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Abstract

We propose an adaptive moment-matching framework for model order reduction of
quadratic-bilinear systems. In this framework, an important issue is the selection of
those shift frequencies where moment-matching is to be achieved. So far, the choice
often has been random or linked to the linear part of the nonlinear system. In this
paper, we extend the use of an existing a posteriori error bound for general linear time
invariant systems to quadratic-bilinear systems and develop a greedy-type framework
to select a good choice of interpolation points for the construction of the projection
matrices. The results are compared with standard quadratic-bilinear projection
methods and we observe that the approximations obtained by the proposed method
yield high accuracy.

Keywords: Quadratic-bilinear systems, Model order reduction,
Projection/moment-matching, Error bounds

Introduction
There are different applications where the dynamics of the system can be represented by
quadratic-bilinear differential algebraic equations (QBDAEs). These include simulation
of distribution networks [1], fluid flow problems [2] and nonlinear VLSI circuits [3,4]. In
addition, a large class of nonlinear systems can be written in quadratic-bilinear form by
using liftings to higher-dimensional state-spaces [4]. Most of these applications involve
a large number of equations i.e., a high-dimensional state-space. This makes simulation,
control and optimization computationally inefficient. A remedy to this issue is the use of
model order reduction (MOR).

We consider the problem of MOR for a single-input single-output quadratic-bilinear

descriptor system of the form:

Ex(t) = Ax(t) + Nx(t)u(t) + Qx(t) ® x(¢)) + Bu(t),
y(£) = Cx(t),

1)

where E, A, N € R"™",Q € R B CT ¢ R" are the coefficient matrices and vectors.

x(¢) € R" is the state vector and u(t), y(¢) € R are the input and output of the system. The
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matrix E may or may not be singular but the pencil is assumed to be regular, i.e., AE — A
is singular only for finitely many values A € C [5].
The goal of MOR is to construct a reduced system of dimension r < »:

Epier () = Ao (t) + Ny (0)u(t) + Qr(x(2) ® x,(2)) + Bru(?),

(2)
¥ () = Crxr(t),

with the output response y,(t) approximately equal to y(¢). In case of linear systems
(where Q and N are zero matrices), there are various techniques in the literature to com-
pute reduced-order models (ROMs), cf., [6—8]. Among these methods, projection-based
moment-matching methods [9,10] are well used and have been extended to quadratic-
bilinear systems [4,11,12]. Projection involves approximating the state vector x(¢) in an
r-dimensional subspace spanned by the column vectors of V' € R"*", so that the residual
in the state equation is orthogonal to another r-dimensional subspace spanned by the col-
umn vectors of W € R”*". That is, we approximate x(t) ~ Vx,(t) such that the following
Petrov-Galerkin orthogonality condition holds:

WT<EVa'cr(t)— (AVi (6) + NVar, (0)ua(t) + Q(Vary () ® Vacy(8)) + Bu(t))) —0. ©

If W = V, the projection is orthogonal and is often called one-sided projection, otherwise
it is oblique and is called two-sided projection. The oblique projection framework leads
to a set of reduced system matrices of the form:

E. =WTEV, A, =wTAV, Q. =WIQV®V) N, =WINYV,

(4)
B, =WTB C,=CV.

In case of linear systems, a suitable choice of the basis matrices V and W implicitly
ensures moment-matching, where moments are the coefficients of the series expansion
of the transfer function at some predefined shift frequencies. Thus for projection-based
moment-matching, the choice of V and W is related to the transfer function of the
system. However, nonlinear systems have no universal input-output representation. For
some classes of nonlinear systems, though, including QBDAE systems, it is possible to
generalise the transfer function concept by utilising the Volterra theory [13], where the
input-output relationship is represented by a set of high-order transfer functions. This
makes the concept of moment-matching more complex in the nonlinear case, since the
structure of the basis matrices V and W in (4) now depends on multiple high-order transfer
functions. To achieve moment-matching, simplifications are often made in the literature
[4,11] for computing the ROMs. For example, [11] constructs V and W such that the
reduced system matches the moments of the first- and second-order transfer functions.
In [12], simplified forms of high-order transfer functions are derived, which also enable
the projection-based techniques to match moments of high-order transfer functions. In
addition, all the existing moment-matching/interpolation approaches [4,11,12] are based
on the simplification that the interpolation points for each frequency variable are the
same. We discuss these results further in “Background”.

Recently, a new framework [14] for quadratic-bilinear systems has been proposed that
is based on generalized Sylvester-type matrix equations. The approach involves truncated
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solution of two complex matrix equations to identify a good choice for the basis matrices V'
and W. Another approach is the extension of the Loewner framework from linear/bilinear
systems [15,16] to quadratic bilinear systems [17]. Also, an indirect approach for MOR
of QBDAE systems is proposed in [18], where the basis matrices are constructed from
the bilinear part of the quadratic-bilinear system. In [19], the bilinear part of the system
is viewed as a linear parametric system and an a posteriori error bound is used to select
the interpolation points and construct the basis matrices adaptively. All these techniques
are using the first two or three high-order transfer functions and their structure is differ-
ent from the one identified in [11]. Recently, a new direction has been explored in [20]
where the properties of higher order moment matching are analysed so that the nonlinear
matrices are not used in the construction of basis matrices. Also, in [21] the idea of sig-
nal generator driven system is used so that univariate moment-matching can be utilised
for model order reduction. These approaches are comparing their results with [11] and
[19] and for some benchmark examples there behaviour is comparable. However, our tar-
get is general moment-matching for QBDAEs, so we will mainly focus on the two-sided
moment-matching technique from [11].

In this paper, we identify a good choice of interpolation points for quadratic-bilinear
systems by utilizing a greedy type framework based on error bounds for quadratic-bilinear
systems motivated by the recently proposed error bound for linear parametric systems
in [22]. Here, we relax the restriction of using the same interpolation points for different
frequency variables. The approach starts from some initial interpolation points that are
iteratively updated to identify a set of interpolation points corresponding to the maximal
values of certain error bounds. For each choice of interpolation points, we interpolate,
not only, the original transfer function and its first derivative but also higher derivatives,
so that the quadratic-bilinear system is well approximated. The iteration stops when the
approximation error is less than the prescribed tolerance level. Each iteration contributes
to constructing a better set of basis matrices V' and W, until a given error tolerance is
achieved. The main difference from the work in [19] is that the quadratic part of the
system is also involved in the basis construction in the proposed framework based on an
a posteriori error bound for quadratic-bilinear systems, whereas only the bilinear part is
considered for the basis matrix computation in [19]. The error estimator used in [19] only
estimates the error of the linear-bilinear part.

The remaining part of the paper is organized as follows. “Background” reviews the
existing projection based moment-matching techniques for quadratic-bilinear systems.
“Error bound for QBDAEs” presents the error bound expressions for quadratic-bilinear
systems and “Interpolation points using error bounds” utilises these error bounds in
a greedy-type algorithm to select interpolation points. Finally in “Numerical results”,
numerical results are shown for some benchmark examples.

Background

In this section, we briefly review the concept of moment-matching discussed in [11,12] for
quadratic-bilinear systems. Before going into the details of nonlinear moment-matching,
we begin with the structure of high-order transfer functions.
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Multivariate transfer functions

The input-output representation for single input quadratic-bilinear systems can be
expressed by the Volterra series expansion of the output y(¢) with quantities analogous to
the standard convolution operator. That s,

Xt et te—1
— et ... — 1) ult — t)dty - - dty,
¥(2) ,(Z_;/ofo /0 x(t1 tult — t1) - - - u(t — ty)d; t (5)

where it is assumed that the input signal is one-sided, i.e., #(¢) = 0 for £ < 0. In addition,
each of the generalized impulse responses, /g(ty, . . ., ), also called the k-dimensional
kernel of the subsystem, is assumed to be one-sided. In terms of the multivariate Laplace
transform, the k-dimensional subsystem can be represented as,

Yk(sb . -)Sk) = Hk(sb .. -:Sk)u(sl) T U(Sk)) (6)

where Hy(s1, . . ., s¢) is the multivariate transfer function of the k-dimensional subsystem.
The generalized transfer functions in the output expression (6) are in the so-called trian-
gular form [13]. We denote the k-dimensional triangular form by Ht[fi] (s1, ..., 8%). There
are some other useful forms such as the symmetric form and the regular form of the
multivariate transfer functions as discussed in [13]. The triangular form is related to the

symmetric form by the following expression

1 k
Hs[)]/(;]n(slf ceo SK) = - ZHt[”'](sn(l)’ oo S (k) (7)
E10!

where the summation includes all k! permutations of sy, . . ., si. Also, the triangular form
can be connected to the regular form of the transfer function by using

k
Ht[ri](sl’ ceSE) = H,[fg](sl, S1+582...,81 s+ + sp). (8)
According to [13], the structure of the generalized symmetric transfer functions can be

identified by the growing exponential approach. The structure of these symmetric transfer
functions for the first two subsystems of the quadratic-bilinear system (1) can be written

as
Hi(s1) = C(s;E — A)"!B, o
Hy(s1,82) = C((s1 + $2)E — A) "' B(s1, 52),
where
B(s1, 52) =: Qx1(s1) ® x1(s2)) + %N(xl(sl) + x1(s2)), (10)

in which x;(s) := (SE — A)~!B. Defining x(s1, s2) := ((s1 + s2)E — A)~1B(s1, s2), the first
two (first- and second-order) symmetric transfer functions can be written as

Hi(s1) = Cx1(s1),

Hj(s1, 52) = Cxa(s1, 52).

(11)

Before going into the partial differentiation of these multivariate transfer functions,
we introduce the concept of matricization. The process of reshaping a tensor into a

2, .
mxn" is considered as the mode-1

matrix is called matricization. In [11], the matrix Q € R
matricization of a 3 dimensional tensor Q € R"*"*" The n x n components of Q are the
frontal slices Q; € R"*", i =1, ..., n of the tensor Q, i.e. Q = [Ql e Qn]. The mode-2

and mode-3 matricizations can be defined as

@ =[or - o]
Q¥ = [vec(@)) - vee(@,)]
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Note that the concept of matricization allows us to symmetrize Q to Q so that Q(x ® x) =
Q(x ® x) holds and the commutativity property Q(z ® v) = Q(v ® u) for arbitrary choices
of u, v € R” is enforced. In addition, the property

wlQu®v) = ul QP @ w), (12)
also holds, where w, u, v € R” are arbitrary and Q is assumed to be in the symmetrized
form, see [23]. Let G(s) := sE — A, then by using

3G(s)~! 3G
(S) — _G(S)flﬁG(s)flj
s ds
and (12), we have
dH>(s1, s2)
2851 = = (1 +2) Exals 52) — x1(50) E ya(s1, ) (13)

where y1(s) := (sE — A)~TCT and yy(sy, 52) := (s1E — A)~T C(s1,s2)” in which

1
Clsr,52) = QP (1(52) ® 71(51 +52)) + N5t +52).

Similarly
OHy(s1,52)

o = —y1(s1 + 52) T Exa(s1, 52) — x1(s2) T ET ya(s2, 51). (14)
2

Notice that when s; = sp = o, the two partial differentiations are the same. This condition
on interpolation points is assumed in [11] to show the moment-matching properties of
the ROM. In the following, we show moment-matching in the multivariate settings when
51 # s2 (51 = 01; and 5 = o).

Moment-matching for QBDAE
The goal of a moment-matching based reduction approach is to ensure that the high-order
transfer functions are well approximated. In case of symmetric transfer functions, we can
represent it as

Hk(Sl,...,Sk) %Hk(sl,...,sk), fork = 1,..,K (15)
with Hi(sy, ..., s;) being the k-th order multivariate transfer function of the reduced
system (2). With the task in (15) achieved for some K, we can expect that the output y(¢) is
well approximated by §(¢). To get recursive relations between vectors for approximation
subspaces, it is assumed in [11] that 57 = s, = o. With these settings, the second-order
transfer function becomes

Ha(0,0) = 320)" (Q(1(0) @ 11(0)) + Nt (0)).

The following Lemma summarizes the result introduced in [11].

Lemma 1 Let o; € C be the interpolation points and o; ¢ {A(A, E), A(A,, E,)}, where
A(A, E) represents the generalized eigenvalues of the matrix pencil \E — A. Assume that
E = WTEV is nonsingular and A, Q N, B, C are as in (4) with full rank matrices
V, W € R™ such that

span(V) = span,_; _{x1(03), x2(0y, 07)},

.....

then the reduced QBDAE satisfies the following (Hermite) interpolation conditions:
Hi(07) = Hi(0y), Hi1(20;) = H1(20)),

X 9 3 . ,
Hj(0;,0;) = Hy(0,01), —H(oy,00) = —Hs(op,04), j=12.
351' 8Sj
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See [11] for a proof. Next, we present moment-matching properties in the multivariable
settings, where s # s5.

Lemma 2 Let o1;, 09; € C with o1, 00; ¢ {A(A, E), A(A,, E,)}. Assume that E = WTEV
is nonsingular and A, Q, N, B, C are as in (4) with full rank matrices V, W € R"™ such
that

span(V) = span,_; i {x1(01:), %1(02:), %2(015 02:)}

Then the reduced QBDAE satisfies the following (Hermite) interpolation conditions:
Hi(o1;) = Hi(o1), Hi(o2) = Hi(o2), Hi(o1i + 02:) = Hi(01; + 02),

N 0 0
Hy (014, 02i) = Ha(014, 02i),  —Ha(014, 02;) = — Ha (014, 021),
8S1 851

d 0 4
—Hj (09, 01;) = — Ha(02;, 01).
332 382

The proof of the statement is similar to Lemma 1 and therefore omitted. Note that the

statement in Lemma 2 reduces to Lemma 1, if 01; = 09;. In the remaining part of the
paper, our goal is to identify a good choice of the interpolation points o1; and oy;.

Error bound for QBDAEs

In this section, we show how the error bound expression, derived initially in [22] for
parametric linear time invariant systems, can be extended to quadratic-bilinear DAEs.
We begin with a brief overview of the error bound for the first subsystem, as in [22] and
then discuss the extension to the second subsystem of the QBDAE (1).

Error bound for Hq(sq)
Here the error bound provides an estimate for the error between Hj(s;) and H(s;). To
this end, we define the primal and the dual systems as:

(s1E — A)x1(s1) = B, (16)
(s1E — A) T (s1) = —CT, 17)

respectively, where T denotes the transpose of a matrix. The error bound is constructed

so that it is based on two residuals, which result from MOR of the primal and the dual
system, respectively. The primal system is reduced using the matrix pair V; and W;, where

span(V1) = span;_; _({x1(o1,)}, span(Wy) = span,_; _{af“(o1)). (18)
As aresult, the reduced primal system is,

A

(s1E1 — A1)zi(s1) = B,

where E; = WITEV1,A1 = WlTA\/l, B = WITB and C; = CV;. Here #1(s1) := Viz1(s1)
is the approximation of x;(s1). Due to the dual relation between (16) and (17), the dual
system can be reduced by using Vld" = Wi and Wfl" = V1. The reduced dual system is

(s1E1 — A1) T2n(s1) = —C,



Khattak et al. Advanced Modeling and Simulation in Engineering Sciences(2022)9:23 Page 7 of 14

where E] = VITEWL A = VlTAWl, ¢ = WlTCT. Also kf”(sl) = lefl”(sl) is the
approximation of xf" (s1). The residuals associated with the reduction of the primal and
the dual systems can be written as

P (s1) = B — (s1E — A)Viz1(s1),

19
rit(s;) = —=CT — (s1E — A)T Wiz (s1). ”

With these quantities, the following result provides an a posteriori upper bound on the

approximation error, |[Hj(s) — Hy(s1)]:

Theorem 1 [22] The upper bound on the approximation of the transfer function Hi(s1) =
C(s1E — A)~'B can be written as |H1(s1) — Hi(s1)| < A1(s1), where

s 20 (1)
Al = =g o

) (20)

in which B1(s1) = omin(G(s1)), where omin indicates the smallest singular value of G(s1).

Error bound for H,(s1, 52)
Analogous to Hi(s1), we define the primal and dual systems as:

G(s1 + s2)x2(s1, s2) = B(s1, 52), (21)
GT(s1 + s2)x§“(s1,80) = —CT, (22)

respectively. The interpolation points for Hj (s1) can be identified through the error bound
A1(s1) by using a greedy framework as presented in [22]. This means that we can select oy;
fori =1, ..., rastheinterpolation points corresponding to the maximal values of the error
bound at subsequent iterations of the greedy algorithm in [22]. With these interpolation
points fixed for s;, we can also express the error bound for the second subsystem. The
error bound is constructed based on two residuals, which result from MOR of the primal
and the dual systems in (21) (22), respectively. The primal system is reduced using the

matrix pair V5 and Wo, where
span(V2) = span;_; _{x2(01; 027)},  span(W2) = SPan,':L,,,,k{xg”(Uu, oy)}) (23)

.....

As a result, the reduced primal system is
((s1 + $2)Ex — Ag)za(s1, 52) = Blsy, s2),

where £, = WZTEVZ, Ay = WZTAVZ, B(sy, 82) = WZTB(sl, s3) and Cy = CVs. Similarly,
the dual system is reduced using the matrix pair Vzd” and W/zd",

span(Vg") = span;_; _(x§“(015 02},  span(Wg") = span,_; _{x2(01s 02:)}. (24)

The reduced dual system is

(51 + 52)E2 — A2)T2§%(s1,50) = —CF,
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where £, = (W;’”)TEVd”, Ay = (Wz‘i”)TAVd”, CZT = (Vzd")TCT. The residuals associ-
ated with the reduction of the primal and dual systems can be written as

rb(s1,82) = B(s1,82) — ((s1 + $2)E — A)Vaza(s1, 2),

(25)
rd(s1, s2) = —=CT — ((s1 + $2)E — A) T V28 (51, 5,).

With these quantities, the following result provides an a posteriori upper bound on the
approximation error, |Ho (s, s2) — Hoy(s1, 2)|:

Theorem 2 The upper bound on the approximation of
Hy(s1,52) = C((s1 + s2)E — A) ' B(s1, 52)

can be written as |Ho(s1, s3) — Ha(s1, s2)| < Aa(s1, s2),
where
,
g s )2l (1, 52) 12

Ar(s1,82) == 52050 52) ) (26)

in which Ba(s1, 52) = omin(G(s1 + s2)), where omin indicates the smallest singular value of
G(s1 +52) = (51 + $2)E — A.

The proof is similar to Theorem 1 and therefore is omitted.

Interpolation points using error bounds

As discussed in “Background”, the projection matrices V and W defined in Lemma 2
require a good choice of interpolation points o1; and oy; which also serve as interpolation
points for MOR of the primal and dual systems in (16)-(17) and (21)-(22). In this section, we
show the use of the error bound expressions derived previously to select the interpolation
points.

The idea is to identify interpolation points corresponding to the maximal bound Aj(sy).
Assuming that oy; are the selected interpolation points for s1, the remaining interpolation
points for sy correspond to the maximal bound Aj(07y; s2) for each value of o1;. In this
way, the error bound can be used iteratively to select a good choice of interpolation points
in a predefined sample space, starting from an initial choice of sigma’s. The sample spaces
S1 and Sy can be arbitrarily selected with some fixed size. One possible choice is to use the
‘H>-(sub)optimal interpolation points obtained from IRKA applied to the linear part of (1)
and some other random interpolation points in the complex plane around IRKA points.
The selected interpolation points are then used to construct and update the required basis
matrices V and W, by using the multimoment-matching technique described before. It is
interesting to see that although we need to construct the ROMs for the primal and the dual
systems in (16), (17) and (21), (22), the projection matrices for those ROMs are obtained
without extra computations, since V1, Wi and V,, Wy are part of V, W by definition.
Therefore, V, W can be obtained by orthogonalizing V7 with V, and W; with W5 as
indicated in Step 9 of Algorithm 1, where a greedy framework for selecting interpolation
points is presented. For an initial pair of interpolation points, the ROMs of the primal and
the dual systems in (16), (17) and (21), (22) are constructed and the error bounds Aj, Ag
are computed. A new pair is selected such that the corresponding error bounds A; and
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A, are maximized at these points. With the selected interpolation points, we enrich the
projection matrices V, W for MOR of the original quadratic-bilinear system iteratively
during the greedy algorithm. Finally, the reduced quadratic bilinear system is constructed
using V, W that are derived upon convergence of Algorithm 1. Algorithm 1 stops when
A := A1 + Ay is below the tolerance €, where A includes the errors introduced by
approximating the first and second transfer functions. Since the interpolation points are
selected according to the error bounds A; and Ay, it is important that the error bounds
dynamically reflect the decay of the true error with the iteration of the greedy algorithm.
Ideally, the error bounds should be very close to the true error. Numerical tests in the next
section show that the error bounds really control the true error robustly.

Algorithm 1 An adaptive framework for selection of interpolation points

Inputs: 019, 020, E, A, N, H, B, C and S1, S»

Outputs: ¢, V and W

Initialization: V = [, W = [[Vi= [ Wi =[] Va= [ Wa=[lie =Li=-1j=0;
€01 < 1, 1% = (010, 020).

WHILE € > €4y

1 i=itLj=j+1
2 compute Vi(o1;) and W;(071;) using (18)
3 Vi =orth[Vy, Vil; W1 = orth[Wy, W;];
4

o1; = arg max Aj(o1);
01€8]

(%2

compute V;(01;, 02;) and W;(o1;, 09;) using (23)
6 Vo =orth(Vy, Vil; Wa = orth[Wa, Wi;
7 oy = arg max As(o1; 02);

02€S>

8 = [0y 09];
9V =orth[Vy, Val; W = orth[W1, Wa];
10 A(W) == A1(W) + Ax(); € = A(w/); END WHILE.

Numerical results

We consider three benchmark examples for our results on MOR of QBDAE systems. The
results are compared with the one-sided and two-sided projection methods, where the
interpolation points are computed by IRKA, implemented on the linear part of the system.
We represent the proposed method by 1s/2s-greedy (one-sided/two-sided projection with
greedy based interpolation points) and the method from literature by 1s/2s-IRKA (one-
sided/two- sided projection with IRKA interpolation points). The use of IRKA on the linear
part of the QBDAE system on convergence results in IRKA interpolation points which in
the greedy framework is used to define the initial guess of the optimal points. The Max.
True Error in the tables is defined as max |Hj(s1) — H1(s1)| + |Ha(s1, s2) — Ha(s1, s2)| and

S1,52€87
the Max. Est. Error is max A(sy, s2).

$1,52€87
Nonlinear RC circuit
The nonlinear RC circuit was first considered in [24] and since then it has been used in
many papers for nonlinear MOR [5]. Consider the voltage v and the current function g(v).
Then the I-V characteristics can be represented as: g(v) = e*® +v — 1. The nonlinearity in
the current function results in a nonlinear model. All the capacitances are fixed to C = 1.
Figure 1 shows the complete circuit.
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Fig. 1 Nonlinear RC circuit

Table 1 Error estimation results for RC circuit

No. of iterations Interpolation points Max. true error Max. est. error
{017, 021}

1 119.5642, 119.5642 1.8616 x 1072 0.109183

2 0.9875,0.9875 13683 x 1073 84421 x 1073

3 4.9567,0.9875 16127 x 1074 40341 x 107*

4 18.1107,5.5319 4.2956 x 107> 7.22 x 107

5 2.0292, 4.4445 8239 x 107° 9.6404 x 1076

It is shown in [4] that the nonlinearity in the RC circuit can be written in quadratic-
bilinear form as in (1) by introducing some auxiliary variables. The transformation is exact,
but the dimension of the system increases to n = 2 - [, where [ represents the number of
nodes in Figure 1, and it is also the dimension of the original nonlinear system.

For our results, we set [ = 50, so n = 100 and use two-sided projection to reduce
the system. Table 1 shows the results with tolerance €;,; = le~® and an initial choice of
interpolation points as 01 = g2¢9 = 119.5642.

The second column of Table 1 shows interpolation points that are identified by the
greedy framework and are based on the error bound. It is clear that the error bound
tightly catches the true error and can be used as a surrogate of the true error to select the
interpolation points. The size of the ROM obtained from both approaches has been kept
the same i.e. 71 = rp = 12. For the input u(t) = ™%, the output of the original model and
ROMs along with corresponding relative errors are shown in Fig. 2.

Figure 2a shows the comparison of transient response of the two approaches, while
Fig. 2b plots relative errors of the two approaches. It is clearly seen that 1s-greedy and
2s-greedy outperform 1s-IRKA and 2s-IRKA, respectively, in terms of accuracy.

Burgers’ equation
In nonlinear MOR, the 1D Burgers’ equation is commonly used as a benchmark [2],[11].
The mathematical model of the 1D Burgers’ equation with I' = (0, 1) x (1, T) is:

Up + VUx = V - UUyxy inT,
av(0, t) + Bx(0, t) = u(t), ue(L,t) =0, t€(0,T), (27)
v(x, 0) = vg(x), volx) =0, x€(0,1).
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10°

Original
— — —1s-IRKA
— ——2sRKA ||
1s-greedy
— 2s-greedy

0 0.2 0.4 0.6 0.8

(a) Comparison of transient response

Fig.2 Non-linear RC circuit

. T e < ——— 2s-greedy ]
W“HL{M‘/’\ AVER a

——-—1s-IRKA
2s-IRKA | ]
- 1s-greedy

112 14 16 18 2 0
Time (t)

Table 2 Error estimation results for Burgers' equation

Time(t)

(b) Comparison of relative error

No. of iterations

Interpolation points

Max. true error

Max. est. error

v AW N =

{011, 021}

5.4124,5.4124
31.6141,1.383
2.9603,1.0818

9.2633 — 11.3351¢,24.9534
74119 — 3.6221,1.0818

1.1299 x 1073
1.0259 x 1073
1.0746 x 103
1.416 x 1074
1.785 x 1072

324786
3.2407

42125 x 107!
43411 x 107*
1.7869 x 107>

0.05

0.01 -

-0.01

Original
— — —1s-IRKA
—— —2sIRKA |
1s-greedy
2s-greedy

e(t)

———1s-IRKA
—-—-—2s-IRKA
1s-greedy
2s-greedy |

0 0.2 0.4 0.6 0.8

(a) Comparison of transient response

Fig.3 Burger's equation

1 1.2 1.4 1.6 1.8 2
Time (t)

Time(t)

(b) Comparison of absolute error

We use it as an example to test our proposed method. We keep the size of the original

model as # = 1000. Table 2 shows our results with tolerance ¢,,; = le~* and an initial

choice of interpolation points as 019 = o9 = 5.4124.

The second column of the table shows the interpolation points that are based on the error

bound and identified by the greedy framework. Similarly, the error bound again tightly

bounds the true error and therefore is reliable for choosing the interpolation points in the

greedy algorithm. The sizes of the ROMs obtained from both approaches are the same, i.e.

ri = rp = 16. The ROMs constructed from IRKA interpolation points and the proposed

framework are shown in Fig. 3 for input u(¢) = cos(t).

Page 11 of 14
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Table3 Error estimation results for the FitzHugh-Nagumo model

No. of iterations Interpolation points Max. true error Max. est. error
{01/, 021}

1 534.69, 534.69 0.282519 11524511

2 1.38,1.08 47413 x 107! 84587

3 391 — 545,138 12373 x 1074 43284 x 1073

4 39.38,1.08 25379 x 1070 59555 x 1072

5 110.46,1.08 82393 x 1076 21293 x 107°

6 3.96,1.08 43429 x 107> 71251 x 1074

7 17.63,1.08 7.6047 x 1070 46707 x 107°

8 483 —472,1.08 9.7775 x 1078 1932 x 1077/

Figure 3a shows the transient responses of the Burgers’ equation computed from simu-
lating the original model and the two different MOR approaches, while Fig. 3b compares
the absolute response errors of the ROMs derived using the two approaches. The absolute
error of the ROM constructed using the proposed methodology of choosing interpolation
points is less than that of the ROM constructed using IRKA interpolation points, especially
for the two-sided projection.

FitzHugh-Nagumo system
We use the FitzHugh—Nagumo system as our third example to check our results. The
FitzHugh—Nagumo system can be represented as [14]:

evr(x, t) = €2Up(, £) +flu(x b)) —wxt)+ g

(28)
we(x, £) = hu(x t) — ywix t) + g
with f(v) = v(v — 0.1)(1 — v) and boundary conditions
) 0) = 0) ) 0) = O)
v(w, 0) w(x, 0) 29)

uk(0,£) = —ip(2), wvx(L, ) =0.

Here, we choose € = 0.015, # = 0.5, y = 0.05 and ig(t) = 5 x 10*t3e71%t, When
standard finite difference method is applied to numerically discretize the PDEs in (28), a
system of ODEs with cubic non-linearities is obtained. We can get a quadratic-bilinear
system by introducing new variables. For an original discretized system with size 7, a
quadratic-bilinear system has the size of n = 37. We set # = 100, which gives rise to
quadratic-bilinear system of order n = 300. Then we choose interpolation points using
the proposed greedy framework to construct a ROM of size r = 26 and then compare it
with the ROM of the same size, which is constructed from the interpolation points using
IRKA. Table 3 shows our results with tolerance €,,; = le~® and the interpolation points
010 = 090 = 534.69.

Table 3 shows the interpolation points that are selected by the error bound and the
decay of the true error and the error bound at each iteration of the greedy algorithm.
The error bound once more estimates the true error accurately, implicating that the
selected interpolation points indeed nearly correspond to the largest error. The sizes of
the ROMs obtained from both approaches are the same, i.e. r; = r, = 26. Figure 4 shows
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(a) Comparison of transient response (b) Comparison of transient response (3D)

Fig.4 FitzHugh-Nagumo equation

the transient responses of the FitzHugh—Nagumo system computed from simulating the
original model and two approaches.

The input signal is #(t) = 50000£3e~ 1%, It is seen that the 1s-greedy performs better
than the 1s-IRKA when the outputs in both cases are compared with that of the original
model; however, 2s-greedy and 2s-IRKA produce unstable responses.

Conclusions

In this paper, the proposed methodology of choosing interpolation points for construction
of ROM of the first- and second-order transfer functions of quadratic-bilinear systems has
been tested for three different models. The results have also been compared with ROMs
of the same size constructed using the interpolation points chosen by linear IRKA. In each
case, the ROMs constructed using interpolation points from the greedy framework yield
better approximation of the output than the ROMs constructed from IRKA.
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