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The Neutron Star Interior Composition Explorer (NICER) recently measured the mass and equatorial radius
of the isolated neutron star PSR J0030+0451. We use these measurements to infer the moment of inertia, the
quadrupole moment, and the surface eccentricity of an isolated neutron star for the first time, using relations
between these quantities that are insensitive to the unknown equation of state of supranuclear matter. We also
use these results to forecast the moment of inertia of neutron star A in the double pulsar binary J0737-3039,
a quantity anticipated to be directly measured in the coming decade with radio observations. Combining this
information with the measurement of the tidal Love number with LIGO/Virgo observations, we propose and
implement the first theory-agnostic and equation-of-state-insensitive test of general relativity. Specializing these
constraints to a particular modified theory, we find that consistency with general relativity places the most
stringent constraint on gravitational parity violation to date, surpassing all other previously reported bounds by
7 orders of magnitude and opens the path for a future test of general relativity with multimessenger neutron star
observations.

Introduction.− Neutron stars are some of the most extreme
objects in nature. Their mass (typically around 1.4 M�) com-
bined with their small radius (between 10 − 14 km) result in
interior densities that can exceed nuclear saturation density
(ρ > 2.8 × 1014 g/cm3), above which exotic states of mat-
ter can arise [1]. Neutron stars are, next to black holes, the
strongest gravitational field sources known, with typical grav-
itational potentials that are 5 orders of magnitude larger than
that of the Sun. These properties make neutron stars outstand-
ing laboratories to study both matter and gravity in situations
out of reach in terrestrial and Solar System experiments.

Our current poor understanding of the supranuclear equa-
tion of state translates, via the equations of stellar equilib-
rium, to a large variability on observable properties of neu-
tron stars, such as their masses and radii [2]. This variabil-
ity increases if one lifts the assumption that Einstein’s the-
ory of general relativity is valid in the strong-gravity environ-
ment of neutron star interiors [3]. Modifications to general
relativity generically predict new equations of stellar equilib-
rium, which, when combined with uncertainties on the nuclear
equation of state, jeopardize attempts to test Einstein’s theory
with isolated, neutron star observations.

One possibility to circumvent this issue is to explore
whether relations between neutron-star observables that are
insensitive to either (or both) the equation of state and the
gravitational theory exist. Fortunately, they do. For instance,
when properly nondimensionalized, the moment of inertia (I),
the rotational quadrupole moment (Q) and the tidal Love num-
ber (λ) of neutron stars show a remarkable degree of equation-
of-state insensitivity, at a level below 1% [4, 5]. These “I-
Love-Q” relations also exist in some modified theories of
gravity, although they are different from their general relativ-
ity counterparts [6].

We here combine the first measurements [7, 8] by

NICER [9] of both the mass (M) and equatorial radius (Re)
of the isolated pulsar PSR J0030+0451 [10, 11] with known
equation-of-state insensitive relations involving the compact-
ness C = GM/(Rec2) (see, for instance Refs. [12–15]) to
infer a number of astrophysical and theoretical physics conse-
quences. Before doing so, let us explain how these relations
are obtained.

Quasiuniversal relations.− Neutron stars can have short ro-
tation periods of the order of milliseconds, so their surfaces
are oblate instead of spherical. The inclusion of this effect
is of critical importance to accurately model the thermal x-
ray waveform that NICER observes, since the x-rays are pro-
duced by hotspots at the star’s surface [16, 17]. The canon-
ical approach to model relativistic rotating stars was devel-
oped in the 1970s [18, 19]. In this approach, the star’s ro-
tation is treated as a small perturbation ε = f / f0 � 1, in-
volving the star’s rotation frequency f and its characteristic
mass-shedding frequency f0 = (GM/R3

e)1/2/(2π). Rotating
stars are then found by perturbing in ε an otherwise nonro-
tating star, which can be obtained by solving the Tolman-
Oppenheimer-Volkoff equations [20]. This slow-rotation ap-
proximation is well justified for most neutron stars with as-
trophysically relevant spins. Even for a prototypical millisec-
ond pulsar with f = 700 Hz, M = 1.4 M� and Re = 11 km,
one has ε = 0.37. In the case of PSR J0030+0451, its rota-
tion frequency is known to be f? = 205.53 Hz [10, 11], so
ε? = 0.14, when one uses the best-fit M and Re values ob-
tained by NICER [7, 8]. Henceforth, a “?” indicates observ-
ables associated with PSR J0030+0451 .

Using this technique, we numerically calculated over a
thousand neutron star solutions to order ε2 in this perturba-
tive scheme, using a broad set of 46 different equations of
state [21, 22], as detailed in the Supplemental Material (SM).
From these solutions, we then numerically computed the mo-
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ment of inertia I, the rotational quadrupole moment Q, the
surface eccentricity e, and the electric-type, ` = 2, tidal
Love number λ, which is the dominant parameter in the de-
scription of tidal effects in the late inspiral of neutron star
binaries [23–25]. We nondimensionalized these quantities
through division by the appropriate factors of M and dimen-
sionless spin χ = (2π f0) GĪM/c3, namely: Ī = c4I/(G2M3),
Q̄ = −c4Q/

(
G2M3χ2

)
and λ̄ = c10λ/(GM)5. The surface ec-

centricity e is dimensionless by definition, given in terms of
the star’s equatorial Re and polar Rp radii as e = [(Re/Rp)2 −

1]1/2 [14]. The relations between these nondimensional quan-
tities are strongly insensitive to the equation of state. Because
of the small value of ε? we can neglect higher order in spin
corrections in this expression.

The first step in using the approximately universal relations
on NICER’s first observation is to derive equation-of-state-
insensitive relations between the observables {Ī, Q̄, λ̄, e}, with
respect to the compactness C . Details of these “C relations”
are given in the SM. Our plan of attack is then clear: use the
publicly available Markov Chain Monte Carlo (MCMC) M-Re
samples [26, 27] for the best-fit model inferred by two inde-
pendent analysis [7, 8] of the NICER data [28]. Although each
group modeled the surface hotspots differently and used dif-
ferent sampling methods, their results are consistent with each
other. Here we use the results for the three-hotspot model in-
ferred by Miller et al. [8] and the favored single temperature,
two-hotpot ST+PST model from Riley et al. [7] to obtain a
posterior distribution for the compactness, and then use the
approximately universal relations to infer other astrophysical
quantities. We detail this procedure next.

Astrophysical implications.− We begin by constructing a
posterior distribution P(C |NICER) for the compactness C of
PSR J0030+0451, using the MCMC chains [26, 27]. With
this posterior in hand, we then use the C relations to inferred
posterior distributions for {Ī, λ̄, Q̄, e}.

The implementation of such an inference procedure re-
quires a particular scheme, and we here follow a proposal that
accounts for the approximately universal nature of the rela-
tions [22]. In this scheme, the maximum relative error of each
fitting function defines the half width of the 90% credible in-
terval of a Gaussian distribution centered at each fitted value.
The posterior distribution for each dimensionless quantity is
then calculated using the corresponding C relation and the
posterior distribution of the compactness, after marginalizing
over the latter. From these posteriors and using the same pro-
cedure described above, we can also construct posteriors for
the dimensionful versions of these quantities by a change of
variables, marginalize over the nuisance variables mass M and
radius Re, and then do a final rescaling of the posterior by ε
(= 0.14) for the surface eccentricity e and by ε2 for the rota-
tional quadrupole moment Q. We refer to the SM for details.

The resulting mean and 1σ intervals of these parameters
(both the nondimensionalized and the dimensionful versions)
are shown in Table I; see the SM section for plots of the in-
ferred posteriors. The reported confidence intervals in all of
these quantities account for both the approximate nature of
the universal relations and the uncertainties in NICER’s ob-
servation. These results are the first inferences on the moment

Parameter Miller et al. Riley et al.
Ī? (10) 1.31+0.13

−0.11 1.42+0.26
−0.19

λ̄? (102) 4.97+1.92
−1.28 6.75+5.52

−2.69

Q̄? 5.92+0.73
−0.61 6.50+1.38

−1.03

I? (1045 g cm2) 1.71+0.64
−0.48 1.42+0.81

−0.53

Q? (1043 g cm2) 1.49+0.63
−0.45 1.27+0.74

−0.49

e? (10−1) 1.56+0.25
−0.21 1.58+0.29

−0.28

TABLE I. Inferred properties of PSR J0030+0451 using equation-
of-state-insensitive relations combined with the MCMC samples by
Miller et al. [26] and Riley et al. [27]. We report the values within 1
standard deviation from the mean, representing approximately 68%
confidence intervals. These values are the first inferences of the mo-
ment of inertia, the eccentricity, the Love number, and the quadrupole
moment of an isolated neutron star.

of inertia, the surface eccentricity, the Love number and the
quadrupole moment of an isolated neutron star.

We can also use NICER’s observation combined with the
I-C relation to estimate the moment of inertia of PSR J0737-
3039A (I1.3381), where the subscript refers to this pulsar’s mea-
sured mass of M = (1.3381 ± 0.0007) M� [29]. The double
pulsar J0737-3039 is expected to provide the first direct neu-
tron star measurement of the moment of inertia [30]. This sys-
tem is the only double-pulsar observed to date, which makes
it an unique laboratory for binary stellar astrophysics [31, 32].
Moreover, an accurate measurement of I1.3381 in combination
with its known mass is expected to strongly constrain the nu-
clear equation of state around once and twice nuclear satura-
tion density [33].

To predict the moment of inertia of PSR J0737-3039A
from NICER’s observation of PSR J0030+0451, we first
need to obtain an estimate for the compactness C1.3381 of
PSR J0737-3039A. This can be approximated by the sub-
stitution {M,Re} 7→ {M0 = 1.3381 M�, Re} at each MCMC
sample [26] and then computing CM0 . This yields an ap-
proximation to the distribution of compactness for a system
with mass M0, which is assumed known and identical to
PSR J0030+0451. This procedure is only justified as long
as M0 is very close to M?, as in the case of PSR J0737-
3039A, whose inferred mass (M0 = 1.3381+0.0007

−0.0007 M�) [29]
is within the 1σ credible interval of both NICER’s mass infer-
ence (M? = 1.34+0.15

−0.16 M� [7] and M? = 1.44+0.15
−0.14 M� [8]).

With an estimate of the compactness of PSR J0737-3039A,
we can now obtain a prediction for PSR J0030+0451’s
moment of inertia repeating the procedure applied to
PSR J0030+0451. Figure 1 shows our result using both
NICER MCMC samples; IMiller et al.

1.3381 = 1.64+0.52
−0.37 × 1045 g cm2,

and IRiley et al.
1.3381 = 1.68+0.53

−0.48 × 1045 g cm2, together with two
other independent predictions [34, 35]. All predictions are
consistent with one another. The anticipated future indepen-
dent measurement of I1.3381 from continued radio timing of
PSR J0737-3039A will provide another test for nuclear the-
ory and enable an “I-Love test” of gravity, the latter of which
we define next.

Theoretical physics implications.− The combination of the
inference of I with NICER data described above, and the in-
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FIG. 1. Predictions for the moment of inertia of PSR J0737-3039A.
We compare our predicted I1.3381 using both the MCMC samples
from Miller et al. [26] and Riley et al. [27] against: (i) Landry and
Kumar [34] (“LK18”), which used binary Love [38] and I-Love rela-
tions with the tidal-deformability constraints from binary neutron-
star merger GW170817 [36], and (ii) Lim et al. [35] (“LHS19”)
which carried out Bayesian modeling of a number of equations of
state. The larger moment of inertia that we predict is due to the larger
radii favored by an M ≈ 1.4 M� neutron star by NICER’s observation
relative what is inferred by the two other methods, as I ∼ MR2

e .

dependent measurement of λ [36] by the LIGO/Virgo Collab-
oration from the binary neutron-star merger GW170817 [37],
allows for the first implementation of an I-Love test [4]. This
test would be the first multimessenger test of general relativity
with neutron star observables.

The idea of an I-Love test is as follows [4, 5] (see Fig. 2).
Consider two independent inferences of Ī1.4 and λ̄1.4 for a
1.4 M� neutron star. In the (Ī, λ̄) plane, these measurements
yield a 90% confidence error box. If the I-Love relation in
general relativity, including its small equation-of-state vari-
ability, does not pass through this error box, then there is ev-
idence for a violation of Einstein’s theory, regardless of the
underlying equation of state. Moreover, if any theory of grav-
ity predicts an I-Love curve that also does not pass through
this error box for a given value of its coupling constants, then
the I-Love test places a constraint on the couplings of this the-
ory, which is also independent of the equation of state.

Such a test, however, requires the inference of the tidal de-
formability and the moment of inertia of a neutron star of the
same mass. The LIGO/Virgo Collaboration used gravitational
wave data to infer the tidal deformability of a 1.4 M� neutron
star to be λ̄1.4 = 190+390

−120 at 90% confidence [39], obtained
under the assumptions that the binary components were de-
scribed by the same equation of state and were slowly spin-
ning. We can use NICER’s data to infer the moment of in-
ertia of a 1.4 M� neutron star with the same techniques we
used to predict the moment of inertia of PSR J0737-3039A.
For concreteness, we use the results from Miller et al. [8, 26],
but we verified (see the SM for detail) that our conclusions
are essentially the same had we used the results from Riley et
al. [7, 27]. We find that C1.4 = 0.159+0.025

−0.022 and Ī1.4 = 14.6+4.5
−3.3

at 90% confidence. An important underlying assumption be-
hind both inferences is that general relativity is the correct

theory of gravity. The rationale behind this test is detailed in
the SM.

Since carrying out such a test on a theory-by-theory basis
would, in general, be complicated and time consuming, we
here develop and implement a useful parametrization of the
I-Love test. From Newtonian gravity, we know that Ī scales
with C −2, whereas λ̄ scales with C −5. Therefore, Ī = C Īλ̄λ̄

2/5,
with C Īλ̄ ≈ 0.52 a constant that depends on the equation of
state very weakly [5]. This calculation can be extended, sys-
tematically, in a post-Minkowskian expansion, i.e., an expan-
sion in powers of C � 1 [40]. The outcome is that both Ī and
λ̄ can be written as a power series in C and then be combined
(as just described in the Newtonian limit) to obtain Ī = Ī(λ̄).
The resulting I-Love relation has the same degree of equation-
of-state independence as the original I-Love relation [4]. For
our neutron star catalog, a parametrization in general relativity
of the form

ĪGR = λ̄2/5
(
c0 + c1λ̄

−1/5 + c2λ̄
−2/5

)
, (1)

with c0 = 0.584, c1 = 0.980, c2 = 2.695, is sufficient
to reproduce our numerical data with mean relative error
〈ε Ī〉 6 2 × 10−3. The prefactor λ̄2/5 is the Newtonian result,
while the powers of λ̄−1/5 inside parenthesis are relativistic
(post-Minkowskian) corrections because λ̄−1/5 ∝ C . 0.2.
Given this, we then propose a minimal deformation of the Ein-
steinian parametrization in Eq. (1) of the form

Īp = ĪGR + β λ̄−b/5 , β ∈ R+ , b ∈ Z , (2)

where β and b are deformation parameters that control the
magnitude and type of the deviations from general relativ-
ity in the I-Love relation respectively. Such a parametriza-
tion is similar to that successfully used in gravitational-wave
tests of general relativity by the LIGO/Virgo Collaboration,
the parametrized post-Einsteinian framework [41].

We performed such a test of general relativity through the
procedure described earlier. First, we see that the I-Love re-
lation in general relativity does indeed pass this null-test and
it is consistent with the error box. Second, we considered
b ∈ [−2, 5], where the lower limit is set by requiring no devia-
tions at the Newtonian level and the upper limit is set for sim-
plicity. We then fixed b and calculated what the corresponding
value of β = βcrit is, above which the parametrized I-Love re-
lation (2) would be in tension with the inferred (Ī1.4, λ̄1.4) re-
gion at 90% confidence. Our results are summarized in Fig. 2,
where the numbers in parenthesis correspond to (b, βcrit). We
stress that our results for b 6 0 are of course dependent on the
posterior used for λ̄1.4. If one treated the tidal deformabilities
as independent free parameters in the waveform model [37],
then the λ̄1.4 posterior would not have a lower limit, allowing
all curves with b 6 0 to be consistent with both observations.

With these theory-agnostic constraints in hand, we can now
map them to specific theories and place constraints on their
coupling parameters. As an example, let us consider dy-
namical Chern-Simons gravity, a theory that modifies general
relativity by introducing gravitational parity violation [42].
This theory has found applications to several open problems
in cosmology, such as the matter-antimatter asymmetry and
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FIG. 2. Multimessenger test of general relativity using the
parametrized I-Love relation. The vertical (horizontal) lines delimit
the 90% confidence region (shaded) for λ̄1.4 [39] (Ī1.4, this work),
while the circle marks the median (190, 14.6). The solid black
line corresponds to the I-Love relation in general relativity [Eq. (1)]
and is consistent with the inferred values of Ī1.4, λ̄1.4 at 90% confi-
dence. Starting from b = −2 and moving clockwise, we show the
parametrized I-Love curves (b, βcrit), where b ∈ [−2, 5] and βcrit is
the critical value of β above which the parametrized I-Love relation
[Eq. (2)] fails to pass by the 90% confidence region in the plane.
Here we used the value of Ī1.4 inferred using the results by Miller
et al. [8, 26]. We found similar results using the results by Riley et
al. [7, 27] (See SM).

leptogenesis [43–46]. It also arises in several approaches to
quantum gravity, such as string theory [47] and loop quan-
tum gravity [48–50]. Mathematical well-posedness requires
the theory to be treated as an effective field theory [51]. In
this formalism, one works in a small-coupling approximation
ζ ≡ 16πα2R−4 � 1, where R = [c2R3

e/(GM)]1/2 is the
curvature length scale associated with a neutron star (in our
case), and where α is a coupling constant with units of length
squared, such that ζ is dimensionless. This theory modifies
Einstein’s only when gravity is strong, and thus, it passes all
Solar System constraints, being only extremely weakly con-
strained by Gravity Probe B and the LAGEOS satellites, and
table-top experiments, to α1/2 6 108 km [52–54]. This theory
has also evaded gravitational-wave tests [55], making it a key
target to test the constraining power of our new I-Love test.

Let us now map the theory-agnostic deformation of the I-
Love relations in Eq. (2) to dynamical Chern-Simons gravity,
though this methodology could be applied to other theories

as well. As we discuss in the SM, the I-Love relation in this
theory can be described by Eq. (2) with bCS = 4 and βCS =

6.15 × 10−2ξ̄, where ξ̄ = 16πα2/M4. We can now use our
theory-agnostic constraints on β to place a constraint on α, the
coupling constant of dynamical Chern-Simons gravity. Using
the constraint on β when b = 4, namely βcrit 6 8.84 × 102, and
applying the mapping, yields βCS = 6.15×10−2 ξ̄ 6 8.84×102,
or simply

α1/2 6 8.5 km , (3)

at 90% credibility, if the theory is to be consistent with the
observational bounds on Ī1.4 and λ̄1.4. Using the mean value
C1.4 = 0.159, which implies the mean equatorial radius R1.4 =

13.0 km, we also find that ζ ≤ 0.23 when using Eq. (3), imply-
ing that the small-coupling approximation is indeed satisfied.
This bound is 7 orders of magnitude stronger than any pre-
vious constraints and it is unlikely to be improved upon with
foreseeable gravitational-wave observations [56].

Conclusions and outlook.− NICER’s observation of
PSR J0030+0451 allows the extraction of new astrophysical
and theoretical physics inferences when one uses equation-of-
state-insensitive relations. We have here shown the first infer-
ences of the moment of inertia, the quadrupole moment, the
surface eccentricity and the Love number of an isolated neu-
tron star. We have also been able to perform the first theory-
agnostic and equation-of-state independent test of general rel-
ativity by combining NICER and LIGO/Virgo’s observations.
This test, in turn, was leveraged to produce the most stringent
constraint on gravitational parity violation, improving previ-
ous bounds by 7 orders of magnitude. This robust methodol-
ogy can be applied to future multimessenger observations of
neutron stars with NICER and gravitational wave observato-
ries, with important implications to nuclear astrophysics and
theoretical physics.
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– Supplemental Material –

Equation of state catalog.− We consider the large cat-
alog of nuclear equations of state of [22], supplemented
by the non-duplicates from [21]. To this set of 85 equa-
tions of state, we impose the following observational con-
sistency criteria. First, the equation of state must be consis-
tent with the 90% confidence region of the two-dimensional
marginalized posterior (M, Re) reported by the LIGO/Virgo
collaboration [39] for each component of the binary neutron-
star merger GW170817. Second, the equation of state
must be consistent with the 90% confidence region of the
two-dimensional marginalized posterior (M, Re) reported by
NICER [7, 8] for PSR J0030+0451. Third, the equation
of state must allow for neutron stars with masses above
Mmax > 1.96 M�, which corresponds to the lower-limit esti-
mate of the most massive neutron star known, the millisec-
ond pulsar J0740+6620, at 95.4% confidence level [57]. In
total, this yields the following 46 equations of state: ALF2,
APR3, APR4, BCPM BSP, BSR2, BSR2Y, BSk20, BSk21,
BSk22, BSk23, BSk24, BSk25, BSk26, DD2, DD2Y, DDHd,
DDME2, DDME2Y, ENG, FSUGarnet, G3, GNH3, IOPB,
K255, KDE0v1, MPA1, Model1, Rs, SINPA, SK272, SKOp,
SKa, SKb, SLY2, SLY230a, SLY4, SLY9, SLy, SkI2, SkI3,
SkI4, SkI6, SkMP, WFF1 and WFF2 [21, 22].

Our numerical code to calculate neutron stars (in gen-
eral relativity and dynamical Chern-Simons gravity) uses the
piecewise-polytrope approximation to model these equations
of state [21]. In this approximation, the relationship be-
tween pressure (pi) and baryonic mass density (ρi) is given
by pi = Ki ρ

Γi , where Ki is the polytropic index and Γi the adi-
abatic index, on a sequence of baryonic mass density intervals
i. For the high-baryonic mass densities describing the neutron
star core (ρcore & 1.7 × 1014 g/cm3), the exact value depends
on the equation of state) we used a three-segment approxi-
mant, fitted to the equation of states listed above. For low-
baryonic mass densities (ρ < ρcore), matter is described using
a four-segment approximant fitted against the SLy equation of
state [21, 22].

One could argue [58] that a more rigorous approach to do
inference on the nuclear equation of state from neutron star
observations is to not use hard cuts as we do here. However,
since our approach makes use of equation-of-state indepen-
dent relations, changes to our equation of state catalog imply
only small changes to the numerical values of the fitting co-
efficients. The hard cuts then have a negligible impact on our
inferences, since the uncertainty on our quoted results (e.g.,
in Table I) are dominated by the uncertainties on the observa-
tions, except for the eccentricity e?.

Neutron-star catalog.− For each equation of state, we cal-
culate a sequence of 50 neutron stars, spanning central bary-
onic mass densities in the range ρc ∈ [1.5, 8.0] ρnuc (where
ρnuc = 2.8 × 1014 g/cm3 is the nuclear saturation density)
in general relativity and in dynamical Chern-Simons gravity.
To obtain neutron star solutions in dynamical Chern-Simons
gravity we use the same perturbative expansion in small-spin
(ε � 1) as used in general relativity, outlined in the main text,
but combined with a small-coupling (ζ � 1) approximation
as required for the well-posedness of the theory [59]. We then

retained only those with (i) M 6 Mmax (i.e. linearly stable
against radial perturbations) and (ii) with C ∈ [0.125, 0.3125]
(i.e. within the prior on C used in the parameter estimation
of PSR J0030+0451 by the Illinois-Maryland MCMC sam-
ples [26]). In the case of dynamical Chern-Simons grav-
ity only we further imposed (iii) that all stars have ζ 6 0.2
(the small-coupling approximation). Although we used a C -
interval in (ii) based on [26] we note that 97% of the MCMC
samples of the analysis by Riley et al. [7] do fall within this
range. Therefore, we use the same C relations to make infer-
ences with both MCMC samples, instead of deriving two sets
of C relations based on the two NICER analysis [7, 8].

The C relations.− Relations among some stellar observ-
ables (e.g., moment of inertia, Love number or quadrupole
moment) that do not depend sensitively on the equation-of-
state are called quasi-universal relations [60]. These relations
are of the form

y =

n∑
i=0

aixi , (4)

where y and x are particular stellar observables
for which the relation exists, and ai are constant
coefficients. In this work we use the “C rela-
tions” [12–15], shown in Fig. 3, with (y, x) =

{(log10 ĪGR, C −1), (C , log10 λ̄GR), (log10 Q̄GR, C ), (e, C )}.
The values of the coefficients ai, the number of coeffi-
cients n, and the mean 〈εy〉 and maximum relative error
ε

y
max = max |1 − y/yfit| of the resulting fits are presented in

Table II. In comparison to the I-Love relation, the C relations
are slightly “less” quasi-universal (10% versus 1% maximum
relative error). However, their typical mean relative error
at the 1% percent level justifies their use for parameter
inference. We also verified explicitly that the C relations
are weakly dependent on our equation of state catalog. This
was verified by comparing the resulting fits (and associated
errors) obtained using the initial full set of 85 equations and
its subset of 46.

Parameter inference: PSR J0030+0451.− To calculate the
posterior distributions for y = {Ī, λ̄, Q̄, e}, we follow the pro-
cedure used in [22]. In this scheme, the maximum relative
error εy

max (cf. the last column of Table II) is used to define the
half-width of the 90% credible interval of a Gaussian distribu-
tion centered at each fitted value (yfit),

P (y|C ) = (2πσ2
y)−1/2 exp

[
−(y − yfit)2/(2σ2

y)
]
, (5)

where σy = ε
y
max yfit/1.645.

The posterior distribution for each dimensionless quantity,
P (y|NICER), is then calculated using the corresponding C re-
lation and the posterior probability distribution of the com-
pactness, P (C |NICER) (see Fig. 4), obtained directly using
NICER’s MCMC samples [26, 27], and then marginalizing
over C :

P (y|NICER) =

∫
P (y|C ) P (C |NICER) dC . (6)

What dominates the uncertainty on our inferred values for
the neutron star parameters? Is it the uncertainties associated
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FIG. 3. The C relations. The top-left panel shows the relation between tidal Love number λ̄ and compactness C (bottom and left axes) and
between eccentricity e and compactness C (top and right axes). The top-right panel shows the relation between the moment of inertia Ī (left
axes), rotational quadrupole moment Q̄ (right axes) and compactness C . The lower panels show the relative errors (ε = |1− yfit/ydata|) between
the data and the fits. The largest mean relative error among the four C relations is 2% (corresponding to the Q-C relation), which shows the
equation-of-state insensitivity of the relations.

y x n a0 a1 a2 a3 a4 〈εy〉 ε
y
max

log10 ĪGR C −1 4 5.5531 × 10−1 −1.7705 × 10−1 1.1105 × 10−1 −1.5137 × 10−2 6.9401 × 10−4 1.52 × 10−2 6.7 × 10−2

C log10 λ̄GR 4 3.5818 × 10−1 −8.8149 × 10−2 1.3120 × 10−2 −4.5810 × 10−3 6.9924 × 10−4 9.63 × 10−3 4.2 × 10−2

log10 Q̄GR C 4 2.1088 −1.4669 × 101 6.6952 × 101 −2.1050 × 102 2.6576 × 102 1.91 × 10−2 8.6 × 10−2

e C 2 1.1624 2.0527 × 10−1 −2.5870 - - 9.86 × 10−3 4.1 × 10−2

TABLE II. Numerical coefficients for the fits to the C relations. These fits are tailored to the Illinois-Maryland MCMC data samples [26] and,
therefore, are only valid within the compactness range C ∈ [0.125, 0.3125].

with the C -measurement we are using, or those introduced by
the approximate universality of the C relations? To answer
this question, in Figure 5 we show the resulting posterior dis-
tributions by taking into account the approximate universality
of the C relations (solid lines) and compare against the poste-
rior distributions on the same parameters if we do not (dashed
lines). In the latter case, the posteriors are obtained by directly
applying the M-Re samples [26] in the C relations. The effect
of including the systematic error induced by the variability of
the C relations is to broaden the posterior, a small effect for
Ī, λ̄ and Q̄, but not for the eccentricity e. The reason is the
following: the mean relative error for the e-C fit is approx-
imately 4%, which is larger than the variability of e in the
1σ interval of its distribution. This leads to the considerable
broadening shown in the bottom-right panel of Fig. 5.

The posteriors for the dimensionful version of these quan-
tities are obtained of through a change of variables, and using
the posteriors on M and Re. For instance, for the moment of
inertia I,

P(I|NICER) = (c2/G)2
∫

P(c4I/(G2M3)|NICER)

× P(M|NICER) M−3 dM . (7)

The posterior distributions for the dimensionful variables are

similar in shape to their nondimensionalized versions.
Parameter inference: fixed mass.− To calculate the poste-

rior distribution of a quantity y for a neutron star with known
mass M0 using the C relations, we first need to contruct a pos-
terior P(CM0 |NICER) given P(C |NICER). To do so, we write

P(CM0 |NICER) = P([GM/(Rec2)]M=M0 |NICER) , (8)

where the right-hand side is obtained by using the MCMC
samples [26], doing the substitution {M,Re} 7→ {M0,Re} at
each sample and then computing CM0 . This procedure gives an
approximation to the distribution of compactness for a system
with known mass M0, which we here take to be identical to
PSR J0030+0451. Of course, the posterior CM0 obtained in
this way would fail dramatically if the difference between M0
and PSR J0030+0451’s mass, M? = 1.44+0.15

−0.14 M� [8], is large.
However, this is not case for a canonical neutron star with
mass 1.4 M� and PSR J0737-3039A’s, which has a mass of
1.3381 M� masses, both of which agree with M? within 1σ.

We can justify this more quantitatively as follows. First,
for each equation of state we compute the compactness for
each mass m1 and m2. For our case, this would produce 46
points in the C1 and C2 plane, corresponding to the 46 equa-
tions of state we use. Then, we fit a line to these points and
calculate the maximum residual from the best-fit line. This
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FIG. 4. Prior and posterior probability distributions on the com-
pactness of PSR J0030+0451 (C?). The Illinois-Maryland analy-
sis [8, 26] assumed a flat prior probability distribution for C? with
bounds 0.125 and 0.3125 (dashed curve). The posterior probability
distribution (solid line) has a median value of C? = 0.163 [8]. The
posterior is approximately Gaussian and very different from the flat
(uninformative) prior used by NICER, showing that the NICER ob-
servation was indeed informative.

procedure can be done for any combinations of m1 and m2.
We plot the maximum residual for the estimated compactness
for different m1 and m2 in Fig. 6. The mass ratio between PSR
J0030+0451 and both PSR J0737-3039A and a 1.4 M� star is
approximately 0.9 for which the maximum residual is about
1%.

Knowing P(CM0 |NICER), we can use it in Eq. (6) and
marginalize over CM0 to obtain the posterior distribution of
a quantity y at mass M0. Our results for C , Re and y = {Ī, λ̄,
Q̄, e} for a canonical neutron star are summarized in Table III.

I-Love relation in dynamical Chern-Simon gravity.− Let us
describe further how to map the theory-agnostic deformation
of the I-Love relations in Eq. (2) to dynamical Chern-Simons
gravity. The procedure outlined here can be applied to other
theories as well.

The dimensionless moment of inertia of a constant density
star in dynamical Chern-Simons gravity is Ī = ĪGR+ĪCS,N, where
ĪCS,N = CCS,N

Īλ̄
α2M/R5 and CCS,N

Īλ̄
= 1024π/75 [61] to leading-

order in α and leading-order in C . The I-Love relations in
dynamical Chern-Simons gravity are insensitive to the equa-
tion of state when ĪCS is normalized via ξ̄ ≡ 16πα2/M4 [62].
Therefore, using that λ̄N = (1/2)C −5 in Newtonian grav-
ity for a constant density star, we then have that ĪCS,N =

(16π)−1 CCS,N

Īλ̄
ξ̄C 5 = [(32π)−1 CCS,N

Īλ̄
ξ̄] λ̄−1. Although this re-

lation was derived assuming a constant density star, it holds
for any equation of state, with variability at the sub-percent
level [62]. Comparison of this result to Eq. (2) reveals that the
mapping between our proposed parameterization and dynam-
ical Chern-Simons gravity is βCS,N = (32/75) ξ̄ and bCS,N = 5.

How well does this “Newtonian” approximation capture the
fully relativistic I-Love relation in dynamical Chern-Simons
gravity? Figure 7 shows that the Newtonian approximation
derived above is excellent for low-mass neutron stars. The
scaling with λ̄−1, however, fails for more massive stars, when
M & 1 M�, because relativistic corrections become impor-

10 15 20
I

Non-universal
Universal

0 500 1000 1500

4 6 8 10
Q

1.550 1.575 1.600
e  (×10 1)

FIG. 5. Posterior distributions on the dimensionless quantities {Ī,
λ̄, Q̄, e } of PSR J0030+0451. We show both the distributions ob-
tained by taking into account the systematic error introduced by the
quasiuniversality of the C relations (solid lines) and that assuming
the universality of the relations (dashed lines). The vertical lines
and the shaded bands represent the mean and 90% posterior credi-
ble intervals, respectively. The posteriors show that for Ī, λ̄ and Q̄,
the uncertainties associated with our inferences are dominated by the
uncertainty on the measured value C?. This is not the case for e, be-
cause the systematic error associated with the e-C fit is larger than
that associated with the inference of e, assuming complete equation-
of-state independence on the e-C relation.

tant. In spite of this, the dynamical Chern-Simons correction
to the relativistic I-Love data, for values of λ̄ corresponding
to stars with compactness C within NICER’s priors, can be
well-approximated by ĪCS = βCS λ̄

−bCS/5, with

βCS = 6.15 × 10−2 ξ̄ , bCS = 4 . (9)

This functional form is quite close to the Newtonian result
(in fact, just a factor of C higher than the Newtonian result
because C ∝ λ̄−1/5), which suggests the rule of thumb b = bN−

1, where bN is the result of the I-Love calculation to Newtonian
order in modified gravity.

By virtue of the parity properties of the field equations in
dynamical Chern-Simons gravity, the electric-type ` = 2 tidal
Love number in this theory is identical to that in general rela-
tivity for nonrotating neutron stars.

Using the results from Riley et al. [7, 27], we obtain the
same bound on dCS found in the main text, namely

√
α 6

8.5 km. We also find that ζ 6 0.26, only 4% above our thresh-
old for the small-coupling approximation, however still� 1.

Constraints on the parametrized I-Love parameters− In Ta-
ble IV we summarize the numerical values for the contrainst
of the parametrized I-Love parameters b and β.

The parametrized I-Love test and why can neutron stars
constrain dynamical Chern-Simons gravity− Here we explain
the rationale behind the parametrized I-Love test of gravity
and why it can be applied to dynamical Chern-Simons grav-
ity. Perhaps the easiest way to understand the parametrized
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Parameter Source / Universal relation Median −1.65σ +1.65σ
C1.4 (10−1) MCMC chain / − 1.59 1.37 1.84
R1.4 (10) [km] MCMC chain / − 1.30 1.12 1.51
Ī1.4 (10) MCMC chain / I-C 1.46 1.12 1.91
λ̄1.4 (102) MCMC chain / Love-C 5.80 2.33 13.7
Q̄1.4 MCMC chain / Q-C 6.12 4.52 8.12
e1.4, 0 MCMC chain / e-C 1.12 1.09 1.15

TABLE III. Properties of M = 1.4 M� neutron stars, inferred from PSR J0030+0451 at 90% credibility. The eccentricity e1.4, 0 is evaluated at
the characteristic mass-shedding frequency f0. To rescaled it to the eccentricty e1.4 of a star spinning with frequency f one has to multiply by
ε = f / f0 = 1532.7 Hz.

b −2 −1 0 1 2 3 4 5
βcrit (Miller et al.) 1.97 4.63 10.8 25.7 74.5 2.49 × 102 8.84 × 102 3.15 × 103

βcrit (Riley et al.) 1.99 4.67 11.0 26.0 75.5 2.53 × 102 9.00 × 102 3.21 × 103

TABLE IV. Constraints on the parametrized I-Love relation. For a given exponent b, parametrized I-Love curves with β > βcrit do not pass
through the 90% credible intervals on the inferred values of Ī1.4 and λ̄1.4 as shown in Fig. 2. The constraints obtained using the results of both
Miller et al. [8] and Riley et al. [7] are similar.
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FIG. 6. Maximum residual when predicting the compactness C2 of
a NS with m2 given m1 and C1. The dashed contours correspond to
lines of constant mass ratio q = m2/m1. The mass ratio between
PSR J0030+0451 and both a PSR J0737-3039A and a 1.4 M� star
is about 0.9. Overall, the largest residual is about 0.06 in the mass
range shown.

I-Love test is to present it alongside with the parametrized
post-Keplerian formalism (ppK) used to test general relativ-
ity with binary pulsars [63]. Both are very similar in spirit.
In the ppK formalism, a timing model that assumes Keplerian
orbits augmented with certain theory-agnostic post-Keplerian
parameters θ is fit to timing data. This provides marginalized
posterior distributions for all parameters in the timing model,
including both the orbital ones (such as the orbital period Pb
and eccentricity e), as well as the post-Keplerian ones (such
as the Shapiro time delay γ and the secular advance of perias-
tron ω̇). To do a theory-agnostic, general relativity test with
binary-pulsar data, one then uses expressions that assume gen-
eral relativity is correct for how the post-Keplerian parameters
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FIG. 7. I-Love relation in dynamical Chern-Simons gravity. In the
top-panel we show the numerical data (crosses) obtained for neutron
stars in dynamical Chern-Simons, the I-Love relation in general rel-
ativity (dotted line) and fits to it using the Newtonian result obtained
in the main text (dashed line) and the post-Minkowskian corrected
result (solid line). In the bottom-panel we show the relative errors
between both fits and the data, explicitly showing that the Newtonian
fit cannot be used for an I-Love test. In this figure we fixed ξ̄ = 103

and only show stars with ζ 6 0.25.

depend on the component masses mA and mB. These expres-
sions then define curves in mA–mB space (one curve per post-
Keplerian parameter), and under the assumption that general
relativity is correct, then all curves must interest at the same
point in mA–mB space (see e.g. [29]). In practice, the curves
have a width since the measurements are not perfect, so the
intersections of the curves define a two-dimensional region in
mA–mB space.

Let us provide a concrete example. Assuming general rel-
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ativity, the post-Keplerian parameters ω̇, γ and r (the range
of the Shapiro time delay) are ω̇ = 3n(1 − e2)−1

(
GMn/c3

)2/3
,

γ = (e/n)XB

(
GMn/c3

)2/3
(1 + XB) and r = GmB/c3, where

XA,B = mA,B/M is the mass ratio, with the total mass M =

mA + mB and component masses mA and mB, while e is the
orbital eccentricity and n = 2π/Pb is the orbital frequency
with Pb the orbital period. Since the orbital period and the ec-
centricity are independent parameters in the timing model that
are, therefore, included in the Bayesian parameter estimation,
the above expressions represent 3 curves in mA–mB space. The
curves have a width that is dominated by the uncertainty in the
measurements of γ, ω̇ and r, so if the assumption that general
relativity is correct, these three finite-width curves must inter-
sect and define a two-dimensional region in mA–mB space.

Our theory-agnostic test is very similar to this one. In our
approach, the quantities that are independently measured are
the moment of inertia I and the Love number λ, which re-
quire two independent observations (NICER and LIGO/Virgo
ones, instead of a single binary pulsar observation). These two
measurements define a two-dimensional region in I–λ space,
whose finite size is associated with the uncertainty in these
observations. The moment of inertia and the Love number
also satisfy a relation, the I-Love relation, which is (approxi-
mately) independent of the equation of state, but dependent on
the theory of gravity. Therefore, the relation constructed as-
suming general relativity must cross the two-dimensional box
in I–λ space defined by the two observations if general rela-
tivity is correct. This does indeed happen as we showed for
the first time in Fig. 2 of the main text.

How do these tests work to constrain a specific modified-
gravity theory? In the binary pulsar case, the timing model
used to analyze the data does not change: it is still the Keple-
rian model enhanced with post-Keplerian parameters θ. What
changes is the relation between these post-Keplerian parame-
ters and the component masses, a relation that will now also
typically include additional modified theory parameters. For
example, in scalar-tensor theories [64] that support sponta-
neous scalarization [65], this relation now also depends on
the spontaneous scalarization parameter β (see e.g. [66, 67]).
Therefore, the observation of three post-Keplerian parameters
allows one to infer a constraint on β, since if this parameter
were large (and negative) enough to generate a strong devia-
tion from general relativity, then the three post-Keplerian pa-
rameter curves would not intersect in the m1–m2 space.

Our constraint on specific modified-gravity theories oper-
ates in a similar way, and just for the sake of concreteness,
let us consider dynamical Chern-Simons gravity as a simple
example. We will assume that the model used to fit the data
(i.e. the lightcurve model used by NICER and the gravitational
waveform model used by LIGO/Virgo) is that assumed in gen-
eral relativity. This leads to a two-dimensional region in I-λ
space, just as in the theory-agnostic case. What changes now
is that the I–λ relation is not just a function of the Love num-
ber, but it also depends on the coupling parameter α. The
larger this parameter is, the more the I–λ curve will deviate
from the observed two-dimensional region in I-λ space. One
can then determine how small α must be in order to be con-

sistent with the I and λ observations, and this is the constraint
quoted in the main text. We summarize this discussion in Ta-
ble V.

Is our assumption that the model used to fit the NICER
and LIGO/Virgo data is not modified from general relativ-
ity a good assumption to make in this test? Let us first
continue considering dynamical Chern-Simons gravity. In
this theory it has been shown that neutron stars do not have
(monopole) scalar hair [68]. Therefore one cannot use the
gravitational waves emitted during the inspiral of binary neu-
tron stars to test dynamical Chern-Simons gravity due to
the absence of dipole scalar radiation emission. Moreover,
the light-curve model used by NICER considers the emis-
sion of X-rays from an oblate star surface and with pho-
tons propagating in a Schwarzschild spacetime (the so-called
“Oblate+Schwarscshild model” [16]). On the one hand, non-
rotating stars in dynamical Chern-Simons gravity are identi-
cal to those of general relativity, and therefore, their exterior
spacetime is also described by the Schwarzschild metric [69].
On the other hand, the stellar oblateness (due to rotation)
could in principle be used to distinguish this theory gravity
from general relativity. However modifications to the oblate-
ness due to changing the theory of gravity are degenerate with
assuming general relativity but changing the underlying equa-
tion of state. Together, these points justify our assumption that
the model used to fit the NICER and LIGO/Virgo data is not
modified from general relativity in dynamical Chern-Simons
gravity.

What about other theories? In the case of scalar-tensor the-
ories, which support spontaneous scalarization (exemplified
above), neutron stars have (monopole) scalar hair and there-
fore, in general, emit dipolar scalar radiation when found in
binaries; and they also have an exterior spacetime that dif-
fers from the Schwarzschild metric. In this case, a direct
confrontation of the models in this theory against observa-
tional data could yield a constraint on β using observations
by NICER (see [70–72] and particularly [73] for initial work
in this direction). Such constraints are likely to be stronger
than the ones obtained using our parametrized I-Love test.
This is specially true for theories whose lightcurve model and
gravitational waveforms are considerably different from gen-
eral relativity. But none of this invalidates our I-Love test.
At the very least, our I-Love test would provide complemen-
tary constraints to other more direct tests. More importantly,
the I-Love test is a new tool to constrain theories of gravity
which would remain unconstrained by NICER and gravita-
tional wave observations alone, as we have shown for dynam-
ical Chern-Simons gravity as an example. This fact highlights
the importance of using multimessenger observations to con-
strain deviations from general relativity. Our parametrized I-
Love test is the first one in this direction.

Let us do a back-of-the-envelope estimate to explain why
neutron star observations have such a constraining power in
dynamical Chern-Simons gravity. Assume that ζ has been
constrained to some value, say ζ 6 0.25, by some set of obser-
vations that involve also measurements of the mass and equa-
torial radius of a neutron star. A posterior distribution for α1/2

can then be obtained by translating the MCMC samples for M
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ppK pIL
Astrophysical system binary pulsar isolated NS and a NS binary
Instrument radio telescopes NICER and LIGO/Virgo
Model theory-agnostic timing formula GR light-curve and GW waveform
Parameters post-Keplerian θ(m1,m2,P) I = I(λ,P)
# of parameter 3 (two for m1, m2, 2
measurements for test third for test)

TABLE V. Comparison between the parametrized post-Keplerian (ppK) and parametrized I-Love (pIL) relation tests of gravity. Here P
collectively represents the parameters that control the deviations from general relativity. They all vanish for general relativity.

and Re into samples of α1/2 = [ζ/(16π)]1/4R. Using for con-
creteness the MCMC samples obtained by NICER, one would
obtain α1/2 6 8.57+0.93

−1.13 km (at 90% credibility), which is very
close to the real constraint derived in the main text. The back-
of-the-envelope estimate presented above is of course not an

actual constraint since NICER alone cannot bound ζ due to
degeneracies with the equation of state. But this estimate does
tell us that such a test would be dominated by R, because an
improvement on the bound on ζ by a factor of k would only
improve the constraint on α1/2 by k1/4.
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