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1. Introduction

Tensor-network (TN) methods, combined with lattice regularisation, have been applied to
study quantum field theories (QFTs) in recent years [1]. These methods allow one to work di-
rectly with the Hamiltonian operator, without relying on Monte Carlo simulations for path inte-
grals. Therefore, they offer opportunities for solving the sign problem, and for examining real-time
dynamics.

This article presents the status of our research programme of implementing the TN strategy
for the investigation of the massive Thirring model in 1+1 dimensions. In particular, we resort to
the formulation of matrix product states (MPS) in this work. The action of the field theory is

STh[ψ, ψ̄] =
∫

d2x
[
ψ̄iγµ

∂µψ −m ψ̄ψ − g
2
(
ψ̄γµψ

)
(ψ̄γ

µ
ψ)
]
, (1.1)

with m and g being the fermion mass and the four-fermion coupling constant. In Refs. [2, 3], it was
demonstrated that the sector of zero total fermion number in this model is dual to the sine-Gordon
(SG) theory, which is also known to be connected to the two-dimensional classical XY model [4].
This means that a Berezinskii-Kosterlitz-Thouless (BKT) phase transition can exist in the Thirring
model. According to perturbative analysis of the renormalisation-group (RG) flows [5], this tran-
sition occurs at a critical coupling g∗ with its value being m−dependent. It can be shown in per-
turbation theory that g∗ = ḡ∗ =−π/2 at m = 0, and g∗ decreases with increasing m. In the regime
g < g∗, the theory in Eq. (1.1) is expected to be at criticality. Combining with the well-known
fact that the (1+1)-dimensional massless Thirring model is a conformal field theory, one concludes
that on the g−m plane, there is a fixed line, m = 0. This fixed line is divided into two parts, with
(g >−π/2,m = 0) being unstable and (g <−π/2,m = 0) being stable.

In this contribution to the proceedings of the Lattice 2019 conference, we report concluding
results from our study, using the MPS strategy, for equilibrium zero-temperature phase structure of
the massive Thirring model in 1+1 dimensions with staggered regularisation. These results have
been published in Ref. [6]. Some aspects of this investigation were also presented at the Lattice
2017 and 2018 conferences [7, 8]. In addition, we describe our on-going efforts in examining
real-time dynamics in the massive Thirring model in Sec. 4.

2. Formulation and strategy

The classical action in Eq. (1.1) is suitable for performing calculations employing the path-
integral formalism. However, in the MPS approach, one works with the Hamiltonian in the operator
formulation of the theory. For this purpose, effects from the anomalous breaking of the vector sym-
metry in two dimensions have to be taken into account [9]. The Hamiltonian operator can be con-
structed through studying the commutation relations that are satisfied by the energy-momentum
tensor [10], and then be discretised on a one-dimensional lattice using the staggered regularisa-
tion [11, 12]. For convenience of carrying out numerical computations, in this work the fermionic
degrees of freedom in this Hamiltonian are mapped onto spin operators through the Jordan-Wigner
(JW) transformation. Details of the above procedure can be found in Ref. [6]. Implementation of
this strategy turns the Hamiltonian operator of the continuum Thirring model, HTh, into that of the
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XXZ spin chain coupled to both uniform and staggered magnetic fields,

HXXZ =
ν(g)

a
H̄sim , with H̄sim =−1

2

N−2

∑
n=0

(
S+n S−n+1 +S+n+1S−n

)
+am̃0

N−1

∑
n=0

(−1)n
(

Sz
n +

1
2

)
+∆(g)

N−1

∑
n=0

(
Sz

n +
1
2

) (
Sz

n+1 +
1
2

)
, (2.1)

where a is the lattice spacing, N is the total number of lattice sites, S±n = Sx
n± iSy

n and Sz
n are the

spin matrices (Si
n = σ i/2 with σ i being the Pauli matrices) at the n−th site, and [Si

n,S
j
m]n6=m = 0.

The functions ν(g) and ∆(g) are the lattice version of wavefunction renormalisation and the four-
fermion coupling [13],

ν(g) =
(

π−g
π

)
/sin

(
π−g

2

)
, ∆(g) = cos

(
π−g

2

)
, (2.2)

and m̃0 = m0/ν(g) with m0 being the bare counterpart of the mass parameter, m, in Eq. (1.1). Since
the z−component of the total spin corresponds to the total fermion number in the Thirring model,
the Hamiltonian that we actually use in the simulations is

H̄penalty
sim = H̄sim +λ

(
N−1

∑
n=0

Sz
n

)2

, (2.3)

which, upon choosing λ to be large enough (100 in this work), ensures that the ground state ob-
tained via a variational search is in the sector of vanishing total Sz [14]. This enables us to interpret
our results in terms of the dual SG theory and the XY model.

3. Numerical results for the phase structure of the massive Thirring model

To study the zero-temperature phase structure of the Thirring model, we scan the phase space
by performing simulations with the Hamiltonian, H̄penalty

sim , in Eq. (2.3) at twenty-four values of the
four-fermion coupling straddling the range −0.9≤ ∆(g)≤ 1.0, and at am̃0 = 0, 0.005, 0.01, 0.02,
0.03, 0.04, 0.06, 0.08, 0.1, 0.13, 0.16, 0.2, 0.3, 0.4. Four system sizes, N = 400,600,800,1000,
are used. The search for the ground state is carried out with seven choices of the bond dimension,
D = 50,100,200,300,400,500,600. The target precision of this search for the ground-state energy
is 10−7 in lattice units. The matrix product operator (MPO) for H̄penalty

sim , as well as details of our
numerical implementation and analysis, can be found in Ref. [6].

As already reported at the Lattice 2018 conference [8], the von Neumann entanglement en-
tropy, extracted by dividing the system of size N into two subsystems between sites n and n+1, is
found to exhibit the conformal scaling behaviour [15] at am̃0 = 0. This scaling behaviour is also
seen for am̃0 6= 0 when g is smaller than a am̃0−dependent value, g∗.

To further probe the phase structure, in the past year we performed a detailed investigation of
two types of correlation functions, namely the connected density-density, 〈ψ̄(x)ψ(x)ψ̄(0)ψ(0)〉c,
and the fermion-antifermion, 〈ψ̄(x)ψ(0)〉, correlators. These correlation functions can be written

2
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Figure 1: Results from fitting the fermion-antifermion correlator, Cstring(x), to the functions in Eq. (3.2).
The system size is N = 1000. Left: Values of C at various choices of am̃0 with the power-exponential fit
in Eq. (3.2). Right: Results of α and η introduced in Eq. (3.2) at am̃0 = 0.02. Errors in the plots are from
systematic effects as detailed in Ref. [6]

in terms of spin variables using the staggered-fermion discretisation and the JW transformation,

〈ψ̄(x)ψ(x)ψ̄(0)ψ(0)〉c −→ Czz(x) =
1

Nx
∑
n

[
〈Sz

nSz
n+x〉−〈Sz

n〉〈Sz
n+x〉

]
,

〈ψ̄(x)ψ(0)〉 −→ Cstring(x) =
1

Nx
∑
n
〈S+n Sz

n+1 · · ·S
z
n+x−1S−n+x〉 , (3.1)

where the sum over n means that at a given value of x, we average over all possible Czz(x) and
Cstring(x) computed on the 200-site subchain straddling the middle of the lattice. These two corre-
lators are expected to decay with x as a power law when the theory is at criticality, while the decay
is (power-)exponentially cut-off in the gapped phase. We fit Czz(x) and Cstring(x) to the ansatzes

Cpow(x) = βxα +C ,

Cpow−exp(x) = BxηAx +C , (3.2)

as well as other multi-exponential functions. For both Czz,string(x), our data show that for all values
of ∆(g) at am̃0 = 0, as well as at ∆(g).−0.7 when am̃0 6= 0, the power-law and power-exponential
fits are better compared to the multi-exponential fits. In this regime, it is observed that the parameter
A in Eq. (3.2) is consistent with unity, and the exponents α and η are compatible with each other.

It is worth noting that the constant, C, in Eq. (3.2) is expected to be consistent with zero in
Czz(x), and our data demonstrate this feature. For Cstring(x), this constant vanishes only in the
critical phase. It is non-zero when the fermion mass is a relevant coupling in the field theory,
corresponding to the appearance of the string order induced by the staggered magnetic field in the
spin model [16, 17]. This property is also seen in numerical results of this work. Figure 1 shows
examples for fits of Cstring(x). From the plot on the left-hand side, it is obvious that we can identify
a region on the ∆(g)− am̃0 plane where C = 0. This can be used to probe the phase structure. In
the right-hand plot in Fig. 1, it is observed that the exponent, α (or η), depends on the four-fermion
coupling, g, in the conformal phase, providing evidence that the phase transition is of the BKT-type.
It is also noted that the power-law function does not result in good fits in the gapped phase.

Since the constant, C, in fitting Cstring(x) to the power-exponential function is the most accurately-
determined parameter in our analysis, we use its value to probe the phase structure of the Thirring

3
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Figure 2: Left: Results of the phase structure of the massive Thirring model. Black boxes indicate points
where our data are not precise enough to give clear answers. Right: Renormalisation group flows from
perturbation theory.

model. Results of this analysis are shown in the left-hand plot in Fig. 2. In the regime where C is
consistent with zero, it is observed that the parameter A is compatible with one. Also displayed in
the same figure (right-hand plot) is the RG flow of the theory, obtained using perturbative expansion
in m and (g− ḡ∗), with ḡ∗ = −π/2. We see that both our numerical simulation and perturbation
theory predict the existence of a phase where the fermion mass is an irrelevant coupling.

Finally, we also compute the fermion bilinear condensate, χ = 〈ψ̄ψ〉, and observe that it can
be non-zero when the theory is at criticality. This shows that χ cannot be an order parameter for
the phase transition, giving more evidence that the transition is of the BKT-type.

4. Real-time dynamics

Our work on the phase structure of the model enables the investigation of real-time dynamics
pertaining to “quenching” across the phase boundary. Regarding this aspect of the study, we exploit
translational invariance in the thermodynamic limit. For one-dimensional systems, this allows for
expressing an infinite-size quantum state as a uniform MPS (uMPS), which can be represented with
one bulk tensor, Ai

l,r, that contains one physical index (i) and two bond-dimension indices (l and r),
together with appropriate boundary tensors when computing amplitudes and matrix elements [18,
19]. The ground state is then extracted using the variational algorithm introduced in Ref. [19].
For the real-time evolution of this infinite one-dimensional system, we resort to the method of
time-dependent variational principle (TDVP) [20].

In probing the dynamical quantum phase transition (DQPT), we compute the return rate [21],

Greturn(t) =− lim
N→∞

1
N

ln
(
|〈01|e−iH(am̃(2)

0 ,g(2))t |01〉|2
)
, (4.1)

where H(am̃(2)
0 ,g(2)) denotes the Hamiltonian, H̄penalty

sim , in Eq. (2.3) with the values of the couplings
set to am̃0 = am̃(2)

0 and g = g(2). The state, |01〉, is the vacuum of the Hamiltonian H(am̃(1)
0 ,g(1)).

The return rate can be extracted by examining the spectrum of the “bulk transfer matrix”,

(4.2)
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Figure 3: Real-time evolution of the largest three eigenvalues (generically denoted by λ (t)) of Ti, j. Left:
Quenching from criticality to the gapped phase. Right: Quenching from the gapped phase to the conformal
limit.

obtained by contracting the physical indices of the bulk tensors Ā01 and A(t). The tensor Ā01 is the
uMPS representation of 〈01|, while A(t) is that of exp[−iH(am̃(2)

0 ,g(2))t]|01〉. Since the amplitude,
〈01| exp[−iH(am̃(2)

0 ,g(2))t]|01〉, is obtained through infinite repetition of this transfer matrix, it is
obvious that Greturn(t) can be determined using the largest eigenvalue of Ti, j(t).

Dynamical quantum phase transitions are identified by non-analytic behaviour of Greturn(t) (or
the largest eigenvalue of Ti, j(t) as explained above) [21]. Figure 3 displays exploratory results
of our study for such transitions in the massive Thirring model, using uMPS representation of
ground states at bond dimension D = 80. Numerical implementation is carried out with the Uni10
library [22]. We monitor the entanglement entropy, S, along the real-time evolution, and increase D
(with an upper bound D = 120) when S exhibits signs of being saturated. In these plots, the “chiral
condensate” is computed by sandwiching the JW-transformed ψ̄ψ operator with real-time evolved
states that are initially at |01〉. From the left-hand plot in Fig. 3, DQPTs are observed when |01〉
is the ground state of H[am̃(1)

0 ,∆(g(1))] = H(0,0.5), and the real-time evolution is performed using
H[am̃(2)

0 ,∆(g(2))] = H(0.5,0.5). That is, DQPTs can occur while quenching from criticality into
the gapped phase. Nevertheless, when quenching from the massive into the conformal limit, no
DQPT is seen in this work hitherto (right-hand plot of Fig. 3). A similar scenario was also noted in
condensed matter physics [23].

We examine further details of the observed DQPTs by extracting the largest five eigenvalues
of Ti, j around a transition point. Results of this study are displayed in Fig. 4. It is observed that this
DQPT occurs when level-crossing between the largest and the second-largest eigenvalues happens.
A viable physical picture of this phenomenon is currently being investigated.

5. Conclusion and outlook

This article reports final results of our MPS study for the zero-temperature phase structure of
the massive Thirring model in 1+1 dimensions. It is demonstrated that the approach is applicable
for probing the BKT phase transition in the theory. We also show exploratory results for real-time
dynamics in the model. Further numerical exploration for DQPTs, including those associated with
the BKT phase transition that occurs at fixed, non-vanishing am̃0, is now being carried out.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
0
2
2

Phase structure and real-time dynamics of Thirring model from MPS C.-J. David Lin

5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.50
real time t

0.31

0.32

0.33

0.34

0.35

0.36

ln
|

(t
)|

Spectrum of transfer matrix
D30 D45, m:0 0.5, :0.5 0.5

1st
2nd
3rd
4th
5th

5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.50
real time t

0.31

0.32

0.33

0.34

0.35

0.36

ln
|

(t
)|

Spectrum of transfer matrix
D50 D80, m:0 0.5, :0.5 0.5

1st
2nd
3rd
4th
5th

5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.50
real time t

0.31

0.32

0.33

0.34

0.35

0.36

ln
|

(t
)|

Spectrum of transfer matrix
D80 120, m:0 0.5, :0.5 0.5

1st
2nd
3rd
4th
5th

Figure 4: Details of real-time evolution of the largest 5 eigenvalues (generically denoted by λ (t)) of Ti, j,
around a DQPT. The 3 plots correspond to different choices of bond dimension.
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