tensors:

VKn(A)=
∑

i

*.
,

∑
j

µn
ij

+/
-

Vn(Bi), (48)

where the Bi’s are pairwise essentially different normal tensors on K sites.

Finally, the following statement, together with Corollary 7.1, provides the “uniqueness” of this
decomposition:

Proposition 10. If for µ1, . . . µr ∈C\{0} and λ1, . . . λs ∈C\{0}
r∑

i=1

µn
i =

s∑
j=1

λn
j (49)

for all n ∈N, then r = s and µi = λp(i) for some permutation p and for all i.

021902-14 Molnar et al. J. Math. Phys. 59, 021902 (2018)

This statement has been proven as Lemma 9 in Ref. 47.
We will also consider non-translationally invariant MPSs.

Definition 5. Let di and Di (i = 1, . . ., k) be positive integers. Let Xi =
∑di

j=1 X j
i ⊗ |j〉 ∈C

Di

⊗
(
CDi+1

)∗
⊗ Cdi be tensors for i = 1, . . ., k, where we identify k + 1 with 1. Then the non-translationally

invariant MPS defined by these tensors is

V (X1, . . . , Xk)=
d1∑

i1=1

· · ·

dk∑
ik=1

Tr
{
X i1

1 . . . X ik
k

}
|i1 . . . ik〉 . (50)

A non-translationally invariant MPS is called injective after blocking l sites; if ∀i = 1, . . ., k, the
tensor X iX i+1 . . . X i+l satisfies that if Tr

{
ρX j1

i X j2
i+1 . . . X

jl
i+l−1

}
|j1 . . . jl〉= 0, then ρ = 0.

Proposition 11. Let X1, . . ., Xk define a non-translationally invariant MPS that is injective after
blocking l sites. Then the MPS is also injective after blocking any m ≥ l sites.

Proof. We prove this by induction on m. For m = l, the statement is true by assumption. Suppose
that the MPS is injective after blocking m tensors. Let ρ ∈CDi+m ⊗CDi such that for m + 1 consecutive
sites ∑

j1...jm+1

Tr
{
ρX j1

i X j2
i+1 . . . X

jm+1
i+m

}
· |j1 . . . jm+1〉= 0 (51)

for some i. Then, as the tensor X i . . . X i+m�1 is injective,

X jm+1
i+m ρ= 0 ∀jm+1 ∈ {1, 2, . . . , di+m}. (52)

Take any matrix M ∈CDi ⊗ CDi+1 . Then

0=X j2
i+1 . . . X

jm+1
i+m ρM ∈CDi+1 ⊗ CDi+1 . (53)

Then ∑
j2 ...jm+1

Tr
{
X j2

i+1 . . . X
jm+1
i+m ρM

}
· |j1 . . . jm+1〉= 0. (54)

The block of the m consecutive tensors X i+1. . . X i+m is injective; therefore, ρM = 0. As M was
arbitrary, ρ = 0; thus, the MPS is injective after blocking m + 1 sites. �

Finally, we introduce Matrix Product Operators (MPOs).

Definition 6. A matrix product operator is an operator written in MPS form

Vn(X)=
∑

i1...in,j1...jn

Tr{X i1j1 . . . X injn } |i1 . . . in〉 〈j1 . . . jn | . (55)

As MPOs are just special MPSs, all the definitions and structure theorems above apply. In
particular, we will use the terminology normal, injective, and periodic for MPOs too.

VI. CANONICAL FORM

In this section, we investigate when two semi-injective PEPSs defined by (φA, OA) and (φB,
OB) describe the same state for some (sufficiently large) system size. We find that this question can
be decided locally: the two states are proportional for a large system size if and only if they are
proportional on a 3 × 3 torus. Moreover, the boundary degrees of freedom are related by an invertible
MPO whose inverse is also an MPO. Finally, we show that O−1

B OA has to be a product of two-particle
invertible operators. In Appendix A, we also provide some examples that explain why the situation
is more complicated than in the case of injective PEPSs.

021902-15 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Consider two semi-injective PEPSs generated by (φA, OA) and (φB, OB). Suppose that on an
n × m torus, they generate states that are proportional to each other,

(56)

where the purple circle and the blue rectangle depict OA and |φA〉, respectively, while the orange
dashed circle and the green rectangle depicts OB and |φB〉, respectively, and µn,m ∈C. Inverting OB,
we obtain

(57)

where the red circle denotes the invertible operator O=O−1
B OA. This equation is the starting point of

our investigation below. First we prove that it holds for all system sizes:

Proposition 12. If Eq. (57) holds for some n0 ≥ 3, m0 ≥ 3, then it also holds for any n, m ∈N
and the proportionality constant is µn,m = µnm.

Proof. Take a minimal rank decomposition of the four-partite states with respect to the vertical
cut. That is, write

(58)

Using this decomposition, Eq. (57) reads as

(59)

This gives rise to an MPS description of the states with the following tensors:

021902-16 Molnar et al. J. Math. Phys. 59, 021902 (2018)

(60)

where the physical index of the MPS tensor is all physical indices of the virtual particles, while the
virtual indices of the MPS correspond to the virtual indices of the minimal rank decomposition of the
four-partite states. These tensors are injective: the green tensor is just a tensor product of the Schmidt
vectors, and as the Schmidt vectors (and their tensor product) are linearly independent, that tensor is
injective. The blue tensor is obtained by acting with an invertible operator on the tensor product of
Schmidt vectors; therefore, it is also injective.

Thus, using Proposition 7, if Eq. (57) holds for n0 ≥ 3, m0 ≥ 3, then it also holds when the system
size in the horizontal direction is changed to any n by keeping the system size in the vertical direction
m0. Therefore Eq. (57) holds for m0 and any n, and the proportionality constant is µn,m0 = µ

n
m0

for
some µm0 ∈C. The argumentation above holds with respect to the horizontal cut. Therefore the system
size can be changed along the vertical direction too: as Eq. (57) holds for n, m0, it also holds for n,
m and the proportionality constant is then µm/m0

n,m0
= µnm for some µ ∈C. �

Note that this implies that it is decidable whether two semi-injective PEPSs are equal for all
system size. Moreover, it is also practically checkable: it is enough to calculate the overlap between
two states (and their norms) on a 3 × 3 torus. The overlaps can be calculated by standard tensor
network techniques. The cost of this computation scales as the 12th power of the Schmidt rank.

Using Proposition 7, we conclude that up to a constant there is a uniquely defined operator Xn

on the boundary for which

(61)

This construction, however, does not reveal anything about the properties of the gauges Xn and X−1
n :

they are globally defined and the definition depends on the system size. In the following, we explore
their structure and show that they can both be written as normal MPOs.

Theorem 13. Suppose Eq. (57) holds for some n, m ≥ 3. Then there are two MPO tensors X and
Y such that

(62)

where µ ∈C is the proportionality constant from Proposition 12, and Vn(Y)= (Vn(X))−1 for every
size n and both X and Y become injective after blocking two tensors.

Before proceeding to the proof, notice that

021902-17 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Lemma 14. The l.h.s. of Eq. (62) can be described by an MPS that becomes injective after
blocking two tensors.

Proof. Take a minimal rank decomposition of the operators O,

(63)

Then the l.h.s. of Eq. (62) is an MPS with the MPS tensor

(64)

where the physical indices of the MPS are both the physical indices and the two virtual indices
belonging to the decomposition of |φA〉 on the r.h.s. of Eq. (64), while the virtual indices of the MPS
are the virtual indices belonging to the decomposition of O on the r.h.s. of Eq. (64).

We prove now that this MPS tensor is injective after blocking two tensors. To see this, block two
tensors and note that contracting the middle indices gives back O,

(65)

Inverting O does not change the injectivity of the MPS tensor, as it is an invertible operation on its
physical indices. Therefore it is enough to prove that

(66)

is injective. Both vi and wj are linearly independent, as the Schmidt vectors of O are linearly indepen-
dent and the one body reduced densities of the four-partite states are full rank. Therefore the vectors
vi ⊗ wj are also linearly independent, that is, the corresponding tensor is injective. �

We now proceed to the proof of Theorem 13.

Proof of Theorem 13. We first prove that Xn and X−1
n are proportional to an MPS. Write the l.h.s.

of Eq. (61) as an MPS with two physical indices,

(67)

where the left physical index of the MPS tensor corresponds to the indices on the top of the r.h.s.
(physical and virtual indices of the Schmidt vector), while the right one to the indices on the bottom
of the r.h.s., and the virtual indices of the MPS correspond to the Schmidt index of the decomposition
of O. With this notation, Eq. (61) reads as

(68)

021902-18 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Applying a product linear functional on the lower half of the r.h.s. (and the right indices of the MPS
on the l.h.s.), the equation changes to

(69)

for some λn ∈C. Notice that the Schmidt vectors on the r.h.s. can be inverted: they are an injective
mapping from the Schmidt index to the physical degrees of freedom, as they are linearly independent.
Therefore,

(70)

where the white circle depicts the inverse of the Schmidt vectors of |φB〉. This shows that Xn (and
similarly X−1

n) is an MPS with some MPS tensor X̃ (and Ỹ) as long as the l.h.s. is not 0. It is thus
sufficient to prove that there is a translationally invariant product linear functional (the gray circles),
which is independent of n, which does not map the l.h.s. to 0.

Consider two linear functionals acting on the MPS tensor,

(71)

We show now that there are linear functionals a, b such that for the corresponding Ma,bTr{Ma,b}
, 0. Let us consider the map F: (a, b) 7→ Tr{Ma,b}. Graphically, this map is

(72)

Notice that F equals to the operator O with the left and right side interchanged applied to the tensor
product of the Schmidt vectors of |φ〉. As O is invertible, F is not zero. Therefore there are linear
functionals a, b such that F(a, b) = Tr{Ma,b} , 0. As Tr{Ma,b} , 0, Ma,b is not nilpotent and
thus

Tr{Mn
a,b} =

R∑
i=1

ξn
i (73)

for some ξ1, . . . ξR ∈C\{0}, R > 0. Let SB {n ∈N | Tr{Mn
a,b} , 0}. Notice that |S| =∞. Then, choosing

the linear functional appearing in Eq. (70) to be b, the l.h.s. is non-zero for all system sizes n ∈ S.
Therefore, Xn can be written as an MPO for all n ∈ S. Similarly, using the linear functional a instead
of b on the lower part of Eq. (68), we arrive to the conclusion that X−1

n is also a non-zero MPO for
all n ∈ S, for the same S.

Therefore there is a λn ∈C such that ∀n ∈ S,

(74)

021902-19 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Here, µn is the proportionality constant appearing in Eq. (62), and Vn(X̃) and Vn(Ỹ) are translationally

invariant MPOs on n sites, such that Vn(Ỹ)=
(
Vn(X̃)

)−1
/λn. Their defining tensors, X̃ and Ỹ , are

independent of n. Note that the MPOs Vn(X̃) and Vn(Ỹ) are defined for ∀n ∈N, but we have not yet
proven that Eq. (74) holds for n < S.

In the following, we prove that Eq. (74) also holds ∀n ∈N for some injective MPO Vn(X), Vn(Y)
with λn = 1.

Using Corollary 9.1, there exists K ∈N such that after blocking K tensors, both Vn(X̃) and Vn(Ỹ)
(n ∈KN) can be decomposed into a linear combination of normal MPOs. As the tensor product of
normal MPSs is again a normal MPS (Proposition 6), Vn(X̃)⊗Vn(Ỹ) has a decomposition into normal
MPOs that are tensor products. Denote these essentially different normal MPOs by Vn(X i) ⊗ Vn(Y i).
That is, ∀n ∈KN,

Vn(X̃) ⊗ Vn(Ỹ)=
L∑

i=1

Mi∑
j=1

ζn
ijVn(Xi) ⊗ Vn(Yi), (75)

where Vn(X i) ⊗ Vn(Y i) are essentially different normal MPOs. Using this decomposition in Eq. (74),
the l.h.s. is described by a normal MPO (Lemma 14), while the r.h.s. is described by the sum above
for an infinite number of system sizes (indeed, for all n ∈KN ∩ S). As essentially different MPSs
become linearly independent for large system sizes (Corollary 7.1), Eq. (75) can describe a normal
MPO only if either L = 1 or otherwise all but one i satisfy

Mi∑
j=1

ζn
ij = 0, ∀n ∈ S ∩ KN. (76)

Recalling that Eq. (73) vanishes ∀n ∈N\S, we conclude that

R∑
k=1

ξn
k

Mi∑
j=1

ζn
ij =

∑
kj

(ξkζij)
n = 0 ∀n ∈KN, (77)

where i is chosen such that the sum of ζn
ij vanishes ∀n ∈ S ∩ kN. Applying Proposition 10 to Eq. (77),

all (ξkζij)K = 0, that is, ζ ij = 0 for all j and all but one i. Therefore, L = 1 in Eq. (75). Using Proposition
9, we conclude that Vn(X̃) ⊗ Vn(Ỹ) does not contain periodic MPOs; therefore K = 1. Thus, both the
l.h.s. and the r.h.s. of Eq. (74) are proportional to normal MPOs. Using Proposition 7, we conclude
that the equality in Eq. (74) holds ∀n ∈N. We have therefore proven that there are normal MPO
tensors X and Y [the ones appearing in the unique normal MPO in Eq. (75)] such that ∀n ∈N and
some λn ∈C,

(78)

These MPO tensors also satisfy Vn(Y)= (Vn(X))−1 /λn for all n ∈ S. As both Vn(Y) and Vn(X) are
normal MPOs, the equality holds ∀n ∈N and thus λn = λn for some λ ∈C. Absorbing this constant
into Y, Vn(Y)= (Vn(X))−1 and

(79)

�

021902-20 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Corollary 14.1. Suppose that ∀n ∈N Eq. (62) holds also for some other MPOs Vn(X̃) and Vn(Ỹ)

and Vn(Ỹ)=
(
Vn(X̃)

)−1
. Then Vn(X̃)= λnVn(X) and Vn(Ỹ) = λ�nY (n) for some λ ∈C.

Proof. Due to the uniqueness of the gauge in Eq. (61), Vn(X̃)= λnVn(X) and Vn(Ỹ)= λ−1
n Vn(Y).

Decomposing Vn(X̃) and Vn(Ỹ) to their canonical forms, we see that the only normal MPS appearing
in the decomposition is Vn(X) and Vn(Y), and that λn =

∑
i λ

n
i and λ−1

n =
∑

i η
n
i . But then 1=

∑
ij(λiηj)n

and thus by Proposition 10, λn = λn. �

It turns out that the fact that the boundaries of the two semi-injective PEPSs are related by an
MPO severely restricts the form of O. We will indeed find that

Proposition 15. The operator O from Eq. (57) can be written as a product of invertible two-body
operators,

O= (O14 ⊗ O23) · (O12 ⊗ O34)=
(
Õ12 ⊗ Õ34

)
·
(
Õ14 ⊗ Õ23

)
, (80)

where the particles are numbered clockwise from the upper left corner and Oij acts on particles i and
j. Pictorially,

(81)

We will prove that O has a four site long non-translationally invariant MPO decomposition,
with the property that cutting the MPO into two halves yields a minimal rank decomposition of O.
Moreover, we will show that the product of the Schmidt vectors of O and O�1 is tensor products.
Before proceeding to the proof, we show that if O and O�1 are both MPOs of this form, O has to
have the two-layer structure (81).

Lemma 16. Consider two non-translationally invariant MPOs on n = 2k sites with tensors X1,
. . ., Xn and Y1, . . ., Yn. Suppose that

1. V (X1, . . ., Xn) ·V (Y1, . . ., Yn) = Id;
2. both X iX i+1 and Y iY i+1 are injective for all i = 1, . . ., n with n + 1 ≡ 1;
3. the product of X iX i+1 and Y iY i+1 factorizes as depicted,

(82)

(83)

Then V (X1, . . ., Xn) (and V (Y1, . . ., Yn)) admits a two layer description,

(84)

where all two-body operators on the r.h.s. are invertible. Equation (84) also holds when shifted by
one site (with other invertible operators),

(85)

021902-21 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Note that for the translationally invariant setting, conditions 2 and 3 are satisfied naturally after
blocking some tensors.

Proof. Take a Schmidt decomposition of the tensors X1, . . ., Xn and Y1, . . ., Yn in an alternating
way,

(86)

(87)

We will prove that the two-body operators defined this way are invertible. They naturally have to
be injective from the outside to the middle indices, otherwise V (X1, . . ., Xn) and V (Y1, . . ., Yn)
would not be invertible. Suppose that there is an operator which is not injective from the middle to
the outside. Suppose it happens in the lower layer of V (X1, . . ., Xn). Consider a 2-site part of the
MPO,

(88)

As we took a minimal rank decomposition, the outer tensors on the l.h.s. are invertible. Therefore,
the product of the operators in the middle is a product,

(89)

Therefore if the gray operator is not injective from top to bottom, then its kernel factorizes. Suppose
the left operator on the r.h.s. has a non-trivial kernel. Then we can insert a non-trivial projector y on
top that does not change the value of the product,

(90)

Inserting this back into the product V (X1, . . ., Xn) ·V (Y1, . . ., Yn), we get that

(91)

As V (Y1, . . ., Yn) is invertible, its left inverse is unique and equal to V (X1, . . ., Xn). Therefore

(92)

021902-22 Molnar et al. J. Math. Phys. 59, 021902 (2018)

By assumption, the tensors defining the MPO are injective after blocking at least two sites. Therefore,
by inverting all but one tensor, we conclude that

(93)

But this is not possible unless the yellow tensor is the identity. Thus, the two-body operators are
invertible. �

We now proceed to the proof of Proposition 15. Note that it is enough to show that both O and
O�1 admit an MPO description that satisfies the conditions of Lemma 16.

Proof of Proposition 15. Write the l.h.s. of Eq. (62) as an injective MPS with tensors defined in
Eq. (64). The r.h.s. of Eq. (62) is also an injective MPS. Therefore, the generating tensors are related
by a gauge transformation,

(94)

Absorbing the gauge in the decomposition of the operator, we have

(95)

where the red rectangles depict a minimal rank decomposition of the operator O. As Vn(X) and Vn(Y)
are inverses of each other, the inverse relation of Eq. (62) reads

(96)

where the dashed red circles denote O�1. Therefore, with an appropriate minimal rank decomposition
of O�1, the generating tensors are related as follows:

(97)

021902-23 Molnar et al. J. Math. Phys. 59, 021902 (2018)

where the dashed rectangles denote the Schmidt decomposition of O�1. Therefore, applying the
Schmidt vectors of O and then O�1 to the Schmidt vectors of |φA〉, we obtain

(98)

Contracting two copies of Eq. (98), the middle operator is OO�1 = Id, so

(99)

Notice that the l.h.s. is a product with respect to the vertical cut, whereas the r.h.s. is product with
respect to the horizontal cut. Therefore both sides have to be product with respect to both vertical
and horizontal cuts. Note that then Vn(X) and Vn(Y) satisfy the conditions of Lemma 16 and thus are
products of invertible two-body operators in the sense of Eqs. (84) and (85). Similarly, both terms on
the l.h.s. factorize with respect to the horizontal cut. As the one-body reduced densities of |φA〉 are
full rank, the product of the Schmidt vectors of O and O�1 factorizes(

O−1
) (13)

kl
O(13)

ij =A(1)
ik ⊗ A(3)

jl . (100)

The same holds for the Schmidt vectors of all neighboring bipartition in any order. Similarly, the
equation holds for the bipartition (13)–(24) and also for the reordering of O and O�1. Equation (100)
can be pictorially represented as

(101)

Consider the operator

(102)

Note that Z factorizes with respect to the bipartition (13)–(24): to see this, decompose O�1 with
respect to the bipartition (12)–(34). Then

021902-24 Molnar et al. J. Math. Phys. 59, 021902 (2018)

(103)

and therefore it factorizes with respect to the bipartition (13)–(24), and so does Z. Similarly, Z also
factorizes with respect to the bipartition (12)–(34). Therefore, Z is a four-partite product,

(104)

As contracting the open indices of Z gives back the operator OO�1O = O, and as Z has a tensor
product structure, this construction gives rise to an MPO description of O. Similarly, contracting only
the vertical (horizontal) indices the lower (upper) two layers gives O�1O = Id (OO�1 = Id) on the
lower (upper) two layers, and thus we obtain a minimal rank decomposition of O in the horizontal
(vertical) cut. As the Schmidt vectors are linearly independent, the MPO tensors become injective
after blocking two tensors.

The above construction can be repeated for O�1. This leads to an MPO decomposition of O�1.
These two decompositions satisfy the conditions of Lemma 16: the MPOs become injective after

blocking two tensors; moreover, the product of two neighboring tensors of O and O�1 factorizes.
Therefore, O (and O�1) is a product of invertible two-body operators. �

The above form provides an equivalent characterization of when two semi-injective PEPSs are
equal for all system sizes. Before stating the theorem, we introduce two swap operators on four
particles. The horizontal swap, HA, exchanges the virtual particles of |φA〉 in the horizontal direction,

(105)

The vertical swap, VA, reflects the particles of |φA〉 in the vertical direction,

(106)

We denote the product of HA and VA as SA: SA = HAVA = VAHA. Define HB, VB, and SB similarly
for |φB〉. Note that HA and HB are different in general as the Hilbert spaces of the virtual particles
might differ.

Theorem 17. Two semi-injective PEPSs are equal [Eq. (57) holds] if and only if the following
conditions are satisfied:

• The operator O factorizes into two-body operators as

(107)

021902-25 Molnar et al. J. Math. Phys. 59, 021902 (2018)

• The Schmidt vectors of the four-partite states satisfy

(108)

(109)

where the horizontal ellipse denotes HBOHA, and the vertical ellipse denotes VBOVA.

Note that the last two conditions are equivalent to the property that the two states are equal on
an n × 1 and a 1 × n torus for all n, and therefore they are easily checkable.

Proof. The necessity of these conditions is clear from above. We now prove the sufficiency.
Let

(110)

(111)

(112)

(113)

Due to the two layer structure of O and O�1 [Eq. (81)], the following operator is a product in the
horizontal cut,

(114)

where HBOHA is the lower layer. The vertical swap of the previous operator is

(115)

where SBOSA is the lower layer. Consider now these operators acting on the semi-injective PEPS
defined by |φA〉 and Id,

021902-26 Molnar et al. J. Math. Phys. 59, 021902 (2018)

(116)

From Eqs. (108) and (109), the action of the lower layers on each side is to change |φA〉 to |φB〉.
Therefore,

(117)

Using once more Eq. (109), the r.h.s. is a tensor product of φA at every position,

(118)

Applying O on both sides on each site, we see that Eq. (57) holds. �

As a simple application, one can derive the canonical form of injective PEPSs.35

Corollary 17.1. Two injective PEPSs generate the same state if and only if they are related by a
product gauge transformation.

Proof. The conditions of Theorem 17 that Schmidt vectors map to Schmidt vectors read as

(119)

and therefore the operator O is a product on the two leftmost particles (and on one particle it is the
inverse of the other). Similarly the other condition implies that the operator is a product on the two
rightmost particles. Therefore O has a product structure in the desired form. �

We now show that if the span of the Schmidt vectors of both states with respect to both the
vertical and horizontal cut contain product states, then |φA〉 and |φB〉 are stochastic local operations

021902-27 Molnar et al. J. Math. Phys. 59, 021902 (2018)

and classical communiation (SLOCC)48-equivalent, that is, there are invertible operators O1, O2, O3,
O4 acting on the virtual particles such that O1 ⊗ O2 ⊗ O3 ⊗ O4|φA〉 = |φB〉. Pictorially,

(120)

Note that there are examples for states that do not have product states in the span of their Schmidt
vectors, but they generate the same state and are not SLOCC equivalent. For example, consider

(121)

then the semi-injective PEPS defined by |φA〉 and Id and |φB〉 and Id (more precisely the isomorphism
that rearranges the tensor product to the right order) are the same on every torus, yet these states are
not SLOCC equivalent.

Theorem 18. If the span of the Schmidt vectors of both four-partite states in Eq. (57) contains
a product state for both the vertical and horizontal cut on both sides, then the two four-partite states
are SLOCC equivalent.

Proof. By Theorem 17, Eq. (57) implies

(122)

Inverting the upper layer, we get

(123)

The l.h.s. is the product in the vertical direction, and the r.h.s. is the product in the horizontal direction.
Therefore the two sides describe a state that factorizes in both directions. Let |ξ〉 be this state and
denote this state with a purple square. Then,

(124)

021902-28 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Equivalently, for the Schmidt vectors, we get

(125)

(126)

If the span of the Schmidt vectors on the l.h.s. contains a product vector, the same is true for the
Schmidt vectors on the r.h.s. Therefore, choosing a product Schmidt vector on the bottom in Eq. (125)
and applying a product linear functional, we get that for some not necessarily invertible operators,

(127)

A similar equation also holds for the lower part, as well as for both sides of |φB〉. Inverting the
operators appearing in Eq. (125), by the same argument, we obtain the inverse relation

(128)

and similarly along all other cuts. Equations (127) and (128) ensure that the one particle operators
can be chosen invertible; thus, |φA〉 and |ξ〉 are SLOCC equivalent. Similarly, |φB〉 and |ξ〉 are SLOCC
equivalent. Therefore |φA〉 and |φB〉 are SLOCC equivalent. �

Corollary 18.1. If two semi-injective PEPSs, defined by qubit four-partite states with genuine
four-partite entanglement, are equal, then the four-partite states are SLOCC equivalent.

Proof. Notice that if the four-partite states are entangled for both the vertical and horizontal cut,
then the span of the Schmidt vectors is at least two dimensional. As any two-dimensional subspace
contains a product vector, the previous theorem applies. �

Based on Corollary 18.1, we provide a full classification of semi-injective PEPSs defined with
four-partite qubit states in Appendix C.

VII. SPT PHASES

In this section, we show how the third cohomology labeling of the SPT phases38,49 extends to
semi-injective PEPSs. First, we show how to assign an element from the third cohomology group
H3(G,C∗) to a (projective) MPO representation of G. Here, and in the following, the action of G
on C∗ is trivial. Second, given a group of on-site symmetries of a semi-injective PEPS, there are
three MPO representations associated with it: the boundary along the vertical cut, the boundary along
the horizontal cut, and finally the symmetry operators themselves. We show that the associated third
cohomology labels coincide. The importance of this statement is twofold. First, the labeling is encoded
in the local operators already; thus, one does not have to look at the boundary of the system to find

021902-29 Molnar et al. J. Math. Phys. 59, 021902 (2018)

the labeling. Second, the labeling corresponding to the vertical and horizontal boundary coincides
despite the model not necessarily having rotational symmetry.

A. Third cohomology labeling of MPO representations

Consider a group G and a projective MPO representation thereof, that is, a tensor Xg that gen-
erates an MPO Vn(Xg) for all g ∈ G such that Vn(Xg)Vn(Xh) = λn(g, h)Vn(Xgh) for all g, h ∈ G,
where λn(g, h) ∈C. We will restrict ourselves to MPO representations for which λn(g, h) = λn(g,
h). We call such MPO projective representations one-block projective MPO representations. In this
section, we show how to assign an element from the third cohomology group H3(G,C∗) to such a
representation.

We first show that we can suppose without loss of generality that Xg is normal. The proof is
analogous to Theorem 13.

Lemma 19. Let g 7→ X̃g be a one-block projective MPO representation of a group G, that is,
Vn(X̃g)Vn(X̃h)= λn(g, h)Vn(X̃gh) for some λ(g, h) ∈C. Then ∀g ∈ G there is a normal tensor Xg such
that Vn(X̃g)=Vn(Xg).

Proof. First we prove that Vn(X̃e)= µnId for some µ ∈C; therefore, there is a normal tensor Xe

such that Vn(X̃e)=Vn(Xe). Then, as Vn(X̃g)Vn(X̃g−1)= λn(g, g−1)µnId, we will see that Vn(X̃g) can also
be described with a normal MPO.

To see that Vn(X̃e)= µnId, notice that, as g 7→Vn(X̃e) is a representation, Vn(X̃e)= µnId and that
Vn(X̃e)Vn(X̃e)= µ2

nId= µnλ
n(e, e)Id. Therefore, µn = λn(e, e).

Let K be such that after blocking K tensors, Vn(X̃g) and Vn(X̃g−1) can be decomposed into a sum
of N and M normal MPOs, respectively. That is, ∀n ∈KN,

Vn(X̃g)=
N∑

i=1

Vn(X̃ (i)
g), (129)

Vn(X̃g−1)=
M∑

i=1

Vn(X̃ (i)
g−1). (130)

Then their product, λn(g, g�1)µnId, can be decomposed into a sum of at least MN not necessarily
essentially different normal MPOs,

λn(g, g−1)µnId=
N∑

i=1

M∑
j=1

Vn(X̃ (i)
g)Vn(X̃ (j)

g−1). (131)

Let L be such that after blocking L tensors, all of these MPOs can be decomposed into normal MPOs:
∀n ∈KLN,

λn(g, g−1)µnId=
N∑

i=1

M∑
j=1

Kij∑
k=1

Vn(Z ijk
g), (132)

for some normal tensors Z ijk
g . If i , i′ or j , j′, Z ijk

g and Z i′j′k′
g are not necessarily essentially different.

Collecting the essentially different terms yields

λn(g, g−1)µnId=
R∑

i=1

Si∑
j=1

ξn
j Vn(Z i

g), (133)

where R is the number of essentially different terms, Z i
g are maximal pairwise essentially different

subsets of Z ijk
g and Si is the multiplicity with which Z i

g appears. Note that

R∑
i=1

Si =

N∑
i=1

M∑
j=1

Kij. (134)

021902-30 Molnar et al. J. Math. Phys. 59, 021902 (2018)

As essentially different normal MPOs become linearly independent for sufficiently large system sizes
(Corollary 7.1), Proposition 10 implies that there can only be one term in this decomposition, that is,
R = 1 and moreover S1 = 1. As all K ij ≥ 1, we have N = M = 1 and thus Vn(X̃g) is normal. Therefore,
Vn(X̃g) can be described by a normal MPO tensor Xg. �

The central tool in this section is comparing normal and non-normal MPS tensors that generate
the same state. We only state the results here, and the proofs are provided in Appendix B.

Proposition 20. Let A be a normal MPS tensor and B be an MPS tensor such that for some λ ∈C

Vn(B)= λnVn(A), ∀n ∈N. (135)

Then there exist matrices V, W such that V W = Id and ∀n ∈N and (i1, i2, . . ., in) ∈ {1, 2, . . ., d}n,

VBi1 . . . Bin W =Ai1 . . . Ain . (136)

Definition 7. The pair of operators V, W in Proposition 20 is called a reduction from B to A.

Proposition 21. Let V, W be a reduction from B to A. Let N i = Bi
� WAiV. Then the algebra

generated by N i is nilpotent.

Definition 8. Let V, W be a reduction from B to A. Let N i = Bi
� WAiV. Then the nilpotency

length of the reduction is the minimal N0 such that ∀n ≥ N0,

N i1 . . .N in = 0. (137)

The main statement is that any two reductions are related:

Theorem 22. Let V, W and Ṽ , W̃ be two reductions from B to a normal tensor A. Let the
nilpotency length of both reductions be at most N0. Then ∃λ ∈C such that for any n > 2N0,

VBi1 Bi2 . . . Bin = λṼBi1 Bi2 . . . Bin , (138)

Bi1 Bi2 . . . Bin W = λ−1Bi1 Bi2 . . . Bin W̃ . (139)

Let us now continue how to assign an element of the third cohomology group to a one-block
projective MPO representation. This discussion is essentially the same as in Ref. 38. We include here
the construction for completeness.

Let Xg,h =
∑

ijk X ij
g ⊗X jk

h ⊗ |i〉 〈k | be the MPO tensor describing the product of two MPOs. As Xg,h

and Xgh describe the same state and Xgh is injective, Xg,h can be reduced to Xgh by Proposition 20. Let
us fix such a reduction V (g, h), W (g, h) for any pair of group elements. We will assign a complex scalar
to these reductions. We show that this scalar forms a three-cocycle. Different reductions then lead to
different three-cocycles. We show, however, that their ratio forms a three-coboundary. Therefore, the
equivalence class of the scalars is an element from the third cohomology group.

Starting from the reductions V (g, h), W (g, h), there are two natural ways to reduce the product
of three MPOs,

(140)

021902-31 Molnar et al. J. Math. Phys. 59, 021902 (2018)

By Theorem 22, there exists a complex scalar λ(g, h, k) ∈C such that for any sufficiently long
chain,

(141)
We show now that this scalar λ forms a three-cocycle due to associativity of the product. For the
fixed reductions V (g, h) and W (g, h), denote the l.h.s. of Eq. (141) as [g[hk]] and the r.h.s. as [[gh]k].
Consider a product of four MPOs, ghkl, and the following sequence of reductions:

[[[gh]k]l]→ [[gh][kl]]→ [g[h[kl]]]→ [g[[hk]l]]→ [[g[hk]]l]→ [[[gh]k]l]. (142)

In this sequence, every member can be transformed to the next by changing the reduction of three
consecutive group elements. Therefore, every member is related to the previous one by a scalar.
Writing out these scalars, we obtain

[[[gh]k]l]= λ(gh, k, l)−1 · λ(g, h, kl)−1 · λ(h, k, l) · λ(g, hk, l) · λ(g, h, k)︸ ︷︷ ︸
=1

·[[[gh]k]l]. (143)

As this relation is the defining relation for the three-cocycles, λ : G3→C∗ is a three-cocycle, where
G acts trivially on C∗.

Note that the above construction depends on the fixed reductions V (g, h), W (g, h) of the product
of two operators. In general, changing the reduction also changes the scalar. This change, however,
is not arbitrary: we prove now that it forms a three-coboundary. Consider another reduction Ṽ (g, h)
and W̃ (g, h) with the corresponding three-cocycle λ̃. Then, denoting the reduction with Ṽ (g, h) and
W̃ (g, h) by round brackets (in the sense as above), using Theorem 22,

(gh)=ω(g, h)[gh] (144)

for some ω(g, h) ∈C. Therefore, the two scalars λ and λ̃ are related as follows:

((gh)k)=ω(g, h)ω(gh, k)[[gh]k], (145)

(g(hk))=ω(h, k)ω(g, hk)[g[hk]]. (146)

Therefore, the relation between λ and λ̃ is

λ̃(g, h, k)=
ω(g, h)ω(gh, k)
ω(h, k)ω(g, hk)

λ(g, h, k). (147)

This is the defining relation of three-coboundaries; thus, λ/λ̃ : G3→C∗ is a three-coboundary. There-
fore, λ, by construction, is a three-cocycle defined up to a three-coboundary; thus, by the definition
of the cohomology group, it is an element from H3(G,C).

Next, consider MPO representations that are translationally invariant after blocking two tensors
X and Y. The previous method assigns two possibly different labels from H3(G,C∗) to the two MPO
tensors XY and YX. We will show now that these two labels are in fact equal.

Proposition 23. Let Vn(XgYg) be a one-block projective MPO representation of G. Then
Vn(YgXg) is also a one-block projective MPO representation of G and their third cohomology label
is the same.

021902-32 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Proof. As Vn(YgXg) is the same MPO as Vn(XgYg), but shifted by one lattice site, it is a one-
block projective MPO representation. Without loss of generality, one can suppose that both XgYg

and YgXg are injective: they contain only one block; thus, they can be reduced to injective MPOs.
Thus, incorporating the reductions into Xg and Yg, we obtain two new tensors such that both XgYg

and YgXg are injective.
Let V (g, h) and W (g, h) be reductions corresponding to the product of XgYg and XhYh, while

Ṽ (g, h) and W̃ (g, h) be reductions for the product of YgXg and XhYh. Then Proposition 29 in
Appendix B implies that V (g, h) and W̃ (g, h) reduces (up to a scalar) a chain of odd number of MPO
tensors,

(148)

Therefore, for the product of three MPOs corresponding to g, h, and k and a chain consisting of an
odd number of MPO tensors,

(149)

Similarly,

(150)

If the above chain is long enough, changing the order of the reductions W̃ changes the above equation
only by a scalar λ̃(g, h, k),

(151)

Similarly, changing the order of the reductions on the left side, we get (notice that the scalar associated
with changing the order of the reductions on the left side is the inverse of that on the right side, see

021902-33 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Theorem 22)

(152)

Comparing this equation with Eq. (149), we conclude that

λ(g, h, k)

λ̃(g, h, k)
=
µ(g, hk)µ(h, k)
µ(g, h)µ(gh, k)

. (153)

Therefore, the two scalars differ only by a three coboundary. That is, the two third cohomology labels
corresponding to XgYg and YgXg coincide. �

B. Third cohomology labeling of semi-injective PEPS

We investigate the following setup. Let G be a group and Og be a faithful (not necessarily unitary)
representation of G. Let |φ〉 be a four-partite state with full rank one-particle reduced densities.
Suppose ∀g ∈ G, Og is a symmetry of the semi-injective PEPS defined by |φ〉 and Id,

(154)

where the blue squares represent |φ〉 and the red circles represent operators Og.
Note that this setup can readily be applied for unitary symmetries of semi-injective PEPSs: let

the semi-injective PEPS be defined by the four-partite state |φ〉 and an invertible operator A. Let
the unitary representation of the symmetry group G be Ug. Then, by inverting A in the symmetry
condition, we arrive to Eq. (154) with Og = A�1UgA.

Proposition 24. If Eq. (154) holds for some n, m ≥ 3, then it holds for all n, m, and µn,m(g) =
µnm(g) for some one-dimensional representation µ of G.

Proof. Apply Proposition 12 and notice that µ is a representation. �

We show now that the action of the symmetries shows up on the boundary as a projective MPO
representation of the group G.

Proposition 25. If Eq. (154) holds, then for every g ∈ G there are two MPO tensors Xg and Yg

such that

(155)

021902-34 Molnar et al. J. Math. Phys. 59, 021902 (2018)

and Vn(Yg)=
(
Vn(Xg)

)−1
for all n. Moreover, Vn(Xg) and Vn(Yg) form projective representations of

G with Vn(Xg)Vn(Xh) = λn(g, h)Vn(XgXh) for a two-cocycle λ. In particular, Vn(Xg)Vn(Xh) has
only one block in its canonical form.

Proof. From Theorem 13, the existence of Xg and Yg is clear. From Corollary 14.1, it is also
true that Vn(Xg)Vn(Xh) = λn(g, h)Vn(XgXh). Due to associativity, λ(g, h)λ(gh, k) = λ(g, hk)λ(h, k),
and thus λ forms a two-cocycle. �

Note that if we allow for blocking, there is a length scale K for which λKn(g, h) becomes
constant 1. On the other hand, the labeling with an element from the third cohomology group H3(G,C)
corresponding to the g 7→ Xg one-block projective MPO representation of G is a scale-invariant
labeling.

In the following, we show that the classification of the boundary MPO representation Vn(Xg)
also shows up in the MPO defined by Og. To see this, we define a translationally invariant (on four
sites) MPO from Og that we call Vn(Õg). Write Og as an MPO in Eq. (104), and open one of the
indices. We call this tensor Õg. Pictorially,

(156)

This MPO plays an important role in the third cohomology labeling of semi-injective PEPSs.

Proposition 26. The MPOs Vn(Õg) form a one-block projective MPO representation of G. Its
third cohomology label is the same as that of Vn(Xg).

Proof. As the product of the Schmidt vectors of Og and O−1
g factorizes, the tensor

∑
j Õij

g Õjk
g−1

has the following structure:

(157)

with

(158)

Therefore, Vn(Õg)Vn(Õg−1)= Id, as it is the n-fold product of this tensor.
We prove now that Vn(Õg)Vn(Õh)Vn(Õ(gh)−1)= Id, and thus Vn(Õg)Vn(Õh) = Vn(Õgh).
Consider the MPS tensor defined by the Schmidt vectors of Og, Oh, and then O(gh)−1 acting on

the Schmidt vectors of |φ〉. Then, similar to Eq. (98), this tensor can be written as

(159)

021902-35 Molnar et al. J. Math. Phys. 59, 021902 (2018)

where the red solid rectangle denotes the Schmidt vectors of Og, the green one denotes that of
Oh, and the dashed one denotes that of O(gh)−1 . Joining two such tensors, the middle operator is
OgOhO(gh)−1 = Id, so

(160)

As the l.h.s. factorizes with respect to the vertical cut, and the r.h.s. factorizes with respect to the
horizontal cut, and the one particle reduced densities of |φ〉 are full rank, the product of the Schmidt
vectors of Og, Oh, and O(gh)−1 also factorizes, and thus

(161)

with

(162)

Therefore Vn(Õg)Vn(Õh)Vn(Õ(gh)−1)= Id, as it is the n-fold product of this tensor. This means
that Vn(Õg) is an MPO representation.

As an MPO representation is also a one-block projective MPO representation, one can label this
MPO representation with an element from the third cohomology group H3(G,C∗). We now show that
this label coincides with that of the projective MPO representation of G on the boundary. To see this,
partially contract the MPS tensors describing the boundary of the state [defined in Eq. (95)]. That is,
contract only the lower indices,

(163)

021902-36 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Notice that the red MPO tensor acting on the l.h.s. is exactly Õg. After contracting these tensors,
Eq. (163) reads

(164)

By construction, the red MPO appearing on the l.h.s. is Vn(Õg). Therefore, if V (g, h), W (g, h) is a
reduction from Vn(Õg)Vn(Õh) to Vn(Õgh), then it is also a reduction from Vn(Xg)Vn(Xh) to Vn(Xgh).
As the third cohomology is assigned to the MPO representation with the help of these reductions,
Vn(Og) is classified by the same third cohomology class as Vn(Xg). �

The above proof can be repeated for the vertical boundary instead of the horizontal one. This
means that the third cohomology label of the vertical boundary is the same as that of Vn(Õ′g), where
Õ′g =DgAgBgCg if Og = AgBgCgDg. Proposition 23 implies that the third cohomology labeling of
Vn(Õ′g) and Vn(Õg) coincides; therefore, the third cohomology labeling of the horizontal and vertical
boundary coincides.

VIII. CONCLUSION

In this work, we introduced a new class of PEPSs, semi-injective PEPSs. We showed that semi-
injective PEPSs are a generalization of injective PEPSs and that some important examples that are not
known to have an injective PEPS description naturally admit a semi-injective PEPS description. We
showed that they are unique ground states of their parent Hamiltonian. We also derived a canonical
form, i.e., a way to decide locally if two semi-injective PEPSs are equal. One of the necessary
conditions is that the boundaries of the two states are related by an invertible MPO. Using this result,
the third cohomology labeling of SPT phases extends naturally to semi-injective PEPSs, suggesting
that these states are appropriate to capture the relevant physics of SPT phases. We also showed that
this third cohomology labeling is directly encoded in the physical symmetry operators. This property
enables one to find the third cohomology label locally without considering the boundary of a large
system.

ACKNOWLEDGMENTS

The authors would like to thank Barbara Kraus, Frank Verstraete, David Pérez-Garcı́a, and Vedran
Dunjko for helpful discussions. This project has been supported by the European Union through the
ERC Starting Grant WASCOSYS (No. 636201).

APPENDIX A: EXAMPLES FOR CANONICAL FORM

In the injective PEPS case, if two tensors generate the same state, then they are related by a
product gauge transformation. In the case of semi-injective PEPSs, this is no longer true as the
following example shows.

Let A be the following MPS tensor:

A0 =

(
1 0
0 2

)
, (A1)

A1 =

(
24 −10
17 −3

)
. (A2)

021902-37 Molnar et al. J. Math. Phys. 59, 021902 (2018)

This tensor was constructed in such a way that it is Z symmetric for size 4, but not for longer chains:
for the tensor B with B0 = A0 and B1 = �A1, V4(B) = V4(A), but V5(A) , V5(B). The tensors A and
B are also normal, and after blocking two tensors they become injective. Proposition 7 also implies
that A and B are not related by a gauge transform. There is also no gauge relating the tensors after
blocking four of them: @X: XBBBBX�1 = AAAA.

Consider two semi-injective PEPSs. Let ΨA be defined by φA = V4(A) and Id, ΨB by φB = V4(B)
and Id. By construction,ΨA =ΨB. We will show, however, that the PEPS tensors defined by grouping
four MPS tensors,

(A3)

are not related by a gauge, where the blue tensors are A and the green ones are B. We prove that by
contradiction. Suppose there are such gauges, X and Y,

(A4)

Inverting Y and Y�1, we get that

(A5)

Notice that the l.h.s. is the product with respect to the vertical cut, whereas the r.h.s. is the product
with respect to the horizontal cut. As A and B become injective after blocking two tensors, both X
and Y have to be product operators, and thus

(A6)

But this would mean that after blocking four tensors, BBBB = XAAAAX�1 for some gauge X. As
this is a contradiction, the two given PEPS tensors generating the same semi-injective PEPS are not
related by a gauge.

APPENDIX B: MPS REDUCTIONS

In this section, we present the proofs of the theorems about reductions of MPS used in Sec. VII.

Proposition 20. Let A be a normal MPS tensor and B be an MPS tensor such that for some
λ ∈C,

Vn(B)= λnVn(A), ∀n ∈N. (135′)

Then there exist matrices V, W such that VW = Id and ∀n ∈N and (i1, i2, . . ., in) ∈{1, 2, . . ., d}n,

VBi1 . . . Bin W =Ai1 . . . Ain . (136′)

021902-38 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Proof. Suppose the injectivity length (see Proposition 5) of A is L. Let Ã and B̃ denote the tensors
obtained from A and B by blocking them L times, respectively. Then Ã has a left inverse, Ã�1. Take
the Jordan decomposition of the following matrix:

(B1)

where S is semi-simple (diagonalizable), N is nilpotent (upper triangular in the basis in which S is
diagonal), and [S, N] = 0. B and A generate the same state; thus,

(B2)

The r.h.s is Dn, where D is the bond dimension of A, as it is n times the trace of Id. Using the Jordan
decomposition, Eq. (B1), the l.h.s. is Tr(S + N)n = Tr Sn. Therefore Tr Sn = Dn; thus, Proposition 10
implies that the rank of S is 1. [S, N] = 0 therefore implies that SN = NS = 0. Thus, (S + N)n = Sn

+ Nn = Sn if n is larger than the nilpotency rank of N. Then, as A and B generate the same state, for
all n and m,

(B3)

where we have used n � 1 times that Tr Id = D. As S is rank one, there are matrices V and W such
that S can be written as

(B4)

Therefore, as Nn = 0, the l.h.s. can be rewritten as

(B5)

021902-39 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Therefore, comparing this with the r.h.s. of Eq. (B3), for all m,

VBi1 . . . Bim W =Ai1 . . . Aim . (B6)

For m = 0, VW = Id. �

Proposition 21. Let V, W be a reduction from B to A. Let N i = Bi
� WAiV. Then the algebra

generated by N i is nilpotent.

Before proceeding to the proof, we need the following simple statement:

Lemma 27. Let V, W be a reduction from B to an injectie MPS tensor A, N i = Bi
� WAiV. Then

for any m > 0,
VN i1 N i2 . . .N im W = 0. (B7)

Proof. We prove this by induction on m. For m = 1,

VN iW =VBiW − VWAiVW =Ai − Ai = 0. (B8)

Suppose the statement is true for all n < m. Then, writing N i1 =Bi1 −WAi1 V and using the induction
hypothesis,

VN i1 N i2 . . .N im W =VBi1 N i2 . . .N im W . (B9)

Similarly, N i2 , . . . , N im−1 can be changed to Bi2 , . . . , Bim−1 ,

VN i1 N i2 . . .N im W =VBi1 . . . Bim−1 N im W . (B10)

Writing now N im =Bim −WAim V , we arrive to

VN i1 . . .N im W =VBi1 . . . Bim W − VBi1 . . . Bim−1 WAim VW = 0. (B11)

�

Proof of Proposition 21. B and A generate the same state,

Tr
{
Bi1 Bi2 . . . Bin

}
=Tr

{
Ai1 Ai2 . . . Ain

}
. (B12)

Write Bi = WAiV + N i and expand the product on the l.h.s. As V and W form a reduction,
VN i1 . . .N im W = 0 for any m > 0 and all i1, . . ., im by Lemma 27, and thus all terms cancel except
the products of A and the products of N. Therefore,

Tr
{
N i1 N i2 . . .N in

}
= 0. (B13)

This means that Tr{Z} = 0 for every element Z in the algebra generated by N i. Thus, in particular, for
every n > 0, Tr{Zn} = 0. Therefore the algebra generated by N i is a nil algebra and thus nilpotent.50

That is,
N i1 N i2 . . .N in = 0 (B14)

for large enough n. �

Theorem 22. Let V, W and Ṽ , W̃ be two reductions from B to a normal tensor A. Let the
nilpotency length of both reductions be at most N0. Then ∃λ ∈C such that for any n > 2N0,

VBi1 Bi2 . . . Bin = λṼBi1 Bi2 . . . Bin , (138′)

Bi1 Bi2 . . . Bin W = λ−1Bi1 Bi2 . . . Bin W̃ . (139′)

Before proceeding to the proof, we need the following calculation that we use repeatedly:

Lemma 28. Let V, W be a reduction from B to a normal tensor A, N i = Bi
� WAiV. Let N0 be the

nilpotency length of the reduction. Then the following equations hold:

021902-40 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Bi1 Bi2 . . . Bin =
∑

0≤k≤l≤n

N i1 . . .N ik WAik+1 . . . Ail VN il+1 . . .N in , (B15)

VBi1 Bi2 . . . Bin =
∑

max(0,n−N0)≤l≤n

Ai1 . . . Ail VN il+1 . . .N in , (B16)

Bi1 Bi2 . . . Bin W =
∑

0≤k≤min(N0,n)

N i1 . . .N ik WAik+1 . . . Ain . (B17)

Proof. Write Bij =WAij V + N ij for all j in Bi1 . . . Bin and expand the expression. Using Lemma
27 and the definition of the nilpotency length (Definition 8), we arrive at the desired equations. �

Proof of Theorem 22. Let L be the injectivity length of A and let m = 2N0 + L. Consider

Ci1...im =VBi1 Bi2 . . . Bim W̃ . (B18)

Using Lemma 28 with Bi = WAiV + N i, we have

Ci1...im =

m∑
k=N0+L

Ai1 . . . Aik VN ik+1 . . .N im W̃ , (B19)

as m � N0 = N0 + L. Similarly, using Lemma 28 with Bi = W̃AiṼ + Ñ i, we get

Ci1...im =

N0∑
k=0

VÑ i1 . . . Ñ ik W̃Aik+1 . . . Aim . (B20)

Note that the MPS tensor at position k = N0 + 1 to N0 + L is Aik in both expressions. By assumption,
that block is injective. Applying its inverse and comparing the two expressions, we conclude that

N0∑
k=0

VÑ i1 . . . Ñ ik W̃Aik+1 . . . AiN0 = λAi1 . . . AiN0 , (B21)

N0∑
k=0

Ai1 . . . Aik VN ik+1 . . .N iN0 W̃ = λ−1Ai1 . . . AiN0 (B22)

for some λ ∈C. But then, using Lemma 28 for VBi1 Bi2 . . . Bin with Bi = W̃AiṼ + Ñ i, we get

VBi1 Bi2 . . . Bin =

N0∑
k=0

n∑
l=n−N0

VÑ i1 . . . Ñ ik W̃Aik+1 . . . Ail ṼN il+1 . . .N in . (B23)

If n ≥ 2N0, then l ≥ N0. Therefore the left part of the r.h.s. can be replaced using Eq. (B21),

VBi1 Bi2 . . . Bin = λ

n∑
l=n−N0

Ai1 . . . Ail ṼN il+1 . . .N in = λṼBi1 Bi2 . . . Bin , (B24)

where the last equation holds by using Lemma 28 for ṼBi1 Bi2 . . . Bin with Bi = W̃AiṼ + Ñ i.
Equation (139′) can be proven similarly using Eq. (B22). �

We now consider MPSs that are translationally invariant after blocking two sites.

Proposition 29. Let A ∈CD1 ⊗ CD2 ⊗ Cd1 and B ∈CD2 ⊗ CD1 ⊗ Cd2 be two tensors such that
both AB and BA are normal MPS tensors. Let C ∈CD̃1 ⊗ CD̃2 ⊗ Cd1 and D ∈CD̃2 ⊗ CD̃1 ⊗ Cd1 be
two tensors such that Vn(CD) = Vn(AB). Then Vn(BA) = Vn(DC) and if V, W are reductions of CD
to AB and Ṽ , W̃ are reductions of DC to BA, then for a sufficiently long chain,

AB . . . BA= λVCD . . .DCW̃ , (B25)

BA . . . AB= µṼDC . . .CDW . (B26)

021902-41 Molnar et al. J. Math. Phys. 59, 021902 (2018)

Proof. First, notice that Vn(BA) = Vn(DC), as Vn(BA) is Vn(AB) shifted by half a lattice constant,
while Vn(DC) is Vn(CD) shifted by half a lattice constant.

Next, using Lemma 28 with CD = WABV + N1N2, we have

V CD . . .D︸ ︷︷ ︸
2k

CW̃ =
M∑

i=0

AB . . . B︸ ︷︷ ︸
2k−2i

V N1N2 . . .N1N2︸ ︷︷ ︸
2i

CW̃ , (B27)

where M is the injectivity length of the reduction V, W. Similarly, using Lemma 28 with
DC = W̃BAṼ + Ñ1Ñ2, we have

VC D . . .DC︸ ︷︷ ︸
2k

W̃ =
M̃∑

i=0

VC Ñ1Ñ2 . . . Ñ1Ñ2︸ ︷︷ ︸
2i

W̃ BA . . . BA︸ ︷︷ ︸
2k−2i

, (B28)

where M̃ is the injectivity length of Ṽ , W̃ . Therefore, if 2k > 2 M + 2M̃ + 2L, where L is the injectivity
length of AB, then

(B29)
As the middle part is injective, the last equation can hold only if AB . . . BA= λVCD . . .DCW̃ . The
other equation can be proven similarly. �

APPENDIX C: THE QUBIT CASE

In this section, we characterize how two semi-injective PEPSs defined by (|φA〉, O) and (|φB〉,

Id) with |φA〉 , |φB〉 ∈
(
C2

) ⊗4
can generate the same state. We restrict ourselves to the case where

|φA〉 and |φB〉 do not factorize in either direction. Using Corollary 18.1, |φA〉 and |φB〉 are SLOCC
equivalent, and thus we can suppose |φA〉 = |φB〉 (by changing O). Notice that the state |ξ〉 appearing in
the proof of Theorem 18 [see Eq. (125)] is also SLOCC equivalent with φA. We can thus suppose that
|φA〉 = |φB〉 = |ξ〉. Therefore, given |φA〉, we only need to characterize all pairs of two-body invertible
operators such that Eq. (125) holds.

Let us fix |φA〉 = |φB〉 = |ξ〉. We start the investigation with a state such that in the horizontal cut
it has Schmidt rank two. As the span of the Schmidt vectors contains a product state and we are only
interested in |φA〉 up to SLOCC equivalence, without loss of generality we can suppose that a basis
of its reduced density on the upper two particles is

|Ψ1〉= |00〉 , (C1)

|Ψ2〉= a |01〉 + b |10〉 + c |11〉 , (C2)

whereas a basis of its reduced density on the lower two particles is

|Φ1〉= |00〉 , (C3)

|Φ2〉=A |01〉 + B |10〉 + C |11〉 . (C4)

In this setting, we are looking for invertible two body operators O1 and O2 such that

(C5)

where the left red rectangle represents O1, the right one represents O2, while the blue Schmidt vectors
are Ψ1/2, the purple ones are Φ1/2. This gives four times sixteen equations on the matrix elements
of O1 and O2. Checking these equations can be done in any computer algebra system (CAS). The
following cases can be distinguished:

021902-42 Molnar et al. J. Math. Phys. 59, 021902 (2018)

• C , 0, c , 0: In this case, the operators are (α, β, γ are free parameters)

O1 = |00〉 〈00| + α |01〉 〈01| +
b
c

(α − 1) |00〉 〈01| + β |10〉 〈10| +
B
C

(β − 1) |00〉 〈10| +

γ |11〉 〈11| +
b
c

(γ − β) |10〉 〈11| +
B
C

(γ − α) |01〉 〈11| +
Bb
Cc

(1 + γ − α − β) |00〉 〈11| ,

(C6)

O2 = |00〉 〈00| +
1
α
|01〉 〈01| +

a
c

(
1
α
− 1) |00〉 〈01| +

1
β
|10〉 〈10| +

A
C

(
1
β
− 1) |00〉 〈10| +

1
γ
|11〉 〈11| +

a
c

(
1
γ
−

1
β

) |10〉 〈11| +
A
C

(
1
γ
−

1
α

) |01〉 〈11| +
aA
Cc

(1 +
1
γ
−

1
α
−

1
β

) |00〉 〈11| .

(C7)

• C , 0, c = 0: In this case b , 0, otherwise the one particle reduced densities of the state are not
full rank. The operators are (α, β, γ are free parameters)

O1 = |00〉 〈00| + |01〉 〈01| + α |00〉 〈01| + β |10〉 〈10| +
B
C

(β − 1) |00〉 〈10| +

β |11〉 〈11| + γ |10〉 〈11| +
B(β − 1)

C
|01〉 〈11| +

Bγ − Bα
C

|00〉 〈11| , (C8)

O2 = |00〉 〈00| + |01〉 〈01| −
a
b
α |00〉 〈01| +

1
β
|10〉 〈10| +

A
C

(
1
β
− 1) |00〉 〈10| +

1
β
|11〉 〈11| −

aγ

bβ2
|10〉 〈11| + (−

A
C

+
A

C β
) |01〉 〈11| +

Aaγ − Aaγ/β2

Cb
|00〉 〈11| . (C9)

• c = 0, C = 0: In this case B , 0, b , 0, otherwise the one particle reduced densities of the state
are not full rank. The operators are (α, β, γ are free parameters)

O1 = |00〉 〈00| + |01〉 〈01| + α |00〉 〈01| + |10〉 〈10| + β |00〉 〈10| +

|11〉 〈11| + α |10〉 〈11| + β |01〉 〈11| + γ |00〉 〈11| , (C10)

O2 = |00〉 〈00| + |01〉 〈01| −
a
b
α |00〉 〈01| + |10〉 〈10| −

B
A
β |00〉 〈10| +

|11〉 〈11| −
a
b
α |10〉 〈11| −

A
B
β |01〉 〈11| +

2Aaαβ − Aaγ
Bb

|00〉 〈11| . (C11)

Using this result, we have checked that if the state has a Schmidt rank of at least 3, then O1 and O2

can only be product operators.
To find therefore all possible operators O such that the semi-injective PEPS defined by (|φA〉, O)

and by (|φB〉, Id) are the same (supposing they have a Schmidt rank of at least two along both vertical
and horizontal cuts), one has to do the following steps:

1. Transform |φA〉 with an invertible product operator O1 to have |00〉 in the span of its Schmidt
vectors in both the upper and lower two particles.

2. If the Schmidt rank of |φA〉 is two along the horizontal cut, then take the two-body operators
given above, O2 ⊗ O3. Otherwise take O2 = O3 = Id.

3. Repeat the previous two steps for the vertical cut, giving an invertible product operator O4 and
two-body invertible operators O5 ⊗ O6.

4. Find all invertible product transformation O7 such that |φB〉 = O7|φA〉.

Then all possible operators O are given by Õ1(O2 ⊗ O3)Õ−1
1 Õ4(O5 ⊗ O6)Õ−1

4 Õ7, where
Õi = SOiS, and S is the swap operator defined before Theorem 17.

APPENDIX D: G-INJECTIVE TENSORS

In this section, we try to generalize semi-injective PEPSs in a way that it also includes G-injective
PEPSs. We try the obvious generalization: if the semi-injective PEPS (|φ〉, Id) has symmetries Og

for g ∈ G for some group G, then |φ〉 and
∑

gOg defines a non-semi-injective PEPS that could be a

021902-43 Molnar et al. J. Math. Phys. 59, 021902 (2018)

candidate to include G-injective PEPSs. We present here, however, an example for such a state that
behaves very different from G-injective PEPSs.

Consider the following state:

(D1)

where the green rectangle is a four-partite GHZ state, and the red circle is O = Id + Z ⊗4.
We will show that on an n × n torus, there are at least 2n linearly independent states that are

locally indistinguishable from this state. This means that given any local (frustration free) parent
Hamiltonian, its ground space is at least 2n-fold degenerate.

To see this, consider states on the torus that are constructed similar to |Ψ〉, except that some of the
four-partite GHZ states ��φ+〉= 1/

√
2(|0000〉 + |1111〉) are changed to ��φ−

〉
= 1/
√

2(|0000〉 − |1111〉).
Such a state will be depicted schematically as a rectangular grid, with squares colored black at all
occurrence of |φ�〉. For example, the following figure depicts such a state with one occurrence of
|φ�〉,

(D2)

We will see that these states are all locally indistinguishable from |Ψ〉 and that they span an at least
exp {n/2}-dimensional space. First notice that |φ�〉 = Z |φ+〉, where Z acts on one of the four particles
(any one of them). Due to the special form of O, however, if in a 2 × 2 block all |φ+〉 are changed to
|φ�〉, it does not change the state,

(D3)

In fact, inverting the color of all rectangles in any 2 × 2 rectangle does not change the state. For
example,

(D4)

A consequence of this is that a pair of black rectangles in the same column (row) can “travel”
horizontally (vertically) no matter how far they are separated. As an illustration, let us show how to

021902-44 Molnar et al. J. Math. Phys. 59, 021902 (2018)

move two black rectangles in the same column separated by one to the neighboring column,

(D5)

This means that these states are indistinguishable from |Ψ〉 on any finite (system size independent)
region. Inverting the color of all rectangles in any 2× 2 rectangle in fact defines an equivalence relation
on the colorings of the grid: two colorings are equivalent if and only if they can be transformed to
each other by repeatedly inverting the color of all rectangles in 2 × 2 regions. Equivalent colorings
correspond to the same state, whereas inequivalent colorings correspond to perpendicular ones: such
states all have the form (1 + Z ⊗4)⊗n ��φ±

〉⊗n. Expanding this expression, we get a sum of tensor
products of |φ+〉 and |φ�〉. Starting from two equivalent colorings, the sum contains the same terms
reordered. Starting from inequivalent colorings, all terms differ from each other and thus the states
are perpendicular as 〈φ+|φ�〉 = 0. To see that there are at least 2n equivalence classes, notice that the
parity of black rectangles in each column is an invariant. (And for each parity assignment there is a
coloring with that parities.)

1 M. B. Hastings, “Solving gapped Hamiltonians locally,” Phys. Rev. B 73, 085115 (2006); e-print arXiv:cond-mat/0508554.
2 I. Arad, A. Kitaev, Z. Landau, and U. Vazirani, “An area law and sub-exponential algorithm for 1D systems,” e-print

arXiv:1301.1162 [quant-ph] (2013).
3 A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac, “Approximating Gibbs states of local Hamiltonians efficiently with

projected entangled pair states,” Phys. Rev. B 91, 045138 (2015); e-print arXiv:1406.2973 [quant-ph].
4 S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett. 69, 2863–2866 (1992).
5 S. Ostlund and S. Rommer, “Thermodynamic limit of the density matrix renormalization for the spin-1 heisenberg chain,”

Phys. Rev. Lett. 75, 3537–3540 (1995); e-print arXiv:cond-mat/9503107v1.
6 F. Verstraete, D. Porras, and J. I. Cirac, “DMRG and periodic boundary conditions: A quantum information perspective,”

Phys. Rev. Lett. 93, 227205 (2004); e-print arXiv:cond-mat/0404706v1.
7 I. Arad, Z. Landau, U. Vazirani, and T. Vidick, “Rigorous RG algorithms and area laws for low energy eigenstates in 1D,”

Commun. Math. Phys. 356, 65–105 (2017).
8 F. Verstraete and J. I. Cirac, “Renormalization algorithms for quantum-many body systems in two and higher dimensions,”

e-print arXiv:cond-mat/0407066 (2004).
9 J. Jordan, R. Orus, G. Vidal, F. Verstraete, and J. I. Cirac, “Classical simulation of infinite-size quantum lattice systems in

two spatial dimensions,” Phys. Rev. Lett. 101, 250602 (2008); e-print arXiv:cond-mat/0703788v4.
10 B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan,

“Stripe order in the underdoped region of the two-dimensional Hubbard model,” Science 358(6367), 1155–1160 (2017).
11 P. Corboz, T. Rice, and M. Troyer, “Competing states in the t-J model: Uniform D-wave state versus stripe state,” Phys.

Rev. Lett. 113, 046402 (2014); e-print arXiv:1402.2859 [cond-mat.str-el].
12 P. Corboz, A. M. Läuchli, K. Penc, M. Troyer, and F. Mila, “Simultaneous dimerization and SU (4) symmetry breaking of

4-color fermions on the square lattice,” Phys. Rev. Lett. 107, 215301 (2011); e-print arXiv:1108.2857v3 [cond-mat.str-el].
13 H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913

(2001); e-print arXiv:quant-ph/0004051.
14 F. Verstraete and J. I. Cirac, “Valence bond solids for quantum computation,” Phys. Rev. A 70, 060302(R) (2004); e-print

arXiv:quant-ph/0311130v1.
15 I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, “Valence bond ground states in isotropic quantum antiferromagnets,”

Commun. Math. Phys. 115, 477–528 (1988).
16 I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, “Rigorous results on valence-bond ground states in antiferromagnets,”

Phys. Rev. Lett. 59, 799–802 (1987).
17 N. Schuch, D. Poilblanc, J. I. Cirac, and D. Pérez-Garcı́a, “Resonating valence bond states in the PEPS formalism,” Phys.

Rev. B 86, 115108 (2012); e-print arXiv:1203.4816 [cond-mat.str-el].
18 S. Yang, T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac, “Chiral projected entangled-pair state with topological order,”

Phys. Rev. Lett. 114, 106803 (2016); e-print 1411.6618v1.
19 D. Poilblanc, J. I. Cirac, and N. Schuch, “Chiral topological spin liquids with projected entangled pair states,” Phys. Rev.

B 91, 224431 (2015); e-print arXiv:1504.05236 [cond-mat.str-el].
20 N. Schuch, J. I. Cirac, and D. Pérez-Garcı́a, “PEPS as ground states: Degeneracy and topology,” Ann. Phys. 325, 2153–2192

(2010); e-print arXiv:1001.3807.
21 O. Buerschaper, “Twisted injectivity in PEPS and the classification of quantum phases,” Ann. Phys. 351, 447–476 (2014);

e-print arXiv:1307.7763 [cond-mat.str-el].
22 M. B. Şahinoğlu, D. Williamson, N. Bultinck, M. Mariën, J. Haegeman, N. Schuch, and F. Verstraete, “Characterizing

topological order with matrix product operators,” e-print arXiv:1409.2150 [quant-ph] (2014).

021902-45 Molnar et al. J. Math. Phys. 59, 021902 (2018)

23 N. Bultinck, M. Mariën, D. J. Williamson, M. B. Şahinoğlu, J. Haegeman, and F. Verstraete, “Anyons and matrix product
operator algebras,” Ann. Phys. 378, 183–233 (2017); e-print arXiv:1511.08090v2.

24 M. A. Levin and X.-G. Wen, “String-net condensation: A physical mechanism for topological phases,” Phys. Rev. B 71,
045110 (2005); e-print arXiv:cond-mat/0404617.

25 D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac, “Matrix product state representations,” Quantum Inf. Comput.
7, 401 (2007); e-print arXiv:quant-ph/0608197.

26 J. I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete, “Matrix product density operators: Renormalization fixed points
and boundary theories,” Ann. Phys. 378, 100–149 (2017); e-print arXiv:1606.00608.

27 X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of gapped symmetric phases in 1D spin systems,” Phys. Rev. B 83,
035107 (2011); e-print arXiv:1008.3745.

28 N. Schuch, D. Pérez-Garcı́a, and J. I. Cirac, “Classifying quantum phases using matrix product states and projected entangled
pair states,” Phys. Rev. B 84, 165139 (2011); e-print arXiv:1010.3732.

29 M. Sanz, M. M. Wolf, D. Pérez-Garcı́a, and J. I. Cirac, “Matrix product states: Symmetries and two-body Hamiltonians,”
Phys. Rev. A 79, 042308 (2009); e-print arXiv:0901.2223 [cond-mat.str-el].

30 F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, “Entanglement spectrum of a topological phase in one dimension,”
Phys. Rev. B 81, 064439 (2010); e-print arXiv:0910.1811.

31 M. Fannes, B. Nachtergaele, and R. F. Werner, “Finitely correlated states on quantum spin chains,” Commun. Math. Phys.
144, 443–490 (1992).

32 B. Nachtergaele, “The spectral gap for some spin chains with discrete symmetry breaking,” Commun. Math. Phys. 175,
565–606 (1996); e-print arXiv:cond-mat/9410110.

33 Z.-C. Gu, M. Levin, and X.-G. Wen, “Tensor-entanglement renormalization group approach to topological phases,” Phys.
Rev. B 78, 205116 (2008); e-print arXiv:0807.2010v1.

34 O. Buerschaper, M. Aguado, and G. Vidal, “Explicit tensor network representation for the ground states of string-net
models,” Phys. Rev. B 79, 085119 (2009); e-print arXiv:0809.2393v1.

35 D. Pérez-Garcı́a, M. Sanz, C. E. Gonzalez-Guillen, M. M. Wolf, and J. I. Cirac, “A canonical form for projected entangled
pair states and applications,” New J. Phys. 12, 025010 (2010); e-print arXiv:0908.1674 [quant-ph].

36 P. Anderson, “Resonating valence bonds: A new kind of insulator?,” Mater. Res. Bull. 8, 153–160 (1973).
37 F. Verstraete, M. M. Wolf, D. Pérez-Garcı́a, and J. I. Cirac, “Criticality, the area law, and the computational power of

projected entangled pair states,” Phys. Rev. Lett. 96, 220601 (2006); e-print arXiv:quant-ph/0601075.
38 X. Chen, Z.-X. Liu, and X.-G. Wen, “2D symmetry protected topological orders and their protected gapless edge excitations,”

Phys. Rev. B 84, 235141 (2011); e-print arXiv:1106.4752.
39 D. J. Williamson, N. Bultinck, M. Mariën, M. B. Sahinoglu, J. Haegeman, and F. Verstraete, “Matrix product opera-

tors for symmetry-protected topological phases: Gauging and edge theories,” Phys. Rev. B 94, 205150 (2016); e-print
arXiv:1412.5604v3.

40 Z.-C. Gu and X.-G. Wen, “Tensor-entanglement-filtering renormalization approach and symmetry protected topological
order,” Phys. Rev. B 80, 155131 (2009); e-print arXiv:0903.1069v2.

41 Z. Y. Xie, J. Chen, J. F. Yu, X. Kong, B. Normand, and T. Xiang, “Tensor renormalization of quantum many-body systems
using projected entangled simplex states,” Phys. Rev. X 4, 011025 (2014); e-print arXiv:1307.5696.

42 D. E. Evans and R. Hoegh-Krohn, “Spectral properties of positive maps on C∗-algebras,” J. London Math. Soc. s2–17,
345–355 (1978).

43 M. Wolf, Quantum channels and operations guided tour. Lecture notes available at: http://www-m5.ma.tum.de/
foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf.

44 R. Orus, “A practical introduction to tensor networks: Matrix product states and projected entangled pair states,” Ann. Phys.
349, 117–158 (2014); e-print arXiv:1306.2164 [cond-mat.str-el].

45 M. Sanz, D. Perez-Garcia, M. M. Wolf, and J. I. Cirac, “A quantum version of Wielandt’s inequality,” IEEE Trans. Inf.
Theory 56, 4668–4673 (2010); e-print arXiv:0909.5347.

46 A. Cadarso, M. Sanz, M. M. Wolf, J. I. Cirac, and D. Perez-Garcia, “Entanglement, fractional magnetization and long-range
interactions,” Phys. Rev. B 87, 035114 (2013); e-print arXiv:1209.3898.

47 G. D. las Cuevas, T. S. Cubitt, J. I. Cirac, M. M. Wolf, and D. Pérez-Garcı́a, “Fundamental limitations in the purifications
of tensor networks,” J. Math. Phys. 57, 071902 (2016); e-print arXiv:1512.05709v2.

48 C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal, “Exact and asymptotic measures of multipartite
pure-state entanglement,” Phys. Rev. A 63, 012307 (2001).

49 X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry protected topological orders and the group cohomology of their
symmetry group,” Phys. Rev. B 87, 155114 (2013); e-print arXiv:1106.4772.

50 M. Nagata, “On the nilpotency of nil-algebras,” J. Math. Soc. Jpn. 4, 296–301 (1952).

C.2 Computational speedups using small quantum devices

183

Computational speedups using small quantum devices

Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac

In this work, we consider the question whether small quantum computers with only M qubits
can be useful for speeding up certain classical algorithms, even when the problem size is much
larger than M . We develop a hybrid quantum-classical algorithm that polynomially speeds up
Schöning’s algorithm for solving 3SAT involving n�M variables.

Many classical 3SAT algorithms significantly faster than brute-force search are known. Their
runtimes can usually be characterised by a constant γ ∈ (0, 1), meaning that they solve 3SAT
in O∗(2γn). One of the best and most famous ones is the randomised bounded-error algorithm
of Schöning with runtime O∗(2γ0n), where γ0 ≈ 0.415. Given a quantum computer with only
M � n qubits, we however first demonstrate that a straightforward approach to speed up this
algorithm results in a “threshold effect”: if M/n is below some constant value, a naive hybrid
algorithm turns out to be slower than its classical version.

Our central result is a hybrid algorithm which, given a quantum computer with M = cn
qubits, where c ∈ (0, 1) is an arbitrary constant, solves 3SAT with n variables in a runtime of
O∗(2(γ0−f(c)+ε)n), where f(c) > 0 is a constant and ε can be made arbitrarily small.

Our hybrid algorithm is a quantum-assisted version of derandomised variants of Schöning’s
algorithm which use the space splitting algorithm to reduce 3SAT to the problem of finding
a satisfying assignment within an r-ball (with respect to the Hamming distance) of a trial
assignment x, known as Promise-Ball-SAT (PBS). Two recursive algorithms for PBS, called
PromiseBall and FastBall with runtimes O∗(3r) and O∗(2r), respectively, are known. Both
algorithms recursively call themselves with ever smaller values of r. Moreover, using FastBall
in the space splitting algorithm leads to an overall 3SAT-solving runtime which essentially
matches that of the randomised version. To obtain the hybrid speedup, we first develop a
quantum algorithm for PBS called QBall which is quadratically faster than PromiseBall
and only uses O(r log(n/r) + r + log n) qubits. Then, in FastBall, we replace the classical
recursive call with a call to QBall once r becomes small enough for the available M qubits.

The main technical part of this work is the implementation of QBall, detailed in Section A
of the supplemental material. While the common strategy of using amplitude amplification to
quadratically enhance PromiseBall may be obvious, the main difficulty is to do this using
sufficiently few qubits such that genuine speedups arise. Indeed, straightforward quantum
algorithms based on PromiseBall use at least Ω(n) qubits, even for small values of r, rendering
them useless when only M = cn qubits are available.

To implement QBall, we first develop a (classical) non-recursive variant of PromiseBall
which takes some ~s ∈ S := {0, 1, 2}r as input and maps it to a set V of at most r variables
with the following property: there exists a satisfying assignment within Hamming distance r
of x if and only if there exists some ~s ∈ S such that xV , the assignment obtained from x by
flipping the variables in V , is a satisfying assignment. This allows us to quantum search over S
in a runtime of O∗(3r/2). However, the straightforward implementation in which all variables
are part of the workspace uses Ω(n) qubits.

Next, we reduce the number of qubits in several steps. First, classical inputs can be hard-
wired into the quantum circuit instead of taking up input qubits. Second, given a quantum
register containing an encoding of V , checking whether xV is a satisfying assignment as well as
selecting the next variable to be added to V can both be done using only O(log n) reuseable

184

qubits. However, naive encodings of V use O(r log n) qubits. It is easy to see that this is still
too large, i.e. does not result in a constant decrease of γ but only a subpolynomial speedup.

The last qubit reduction comes from using more efficient data structures to encode V , de-
tailed in Section A of the supplemental material. It is easy to see that O(r log(n/r) + r) bits
suffice in principle to describe V . However, straightforward use of such encodings adds sig-
nificant obstacles: most operations on such encodings become inherently non-reversible and
hence difficult to implement as quantum operations without introducing large ancilla spaces.
Straightforward ways to circumvent this issue without using too many qubits turn out to have
detrimental runtime overheads. We solve this by splitting V into O(log r) suitable subsets and
uncomputing only the subsets when necessary.

Statement of individual contribution

The work is the result of frequent discussions between Vedran Dunjko, J. Ignacio Cirac, and
myself. Vedran Dunjko, who is the principal author of this article, had the idea of exploit-
ing the recursive structure of the derandomised version of Schöning’s algorithm to obtain a
speedup using few qubits. In particular, it was his idea to use a quantum-enhanced version of
PromiseBall sufficiently deep in the recursion tree of FastBall. My contribution to this
work was predominantly in carrying out the detailed technical work to make these ideas work.
First, I recognised the reversibility obstacle, and subsequently developed the data structures for
efficient set-encodings as well as the time- and space-efficient implementations of the accompa-
nying subroutines (detailed in Section A of the supplemental material). Second, I carried out
the precise runtime analysis, linking in particular the degree of the speedup to the value of c.
Vedran Dunjko was in charge of writing the main text of the article, while I was in charge of
writing the supplemental material.

185

Permission to include:

Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac.
Computational speedups using small quantum devices.
Physical Review Letters, 121, 250501 (2018).

c© 2018 American Physical Society

186

https://journals.aps.org/copyrightFAQ.html 03/12/2019

December 2017

APS Copyright Policies and Frequently
Asked Questions

(…)

As the author of an APS-published article, may I include my article or a portion of my
article in my thesis or dissertation?

Yes, the author has the right to use the article or a portion of the article in a thesis or dissertation
without requesting permission from APS, provided the bibliographic citation and the APS
copyright credit line are given on the appropriate pages.

(…)

FAQ Version: December 12, 2017

Computational Speedups Using Small Quantum Devices

Vedran Dunjko,1,2,* Yimin Ge,1,† and J. Ignacio Cirac1,‡
1Max Planck Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

2LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands

(Received 24 July 2018; revised manuscript received 14 September 2018; published 18 December 2018)

Suppose we have a small quantum computer with onlyM qubits. Can such a device genuinely speed up
certain algorithms, even when the problem size is much larger thanM? Here we answer this question to the
affirmative. We present a hybrid quantum-classical algorithm to solve 3-satisfiability problems involving
n ≫ M variables that significantly speeds up its fully classical counterpart. This question may be relevant
in view of the current quest to build small quantum computers.

DOI: 10.1103/PhysRevLett.121.250501

Quantum computers use the superposition principle to
speed up computations. However, it is not clear if they can
be useful when they are, as expected for the foreseeable
future, limited in size. The reason is that quantum (and
classical) algorithms typically exploit global structures of
problems, and restricting superpositions to certain block
sizes will break that structure. Thus, for problems where
arbitrarily sized quantum computers offer advantages,
small quantum computers may be of no significant help
given large inputs.
Here, we study this problem and show that this is not

generally true: There are relevant algorithms that utilize the
global structure, where quantum computers significantly
smaller than the problem size can offer significant speed-
ups. More precisely, we focus on the famous algorithm of
Schöning for boolean satisfiability and present a modified
hybrid quantum-classical algorithm that significantly out-
performs its purely classical version, even given small
quantum computers.
Satisfiability (SAT) problems are among the basic

computational problems, and they naturally appear in many
contexts involving combinatorial optimization, like sched-
uling or planning tasks, and in statistical physics. A
prominent SAT problem is 3SAT, which involves clauses
with up to three literals. 3SAT is the canonical example of
the so-called NP-complete problems, believed to be
exponentially difficult even for quantum computers.
Nevertheless, quantum computers can still accelerate their
solving [1,2], and given their ubiquity, they may become
one of the most important applications of quantum com-
puters. However, the best quantum algorithms, which
“quantum-enhance” classical SAT solvers [1], require
many qubits and are not directly applicable given small
quantum computers. There are several possibilities for how
to use a limited-size quantum device. For instance, one
could speed up smaller, structure-independent subroutines,
which occur, e.g., in the preparation phases of algorithms
(e.g., whenever a search over a few items is performed, one

could utilize Grover’s algorithm [3]). However, for “genu-
ine” speedups, e.g., those that interpolate between the
runtimes of the fully classical and a fully quantum
algorithm, according to the size of the available quantum
device, one should attack the actual computational bottle-
necks. As we show, if this is done straightforwardly, one
may encounter a threshold effect: If the quantum device is
too small, i.e., can handle only a small fraction of the
instance, a naïve hybrid algorithm turns out to be slower
than its classical version. Here, we demonstrate how this
effect can sometimes be circumvented, in the context of
satisfiability problems. Specifically, we provide a quantum-
assisted version of a well-understood classical algorithm,
which achieves genuine improvements given quantum
computers of basically any size, avoiding the thres-
hold effect [4]. Our results are applicable to broader
kSATproblems and, more generally, highlight the charac-
teristics of classical algorithms and methods, which can be
exploited to provide threshold-free enhancements.
The 3SAT problems.—In SAT problems, we are given a

boolean formula F∶f0; 1gn → f0; 1g over n binary varia-
bles x ¼ ðx1;…; xnÞ ∈ f0; 1gn. The task is to find a
satisfying assignment x, i.e., fulfilling FðxÞ ¼ 1, if one
exists. In 3SAT, F is defined by a set of L clauses fCjg,
where each clause specifies three literals flj1; lj2; lj3; g. Each
literal specifies one of the n binary variables (x) or a
negated variable ðx̄Þ; for instance, fl1; l2; l3g could be
fx3; x̄5; x8g. An assignment of variables x thus sets the
values of all literals. Cj is satisfied by x if any of the literals

in Cj attains the value 1. A formula F, written as FðxÞ ¼
⋀L

j¼1ðlj1 ∨ lj2 ∨ lj3Þ using standard logic operator notation,
is satisfied by x if all its clauses are satisfied.
Classical algorithms.—Many classical 3SAT solvers

are significantly faster than the brute-force search. Their
performance can be characterized by a constant γ ∈ ð0; 1Þ,
meaning that they solve 3SAT in a runtime of O�ð2γnÞ [6].
One of the best and most famous ones is the algorithm of

PHYSICAL REVIEW LETTERS 121, 250501 (2018)
Editors' Suggestion Featured in Physics

0031-9007=18=121(25)=250501(5) 250501-1 © 2018 American Physical Society

Schöning [8]. It initializes a random assignment of the
variables, then repeatedly finds an unsatisfied clause,
randomly selects one literal in that clause, and flips the
corresponding variable. This sampling algorithm termi-
nates once a satisfying assignment is reached or once this
process is iterated OðnÞ times. Schöning proved that the
probability of this algorithm finding a satisfying assign-
ment (if one exists) is at least ð3=4Þn, which, by iteration,
leads to a Monte Carlo algorithm with expected runtime
O�ð2γ0nÞ with γ0 ≔ log2ð4=3Þ ≈ 0.415. A significant
speedup of the classical algorithm is a reduction of its
value of γ. To study the potential of small quantum
computers, we investigate whether small devices suffice
to achieve such a reduction.
Straightforward hybrid algorithms for small quantum

computers.—In [1] a quantum algorithm inspired by
Schöning’s method, which exploits amplitude amplifica-
tion [9], was introduced. It solves 3SAT instances with n
variables in runtime O�ð2γ0n=2Þ and requires ≈βn qubits for
a β > 2. Given a quantum computer with only M ≈ βm
qubits (m ≪ n), one has a few options to achieve speedups.
A “bottom up” approach would be to use the quantum
algorithm as an m-variable instance solver, which is then
used as a subroutine in an overarching classical algorithm.
For instance, to tackle the problem of n variables, one could
sequentially go through all possible partial assignments of
n −m variables. Each partial assignment induces a SAT
problem with m variables, which could then be solved on
the small quantum device. The runtime of such an
algorithm is O�ð2ðn−mÞþγ0m=2Þ, which highlights the thresh-
old effect: The hybrid algorithm becomes slower than the
classical algorithm of Schöning if m=n≲ 0.74. Note that,
unlike thresholds for speedups induced by prefactors sup-
pressed in an asymptotic analysis and the O� notation,
which may prevent speedups for small instances, the
present threshold effect is far more fundamental: If M=n
is below a constant value, no speedup is possible even for
arbitrarily large problem sizes. Roughly speaking, the main
problem of hybrid algorithms using a small device as a
subinstance solver is that they break the global structure
exploited by the classical algorithm. This results in hybrid
algorithms whose runtimes interpolate between a fully
quantum runtime and something slower than the classical
algorithm—hence the threshold effect. Alternatively, we
explore a “top-down” approach, where the most computa-
tionally expensive subroutines of the classical algorithm are
identified and quantum enhanced.
Our results.—We present a hybrid algorithm that avoids

the threshold effect. Specifically, given a quantum com-
puter with M¼cn qubits, where c∈ð0;1Þ is an arbitrary
constant, our algorithm solves 3SAT with n variables in a
runtime of O�ð2ðγ0−fðcÞþεÞnÞ, where fðcÞ>0 is a constant
and ε can be made arbitrarily small. The function fðcÞ is
involved, but it is almost linear for small c (see the
Supplemental Material [10] for details). Critically,

irrespective of its exact form, our result constitutes a
polynomial speedup over Schöning’s algorithm for arbi-
trarily small c. Our contribution is primarily conceptual,
and we assume an error-free setting.
Algorithm description.—Our hybrid algorithm is a

quantum-assisted version of de-randomized variants of
Schöning’s algorithm [7,11], reviewed next. Given a bit-
string x ∈ f0; 1gn, let BrðxÞ denote the r-ball centered at x,
i.e., the set of all bitstrings y differing from x in at most r
positions (i.e., their Hamming distance is ≤r). Then,
relying on coding theory, the space of possible assignments
is covered by a number of r-balls. Given this covering set,
specified by the centers of the balls, the algorithm sequen-
tially checks whether there exists a satisfying assignment
within each of the r-balls. This “space-splitting” algorithm
reduces SAT to the problem of finding a satisfying assign-
ment within an r-ball, called Promise-Ball-SAT (PBS).
A deterministic algorithm PROMISEBALLðF; r;xÞ for
PBS was introduced in [11]. This is a simple, recursive
divide-and-conquer algorithm: On input it takes a formula,
specified by a set of clauses with at most three literals, a
radius, and a center x. The algorithm first checks some
conditions for (un)satisfiability [if r ≤ 0 and FðxÞ ¼ 0 or if
any clause is empty], or if x is a satisfying assignment.
Otherwise, in the recursive step, it finds the first unsatisfied
clause C and calls PROMISEBALLðFjl¼1; r − 1;xÞ for
every literal l ∈ C (the variables, literals, and clauses are
enumerated in some prespecified order). Here, Fjl¼1

denotes the formula obtained by setting the variable
corresponding to l to the value ensuring l ¼ 1; i.e., all
clauses involving l (l̄) are removed (truncated). This
algorithm solves PBS in time O�ð3rÞ. For comparison,
Schöning sampling solves it inO�ð2rÞ. The overall runtime
of the space-splitting algorithm of [11] can be expressed as
a function of the runtime of the PBS-solving subroutine
(see Supplemental Material [10]). What is relevant is that,
whenever a PBS solver with runtime O�ð2rÞ (e.g., ran-
domized Schöning) is used in the space-splitting algorithm,
we recover Schöning’s runtime with γ0 ≈ 0.415.
Note that every recursive call in PROMISEBALL reduces r

by 1. To make use of a small quantum device, one can, once
r becomes small enough, use a quantum algorithm for PBS
instead of a classical call. This leads to a general approach
to speed up algorithms, which recursively call themselves
(or other subroutines) with ever-decreasing instance sizes,
using small quantum devices. We call this the standard
hybrid approach. However, there are two obstacles to
consider. First, since PROMISEBALL is significantly slower
than the algorithm of Schöning, this still leads to a
threshold: M would have to be a large fraction of n to
gain an advantage. Second, straightforward quantum
implementations of PROMISEBALL require too many
qubits [ΩðnÞ], even if r is small. While it is not difficult
to reduce this to Oðr log nÞ, the resulting hybrid algorithm,
although avoiding a threshold, would have a very

PHYSICAL REVIEW LETTERS 121, 250501 (2018)

250501-2

low, subpolynomial, advantage and not yield a true
improvement of γ. We circumvent this by using more
involved memory structures combined with specialized
algorithms which algorithmically delete unneeded infor-
mation, leading to much better memory requirements of
O(r logðn=rÞ þ rþ log n), and a true speed-up.
To summarize, we next provide the following algorithms:

(1) a nonrecursive variant of PROMISEBALL, which on input
only takes r ternary choices of which literals to flip; (2) a
straightforward reversible implementation of (1) needed for
quantization, with two parts—QBALL1 transforms the
choices to corresponding variable labels, and QBALL2

checks whether flipping the chosen variables in x (ball
center) satisfies the formula; (3) a method to significantly
reduce the memory requirements of storing a set of labels in
the second algorithm, fromOðr log nÞ toOðr logðn=rÞ þ rÞ,
while preserving reversibility. Algorithms (1)–(3), com-
bined with amplitude amplification, then form the quantum
algorithm QBALL for PBS, which, combined with a faster
classical PBS-based solver [7], forms our final algorithm (4).
Space- and time-efficient quantum algorithm for PBS.—

First, we specify a nonrecursive (classical) variant of
PROMISEBALL, which does not manipulate the entire for-
mulas explicitly. This avoids an immediate need for ΩðnÞ
qubits for “carrying” the formula as input. Afterwards, we
optimize the memory required for a reversible implementa-
tion and use amplitude amplification to achieve a faster
quantum algorithm.
The structure of PROMISEBALL yields a ternary tree of

depth r, induced by the up to three choices of literals in the
recursive step of the algorithm. Thus, a sequence of choices
s1;…; sr ∈ f1; 2; 3g specifies a leaf in the tree and hence
the subset of literals whose values have been flipped. Thus,
the algorithm PROMISEBALL induces a mapping from
s1;…; sr to a set of at most r variables to be flipped,
denoted V ¼ fv1;…; vr0g, where r0 ≤ r. The nonrecursive
algorithm computes the list of variables V indexed by the
sequence s⃗ ¼ s1;…; sr, generates the candidate assign-
ments xV realized by flipping the values of the variables
specified by V, and checks if they satisfy the formula. This
subroutine can be executed in polynomial time. The non-
recursive PROMISEBALL simply goes through all 3r sequen-
ces s⃗, yielding the runtime O�ð3rÞ.
This can be turned into a quantum algorithm QBALL12,

realizing the mapping:

js1;…; srij0ij0i ⟶
QBALL12 js1;…; sri

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

QBALL1

jVijFðxvÞi;
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

QBALL2

ð1Þ

where the first part (QBALL1) generates the indices of
the variables in V, and the second part (QBALL2) verifies
whether F is satisfied by xV. The full quantum algorithm
for PBS, which we call QBALL, then uses amplitude
amplification to find one sequence s⃗ which yields a

satisfying assignment, using Oð3r=2Þ calls to QBALL1;2,
each with polynomial runtime. We next give the basic ideas
for how to implement the algorithm space efficiently (for
details see the Supplemental Material [10]). For ease of
presentation, we first show how QBALL2 can be realized
straightforwardly, using many ancillas, before reducing
their number. A straightforward implementation of
QBALL2 would utilize n additional qubits and assign
them the value x. Then, the circuit would iterate through
the registers specifying V [naïvely requiring Oðr log nÞ
qubits] and introduce (controlled) negations to those
ancillary qubits selected by the values in V. This would
finalize the variable presetting stage and set the input to the
formula to xV . Next, we would sequentially evaluate each
clause, by associating a gate controlled by the variable
qubits corresponding to the variables occurring in the
clause. This controlled gate applies the appropriate neg-
ations to realize the literals, increasing a counter if a clause
is satisfied. After doing this for each clause, the output
qubit is flipped only if the counter equals L, meaning all
clauses are satisfied. Such a circuit uses OðlogðLÞ þ nÞ
ancillas. Since L ¼ OðpolyðnÞÞ, the key problem is the
contribution of n. This is simplified by noting that,
although the circuits our algorithms generate depend on
F, x and r, we can w.l.o.g. assume that x ¼ ð0;…; 0Þ and
subsume the negations directly into F [12]. Next, since the
clauses are evaluated sequentially, we only require three
variable-specific ancillas, specifying the bit values appear-
ing in the current clause: For each clause, each of the three
ancillas corresponds to the three variables occurring in
that clause. The variable presetting stage is now done
individually for each clause Cj: Before clause evaluation,
the circuit iterates through the V-specifying register and
flips the kth ancilla if the specification matches the kth
variable within the clause Cj. The three ancillas are
uncomputed after evaluating Cj and can be reused. This
requires only Oðlog nÞ additional qubits.
The algorithm QBALL1 is more involved. QBALL1

comprises a main loop which sequentially adds one
variable specification vi to the already specified set as
follows: The ith circuit block takes the specifications of the
first i − 1 variables v1;…; vi−1 as inputs, iterates through
all clauses, and evaluates each clause Cj (in a manner
similar to QBALL2), using the values v1;…; vi−1 to
correctly preset the clause-specific input. If the clause is
not satisfied, it uses the value of si to select the specification
of one variable occurring in Cj, taking into account that
variables which have already been flipped cannot be
selected again, and storing this specification as vi. For
reversibility, additional counters are used, but these can be
uncomputed and recycled. The final compression relies on
efficient encodings of V, which, as an ordered list, would
use Oðr log nÞ qubits. Since the ordering does not matter,
instead of storing the positions, we can store the relative
shifts v1, v2 − v1;…; vr0 − vr0−1 > 0 of a sorted version of

PHYSICAL REVIEW LETTERS 121, 250501 (2018)

250501-3

the list, using nomore digits than necessary and a separation
symbol to denote the next number. Since these values add up
to at most n, one can see thatOðrlogðn=rÞþrÞ qubits suffice
for this encoding. This structure indeed encodes a set,
erasing the ordering. However, straightforward algorithms
that use encodings of sets instead of lists encounter revers-
ibility problems. To illustrate this, note that in the process of
adding a new variable to V, one must realize the two steps
jfv1;…; vi−1gij0i ↦ jfv1;…; vi−1gijvii, i.e., finding the
new element, and jfv1;…; vi−1gijvii ↦ jfv1;…; vigij0i,
i.e., placing it into the set, and, critically, freeing the ancillary
qubits for the next step. However, this is irreversible
since the information about which element was added
last is lost. The full ordering information requires
Oðr log rÞ additional qubits, nullifying all advantages. Of
course, one could instead realize the reversible operation
jfv1;…; vi−1gijviij0i ↦ jfv1;…; vi−1gijviijfv1;…; vigi,
followed by applying the inverse of the entire circuit up to
this point to uncompute jfv1;…; vi−1gijvii, but this would
result in an exponential instead of polynomial runtime of
QBALL1. We circumvent this issue by splitting V into
Oðlog rÞ sets of sizes 1; 2; 4;…, and the loading of each
larger block is followed by an algorithmic deletion of
all smaller blocks. This ensures the overall number of
qubits needed for this encoding is still Oðr logðn=rÞ þ rÞ,
at the cost of 2OðlogðrÞÞ additional steps, which is just
polynomial. These structures and primitives lead to
an overall space- and time-efficient implementation of
QBALL1 (see Supplemental Material [10] for details).
Combining these subroutines with a quantum search over
s⃗, we obtain the algorithm QBALL, solving PBS in time
O�ð3r=2Þ and using Oðr logðn=rÞ þ rþ log nÞ qubits. In
particular, QBALL outperforms the randomized algorithm of
Schöning for PBS (2r vs. 2log2ð3Þr=2 ≈ 20.79r).
Hybrid algorithm for 3SAT.—We could now use the

standard hybrid approach for PROMISEBALL, i.e., call
QBALL instead of PROMISEBALL when r is sufficiently
small. However, this still leads to a threshold. This is
resolved by using an improved deterministic algorithm for
PBS [7], where coding theory is applied to cover the space
of choice vectors s⃗. This yields an algorithm with runtime
O�ðð2þ ϵÞrÞ, where ϵ can be chosen arbitrarily small—
thus, the runtime of this algorithm for PBS essentially
matches the runtime of Schöning. While we do not need the
details of this algorithm, the critical point is that, like
PROMISEBALL, it recursively calls itself to solve PBS with
ever smaller values of r (sequentially reduced by a quantity
depending on ϵ). Now, we can apply the standard hybrid
approach. Since QBALL beats the runtime of this improved
classical algorithm for PBS, the hybrid algorithm is faster
than Schöning’s, and, unlike using PROMISEBALL, there is
no threshold induced by slow classical algorithms.
To estimate the runtime of our algorithm, note that since

QBALL only requires Oðr logðn=rÞ þ rþ lognÞ qubits, a

device with M ¼ cn qubits can solve PBS for r ¼ βðcÞn
for some βðcÞ > 0. Since the hybrid algorithm replaces a
classical subroutine of runtime O�ð2rÞ with a subroutine of
runtime O�ð3r=2Þ in a recursion tree below depth
r ¼ βðcÞn, the runtime of the hybrid algorithm beats
that of the classical one by a factor of O�ðð ffiffiffi

3
p

=2ÞβðcÞnÞ.
Thus, the combined runtime of the hybrid algorithm is
O�ð2ðγ0−fðcÞþεÞnÞ for fðcÞ ¼ log2ð2=

ffiffiffi

3
p ÞβðcÞ ≈ 0.21βðcÞ.

The forms of β and f are involved, but in the
relevant regime of small c, fðcÞ achieves almost linear
scaling, specifically fðcÞ ¼ Θðc= logðc−1ÞÞ (for details see
Supplemental Material [10]).
Conclusions.—We have shown that a small quantum

computer can speed up relevant classical algorithms even
for significantly larger inputs. While obvious for structure-
less scenarios (e.g., unstructured search), when considering
algorithms that use the problem’s structure, like Schöning’s
algorithm, speedups are nontrivial: The way the problem is
partitioned must maintain the algorithm’s structure to
avoid thresholds. Our algorithm achieves a significant
speedup, namely, a reduction of the relevant parameter γ,
characterizing runtimes of the form O�ð2γnÞ. The speedup
holds relative to a variant of Schöning’s algorithm. Our
results, however, generalize to other algorithms based on
Schöning’s approach (e.g., Refs. [13,14], since those rely
on better initial assignments) and to the variants handling
kSAT (k > 3). Historically, the best classical SAT solvers
with provable bounds are based either on the ideas of
Schöning or on the approach of [15], which includes the
current record holder [16]. It would be interesting to see
whether this second class of algorithms is also amenable to
the types of enhancements achieved here. The broader
question of this work is becoming increasingly more
relevant given the current progress in prototypes of small
quantum computers [17–19]. As our contribution is con-
ceptual, we assume an error-free scenario. Still, our
results may also have pragmatic relevance. Indeed,
while the number of physical qubits of implementations
is rapidly growing, the number of protected logical
qubits we may expect in the near term is likely to be very
limited. In practice, both the overheads and the noise may
be bottlenecks to exploit small devices in general [20].
Thus, it would be particularly interesting to optimize the
overheads of our algorithm. Specifically, any methods
to decrease the number of gates and ancillas would
increase the tolerance of our scheme. Finally, an in-depth
analysis of optimal device-specific implementations could
further help make our algorithms suitable for near-term
realizations.

V. D. acknowledges support from the Alexander von
Humboldt Foundation. J. I. C. and Y. G. acknowledge the
ERC Advanced Grant QENOCOBA under the EU Horizon
2020 program (Grant Agreement No. 742102).

PHYSICAL REVIEW LETTERS 121, 250501 (2018)

250501-4

*v.dunjko@liacs.leidenuniv.nl
†yimin.ge@mpq.mpg.de
‡ignacio.cirac@mpq.mpg.de

[1] A. Ambainis, ACM SIGACT News 35, 22 (2004).
[2] A. Ambainis, K. Balodis, J. Iraids, M. Kokainis, K. Prūsis,

and J. Vihrovs, arXiv:1807.05209.
[3] L. K. Grover, in Proceedings of the Twenty-eighth Annual

ACM Symposium on Theory of Computing, STOC ’96
(ACM, New York, NY, USA, 1996), pp. 212–219.

[4] Our scenario is related to, but distinct from, Ref. [5] which
considers how a classical computer can help simulate a given
quantum algorithm which requires only slightly more qubits
than are available. In contrast, we change the algorithm, i.e.,
propose hybrid algorithms which use a significantly smaller
quantum device, to speed up a fixed classical algorithm. The
two approaches are also complementary in their applicability:
The main results of [5] are most powerful for shallow
computations and could only be directly applied to SAT
solving if one has an exponentially sized quantum computer
to begin with, as the computation may be exponentially deep.

[5] S. Bravyi, G. Smith, and J. A. Smolin, Phys. Rev. X 6,
021043 (2016).

[6] The O� notation suppresses the terms that contribute only
polynomially; see, e.g., Ref. [7].

[7] R. A.Moser andD.Scheder, inProceedingsof theForty-third
Annual ACMSymposium on Theory of Computing, STOC ’11
(ACM, New York, NY, USA, 2011), pp. 245–252.

[8] U. Schöning, in Proceedings of the 40th Annual Symposium
on Foundations of Computer Science (IEEE Computer
Society, Washington, DC, 1999), pp. 410–414.

[9] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, arXiv:
quant-ph/0005055.

[10] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.250501, for the de-
tails of the algorithms and of the runtime analysis.

[11] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg,
C. Papadimitriou, P. Raghavan, and U. Schöning, Theor.
Comput. Sci. 289, 69 (2002).

[12] Let Fx be the formula obtained by negating any literal in F
which corresponds to a variable to which x assigns the value
1, so that Fxð0;…; 0Þ ¼ FðxÞ. By subsuming x into F, we
mean that we use Fx instead of F.

[13] T. Hofmeister, U. Schöning, R. Schuler, and O.Watanabe, in
STACS 2002, edited by H. Alt and A. Ferreira (Springer,
Berlin, Heidelberg, 2002), pp. 192–202.

[14] K. Iwama, K. Seto, T. Takai, and S. Tamaki, in Algorithms
and Computation, edited by O. Cheong, K.-Y. Chwa, and
K. Park (Springer, Berlin, Heidelberg, 2010), pp. 73–84.

[15] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane, J. ACM 52,
337 (2005).

[16] T. Hertli, SIAM J. Comput. 43, 718 (2014).
[17] IEEE spectrum, IBM edges closer to quantum supremacy

with 50-qubit processor, https://spectrum.ieee.org/tech-
talk/computing/hardware/ibm-edges-closer-to-quantum-
supremacy-with-50qubit-processor.

[18] American Physical Society meeting, Engineering super-
conducting qubit arrays for quantum supremacy, http://
meetings.aps.org/Meeting/MAR18/Session/A33.1.

[19] Intel newsroom. 2018 ces: Intel advances quantum and
neuromorphic computing research, https://newsroom
.intel.com/news/intel-advances-quantum-neuromorphic-
computing-research.

[20] J. Preskill, Quantum 2, 79 (2018).

PHYSICAL REVIEW LETTERS 121, 250501 (2018)

250501-5

Computational speedups using small quantum devices:
Supplemental Materials

Vedran Dunjko,1, 2, ∗ Yimin Ge,1, † and J. Ignacio Cirac1, ‡

1Max Planck Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
2LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

(Dated: November 29, 2018)

In the supplemental materials we provide the details referred to in the main text. In Section A, we provide the
detailed exposition of the central quantum algorithm QBall. In Section B, we provide the details of the full hybrid
algorithm and a detailed runtime analysis.

A. Detailed quantum algorithm for PBS

In this section, we describe the quantum algorithm for PBS. Let r ≥ 0 be an integer and F a 3SAT formula over n
variables. The problem is to decide whether there exists a satisfying assignment of F with hamming weight at most
r.

As explained in the main text, the most involved part of the algorithm is a subroutine called QBall1 which takes
as input s1, . . . , sr ∈ {1, 2, 3} and outputs a set V = V (~s) of at most r variables with the property that F has a
satisfying assignment with hamming distance at most r if and only if there exists an ~s ∈ {1, 2, 3}r such that the
assignment x(V (~s)), obtained by setting all variables in V (~s) to 1 and all other ones to 0, is a satisfying assignment.

The quantum algorithm for PBS is a quantum version of the non-recursive variant of the PromiseBall algorithm
described in the main text, which is quantized using amplitude amplification. We will therefore first develop a classical
reversible circuit (which depends on F and r) for the QBall1 subroutine, which maps ~s to a space-efficient encoding
of the set V (~s), using at most O(r log(n/r) + r+ log n) ancilla bits. Although the algorithm below is, for now, purely
classical (and reversible), we will nevertheless use bra/ket notation for simplicity.

1. Key ideas of QBall1

Before going into the particulars of the algorithm, it is worthwhile to highlight the key ideas we utilize, and explain
why we go into such detail to explain a relatively simple algorithm. As mentioned in the main text, given r, QBall1

can be summarized as follows:

1: Set V = ∅.
2: For i = 1 to r do begin
3: Set x(V) to be the assignment obtained by setting variables in V to 1 and all other ones to 0.
4: Find the first clause in F which is not satisfied by x(V).
5: If such a clause exists, use si to select the next variable vi. Else, set vi to a dummy variable (index beyond n).
6: Update V : = V ∪ {vi}.
7: end.

The output V of the above process collects specifications of r variables, and the variables with indices below or equal
to n specify the satisfying assignment, if one exists. We use dummy variables as this avoids the need for controlled
operations which could change the algorithm’s behaviour (e.g. terminate the loop once no suitable clause is found),
or which require more memory to implement reversibly. The majority of subtleties in our algorithms pertain precisely
to that latter requirement: utilizing as few ancillas as possible while at the same time maintaining reversibility.

As mentioned in the main text, one of the key issues is dealing with the size of the representation of V . If V is
represented as an ordered list, we end up using O(r log(n)) bits, which is too much for our purposes. On the other
hand, V can be represented as a set, i.e. without storing any ordering (e.g. the order in which they were added to
V), in which case we only require O(r log(n/r) + r) bits (we only need to store the shifts between the indices of the

∗ v.dunjko@liacs.leidenuniv.nl † yimin.ge@mpq.mpg.de
‡ ignacio.cirac@mpq.mpg.de

2

variables once they are ordered). This is sufficient for our purposes, however, now the process of adding one variable
to V in line 6 is no longer reversible. More precisely, any reversible operation necessarily produces registers which, at
least implicitly, still contain information about which element in V was just added. If these additional registers are
not reused, the algorithm uses too much memory. However, in order to reuse those registers, we need to uncompute
information, which may be computationally expensive. Note that since all the operations we utilize will later be
quantized and called in an overarching amplitude amplification process, we must use only reversible operations – no
measurements with classical feedback can be used.

To exemplify the problem, it is possible to implement the operation

|Vi−1〉 |vi〉 |0〉 7→ |Vi−1〉 |vi〉 |Vi−1 ∪ {vi}〉 , (1)

followed by the deletion of the first register in the state |Vi−1〉, which can be performed by reversing whatever circuit
was used to generate it. This would realize the transformation

|Vi−1〉 |vi〉 |Vi−1 ∪ {vi}〉 7→ |Vi〉 |0〉 |0〉 , (2)

where Vi = Vi−1 ∪ {vi}. This constitutes an algorithmic deletion procedure, where we have deleted all unnecessary
information so that the ancillas can be reused. However, it is easy to see that the process of calling the inverse of the
entire circuit up to step i − 1, which is (recursively) also done for each i′ < i, has a runtime of O∗(2i). Since i goes
up to r, the resulting full quantum algorithm for PBS (after using amplitude amplification) would have a runtime of
O∗(2r · 3r/2). This would be (significantly) worse than the original classical algorithm.

We circumvent this problem by using a more involved memory structure which allows for more efficient deletion.
Specifically, we split V into approximately log2 r subsets of sizes l = 1, 2, 4, . . ., storing all r variable specifications in
total. This memory structure is still space-efficient, in that it still requires O(r log(n/r) + r) bits. However, such a
structure can be used for efficient deletion. The basic idea is as follows. At any given point, the set Vi−1 of size i− 1
is split into subsets corresponding to the binary representation of i − 1. Suppose we now want to add vi to Vi−1. If
there is no set of size 1 yet (i.e., i − 1 is even), we simply add {vi} to the representation. Otherwise, we merge the
two sets of size 1 into a set of size 2 and algorithmically delete the two sets of size 1 by inverting the process which
computed them. Then, if there is already a subset of size 2, we merge the two subsets of size 2 into a set of size 4 and
algorithmically delete the two sets of size 2, and so on.

As in the näıve algorithmic deletion procedure, the uncomputation is performed recursively. However, in the näıve
case, the depth of the recursion was i, whereas in the more efficient algorithm, the recursion depth is only O(log i).
This results in a computational overhead of 2O(log r), i.e. polynomial, and not exponential, in r.

In the following sections, these basic ideas are presented in more detail. The high-level descriptions of all the
subroutines required to realize the elementary steps to execute the overall algorithm are provided in Table I. Each
subroutine must satisfy the same two critical properties we just discussed for the highest level of the algorithm
description. First, each subroutine must be economic with respect to the number of ancillary bits used. Second, since
each subroutine is used many times, it is also critical that the ancillary bits are always reset (uncomputed), so they
can be reused, and that the deletion is sufficiently efficient. To ensure both properties are maintained, we provide the
descriptions of all subroutines in full detail.

2. Algorithm overview

The basic idea for the QBall1 algorithm to calculate V (~s) from ~s consists of a main loop going through i = 1, . . . , r,
and for each i attempts to find another variable vi to be added to V in the following way. The algorithm finds the
first clause Cj that is not satisfied by setting all variables in V to 1 (we assume that there is some predefined order
of the clauses C1, . . . , CL). We then select the next variable vi to be the si

th variable in Cj that is not already in V .
If no such variable exists (i.e., Cj contains less than si variables not in V) or there exists no unsatisfied clause under
the current V , then the algorithm adds a dummy variable xn+i to V . Näıvely and without any further processing,
this would lead to an encoding of V that simply stores the ordered list v1, . . . , vr, taking O(r log n) bits in total.
As mentioned in the main text, this would ultimately lead to a qubit requirement of the corresponding quantum
algorithm that is too large to give a strong speed up. We therefore first describe how to efficiently encode a set of
variables.

Let S = {y1, . . . , yk} be a set, where 0 < y1 < · · · < yk ≤ 2n are integers. Define |EncS〉 to be a sequence of at most
O(k log(n/k) + k) trits encoding (y1, y2− y1, . . . , yk − yk−1), where each number is encoded on the binary subspace of
the trits using no more digits than necessary and the third symbol of the trit subspace serves as a separation character
between successive numbers. Note that since the numbers add up to at most n, the number of trits required for this

3

Main subroutines:

Calculatei |si〉 |EffEncVi−1〉 |0〉 7→ |si〉 |EffEncVi−1〉 |vi〉

Given a trit si and (an efficient encoding of) the current set of variables, produces the next
variable vi to be added to V .

Mergei |~s〉 |EffEncVi−1〉 |vi〉 7→ |~s〉 |EffEncVi〉
Adds the next variable to the set while maintaining efficient encoding, and uncomputes the
value of the added variable.

Key ancillary subroutines:

Extractk |EncS〉 |j〉 |0〉 7→ |EncS〉 |j〉 |yj〉
Extracts the jth element (w.r.t. ascending ordering) from the encoding of the set S of known
size k. Critical subroutine in Calculatei.

Shiftk |EncS〉 |j〉 |0〉 7→ |EncS〉 |j〉 |yj − yj−1〉
Used in Extractk. The set-encoding stores shifts between neighbouring elements, and this
subroutine extracts them. In essence, it counts special separation characters delineating
different numbers in the set encoding.

Containsk |EncS〉 |v〉 |0〉 7→ |EncS〉 |v〉 |v ∈ S?〉
Checks if v is present in the set S, given encoding of S. Required for checking if a clause
is satisfied when flipping the values of literals if they occur in S, and also when selecting
the next variable, as we can only select those which have not been chosen previously. Uses
Extractk.

Checkj,i |EffEncVi−1〉 |0〉 7→ |EffEncVi−1〉 |Cj(Vi−1)〉
Checks if the jth clause is satisfied by x(Vi−1). One of the key subroutines.

Selecti |EffEncVi−1〉 |si〉 |L+ 1− j〉 |0〉 7→ |EffEncVi−1〉 |si〉 |L+ 1− j〉 |vj,i(Vi−1, si)〉
Once a clause Cj is identified to not be satisfied, this subroutine uses the choice si and Vi−1

to select a variable in Cj to be added next.

Appendk |v〉 |EncS〉 |0〉 7→ |v〉 |EncS ∪ {v}〉
Adds an element to the set S and computes the encoding of the new set. The added element
is assumed to be larger than the largest element in S.

Unionk1,k2 |EncS1〉 |EncS2〉 |0〉 7→ |EncS1〉 |EncS2〉 |EncS1 ∪ S2〉
Generates an efficient encoding of the union of two efficiently encoded sets. In essence,
uses Extractk on both sets to compare elements, storing the smaller, and keeping a position
counter for both. Uses Appendk.

TABLE I. Summary of subroutines for the space-efficient reversible implementation to solve PBS. The two main subroutines
ran in succession find the next variable, add it to the set, and, critically, free the ancillary registers so they can be reused.

encoding is indeed at most

dlog2 y1e+ dlog2(y2 − y1)e+ · · ·+ dlog2(yk − yk−1)e+ 2k ≤ log2 y1 + log2(y2 − y1) + · · ·+ log2(yk − yk−1) + 3k (3)

≤ k log2

yk
k

+ 3k (4)

≤ k log2

n

k
+ 4k, (5)

where the second line follows from concavity of the logarithm. Note that this is significantly less than the näıve
encoding of S which uses O(k log n) bits. For concreteness, we will assume that after the last separation character,
the remaining trits are in 0.

This gives us an efficient way of storing a set of at most r elements. However, encoding V as |EncV 〉 at all stages
of the algorithm is problematic, because reversibility would be lost (indeed, the map |EncVi−1〉 7→ |EncVi〉 is not
injective). We therefore store the set of variables during the algorithm as follows. Let Vi = {v1, . . . , vi} be the set of
variables obtained after the ith round. Note that |Vi| = i. We now divide Vi into subsets Vi,1, . . . , Vi,mi

of sizes which
are powers of two corresponding to the binary expansion of i. For example, if i = 13 (binary expansion 1101), we
have Vi,1 = {v1, v2, v3, v4, v5, v6, v7, v8}, Vi,2 = {v9, v10, v11, v12} and Vi,3 = {v13}.

To efficiently store Vi, we efficiently encode the set as |EffEncVi〉 := |EncVi,1〉 . . . |EncVi,mi
〉. Note that the number

4

of bits required for |EffEncVi〉 is at most

dlog2 re∑

l=0

(
2l log2

n

2l
+ 2l+2

)
=

dlog2 re∑

l=0

2l log2

n

r
+

dlog2 re∑

l=0

2l+2 +

dlog2 re∑

l=0

2l log2

r

2l
(6)

≤ 4r log2

n

r
+ 16r + 2r

dlog2 re∑

l=0

1

2dlog2 re−l
(dlog2 re − l) (7)

≤ 4r log2

n

r
+ 20r (8)

= O(r log(n/r) + r), (9)

where in (7), the first two terms follow from
∑dlog2 re
l=0 2l ≤ 4r and the last term follows from 2dlog2 re ≥ r > 2dlog2 re−1,

and (8) follows from

dlog2 re−l∑

l=0

1

2dlog2 re
(dlog2 re − l) <

∞∑

j=0

j

2j
= 2. (10)

For a given i ∈ {1, . . . , r}, the circuit is divided into a calculate phase and a merge phase. The calculate phase
performs

Calculatei |si〉 |EffEncVi−1〉 |0〉 = |si〉 |EffEncVi−1〉 |vi〉 , (11)

i.e., finds the next variable to be added to V . The merge phase performs

Mergei |~s〉 |EffEncVi−1〉 |vi〉 = |~s〉 |EffEncVi〉 , (12)

i.e., converts the efficient encoding of the old set into the efficient encoding of the new set. It achieves this by using
a series of set merge operations comprising calculating the representation of the set-union and the uncomputation of
original the set representations.

While the main ideas of both phases are straightforward, the primary challenge is to develop these algorithms in
the form of circuits that are both reversible and at the same time require few ancillas. For the latter, it is imperative
that at the end of any subroutine, all ancillas, which can be assumed to be initially in the 0 state, are returned to 0
so that they can be reused. Note that not achieving this would increase the ancilla requirement for each call of any
such subroutine and would likely result in the algorithm requiring too many ancillas. For convenience, we therefore
introduce the following notion.

Definition 1. Let f : {0, 1}q → {0, 1}q be a bijection. We say that f can be implemented reversibly using l ancillas
and g gates if there exists a (classical) reversible circuit of at most g elementary gates which implements the map

|x〉 |0〉⊗l 7→ |f(x)〉 |0〉⊗l . (13)

Proposition 1.

(i) Calculatei can be implemented reversibly using O(log n) ancillas and O(poly(n)) gates.

(ii) Mergei can be implemented reversibly using O(r log(n/r) + r + log n) ancillas and O(poly(n)) gates.

In the next two subsections, we prove Proposition 1 by describing each phase in detail. Table I gives an overview
of the key subroutines involved.

3. The calculate phase

In this part of the algorithm for a given i ∈ {1, . . . , r}, we calculate the si
th variable in the first unsatisfied clause.

This part of the algorithm has two components. First, finding the first clause that is not satisfied, and second, selecting
the corresponding variable.

On input, we have |si〉 |EffEncVi−1〉. Note that the sizes of the sets are known in advance. We first show how
given a set, we can efficiently and reversibly extract its elements using few bits. For a set S = {y1, . . . , yk} of integers
0 < y1 < · · · < yk ≤ 2n of known size k, define the reversible operation Extractk |EncS〉 |j〉 |0〉 = |EncS〉 |j〉 |yj〉 for
j ∈ {1, . . . , k}. We will assume that any set S we consider has at most r ≤ n elements.

5

Lemma 1. Extractk can be implemented reversibly using O(log n) ancilla bits and O(poly(n)) gates.

Proof. We first show how to implement the operation Shiftk |EncS〉 |j〉 |0〉 = |EncS〉 |j〉 |yj − yj−1〉, where by conven-
tion y0 = 0. This operation comprises three parts: first compute the position of the (j − 1)st separation character in
|EncS〉 and the number of trits to the jth separation character (we call this operation U1,k), second copy the relevant

trits to a separate register (we call this operation U2,k), and third uncompute all other ancillas by running U−1
1,k .

We introduce three counters, called the block position counter, the length counter and the j-counter, going from 0
to dk log2(n/k)e+ 4k, 0 to dlog2 ne+ 1, and 0 to k respectively, and all initially set to 0. Note that all three counters
use no more than O(log n) bits. To implement U1,k, we do the following steps.

First, we add k to the j-counter to set it to k. Then, for each trit in |EncS〉 sequentially, we do the following:
Controlled on the j-counter being larger than k− j+ 1, increase the block position counter by one; then controlled on
the trit being a termination symbol, decrease j-counter by one. This ends with the j-counter being 0, and the block
position counter containing the position of the jth block.

Note, the implementation of operations controlled on the state of counters can be done by a number comparison,
and the latter can be implemented reversibly with one ancilla bit.

Next, for each trit in |EncS〉, we sequentially do the following: If the j-counter is equal to j−1, increase the lenght
counter by one; if the trit is a termination symbol, increase the j-counter register by one.

Since the length counter is only increased in the jth block, it stores its length. The j-counter now has the (known)
value k and we can reset it to 0.

This implements U1,k, which performs

U1,k |EncS〉 |j〉 |0〉 |0〉 = |EncS〉 |j〉 |pos(S, j)〉 |len(S, j)〉 (14)

and resets all ancillas to 0, where pos(S, j) is the position of the (j − 1)st separation character and len(S, j) =
pos(S, j + 1)− pos(S, j) is the number of trits to the jth separation character.

To implement U2,k, it will be convenient to define the family of U(j, l) copy-unitaries. Each such unitary is a
sequence of l CNOT gates, which copy the trits from position j + 1 to position j + l as the last l bits of the shift-
output register. Each such unitary costs only l CNOTS. The c − U(j, l) is the controlled family of such unitaries,
which is controlled on the states of the block position and the length counter, and the corresponding U(j, l) is only
activated if the block position counter and the length counter are equal to j and l, respectively. For completeness,
these are only well-defined if j + l ≤ dk × log2(n/k)e + 4k, i.e., the lenght of the register containing |EncS〉. If the
labels are out-of-bounds, we substitute them with identities. Although they copy trits, they will only be used as to
act on the binary subspace, as we will not be copying the termination symbols. U2,k is then given by

U2,k =

dlog2(n/k)e+4k∏

j=1

dlog2 ne+1∏

l=1

c− U(j, l). (15)

Note that only one U(j, l) will be activated, namely the one specified by the position and length registers. In total,
U2,k contains O((log(n/k) + k) log(n)) = O(log(n)2) gates, and uses no ancillas. Applying U−1

1,k then completes the
implementation of Shiftk.

Finally, Extractk can be implemented by introducing an additional counter from 1 to k, and k calls to controlled-
Shiftk, each controlled on the counter being ≤ j, followed by incrementing that counter. This way, each call adds
yl − yl−1 to the output register if l ≤ j. This finally leaves the output register in |yj〉 and all ancillas in 0, as
desired.

This extraction subroutine can be used to check if a given variable index v ∈ {1, . . . , 2n} is contained in a set
of known size. To this end, define the (reversible) operation Containsk which performs Containsk |EncS〉 |v〉 |0〉 =
|EncS〉 |v〉 |v ∈ S?〉, where the last bit is 1 if v ∈ S and 0 otherwise.

Lemma 2. Containsk can be implemented reversibly using O(log n) ancilla bits and O(poly(n)) gates.

Proof. We introduce a counter from 0 to k and O(log n) additional ancilla bits. Then, for each j = 1, . . . , k, we use
Lemma 1 to extract the jth element, controlled on the counter being in 0. We then check whether the extracted
element is equal to v, and store the result in a separate temporary result bit. We then uncompute the controlled
extraction and, controlled on the result bit being in 1, increment the counter. After doing this for all j = 1, . . . , k,
the result bit is in 1 if the element is in S and 0 if not. We apply a CNOT of the temporary result bit to the output
bit and then run the inverse of the entire circuit up to that point to reset the ancillas.

6

Next, for a clause Cj , let

Cj(V) =

{
1 Cj satisfied by x(V)

0 otherwise.
(16)

We furthermore define a subroutine Checkj,i which performs

Checkj,i |EffEncVi−1〉 |0〉 = |EffEncVi−1〉 |Cj(Vi−1)〉 . (17)

Note the dependence of Checkj,i on i reflects that the routine is adjusted slightly for different set sizes appearing in
|EffEncVi〉 (which are known in advance).

Lemma 3. Checkj,i can be implemented reversibly using O(log n) ancilla bits and O(poly(n)) gates.

Proof. We introduce three additional ancilla bits storing the values of the three variables in the clause. Then, for each
variable and each set in |EffEncVi−1〉, we use Lemma 2 to check if the variable is in the set. The result is copied onto
the variable bit using a CNOT, and the Containsk operation is then reversed. Note that the sets can be assumed to
be disjoint. Then, the variable bits are flipped according to the literals in the clause. The clause is then evaluated
and the result stored in a separate bit. We then apply the inverse of the circuit to reset the ancillas.

Next, we show how to select a variable from a given clause. For a clause Cj with variables xa, xb, xc with 0 < a < b <
c ≤ n, let vj,i(Vi−1, si) be the si

th smallest number in {a, b, c}\Vi−1. If si > |{a, b, c}\Vi−1|, then vj,i(Vi−1, si) = n+ i.
We now define the reversible operation Selecti which performs

Selecti |EffEncVi−1〉 |si〉 |L+ 1− j〉 |0〉 = |EffEncVi−1〉 |si〉 |L+ 1− j〉 |vj,i(Vi−1, si)〉 (18)

for j = 1, . . . , L and

Selecti |EffEncVi−1〉 |si〉 |0〉 |0〉 = |EffEncVi−1〉 |si〉 |0〉 |n+ i〉 . (19)

Lemma 4. Selecti can be implemented reversibly using O(log n) ancilla bits and O(poly(n)) gates.

Proof. First, we add n+i to the result register controlled on the counter input register being in 0. Then, for each j, we
do the following operations controlled on the counter input register being in L+ 1− j: Use Lemma 2 to check which
variables are contained in Vi−1 and store the result in three variable ancilla bits (similarly to the implementation
Checkj,i in Lemma 3). Then, for each combination of values of the variable ancilla bits and si, add the value of
vj,i to the result register controlled on the values of the variable register and si. We then apply the inverse of the
controlled-Containsk operations to uncompute the variable ancilla bits.

To implement Calculatei, we first define Gj,i to be the following circuit: On input we have |EffEncVi−1〉, a counter
from 0 to L using O(logL) bits, a result bit and O(log n) workspace ancillas. Gj,i first performs a controlled-Checkj,i,
controlled on the counter being in 0, on the register containing |EffEncVi−1〉 and O(log n) of the workspace ancillas.
Then, we perform a CNOT onto the result bit, controlled on the ancilla containing Cj(Vi−1) being 0. We then run

controlled-Check−1
j,i , controlled on the counter being in 0, to uncompute the workspace ancillas. Then, we add 1 to

the counter, controlled on the result bit being 1.
The implementation of Calculatei is now as follows.

1. Run G1,i . . . GL,i |EffEncVi−1〉 |0〉 |0〉. It is easy to see that this results in
|EffEncVi−1〉 |L+ 1− jmin〉 |1− F (x(Vi−1))〉, where jmin is the smallest j such that Cj is unsatisfied un-
der x(Vi−1) if such a clause exist, and L+ 1 otherwise, and F (x(V)) is 1 if x(V) is a satisfying assignment for
F and 0 otherwise.

2. Run Selecti on |EffEncVi−1〉 |si〉 |L+ 1− jmin〉 and O(log n) workspace ancillas. This produces
|EffEncVi−1〉 |si〉 |L+ 1− jmin〉 |vi〉, where vi is the index of the variable to be added to V .

3. Apply the inverse of step 1. This results in |EffEncVi−1〉 |si〉 |vi〉 and all other ancilla bits being reset to 0, as
desired.

This proves Proposition 1(i).

7

4. The merge phase

The main tool of the merge phase is a reversible operation Unionk1,k2 that calculates the union of two sets S1, S2

of (known) sizes k1, k2 ≤ r,

Unionk1,k2 |EncS1〉 |EncS2〉 |0〉 = |EncS1〉 |EncS2〉 |EncS1 ∪ S2〉 . (20)

Lemma 5. Unionk1,k2 can be implemented reversibly with O(K log(n/K) + K + log n) ancilla bits and O(poly(n))
gates, where K = k1 + k2.

The basic idea is to simply extract the j1
th and j2

th elements of S1, S2 at a time, where j1 and j2 are the current
values of two counter registers, appends the smaller of those elements to the output set, and increase either j1 or j2
depending on which one was added. This results in all elements in S1∪S2 being added to the output set in increasing
order. As such, we first show how to efficiently append an element to a set of known size.

Lemma 6. Let S = {v1, . . . , vk} be a set with 0 < v1 < · · · < vk < 2n and let v ∈ {vk+1, . . . , 2n}. Then the operation

Appendk |v〉 |EncS〉 |0〉 = |v〉 |EncS ∪ {v}〉 (21)

can be implemented reversibly using O(log n) ancilla bits and trits and O(poly(n)) gates.

Proof. The proof is very similar to the proof of Lemma 1, the steps are as follows.

1. Use Extractk to extract the value of the largest element vk ∈ S onto a separate register (note that k is known).

2. Calculate the difference of v with that value and store that difference in a separate register of O(log n) bits
which we call the difference register. The ancilla workspace now contains |vk〉 |v − vk〉.

3. Introduce a counter from 0 to O(log log n) which we call the length counter, and an additional control bit initially
in 0, and use them to find the number of relevant binary digits in the difference register (i.e., dlog2(v− vk)e+ 1)
as follows. Starting from the most significant digit of the difference register, in turn do the following for each bit
in the difference register: first, controlled on the bit being 1 and end the length counter being 0, flip the control
bit. Then, controlled on the control bit being 1, add 1 to the length counter. After doing this for all bits in
the difference register, the length counter will be in blog2(v− vk)c+ 1 and the control bit in 1 (since we assume
v > vk). Flip the control bit to reset it. The ancilla workspace now contains |vk〉 |v − vk〉 |blog2(v − vk)c+ 1〉.

4. Use the operation U1,k defined in the proof of Lemma 1 to find the position of the last (i.e., kth) separation
character in |EncS〉. The ancilla workspace now contains |vk〉 |v − vk〉 |blog2(v − vk)c+ 1〉 |pos(S, k + 1)〉.

5. Define a family of unitaries V (j, l) which is a sequence of l CNOTs copying the first l bits in the difference
register to the binary subspace of the (j + 1), . . . , (j + l)th trits of the set register, followed by flipping the
(j + l + 1)st trit in the set register into a separation character (note that we assume that all these trits are
initially in 0). This operation is only well-defined for j + l < d(k + 1) log2(n/(k + 1)) + 4(k + 1)e. For out of
bounds values of j, l, we define V (j, l) to be the identity. Define c−V (j, l) to be V (j, l) controlled on the append
position counter being j and the length counter being l. Apply

d(k+1) log2(n/(k+1))+2(k+1)e∏

j=1

dlog2 ne∏

l=1

c− V (j, l). (22)

This appends the value of v − vk (without leading zeros) and a separation character after the last separation
character in the set register.

6. To reset the ancilla workspace, first apply the inverse of step 4, but replacing U−1
1,k with U−1

1,k+1. This resets

the ancilla register containing |pos(S, k + 1)〉. Then apply the inverse of step 3 and step 2. This resets the
ancilla registers containing |blog2(v − vk)c+ 1〉 and |v − vk〉, respectively. Finally apply the inverse of step 1,
but replacing Extract−1

k with Extract−1
k+1. This resets the ancilla register containing vk and thus all remaining

ancillas.

Note that in the last step, the changes from U−1
1,k to U−1

1,k+1 and Extract−1
k to Extract−1

k+1, respectively, are necessary
because after step 5, the set register contains a set of size k + 1 and not k.

8

Proof of Lemma 5. We introduce the following ancilla registers: two counters from 1 to k1 and k2, respectively, called
the first and second j-counter, respectively, two registers of O(log n) bits called the first and second candidate registers,
respectively, K trits called comparison trits and O(K log(n/K) +K) bits to temporarily store |EncS1 ∪ S2〉.

As explained above, the basic idea is to simply extract the elements of S1, S2 corresponding to the current values
of the j-counters, then add the smaller of those element to the output set, and increase the corresponding j-counter.
Additional care however has to be taken to ensure that the algorithm still runs correctly when all elements of one
of the sets have been added. As such, the algorithm is as follows. Sequentially, for each j = 0, . . . ,K − 1, do the
following:

1. For b = 1, 2 in turn, run controlled-Extractkb on |EncSb〉, the bth j-counter and the bth candidate register, where
the operation is controlled on the (3 − b)th j-counter not being in j − k1. Note that since the sum of the two
j-counters is always equal j at all stages, the latter condition is equivalent to all elements of Sb having already
been added.

2. For b = 1, 2 in turn, add 2n+1 to the bth candidate register, controlled on the (3−b)th j-counter being in j−k1.
This ensures that when all elements of one of the sets have already been added, the value in the candidate
register corresponding to the other set is always smaller.

3. We compare the values of the two candidate registers and determine the smaller one. To do that, note that it is
easy to efficiently and reversibly implement the minimum finding operation Min |v1〉 |v2〉 |0〉 = |v1〉 |v2〉 |m(v1, v2)〉,
where

m(v1, v2) =





1 v1 < v2

2 v2 < v1

0 v1 = v2,

(23)

using only O(log log n)) ancilla bits. We use the jth comparison trit as the third register when calling Min.

4. For b = 1, 2 in turn, we call controlled-Appendj on the bth candidate register and the temporary set register,

controlled on the jth comparison trit being b.

5. We apply the inverse of the operations in steps 1-2. This resets both candidate registers to 0.

6. For b = 1, 2 in turn, we add 1 to the bth j-counter controlled on the jth comparison trit being in b.

After doing this for j = 0, . . . ,K − 1, we copy the state of the temporary set register onto the output register and
then apply the inverse of the entire circuit up to that point. This resets the comparison trits and both j-counters.

We now describe how to implement Mergei.
The first step is to convert |vi〉 into |Enc{vi}〉 using Append0. We then apply a sequence of merge operations of sets

that follows the pattern of a binary addition: suppose we expand i− 1 in binary and add 1 to it using the standard
addition procedure. Then, every carry bit corresponds to merging two sets. More formally, let g ≥ 0 be the largest
integer such that 2g divides i (g specifies the the first non-zero position in the binary expansion of i from the least
significant bit position). Then, the sequence of merge operations is as follows. For l = 0, . . . , g− 1, we merge the sets
{vi−2l+1+1, . . . , vi−2l} and {vi−2l+1, . . . , vi}.

Each merge of two sets S1 = {vi−2l+1+1, . . . , vi−2l}, S2 = {vi−2l+1, . . . , vi} has two parts. First, we use Lemma 5
to compute |EncS1 ∪ S2〉. Second, we uncompute |S1〉 |S2〉 by running the inverse of the circuit from the end of the
merge phase for i− 2l+1. Note that since S1,2 always contain successive variables up to vi, this is possible.

We illustrate this procedure for i = 20. Note that the binary expansion of i − 1 is 19 = 16 + 2 + 1, so V19,1 =
{v1, . . . , v16}, V19,2 = {v17, v18}, V19,3 = {v19}. Our aim is to go from

|~s〉 |EffEncV19〉 |Enc{v20}〉 = |~s〉 |Enc{v1, . . . , v16}〉 |Enc{v17, v18}〉 |Enc{v19}〉 |Enc{v20}〉 (24)

to

|~s〉 |Enc{v1, . . . , v16}〉 |Enc{v17, v18, v19, v20}〉 = |~s〉 |EffEncV20〉 . (25)

Note that reversibility is preserved since the operation will also involve the |~s〉 register. First, we call Union1,1 to
compute

Union1,1 |Enc{v19}〉 |Enc{v20}〉 |0〉 = |Enc{v19}〉 |Enc{v20}〉 |Enc{v19, v20}〉 . (26)

9

We then uncompute |Enc{v19}〉 |Enc{v20}〉 by running the inverse of the part of the circuit from the end of merge
phase of i = 18. Indeed, that part of the computation mapped |~s〉 |Enc{v1, . . . , v16}〉 |Enc{v17, v18}〉 |0〉 |0〉 to
|~s〉 |Enc{v1, . . . , v16}〉 |Enc{v17, v18}〉 |Enc{v19}〉 |Enc{v20}〉. Thus, running the inverse of this part of the circuits
results in |~s〉 |Enc{v1, . . . , v16}〉 |Enc{v17, v18}〉 |Enc{v19, v20}〉. Next, we call Union2,2, which produces

Union2,2 |Enc{v17, v18}〉 |Enc{v19, v20}〉 |0〉 = |Enc{v17, v18}〉 |Enc{v19, v20}〉 |Enc{v17, v18, v19, v20}〉 . (27)

We then uncompute |Enc{v17, v18}〉 |Enc{v19, v20}〉 by running the inverse of the part of the circuit from the end of
the merge phase for i = 16. This results in

|~s〉 |Enc{v1, . . . , v16}〉 |Enc{v17, v18, v19, v20}〉 , (28)

which is the desired result.
What remains to be seen is the runtime scaling of Mergei. We show now that the runtime of each merge

operation (comprising calculating the union of two sets and uncomputing these sets) scales polynomially with
the number of elements involved. To see this, we first show that the runtime Ml of the operation mapping
|~s〉 |EffEncVi−2l〉 |0〉 to |~s〉 |EffEncVi−2l〉 |Enc{vi−2l+1, . . . , vi}〉 for any i is bounded by Ml = O∗(4l), where we
assume that |EffEncVi−2l〉 has no sets of 2l elements or less. This can be seen by induction. The claim
is trivial for l = 0. Suppose now that this is true for any i and any l′ < l. Then, the operation that
maps |~s〉 |EffEncVi−2l+1〉 |0〉 to |~s〉 |EffEncVi−2l+1〉 |Enc{vi−2l+1+1, . . . , vi}〉 comprises two parts. First, we map
|~s〉 |EffEncVi−2l+1〉 |0〉 to |~s〉 |EffEncVi−2l+1〉 |Enc{vi−2l+1+1, . . . , vi−2l}〉 = |~s〉 |EffEncVi−2l〉. This operation takes
runtime Ml. Next, we map |~s〉 |EffEncVi−2l〉 |0〉 to |~s〉 |EffEncVi−2l〉 |Enc{vi−2l+1, . . . , vi}〉, which also takes runtime
Ml. Next, we call Union2l,2l to compute

Union2l,2l |Enc{vi−2l+1+1, . . . , vi−2l}〉 |Enc{vi−2l+1, . . . , vi}〉 |0〉 =

|Enc{vi−2l+1+1, . . . , vi−2l}〉 |Enc{vi−2l+1, . . . , vi}〉 |Enc{vi−2l+1+1, . . . , vi}〉 . (29)

The runtime of this call can be bounded by a polynomial p(n) that is independent of l or i. Finally, to uncompute
|Enc{vi−2l+1+1, . . . , vi−2l}〉 |Enc{vi−2l+1, . . . , vi}〉, we apply the inverse of the two operations before the call to the
union, each taking runtime Ml. This implies Ml+1 ≤ 4Ml + p(n), which clearly gives Ml = O∗(4l), as claimed. In
particular, this implies that merging {vi−2l+1+1, . . . , vi−2l} and {vi−2l+1, . . . , vi}, comprising of first calculating their
union and then uncomputing the original sets, takes runtime at most O∗(4l).

Since i ≤ r, we need to do this operation at most once for each l ∈ {0, . . . , dlog2 re}. Thus, the runtime of Mergei
is at most

O∗



dlog2 re∑

l=0

4l


 = O∗(poly(r)) = O(poly(n)). (30)

This proves Proposition 1(ii).

5. Quantum algorithm for PBS

To summarize, we have proven the following

Proposition 2 (Classical reversible circuit for QBall1). The map |~s〉 |0〉 7→ |~s〉 |EffEncV (~s)〉 can be implemented
reversibly using O(r log(n/r) + r + log n) ancillas and O(poly(n)) gates.

For completeness, we also show how to (classically) reversibly imeplement QBall2.

Proposition 3 (Classical reversible circuit for QBall2). The map |EffEncV (~s)〉 |0〉 7→ |EffEncV 〉 |F (x(V))〉 can be
implemented reversibly using O(log n) ancillas and O(poly(n)) gates.

Proof. The algorithm is similar to Calculatei. Let Gj,i be defined as in the implementation of Calculatei. We can
assume that V = V (~s) has exactly r elements. The algorithm is as follows.

1. Run G1,r+1 . . . GL,r+1 |EffEncVr〉 |0〉 |0〉. This results in |EffEncVr〉 |L+ 1− jmin〉 |1− F (x(Vi−1))〉, where jmin

is the smallest j such that Cj is unsatisfied under x(Vr) if such a clause exist, and L+ 1 otherwise.

2. Use a CNOT to copy the last bit onto the output bit, invert it, and apply the inverse of step 1 to reset the
ancillas.

10

As mentioned above, this can now easily be turned into a quantum algorithm for PBS.

Theorem 1 (Quantum algorithm for PBS). There exists a quantum algorithm that solves PBS in runtime O∗(3r/2),
using at most O(r log(n/r) + r + log n) qubits.

Proof. First, quantize the classical reversible circuits of Proposition 2–3 by turning each (reversible) classical gate into
its quantum equivalent. Then, initialise the |~s〉 register into

1√
3r

3∑

s1,...,sr=1

|s1, . . . , sr〉 (31)

and apply (quantum) QBall1 followed by QBall2. The latter produces the state

1√
3r

3∑

s1,...,sr=1

|s1, . . . , sr〉 |V (~s)〉 |F (V (~s))〉 . (32)

The last step is to run amplitude amplification (or alternatively, fixed point search [1]) to increase the overlap with 1

on the last qubit. This uses at most O(
√

3r) repetitions of QBall1,2. The overall runtime of the quantum algorithm

is therefore O∗(3r/2).

B. Hybrid algorithm and runtime analysis

In this section, we provide the details of the full quantum-enhanced algorithm to solve 3SAT using a small quantum
device. In Section B 1 we outline the basic ideas and provide a broad overview. In Section B 2, we look at general
runtime properties of the space splitting algorithm which reduces 3SAT to PBS. In Section B 3, we summarise the
classical algorithm to solve PBS from [2], which is more efficient than PromiseBall. In Section B 4, we show
how that algorithm can be quantum enhanced using QBall and derive its runtime. The full runtime of the hybrid
algorithm to solve 3SAT is finally derived in Section B 5.

1. Key ideas on the hybrid algorithm

As mentioned in the main text, the results of [3] show that any speedup for PBS leads to a faster algorithm for SAT
solving using the space splitting algorithm. This connection is given quantitatively with Eq. (33) in Section B 2 below.
Specifically, any algorithm which solves PBS faster than Schöning’s algorithm (recall that Schöning’s randomized
sampling algorithm can equivalently be used to solve PBS) will also outperform Schöning’s algorithm for SAT solving.

In the previous section of this Supplemental Materials, we have provided the details of the quantum algorithm which
space-efficiently solves the PBS faster than Schöning’s algorithm. This algorithm can be used for any r, provided that
a quantum device with sufficiently many qubits is available. However, in the space-restricted scenario, we have to
resort to other methods. The limit on the number of available qubits translates into a maximum value of r for which
we can run the quantum algorithm. To solve PBS for larger values of r, we use a classical algorithm for PBS that
recursively calls itself for ever smaller values of r, until we reach a value that the quantum device can handle. We call
this general approach the standard hybrid approach. Specifically, we focus on the classical PBS algorithm provided in
[2], which is a de-randomization of the algorithm of Schöning, and which we review in Section B 3. This algorithm has
two features critical for our purposes. First, this algorithm is (essentially) as fast as the original randomized algorithm
of Schöning. This ensures that no thresholds emerge, relative to the algorithm of Schöning, as any speedup for PBS
implies a speedup of the original Schöning runtime for SAT solving [4]. Second, it is a recursive divide-and-conquer
algorithm: it works by calling itself on an instance smaller relative to all relevant parameters. This is in general a
non-trivial demand: the PBS problem involves at least two relevant parameters: r and the size of the formula (which
is essentially lower bounded by the number of variables n). The runtime of the algorithm for PBS is exponential only
with respect to r, and not n [5], so recursing over r makes sense classically. However, since we assume that we only
have a (very) limited-size quantum machine, reducing the PBS instance size only relative to r would not in general
suffice. One would näıvely expect to still be required to represent the entire formula on the quantum device, which is
impossible since we assume that we have (significantly) fewer qubits than n. However, as explained in the main text,
we do not actually need to carry the representation of the formula as input. This is critical for the standard hybrid
approach, where the quantum routine is invoked when the instance is small enough to be applicable.

11

A final contribution of this Section is the overall runtime analysis, provided in Sections B 4 and B 5. The key
technical subtleties of this analysis are two-fold. First, a quantum machine which can solve PBS over n variables up
to radius r requires somewhat more than r (qu)bits. On the other hand, the expressions quantifying the runtime
incorporate the quantities related to the value of r that can be handled. This implies that any expression which
quantifies the total runtime relative to a size of the quantum device must include the explicit functional relationship
between r, n and the number of qubits we need to run the quantum algorithm for PBS with parameters n, r. The
second issue has to do with details of the algorithm in [2], where the recursive calls reduce the instance sizes with
respect to non-unit steps of ∆ > 1, where ∆ influences the efficiency of the overall algorithm. Due to this, the precise
analysis of the achieved speed-up via the standard hybrid approach is slightly more involved than for the basic, slower,
PromiseBall algorithm presented in the main text. These technical points are elaborated in detail in Section B 4
and B 5.

2. Runtime properties of the space splitting algorithm

In [3], it was shown that using the space splitting algorithm (which reduces 3SAT to PBS), 3SAT over n variables
can be solved in time

T (n) = qd(n)(23n/d+2(1−h(ρ))n)︸ ︷︷ ︸
Cover Set preparation

+qd(n)2(1−h(ρ))n

︸ ︷︷ ︸
Cover Set size

×T2(n, ρ)︸ ︷︷ ︸
PBS cost

, (33)

where ρ (the fraction specifying the radius of the balls via r = ρn) and d are parameters which can be optimized, qd
is a polynomial depending on d, h(ρ) = −(ρ log2(ρ) + (1− ρ) log2(1− ρ)) is the binary entropy function, and T2(n, ρ)
is the runtime of the algorithm used to solve PBS with n variables and radius r = ρn.

Schöning’s algorithm can also be understood as a PBS solver. It can be shown that Schöning sampling, starting
from a center x, which is at Hamming distance r from a satisfying assignment, produces a satisfying assignment with
probability at least 2−r [2]. By iteration, we obtain a PBS solver with runtime O∗(2r).

Since d can be chosen large enough such that the dominating term of T (n) is 2(1−h(ρ))n × T2(n, ρ) [6], in order
to quantify the improvement given a quantum-enhanced subroutine, it suffices to optimize this term with respect to
ρ. If (the dominating part of) T2 is of the form T2(n, ρ) = O∗(2ζρn), the optimum is obtained by just minimizing
1 − h(ρ) + ζρ. Important values of ζ are ζ = log2 (3) and ζ = 1, corresponding to PBS solved by the deterministic
algorithm of [3] and the basic (and also fast deterministic [2]) Schöning’s algorithm, attaining optima at values ρ = 1/4,
and ρ = 1/3, respectively. For completeness, the overall effective values γ, for the overall algorithm using PBS routines
as listed are approximately 0.585 and 0.415, where the latter matches the runtime of Schöning’s (original) algorithm.

3. Fast deterministic classical PBS solver

In [2], an improved deterministic classical PBS solver was introduced, with run time in O∗((2+ε)r), where ε depends
on tunable protocol parameters. We call this algorithm FastBall. These parameters can be chosen such that ε is
arbitrarily small or even decaying in r, as explained later. As mentioned, the key idea of this algorithm is to also split
the space of choices, selecting which literal will be flipped in the recursive call, into covering balls. For the convenience
of the reader, here we present the details of FastBall, adapted from [2]. Let t ∈ N be a parameter (influencing ε
in the overall runtime), and C ⊆ {1, . . . , k}t be a k−arry covering code with radius t/k (where k specifies the clause
upper bound in the kSAT problem to be solved). Since t and k are constants, the optimal code can be found in
constant time. The key steps and performance aspects of the algorithm are given next, abbreviated and adapted from
[2].

12

1: procedure FastBall(F,x, r, C)
2: If x satisfies F
3: return x
4: else if r = 0
5: return FALSE
6: else
7: G← a maximal set of pairwise disjoint k-clauses of F unsatisfied by x
8: if |G| < t, . Case 1
9: for each assignment β of variables in G

10: call PromiseBall(F|β ,x, r),
11: else if |G| ≥ t . Case 2
12: H ← {C1, . . . , Ct} ⊆ G
13: for each w ∈ C
14: call FastBall(F,x[H,w], r −∆, C) . ∆ : = t− 2t/k
15: end procedure

The parameter ∆ influences ε, as will be clarified presently. The expression x[H,w] corresponds to a modified
assignment, where the variables selected by the code-word w from the subset of variables occurring in the subset of
clauses H have been flipped.

The objective of the algorithm is to achieve the run time of essentially O∗((k − 1)r), which would be the runtime
achieved by the randomized algorithm of Schöning, used as a PBS solver. We now briefly discuss the runtime of this
algorithm.

In the case the problem is such that the algorithm always encounters Case 1 in line 8, the authors in [2] show that
each F|β has no clauses of size larger than k−1. In this case, Proposition 7 in [2] shows that PromiseBall can solve the

problem in O∗((k− 1)r), yielding the overall runtime is O∗(2kt(k− 1)r). Since 2kt is a constant, this is O∗((k− 1)r),
achieving the objective.

The more complex case involves occurrences of Case 2 (in line 11). Here, recurrence calls occur, which may encounter
Case 1 deeper in the tree, or not. The slowest case occurs when we remain in Case 2 throughout recurrence calls.
If we set ∆ = t − 2t/k, it was shown in [2] that the runtime of FastBall, which, up to polynomial factors, is the
number of leaves in the recursion tree, is O∗

(
(t2(k − 1)∆)r/∆

)
= O∗

(
(t2/∆(k − 1))r

)
. Since t2/∆ goes to 1 as t grows,

for any ε > 0 we can choose t = t(ε) such that (t2/∆(k− 1))r ≤ (k− 1 + ε)r, which is the main result. Note that t can
also be chosen to be a very slowly growing function of n, t ≈ logk log2(n), which guarantees that the runtime of the
algorithm, intuitively, approaches the expression of the form O∗((k − 1)r) as n grows (see [7]).

4. Quantum speedup of FastBall with a small quantum device

The algorithm FastBall recursively calls itself on smaller instances, where the value of r is reduced in steps of ∆
(where ∆ = t/3 for 3SAT), and ∆ is a function which depends on ε alone – hence if ε is fixed, ∆ is a constant.

At each recurrence step, the algorithm first checks whether a criterion which would ensure that PromiseBall
would terminate in O∗((k − 1)r) (O∗(2r) for 3SAT) steps, is satisfied (Case 1). In that case, the algorithm runs
PromiseBall, the quantum enhancement of which was investigated in the main body of the paper. The faster
runtime in that case is ensured by the property that the formula in question actually has at most (k−1) (2 for 3SAT)
variables per unsatisfied clause. In that case, a quantum enhancement is achieved by the standard hybrid approach,
where QBall is run as soon as the instance becomes small enough. Note that since the relevant formula has only
k−1 variables per clause, QBall can be adapted in this case to yield a runtime of O∗((k−1)r/2) if r is small enough.
Then, we obtain an interpolated time between Schöning-level performance, and something quadratically faster. We
do not need to delve on further details, since this is not the worst-case performance of the algorithm, which occurs
if Case 2 persists. We cannot beforehand know at which step, if at all, the criteria for Case 1 will be satisfied, so we
call QBall in Case 2 as well, as soon as the recursive step in line 14 calls an instance with sufficiently small r. This
QBall-enhanced version of FastBall is a hybrid algorithm which we call QFastBall.

We now estimate the runtime of QFastBall. Recall that we assume a quantum computer with M = cn qubits,
where c ∈ (0, 1) is an arbitrary constant. To obtain the runtime of QFastBall, we first determine the largest value
of r̃ = r̃(c, n) such that such a quantum computer can solve PBS of radius r̃.

Recall that QBall requires O(r log(n/r) + r + log n) qubits to solve PBS with n variables and radius r. Suppose
the exact scaling of this number of qubits is Ar ln(n/r) + Br + O(log n) for constants A,B > 0 [8]. Let β(c) > 0 be
such that Aβ(c) ln(1/β(c)) + Bβ(c) = c. Then, the quantum device can solve PBS for all r ≤ r̃ = β(c)n − O(log n).
For completeness, it can be shown that β(c) = −c/(AW−1(−ce−B/A/A)), where W−1 is the −1 branch of the Lambert

13

W function (see Fig. 1 for a plot of β(c)). We do not need the precise form of β(c), it is easy to see, however, that
for small values of c, β(c) = Θ(c/ log(1/c)) [9].

0.2 0.4 0.6 0.8 1.0
c

0.002

0.004

0.006

0.008

0.010

0.012

ΒHcL

FIG. 1. Plot of β(c) for A ≈ 6.93, B = 50 [8].

Suppose now that QFastBall calls QBall with radius rcall. Clearly, r̃ ≥ rcall > r̃ −∆ for each call to QBall.
Note that the value of rcall could be different for each call to QBall depending on whether we call it deep in
PromiseBall (Case 1) or in Case 2. The number of calls to QBall is however at most O((2t2/∆)r−(r̃−∆)), since
the number of leaves in the recursion tree, which has depth at most r − (r̃ −∆), before QBall is called, is bounded
by this quantity. The runtime of QFastBall is therefore given by the product of this quantity and the runtime
O∗(3rcall/2) of QBall, i.e., at most O∗((2t2/∆)r−(r̃−∆) · 3r̃/2) = O∗((2t2/∆)r−r̃ · 3r̃/2), since ∆ and t are constants.
Plugging in the expression for r̃ and noting that the O(log n) contribution is absorbed by the O∗ notation, we obtain
a runtime of

T2,QFastBall(ρ, n) = O∗


(2 + ε)ρn

(√
3

2 + ε

)β(c)n

 (34)

= O∗
(

(2 + ε)ρn2−f(c)n
)

(35)

for solving PBS with n variables and radius r using QFastBall with a quantum device of M = cn qubits, where as
before ε can be made arbitrarily small, and f(c) = (1− log2

√
3)β(c) ≈ 0.21β(c), where in the last step, we bounded√

3/(2 + ε) <
√

3/2.

5. Total runtime for 3SAT

We now estimate the runtime of the entire algorithm for solving 3SAT using the space splitting algorithm in
combination with QFastBall. Substituting (35) into (33), and recalling that we can choose d = O(1) such that the
second term in (33) is the dominating term of T (n), we obtain

T (n) = O∗
(

2(1−h(ρ))n(2 + ε)ρn2−f(c)n
)
. (36)

Note that the last factor in (36), induced by the quantum enhancement, is independent of ρ, and that the first two
factors together constitute the runtime of the space splitting algorithm using just FastBall. The optimal value of
ρ for (36) is therefore the same as the optimal value of ρ for just using FastBall, which (up to corrections in ε) is
ρ = 1/3. Using this value, we obtain a total runtime of

T (n) = O∗
(

2(γ0+ε−f(c))n
)
, (37)

where ε = log2(1 + ε/2)/3 can be made arbitrarily small, as stated in the main body of the paper.

[1] T. J. Yoder, G. H. Low, and I. L. Chuang, Phys. Rev. Lett. 113, 210501 (2014).

14

[2] R. A. Moser and D. Scheder, in Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing , STOC
’11 (ACM, New York, NY, USA, 2011) pp. 245–252.

[3] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan, and U. Schöning, Theoretical
Computer Science 289, 69 (2002).

[4] More specifically, since we quantum-enhance the algorithm of [2], our approach circumvents a threshold phenomenon relative
to this algorithm. Since the algorithm of [2] is referred to as a de-randomization of the algorithm of Schöning, with matching
runtime, we for simplicity talk about avoiding the threshold relative to the algorithm of Schöning itself.

[5] For the interested reader we point out that the fine-graining of complexity of a given problem with respect to multiple
parameters of a given instance, as is the case here, is studied by so-called parameterized complexity theory.

[6] Since d appears in 23n/d, to make sure this contribution is not a dominating term in the overall complexity, setting d = 15

will suffice as 2n/5 ≤ 2γqn).
[7] http://users-cs.au.dk/dscheder/SAT2012/searchball.pdf.
[8] The implementation given in Section A yields A ≈ 6.93 and B = 50 using a straightforward of encoding each trit using two

qubits. We remark however that these numbers can be improved significantly.
[9] More precisely, there exist constants c̃, X, Y > 0 such that for all c ∈ (0, c̃), Xc/ log(1/c) < β(c) < Y c/ log(1/c).

	Abstract
	Acknowledgements
	List of contributed articles
	Contents
	Introduction
	Outline of this dissertation
	Summary of results

	Quantum computing
	Quantum states
	Quantum circuits
	Measurements
	Reversibility

	Quantum many-body systems
	Tensor networks
	Matrix product states
	Projected entangled pair states

	Ground states of local Hamiltonians and area laws

	Important quantum algorithms
	Amplitude amplification
	Hamiltonian simulation
	Phase estimation

	Quantum algorithms for state preparation
	Adiabatic algorithms
	Preparing injective PEPS on a quantum computer
	Ground space projection algorithms

	Hybrid quantum-classical approaches for small quantum computers
	Techniques on the circuit level
	Techniques on the algorithmic level
	Schöning's algorithm for 3SAT
	Eppstein's algorithm for the cubic Hamiltonian cycle problem

	Bibliography
	Core articles
	Rapid adiabatic preparation of injective projected entangled pair states and Gibbs states
	Area laws and efficient descriptions of quantum many-body states
	Faster ground state preparation and high-precision ground energy estimation with fewer qubits

	Further articles as principal author currently under review
	A hybrid algorithm framework for small quantum computers with application to finding Hamiltonian cycles

	Further articles as co-author
	A generalization of the injectivity condition for projected entangled pair states
	Computational speedups using small quantum devices

