Two-dimensional intrinsic ferromagnetic monolayer transition metal oxyhydroxide -Supplemental Material-

Hongyu Chen, ${ }^{1}$ Peizhe Tang, ${ }^{2,3}$ and Jia Li ${ }^{1,4}$
${ }^{1}$ Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
${ }^{2}$ School of Materials Science and Engineering, Beihang University, Beijing 100191, China
${ }^{3}$ Max Planck Institute for the Structure and Dynamics of Matter,
Center for Free Electron Laser Science, 22761 Hamburg, Germany
${ }^{4}$ Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China (Dated: April 23, 2021)

CONTENTS

Phonon calculations for monolayer $\mathrm{TMOOHs}(\mathrm{TM}=\mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni})$ 2
Convergence-test of the imaginary frequencies around Γ point 2
Partial density of states of phonon spectra 2
Energy-band calculations for monolayer VOOH and CrOOH 3
Energy bands and partial bands for monolayer VOOH and CrOOH 3
More accurate bandgaps using HSE06 functional 3
Derivation process of the expression of d-orbitals 4
Evaluation of T_{C} 7
References 8

PHONON CALCULATIONS FOR MONOLAYER TMOOHS (TM $=\mathrm{V}, \mathrm{CR}, \mathrm{MN}, \mathrm{CO}, \mathrm{NI})$

Convergence-test of the imaginary frequencies around Γ point

FIG. S1. Phonon spectra of monolayer VOOH using supercells with size of $2 \times 2 \times 1,3 \times 3 \times 1,4 \times 4 \times 1,6 \times 6 \times 1$. The small packet around Γ point shrinks as supercell get larger, which means that it is from the numerical error, not structural unstability.

Partial density of states of phonon spectra

FIG. S2. Phonon spectra of monolayer TMOOHs ($\mathrm{TM}=\mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}$) and their partial density of states using $3 \times 3 \times 1$ supercells. For monolayer VOOH and CrOOH , there is no imaginary frequency in the whole Brillouin zone, apart from a small packet around Γ point for VOOH. For monolayer $\mathrm{MnOOH}, \mathrm{CoOOH}$ and NiOOH , there are considerable imaginary frequencies in the acoustic branch, which means that they are not dynamically stable.

ENERGY-BAND CALCULATIONS FOR MONOLAYER VOOH AND CROOH

Energy bands and partial bands for monolayer VOOH and CrOOH

FIG. S3. Band structures and partial bands using the GGA+U method for monolayer (a) VOOH and (b) CrOOH, respectively, where monolayer VOOH and CrOOH are both semiconductors. The d orbitals of transition metal atoms are all around the Fermi level. Besides, these d orbitals split into three groups, a_{1}, e_{1}, and e_{2}, at the Γ point, and a_{1} orbital is ascribed to $d_{z^{2}}$ orbitals. Further, there is strong hybridization between unoccupied V- a_{1} and occupied O2- p_{z} orbitals and between unoccupied $\mathrm{Cr}-e_{2}$ and occupied O2- $p_{x / y}$ orbitals in the spin-up channel around the Fermi level.

More accurate bandgaps using HSE06 functional

FIG. S4. Energy bands using HSE06 functional for monolayer (a) VOOH and (b) CrOOH .

DERIVATION PROCESS OF THE EXPRESSION OF d-ORBITALS

According to transition-metal-ion theory [1], transition metal atom surrounded by nonmetallic atoms could be considered as one cation. Further, based on crystal field theory [2], the influence of anions on the energy-level splitting of d-electrons of cations could be investigated using the first-order perturbation method. Under the singleelectron approximation [2], the matrix elements of first-order perturbation Hamiltonian could be $H_{i, j}=<\phi_{i}\left|H_{1}\right| \phi_{j}>$, where H_{1} represents the crystal field potential, dependent on the local symmetry in the corresponding point group (namely, the geometric coordination environment of transition metal cations). The wavefunctions of d orbitals $\left\{\phi_{i}\right\}$ ($i=1,2,3,4,5$) could be expressed by spherical harmonics $Y_{l m}$, where $l=2$ and $m=-2,-1,0,1,2$, are the angular and magnetic quantum number, respectively.

Conveniently, if $\left\{\phi_{i}\right\}$ are the bases of corresponding point group's irreducible representation, the first-order perturbation matrix will be diagonalized. Consequently $\left\{\phi_{i}\right\}$ become the first-order perturbation matrix's eigenfunctions, namely, representing the eigenstates under the crystal-field potential. This condition or process, is also called "symmetry-adapting" [3]. Usually, we choose five orthogonal linear combinations of $Y_{l m}$ as the bases, in the premise of that, one split level do not mix with other split levels under corresponding the symmetry-transformation. This premise brings the crystal field potential, $H_{i j}$, into block form according to the irreducible representation in the point group for the corresponding angular quantum number, such as $A_{1}+2 E$ in $C_{3 v}$ for $l=2$. For the one-dimensional irreducible representation, the base is the eigenfunction, and for the two-dimensional irreducible representation, eigenfunctions are linear combinations of the two bases.

FIG. S5. (a) Schematic representation of octahedron (point group O_{h}) with its symmetry operation. (b) Schematic representation of $C_{3 v}$ crystal field in XYZ coordinates where [111]-direction is along the C_{3} rotation axis. (c) Schematic representation of $C_{3 v}$ crystal field in XYZ coordinates, where Z-axis is along the C_{3} rotation axis. The blue and red balls represent cations and anions, respectively. In our work, the higher-lying e double-degenerated states are unoccupied for monolayer VOOH and CrOOH , which should be included to analyze the superexchange interaction between V/Cr- d orbitals and $\mathrm{O}-p$ orbitals. Besides, to explain the origin of the easy-plane or easy-axis magnetic anisotropy in a two-dimensional lattice, we need the expressions of d orbitals substituted into the spin-orbit coupling (SOC) induced magnetic anisotropy energy (MAE). Thus, we should revise the expressions of wave functions of d orbitals in XYZ coordinates, where the Z-axis is along the C_{3} rotation axis as shown in Fig. S5(c).

For the $\mathrm{C}_{3 \mathrm{v}}$ crystal-field potential [see Fig. $\mathrm{S} 5(\mathrm{~b})$], it could be viewed as the distorted O_{h} crystal field [see Fig. $\mathrm{S} 5(\mathrm{a})$ to Fig. $\mathrm{S} 5(\mathrm{~b})]$, where only three kinds of symmetry operations remain $\left(1 E, 2 C_{3}, 3 \sigma_{v}\right)$. We firstly establish a coordinate set as shown in Fig. S5(b) to make it simple to transform spherical harmonics under C_{3} operation. The transformation of there basis functions under the symmetry operations in $C_{3 v}$ is shown in Table S 1 . And these basis functions can be expressed by a linear combination of spherical harmonics as following:

$$
\begin{equation*}
a_{1}^{0}: i \sqrt{\frac{1}{6}}\left(\left(d_{1}+d_{-1}-d_{2}+d_{-2}\right)+i\left(d_{1}-d_{-1}\right)\right)=\sqrt{\frac{1}{3}}\left(d_{y z}+d_{x z}+d_{x y}\right) \tag{1}
\end{equation*}
$$

$$
e_{1}^{0}\left\{\begin{array}{l}
e_{a 1}^{0}: d_{0}=d_{z^{2}} \tag{2}\\
e_{b 1}^{0}: \sqrt{\frac{1}{2}}\left(d_{2}+d_{-2}\right)=d_{x^{2}-y^{2}}
\end{array}\right.
$$

$$
e_{2}^{0}\left\{\begin{array}{l}
e_{a 2}^{0}: \sqrt{\frac{1}{12}}\left(\left(d_{1}-d_{-1}\right)-i\left(d_{1}+d_{-1}+2 d_{2}-2 d_{-2}\right)\right)=\sqrt{\frac{1}{6}}\left(-d_{x z}-d_{y z}+2 d_{x y}\right) \tag{3}\\
e_{b 2}^{0}: \sqrt{\frac{1}{4}}\left(\left(d_{1}-d_{-1}\right)+i\left(d_{1}+d_{-1}\right)\right)=\sqrt{\frac{1}{2}}\left(-d_{x z}+d_{y z}\right)
\end{array}\right.
$$

TABLE S1. Transformation of d-orbital functions under symmetry operation in $C_{3 v}$ point group. $d_{i}(i=2,1,0,-1,-2)$ represent the spherical harmonics, $Y_{2, \pm 2}=\sqrt{\frac{5}{4 \pi}} \times \sqrt{\frac{3}{8}} \frac{(x \pm i y)^{2}}{r^{2}}, Y_{2, \pm 1}=\mp \sqrt{\frac{5}{4 \pi}} \times \sqrt{\frac{3}{2}} \frac{z(x \pm i y)}{r^{2}}, Y_{2,0}=\sqrt{\frac{5}{4 \pi}} \times \sqrt{\frac{1}{4}} \frac{3 z^{2}-r^{2}}{r^{2}} . \chi$ is the corresponding character for the bases and symmetry transformation in this case.

	E	$C_{3}\left\{\begin{array}{l}x \rightarrow y \\ y \rightarrow z \\ z \rightarrow x\end{array}\right.$	$\sigma_{v}\left\{\begin{array}{l}x \rightarrow y \\ y \rightarrow x \\ z \rightarrow z\end{array}\right.$
d_{2}	d_{2}	$-\sqrt{\frac{6}{16}} d_{0}-\sqrt{\frac{1}{16}} d_{2}-\sqrt{\frac{1}{16}} d_{-2}-\sqrt{\frac{4}{16}} d_{1}-\sqrt{\frac{4}{16}} d_{-1}$	$-d_{-2}$
d_{1}	d_{1}	$\frac{i}{2} d_{2}-\frac{i}{2} d_{-2}+\frac{i}{2} d_{1}-\frac{i}{2} d_{-1}$	$-i d_{-1}$
d_{0}	d_{0}	$-\sqrt{\frac{2}{8}} d_{0}+\sqrt{\frac{3}{8}} d_{2}+\sqrt{\frac{3}{8}} d_{-2}$	d_{0}
d_{-1}	d_{-1}	$-\frac{i}{2} d_{2}+\frac{i}{2} d_{-2}+\frac{i}{2} d_{1}-\frac{i}{2} d_{-1}$	$i d_{1}$
d_{-2}	d_{-2}	$-\sqrt{\frac{6}{16}} d_{0}-\sqrt{\frac{1}{16}} d_{2}-\sqrt{\frac{1}{16}} d_{-2}+\sqrt{\frac{4}{16}} d_{1}+\sqrt{\frac{4}{16}} d_{-1}$	$-d_{2}$
χ	5	-1	1

These linear combinations possess the transformation under the symmetry operations according to $C_{3 v}$ point group as following:

$$
\left.\begin{array}{c}
P_{C_{3}} \sqrt{\frac{1}{3}}\left(d_{y z}+d_{x z}+d_{x y}\right)=\sqrt{\frac{1}{3}}\left(d_{y z}+d_{x z}+d_{x y}\right) \\
P_{C_{3}}\left[\begin{array}{c}
d_{z^{2}} \\
d_{x^{2}-y^{2}}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
d_{z^{2}} \\
d_{x^{2}-y^{2}}
\end{array}\right] \\
P_{C_{3}}\left[\begin{array}{c}
\sqrt{\frac{1}{6}}\left(-d_{x z}-d_{y z}+2 d_{x y}\right) \\
\sqrt{\frac{1}{2}}\left(-d_{x z}+d_{y z}\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
\sqrt{\frac{1}{6}}\left(-d_{x z}-d_{y z}+2 d_{x y}\right) \\
\sqrt{\frac{1}{2}}\left(-d_{x z}+d_{y z}\right)
\end{array}\right] \\
P_{\sigma_{v}} \sqrt{\frac{1}{3}}\left(d_{y z}+d_{x z}+d_{x y}\right)=\sqrt{\frac{1}{3}}\left(d_{y z}+d_{x z}+d_{x y}\right) \\
d_{x^{2}-y^{2}}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
d_{z^{2}} \tag{9}\\
d_{x^{2}-y^{2}}
\end{array}\right] .\left[\begin{array}{c}
1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
\frac{1}{6}\left(-d_{x z}-d_{y z}+2 d_{x y}\right) \\
\sqrt{\frac{1}{2}}\left(-d_{x z}+d_{y z}\right)
\end{array}\right]
$$

where $P_{C_{3}}$ and $P_{\sigma_{v}}$ represent the symmetry operation in $C_{3 v}$ point group as shown in Table S2. It can be seen that these linear combinations (a_{1} and $2 e$) do not mix with each other, which means that they are a set of appropriate orthogonal bases to bring $H_{i j}$ into block form according to the irreducible representations of $C_{3 v}$ point group point
group for $l=2$. Further, to get a set of basis functions in the XYZ coordinates as shown in Fig. S5(c), we should make a linear transformation according to the following transformation matrix,

$$
\left[\begin{array}{l}
X_{0} \tag{10}\\
Y_{0} \\
Z_{0}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\
\frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

Then the transformed basis functions can be expressed as following:

$$
\begin{equation*}
a_{1}: d_{z^{2}} \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& e_{1}\left\{\begin{array}{l}
e_{a 1}: \frac{1}{\sqrt{3}} d_{x^{2}-y^{2}}-\frac{\sqrt{2}}{\sqrt{3}} d_{x z} \\
e_{b 1}: \frac{1}{\sqrt{3}} d_{x y}+\frac{\sqrt{2}}{\sqrt{3}} d_{y z}
\end{array}\right. \tag{12}\\
& e_{2}\left\{\begin{array}{l}
e_{a 2}: \frac{\sqrt{2}}{\sqrt{3}} d_{x^{2}-y^{2}}+\frac{1}{\sqrt{3}} d_{x z} \\
e_{b 2}:-\frac{\sqrt{2}}{\sqrt{3}} d_{x y}+\frac{1}{\sqrt{3}} d_{y z}
\end{array}\right. \tag{13}
\end{align*}
$$

It can be seen that the transformed basis functions are still orthogonal to each other. We also compare our derived symmetry-adapted bases with that from density functional theory (DFT) calculation as shown in Fig. S6. We found that the shape and pointed-direction of functions from our derivation are similar to wavefunctions at Γ-point from DFT calculation. Therefore, we clarify that these basis functions of d orbitals that we chose are reasonable.

However, there are two points to be noted. First, the ratio coefficient between $d_{x^{2}-y^{2}}\left(d_{x y}\right)$ and $d_{x z}\left(d_{y z}\right)$ from DFT calculation is not strictly equal to $\sqrt{2}(1 / \sqrt{2})$ as we derive. The ratio coefficient will change with the species of transition metal atoms and are different between e_{1} and e_{2}, which may be caused by the interaction between d electrons themselves. Therefore, we replace the $\sqrt{2}$ with α / β and γ / δ, where $\alpha / \beta=\gamma / \delta$. This relation of equivalence is verified by the Γ-point orbital-component from DFT calculation as listed in the main text as shown in Table III. Second, the coefficients before $d_{x^{2}-y^{2}}, d_{x y}, d_{x z}, d_{y z}$ from DFT calculation contain four components as shown in Table III. There is a recombination of basis functions for one e degenerated-level, which means the eigenfunctions in one e_{1} $\left(e_{2}\right)$ degenerated-level are the linear combinations of the two basis functions. To maintain the orthogonality of basis functions in one degenerate-level and opposite pointed direction between e_{1} and e_{2}, we make a linear transformation of basis functions in each subgroup as following:

$$
\begin{gather*}
e_{1}^{\text {final }}\left\{\begin{array}{l}
e_{a 1}{ }^{\text {final }}=e_{a 1}+e_{b 1} \\
e_{b 1}{ }^{\text {final }}=-e_{a 1}+e_{b 1}
\end{array}\right. \tag{14}\\
e_{2}^{\text {final }}\left\{\begin{array}{l}
e_{a 2}{ }^{\text {final }}=e_{a 2}-e_{b 2} \\
e_{b 2}{ }^{\text {final }}=e_{a 2}+e_{b 2}
\end{array}\right. \tag{15}
\end{gather*}
$$

Thus, the more tedious expressions are used for the derived eigenfunctions, as shown in the main text.

FIG. S6. (a) Schematic plot of wavefunctions of d orbitals by our derived expression. (b) Schematic plot of wavefunctions of d orbitals at Γ point from DFT calculation, where the wavefunctions are from d-electrons in spin-up channel of V cation in monolayer VOOH, and the corresponding energy could be found in Fig. S3(a).

EVALUATION OF T_{C}

We evaluated the value of Curie temperature T_{C} according to exchange parameters. The exchange parameters J are calculated according to the Heisenberg model. In our work, we only consider the nearest-neighbor and next-nearest-neighbor adjacent atoms. Then the spin-dependent Hamiltonian can be written as

$$
\begin{equation*}
H_{<i, j>}=-\sum_{<i, j>} J_{1} \vec{S}_{i} \vec{S}_{j}-\sum_{<i, j>} J_{2} \vec{S}_{i} \vec{S}_{j} \tag{16}
\end{equation*}
$$

where $\langle i, j\rangle$ represents the sum over all neighboring pairs in the lattice. Considering the same supercells and magnetic configurations as that in [4] as shown in Fig. 1(a), the exchange parameters J_{1} and J_{2} could be expressed as

$$
\begin{align*}
& J_{1}=\frac{1}{2}\left(2 E_{z A F M}-E_{F M}-E_{s A F M}\right) \tag{17}\\
& J_{2}=E_{s A F M}-E_{z A F M}
\end{align*}
$$

where $E_{z A F M}, E_{S A F M}$, and $E_{F M}$ are the total energies per unit cell according to zigzag, stripe antiferromagnetic and ferromagnetic configurations, respectively. The exchange parameters for monolayer VOOH and CrOOH are listed in Table S 2 . The value of J_{2} is significantly smaller than that of J_{1}, so the value of Curie temperature T_{C} is determined mainly by the nearest-neighbor parameter J_{1}.

TABLE S2. Nearest-neighbor $\left(J_{1}\right)$ and next-nearest-neighbor $\left(J_{2}\right)$ exchange parameters for monolayer VOOH and CrOOH .

	$J_{1}(\mathrm{meV})$	$J_{2}(\mathrm{meV})$
VOOH	8.1	-1.2
CrOOH	15.5	-0.1

As we described in the main text, the magnetic easy-axis is in the 2 D plane for the monolayer VOOH , indicating it as an XY magnet, while for monolayer CrOOH , the magnetic easy-axis is normal to the 2D planes. We have used two methods to discuss the value of Curie temperature T_{C} for the monolayer VOOH and CrOOH , respectively.

For the monolayer VOOH as the XY magnet, we evaluated the Curie temperature T_{C} using the expression derived from the Monte Carlo method [4]. They obtained a simple relation between exchange parameter J_{1} and T_{C} as T_{C}
$=1.335 J_{1} / k_{B}$ for triangular lattice, where k_{B} is the Boltzmann constant. Therefore, the Curie temperature T_{C} of monolayer VOOH is estimated as 138 K .

For monolayer CrOOH with perpendicular magnetic anisotropy, we evaluated the Curie temperature based on the Weiss molecular-field theory [5-7] as

$$
\begin{equation*}
T_{C}=\frac{2 z J S(S+1)}{3 K_{B}} \tag{18}
\end{equation*}
$$

where $z=6$ is the number of nearest-neighboring atoms for monolayer $\mathrm{CrOOH}, \mathrm{S}=\frac{3}{2}$ is the spin quantum number of each Cr atom, and J is the exchange integral that could be obtained by

$$
\begin{equation*}
J=\frac{J_{1}}{2 z S^{2}} \tag{19}
\end{equation*}
$$

For the monolayer CrOOH , the value of the exchange integral J is 0.57 meV , and the Curie temperature T_{C} is about 100 K.
[1] J. S. Griffith, The theory of transition-metal ions (University Press, Cambridge, 1964).
[2] S. Jiang, The theory of ferromagnetism (Science Press, Beijing, 1993).
[3] C. Bradley and A. Cracknall, The mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Clarendon Press, Oxford, 1972).
[4] S. Zhang, R. Xu, W. Duan, and X. Zou, Adv. Funct. Mater. 29, 1808380 (2019).
[5] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd ed. (Wiley \& Sons, Inc., Hoboken, NJ, 2009).
[6] A. R. Wildes, B. Roessli, B. Lebech, and K. W. Godfrey, J. Phys.: Condens. Matter 10, 6417 (1998).
[7] H. L. Zhuang, Y. Xie, P. R. C. Kent, and P. Ganesh, Phys. Rev. B 92, 035407 (2015).

