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There is growing awareness across the neuroscience community that the replicability of

findings about the relationship between brain activity and cognitive phenomena can be

improved by conducting studies with high statistical power that adhere to well-defined and
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standardised analysis pipelines. Inspired by recent efforts from the psychological sciences,

and with the desire to examine some of the foundational findings using electroencephalog-

raphy (EEG), we have launched #EEGManyLabs, a large-scale international collaborative

replication effort. Since its discovery in the early 20th century, EEG has had a profound in-

fluence on our understanding of human cognition, but there is limited evidence on the

replicability of some of the most highly cited discoveries. After a systematic search and se-

lection process, we have identified 27 of the most influential and continually cited studies in

the field. We plan to directly test the replicability of key findings from 20 of these studies in

teams of at least three independent laboratories. The design and protocol of each replication

effort will be submitted as a Registered Report and peer-reviewed prior to data collection.

Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine

which findings the community expects to replicate. This projectwill update our confidence in

some of themost influential EEG findings and generate a large open access database that can

beused to inform future researchpractices. Finally, through this international effort,wehope

to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A cornerstone of science is replicability, a fundamental issue

that has been at the heart of an intense scientific debate in

recent years. An influential report from the Open Science

Collaboration (2015), which attempted direct replications of

100 studies from Psychological science in threemajor journals

from the field, indicated that only 36% showed statistically

significant findings in the same direction as the original

studies, and an average shrinkage of effect sizes by about half.

These findings are consistent with a high degree of publica-

tion bias (Francis, 2012; Ioannidis, 2005; Kühberger et al., 2014;

Sterling, 1959). There are growing concerns that the closely

related field of cognitive neuroscience suffers similar issues

(Brederoo et al., 2019; Button et al., 2013; Poldrack et al., 2017).

Indeed, problems may be even more pronounced in this area,

as cognitive neuroscience studies often have small samples

and inflated effect sizes (Sch€afer & Schwarz, 2019). Further,

they are characterised by the use of rich, but also noisy, multi-

dimensional data sets, which allows for a multitude of

analytical choices (Szucs & Ioannidis, 2017), and thereby the

“garden of forking paths” (Gelman & Loken, 2013). Given this

context, there is a need to address the replicability of cognitive

neuroscience research.

Early work on human electrophysiology presents an

interesting anecdote for the value of replication. The

recording of electrical oscillations on the surface of a

nonhuman primate's cortex was first reported in 1875 (Caton,

1875) and, to the astonishment of the scientific community, in

1929 Hans Berger published the first account of human scalp

electrical brain activity (Berger, 1929). From 1929 to 1933,

Berger published a series of seminal works showing electrical

activity similar (albeit attenuated in comparison) to measures

directly from the cortical surface, suggesting that the scalp-

recorded signal reflects a genuine activity of human brain

function (Davidson et al., 2000). However, the novel signals

recorded by Berger showedmarked discrepancies with signals

recorded from nonhuman animals reported in the literature.
Electrical activity recorded from nonhumans was neither as

regular as Berger's demonstrations, nor did it show the 10 Hz

signal so prominent in Berger's recording of human partici-

pants. Thus, hesitation in believing Berger's findings aboun-

ded in the scientific community, and indeed, Berger himself

remained somewhat skeptical. Ultimately, a key break-

through for the use of EEG to study human brain function

came in 1934 from Adrian and Matthews (1934; see also

Biasiucci et al., 2019) who set out to examine this novel 10 Hz

“Berger rhythm”. These authors wrote (p. 356):

“We found it difficult to accept the view that such uniform ac-

tivity could occur throughout the brain in a conscious subject, and

as this seemed to us to be Berger's conclusionwe decided to repeat

his experiments. The result has been to satisfy us, after an initial

period of hesitation, that potential waves which he describes do

arise in the cortex, and to show that they can be explained in a

way which does not conflict with the results from animals”.

This independent replication of results was a key contri-

bution to the acceptance of Berger's reports and laid to rest the

initial skepticism surrounding the recording of human EEG.

EEG now stands as one of the oldest and the most widely-

used investigation techniques in human cognitive neurosci-

ence, with over 6000 publications per year (Pernet et al., 2019,

2020). Yet, while novel EEG findings continue to be generated,

replications of such results are scant. The recent fall-out from

the Open Science Collaboration has reinvigorated interest in

revisiting some landmark studies (e.g., DeLong et al., 2017; Ito

et al., 2017; Nieuwland et al., 2018) and inspired a renewed

interest in replicating core findings from the cognitive

neuroscience literature.

Cognitive neuroscience research is resource-intensive

because of equipment cost and complexity, elaborateness of

data collection procedures, and computational requirements

of data analysis and curation. This often results in studies

with small sample sizes and, consequently, with low statis-

tical power. Button et al. (2013) extracted data from 48 meta-
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analyses across the neurosciences and estimated the average

statistical power to be between ~8% and ~31%. Potential con-

sequences of low statistical power include overestimation of

effect sizes, and a reduction in the likelihood that a statisti-

cally significant result represents a true effect (Button et al.,

2013; Gelman & Carlin, 2014; Vasishth et al., 2018). Ulti-

mately, this produces a situationwhere results likely have low

replicability. A recent examination of 26,841 statistical records

reported in 3,801 papers from psychology and cognitive

neuroscience indicates that power in cognitive neuroscience

is lower than in psychology broadly, with median statistical

power to detect small (Cohen's d ¼ .20), medium (Cohen's
d ¼ .50), and large effect sizes (Cohen's d ¼ .80) being .12, .44,

and .73, respectively. This suggests that the rate of false pos-

itives is likely to be in excess of 50% (Szucs & Ioannidis, 2017).

A review of 150 randomly selected ERP studies from 2011 to

2017 indicated that the average sample size per group was 21

participants and the statistical power was conservatively

estimated as ~.15 for small, ~.50 formedium, and ~.80 for large

effect sizes (Clayson et al., 2019). Hence, low statistical power

in cognitive neuroscience research casts doubts on the repli-

cability of many research findings.

Another challenge to replicability is known in the litera-

ture as “experimenter degrees of freedom” (Simmons et al.,

2011). Specifically, analyses can be conducted and the sta-

tistics can be computed in many different ways, which allow

for “fishing expeditions” to find statistical significance. While

these challenges are not specific to cognitive neuroscience

nor EEG research, such expeditions are facilitated by the

multidimensional nature of neuroimaging data and the

multitude of analytical steps involved. For example, in pre-

processing signals, a researcher has a high degree of flexi-

bility in decisions about how to deal with artifacts, which

filters to apply, and which exclusion criteria to use. Varia-

tions in these decisions create opportunities, be it explicit or

implicit, to select the processing route that produces the

most “preferable” results. A striking demonstration of the

impact of analytic flexibility comes from fMRI research,

which has similarly multidimensional data as EEG, together

with investigator freedom in filtering procedures and other

preprocessing steps. When 70 different research teams

analyzed the same fMRI dataset with the same hypotheses,

they arrived at conclusions that varied dramatically by team

(Botvinik-Nezer et al., 2019). For EEG and ERP experiments, it

has also been shown that results are sensitive to seemingly

subtle differences in preprocessing routines (Robbins et al.,

2020). Given this fact, it is surprising that only 63% of data

processing pipelines are even reported. The dependence of

the results on subtle details of the data processing routines

may hinder replication efforts. Furthermore, lack of detail in

reporting allows for analytical flexibility to remain hidden

(Clayson et al., 2019).

The consequences of analytical freedom in ERP studies

were put in the spotlight by Luck and Gaspelin (2017). They

presented a detailed analysis of how spurious results can

result from choosing specific regions and time windows for

analyses based solely on visual inspection of grand average

ERP waveforms. This problematic process is referred to as

SHARKing, or “Selecting Hypothesized Areas after Results are

Known” (Poldrack et al., 2017). Problems are magnified when
results from such practices are presented as hypothesis-

driven steps-a process often referred to as HARKing, or “Hy-

pothesizing After the Results are Known” (Kerr, 1998). Other

potential degrees of freedom include a number of statistical

decisions that can influence the results, such as deciding on

the p-value threshold (Benjamin et al., 2018; de Ruiter, 2019;

Lakens et al., 2018; see also; Amrhein et al., 2019) or the

plausible effect size (Alto�e et al., 2020), and choosing between

frequentist and Bayesian approaches (van de Schoot et al.,

2017). In summary, best practices should limit the possibility

to steer results in the desired direction, willfully or not, by

post-hoc decisions on data processing, outcome selection, and

statistical procedures.

Two options to limit undisclosed degrees of freedom are

pre-registration and registered reports. Pre-registration spec-

ifies a research plan in advance of undertaking the research

and uploading these plans to a publicly available registry.

Registered reports are study proposals that are peer-reviewed

before the research is undertaken. New forms of scholarship

and publishing, in which data are shared along with the

publication, or directly embedded in manuscripts to allow

analysis and re-analysis on the spot (Maciocci et al., 2019) also

address some of these issues. It seems inevitable that such

approaches will see an increase in popularity in the coming

years, butwe expect delayed adoption for data-intensive areas

of science such as EEG research, due to logistic constraints on

voluminous data storage, transfer and online computational

power.

Pre-registration and registered reports, coupled with direct

replication and systematic documentation of analytical steps,

however, remain primary means of assessing the robustness

of a given effect (Clayson et al., 2019; Clayson & Miller, 2017;

Obels et al., 2020). These same steps, when coupledwith larger

sample sizes, also allow more stable and precise estimations

of effect sizes (Sch€onbrodt & Perugini, 2013), which are

required when translating basic science findings to clinical

practice or technological applications. A recent study on the

replicability of social-behavioural findings by four coordinated

laboratories demonstrated that when original studies and

their replications followed methodological transparency and

coupled it with higher statistical power and pre-registration, a

high rate of replication was achieved (86%; Protzko et al.,

2020).

There are a number of barriers towards undertaking rep-

lications. Some of these barriers are prevalent across the

sciences-it is well-documented that publication pressure

tends to incentivise novel effects over incremental research,

direct replications (Bradley, 2017) and null findings (“In Praise

of Replication Studies and Null Results,” 2020). Similarly,

research funding bodies have historically prioritised funding

for high risk and breakthrough programmes. These issues are

compounded by the resource-intensive nature of EEG

research. In comparison to most behavioural studies, EEG

experiments typically require more resources, such as hard-

ware, taking longer to conduct and analyze. Pooling resources

across different laboratories is a potential way to reduce these

barriers, but requires establishing shared protocols for

equipment preparation and data acquisition, given the po-

tential effects of these variables on ERP phenomena (Melnik

et al., 2017).

https://doi.org/10.1016/j.cortex.2021.03.013
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Over the last decade,major collaborative efforts to increase

replicatibility have taken place in the psychological sciences

and beyond (Errington et al., 2014; Frank et al., 2017; Klein

et al., 2014; Moshontz et al., 2018). As the name of this proj-

ect (“#EEGManyLabs”) reveals, we have been particularly

inspired by the “Many Labs” model popularised by Klein et al.

(2014), as well as from the examples set by projects such as the

Psychological Science Accelerator (Moshontz et al., 2018). This

initiative, a large-scale, international replication effort, takes

on many replication challenges and aims to test the replica-

bility of some of the most seminal EEG findings. Specifically,

we will use a collaborative, multi-site approach and stan-

dardized protocol to achieve this aim. In the following sec-

tions, we outline our approach, including study selection,

sample size determination, and definition of the evaluation

process, as well as the expected utility of this project.
2. Project coordination

Given that the burden on any single individual or research

group can be high (particularly with the need to collect larger

than average samples) while the incentives can be low (e.g.,

publication biases, lack of funding), this #EEGManyLabs proj-

ect aims to circumvent barriers to replicating influential EEG

studies. Through central coordination and distribution of

effort across a large network, we will reduce the resource

demands on individual researchers. As illustrated in Fig. 1, to

date we have recruited a number of labs distributed across

several continents that are willing to participate in this

collaborative replication effort.

To overcomemany of the administrative issues that come

with “big science”, we have established an organisational

structure (see Fig. 2). The Core Team comprises: (i) Project

Coordinatorseresponsible for general management of the

project, oversight and strategic support for all Replication

Teams, including planning and establishing communication

with and between members of the project; (ii) An Advisory
Fig. 1 e #EEGManyLabs Network. Data collection sites include in

collect data for the #EEGManyLabs project. At the time of writin
Board of EEG expertseewho support the Project Coordinators

and provide input on a variety of areas including analyzing

EEG, reviewing code, programming of experiments, con-

ducting power analysis, reviewing registered reports,

obtaining institutional review board/local ethics committee

approvals, applying for funding, and other tasks; (iii) Lead

Replicating Labseindividuals or research teams who will

take ownership for coordinating a specific target replication.

The PI of that lab will be responsible for preparing the

registered report for that particular study. In addition to the

Lead Replicating Lab, a minimum of two additional Repli-

cating Labs will be included in the Replication Team. The

Replicating Labs will be responsible for collecting an agreed

upon number of samples and (if possible) analyzing the

collected data.

Many of the important decisions made in the creation of

this project are described in the following sections and a

complete list of all project related decisions and resources is

available online (https://osf.io/yb3pq/).
3. Selecting studies for replication

The #EEGManyLabs project aims to assess the replicability of a

set of highly influential studies. Given the limited resources

and the voluntary nature of the collaboration, we made a

pragmatic decision to prioritise investigating highly cited

works instead of randomly sampling the literature. Selecting

highly cited studies for replication comes with increased in-

terest and motivation from potential replicating labs and

followers-key for a community-driven project and consistent

with other major replication attempts (Ebersole et al., 2016;

Errington et al., 2014; Klein et al., 2018; 2014; 2019).

To identify the most highly cited studies in the EEG litera-

ture, we first undertook a systematic search in the Web of

Science database, where we extracted the number of citations

and normalized by the age of publication (see Fig. 3 and full

systematic search protocol at https://osf.io/8qkr3/). To
dividual researchers or lab groups who have volunteered to

g, we have >200 potential data collection sites.

https://osf.io/yb3pq/
https://osf.io/8qkr3/
https://doi.org/10.1016/j.cortex.2021.03.013
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Fig. 2 e Organogram. The Core Team comprises: the Project Coordinators, the Advisory Board and the Lead Replicating Labs.

The Replication Teams are formed for each study by a minimum of three labs.

Sample size estimation
Feasibility analysis

Data extraction

SYSTEMATIC (CONFIRMATORY) SEARCH #2
slanruojni hcraeS .1 major cognitive neuroscience

2. 1408 studies screened on eligibility

2. First 1000 most cited (corrected on age)
1. 20000 articles exported from Web of Science
SYSTEMATIC SEARCH #1

papers screened on eligibility

NOMINATION
studies that haven't accumuluted citations yet
but considered to be influential

200 (search #1) +
LONG LIST

11 (nominated) =
268 studies

57 (search #2) +

FINAL LIST
27 studies

SHORT LIST

32 studies that
received 8 or
more votes

Polls are open

79 out of 158
eligible labs
casted their votes

Fig. 3 e Flow chart of the study selection procedure

illustrating howwe arrived at the final list of 27 of the most

influential EEG studies to be replicated in this project.
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maximise inclusivity and minimise data collection demands,

we aimed to include only psychological studies in healthy

adult populations using common instrumentation (e.g., no

EEG-fMRI), without any special intervention (e.g., no trans-

cranial stimulation, pharmacological manipulation), that
could be conducted in a single session (e.g., longitudinal

studies were excluded). Furthermore, we advertised the proj-

ect on social media (hashtag #EEGManyLabs), inviting the EEG

community to nominate studies they deemed worthy of

replication. Through social media advertising, we also aimed

to identify potentially impactful, recent studies that had not

yet had time to accumulate a high number of citations. Amore

detailed description of the procedure for replication study

selection is available online (https://osf.io/8qkr3/). This pro-

cess resulted in a sample of 268 initial papers for the long list.

To reduce the number of studies considered, the members

of the project at the time of study selection (i.e., potential data

collection sitesemembers of the project who expressed will-

ingness to collect data in the future) were asked to cast their

votes for the studies they thought to be most influential and

worthy of replication. The poll was open to allmembers, and it

was possible for original authors to nominate their own

studies. To help researchers identify the studies within their

scope of interest, for each of the initially selected papers, a

group of volunteers led by the first author (Y.G.P.) manually

added keywords describing the main outcome variable (ERP

component or EEG measure), studied psychological construct,

and other descriptors, including behavioural paradigm used

or extra equipment required (e.g., force transducers, eye-

tracker). This step was deemed necessary because keywords

found in the original published papers lacked consistency

across studies.

Seventy-nine out of 158 representatives from laboratories

expressing a desire to collect replication data at the time of

study selection cast their votes. In a third step, the 32 studies

that received the highest number of votes (8 or more) were

finally selected. The number of votes needed by a study to be

selected was arbitrary. It was established to increase the

chances of reaching the desired target of at least 20 replica-

tions: selecting 41 studies (7 votes or more) would spread the

labs thin and selecting 25 studies (9 votes or more) would

make the options too scarce. Thus, thirty-two studies entered

the feasibility analysis and data extraction stage.

https://osf.io/8qkr3/
https://doi.org/10.1016/j.cortex.2021.03.013
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4. Data extraction and sample size
estimation

A subset of our team (led by Y.G.P.) was involved in data

extraction (e.g., specific hypothesis tests, effect size reached)

from the 32 studies selected, to confirm that they all satisfied

theminimal criteria for replication. Specifically, we confirmed

that (i) each of the key results could be examined through

inference tests; (ii) the study employed an experimental or

correlational design; (iii) the study examined a topic linking

EEG activity and behaviour; and (iv) EEG was used as the pri-

mary neuroscience method.

To facilitate replication, the effect of interest needed to be

identified and described as precisely as possible in two key

ways. First, given that EEG findings are a combination of

spatial, frequency, and temporal features, the primary effect

of interest needed to be recognized in all relevant dimensions

(e.g., “Gamma coherence between visual and somatosensory

electrode sites in the 37e43 Hz band was significantly greater

during CSþ trials than during CS- trials (p� .06) for the 250-ms

time window just before UCS onset”; Miltner et al., 1999).

Second, we asked the data extraction team to describe the

results in plain-language (e.g., following with the previous

example based on the Miltner et al. (1999) study: “Gamma-

band coherence increases between regions of the brain

involved in an associative-learning procedure in humans”).

To determine the upper bound on the sample size required

for each replication (the maximum sample size), we extracted

the effect sizes from the results reported in the original pa-

pers. We assumed the original effect size to be twice as large

as it could be in a highly powered study. This assumption is

supported by a recent study showing that the effect size in

pre-registered studies is about half the size of that in studies

without pre-registration (Sch€afer & Schwarz, 2019), as well as

by the results of large-scale replications (Open Science

Collaboration, 2015). To counteract overestimation of the true

effects due to publication bias and uncertainty (Brysbaert,

2019), we decided the sample size needed to have 90% power

to detect 50% of the original effect size (100% in case of null

findings) at a 2% significance level for a one-sided test (see

Camerer et al., 2018; Lewis et al., 2020; Sch€afer & Schwarz,

2019).

In adopting this approach, studies reporting small effect

sizes would require a very large sample size, which could

prohibit data collection for many laboratories. At the start of

this project, we had asked researchers who were willing to

serve as a Replicating Lab how many participants they could

contribute to the project. The median number was 50 partic-

ipants (where range was reported, the maximum number was

taken) with only a few labs defining the highest end of the

range to be more than 150 participants. Based on this infor-

mation, we decided to exclude experimental studies that

would have required a sample size of more than 200 partici-

pants. This led to the exclusion of one experimental study.

One further study was excluded because no inference test

could confirm or reject the descriptive claim made by the

authors. Three studies, focussed on alpha asymmetry, were

deemed to be more appropriate as a “spin off” project (see
Legacy). Following data extraction, 27 potential replication

studies remained (Fig. 4).

From a starting position of 27 replication studies, our goal

is to conduct replications of at least 20-a number we deem to

be a reasonable target that will allow us to generate sufficient

data to explore replicability between studies. If we are unable

to reach that goal, e.g., due to infeasibility, insufficient num-

ber of replicating labs, or rejection at the review stage, we will

add the next five studies to the pool from the long list (avail-

able at https://osf.io/2qne8/). This procedure will be repeated

until the target of 20 replications is met.
5. Prediction markets

Having seen the final list of studies in Fig. 4, many readers

familiar with these studies will have their own perspective

about the likelihood of individual studies replicating. To what

extent they are correct in these beliefs will be the focus of the

prediction markets element of this project. Before we collect

any data, we will advertise our plans to EEG researchers

(including and beyond the #EEGManyLabs network; e.g., social

media (#AcademicEEG) and cognitive neuroscience mailing

lists) and request their perspectives on the replicability of our

target studies in a survey by inviting them to participate in

prediction markets. Prediction markets function as a tool to

aggregate private information-in this case participating re-

searchers’ beliefs about which studies replicate-by giving

participants monetary incentives to “bet” on the replication

outcomes of the target studies. Previous studies using pre-

diction markets on replications find that they perform better

than chance in predicting outcomes and can be considered as

an imperfect replication indicator (Camerer et al., 2018; Dreber

et al., 2015).We intend to use predictionmarkets to predict the

outcomes of the target replications. At the end of this project,

we will be able to examine how closely internally held beliefs

in the EEG community map on to the replication results.
6. Modes of participation

There are a number of ways inwhich individuals and research

laboratories can engage with this project. The most critical

element of this project is the collection of data. In this section,

we detail how we intend to optimise the distribution of data

collection across laboratories. Where replications require

relatively “large” sample sizes (i.e., >40 participants with

analyzable data), a Replicating Lab can decide to collect a

smaller sample but distribute the total sample collection

among partner labs (“lab buddies”) that use the same equip-

ment (with the expectation that, at a minimum, the model of

the amplifier and type of electrodes used are identical). Labs

with the same amplifier and electrodes will merge their data

and form an independent sample to calculate the effect size

for internal meta-analysis (the hypothetical study#2 in Fig. 5).

For correlational studies, which typically require larger sam-

ples, we expect that the distribution of data collection across

laboratories will be the default approach. For experimental

studies, we require at least three independent samples,

https://osf.io/2qne8/
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Fig. 4 e Summary of the final list of studies, with associated number of citations according to Google Scholar as of 01 October

2020. Color indicates the domain of the study. It is important to note that while some studies could have been allocated to

multiple domains, we made an arbitrary decision purely for the purpose of visualisation (Amodio et al., 2007a, 2007b;
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whereas for correlational studies, we require at least two in-

dependent samples, with a minimum sample size per repli-

cating lab to be at least equal to the sample size of the original

study.

If the required sample size is relatively low (n � 40), we

expect the Replicating Labs to collect the full sample. How-

ever, where the sample size expectations are large, it is

possible for laboratories to implement a Bayes factors (BF)

sequential testing approach (see Sch€onbrodt&Wagenmakers,

2018), where the target Bayes factor size is specified in the

registered reports Stage 1 submission for individual projects,

with a maximum sample size and BF > 6 recommended to

balance feasibility constraints and the level of evidence

(Sch€onbrodt et al., 2017). Once the Bayes Factor indicates

sufficient evidence in favor of or against each relevant hy-

pothesis or, alternatively, once the predefined maximum

sample size is reached, data collection can be stopped. By of-

fering this flexibility, we aim to minimize any unnecessary

use of lab resources and maximize the number of labs willing

to contribute.
7. Conducting the replications

Below,we briefly describe the steps each studywill go through

(see Fig. 6), leaving specific details to the publicly available

Project Plan (https://osf.io/yz23p/).
The first step in the replication process is to establish the

Replication Team for a particular study. Lead Replicating

Laboratories will be self-nominated by filling in a form that

will need to be confirmed by the Project Coordinators. After

approval, the Lead Replicating Lab will issue a call for Repli-

cating labs, listing all necessary details, such as technical re-

quirements, the expected duration of the experiment, and the

planned sample size. After recruiting at least two Replicating

labs, the study will proceed to the next stage-development of

the study protocol.

The most critical step is to make sure that the replications'
methodology closely follows the original and allows the

Replication Team to conduct a fair and high-powered test of

the main findings from the original study. The Replication

Team will prepare the materials (e.g., presentation and anal-

ysis scripts) for the replication studies to mirror the method-

ology used in the original paper. This process will be based on

the data extracted from the articles at the stage of selecting

experiments for replication and, preferentially, with the

original authors' help. The Lead Replicating Lab will have

primary responsibility for the development of the new stim-

ulus presentation code in the form of carrying out the task (or

identifying suitable people in the Replication Team or wider

network who wish to support this activity) and verifying the

resulting code. The Replicating Labs will translate the code for

stimuli presentation for use in their labs if necessary (e.g., the

original is written in E-Prime and provided by the original

https://osf.io/yz23p/
https://doi.org/10.1016/j.cortex.2021.03.013
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Fig. 5 e Modes of participation for the Replicating Labs. In sample study 1, the agreed-upon number of participants in the

study is less than 40, and all labs proceed independently, until the meta-analysis step in which results are combined. In

sample study 2, where more than 40 participants are required for each replication study, labs can collaborate and create a

joint dataset.

Local ethics committee approval

M1 M36M24M12

Fig. 6 e A simplified example timeline of a single replication. M indicates month. We expect that there will be considerable

variation in timelines for individual replications but that they will follow each of the steps laid out here.
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author, but a Replicating Lab uses/has access to Psychtoolbox;

Kleiner et al., 2007).When possible, an attemptwill bemade to

write task code using free open source tools (e.g., PsychoPy;

Peirce, 2007). The Replication Team will develop the protocol

for data collection and analysis based on the available mate-

rials and pilot data collected in each of the Replicating Labs.

For the sake of transparency and reproducibility, we will give
preference to use open source toolboxes (e.g., Brainstorm

(Tadel et al., 2011), EEGlab (Delorme et al., 2011), FieldTrip

(Oostenveld et al., 2010), SPM (Litvak et al., 2011)) and free open

source software (e.g., MNE Python; Gramfort et al., 2013) in

combination with custom-made scripts.

Next, the protocol will be supplemented with an intro-

duction section, including description of the key findings and

https://doi.org/10.1016/j.cortex.2021.03.013
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a rationale for the original study selection, with clearly stated

hypotheses to be tested. The introduction will cover the cur-

rent evidence for the findings of the original study, paying

most attention to any existing studies replicating the original

findings, including conceptual replications. The introduction

will also stress the impact of the original study and the

importance of its replication.

A draft of the manuscript will be reviewed internally by

selected members of the Advisory Board for approval. Such a

review process is designed to ensure accurate replication of

the methods and procedures. Once the manuscript has been

internally reviewed, it will be submitted to Cortex as a RR Stage

1. Given that a number of notable replications were followed

by refutations and criticism from the original authors (e.g.,

Baumeister & Vohs, 2016; Moran et al., 2020), at this stage in

the process, the replicators may wish to have the original

authors explicitly endorse interpretations of potential results

and confirm the suitability of the planned protocol (Nosek &

Errington, 2020). The Lead Replicating Lab can decide to

include the original authors as co-authors or to acknowledge

their contribution, depending on their level of involvement in

the preparation of the RR. To mitigate concerns over the in-

dependence of a replication, including biases in the interpre-

tation and discussion of the results, the original authors are

allowed to participate only in Stage 1 of the RR.

After in principle acceptance (IPA) and prior to data

collection, all methodology, materials, and plans for analysis

will be posted in the OSF study registry. The call for Repli-

cating Labs will open up again for research teams who were

unable to join the replication team earlier in the development

of protocols but have capacity to collect data. Data collection

will proceed asynchronously in all Replicating Labs. Repli-

cating Labswill be expected to complete data collectionwithin

1 year of the IPA after obtaining ethics approval from their

local ethics committee. If the minimal criterion of having

three samples from three independent labs has not been

reached, data collection will be extended beyond one year.

The data analysis protocol developed earlierwill be used by

the Replication Team to analyse the data. All analysis steps

will be documented to facilitate re-analysis, and the code will

be made publicly available. The analysis scripts in EEG

research frequently involve manual artifact identification,

correction, and rejection which introduces subjectivity to the

process. And while a fully automated preprocessing pipeline

has the potential to be more reproducible than one involving

manual processing, today's automated algorithms also

require some subjective decision making (e.g., defining a nu-

merical threshold for rejection). Given that there is no clear

consensus on which approach is superior, we recommend

employing the method used in the original study. This should

avoid potential non-replications due to deviations in the

preprocessing procedure. Where this means manual pre-

processing, laboratories will be asked to store trial level data

with information on their artefact correction process. In these

instances, we also stress that Replication Teams may run

supplementary analyses using state-of-the-art automated

approaches. In all cases, the teams pledge to abide by a pre-

registered analysis script. Beyond individual replications, a

spin-off team (“#EEGManyLabs Automation”) will implement

automated analyses to investigate differences between
manual and automated coding. Each Lead Replicating Lab will

consider whether additional blinding is required during the

analysis; e.g., by having manual analyses conducted by re-

searchers who are blind with respect to the experimental

conditions. Such blinded analyses will need to be reported as

such in the replication attempt. The replicators will be ex-

pected to execute the previously agreed analysis script, which

will provide an effect size for the meta-analysis. Preprocessed

data will be provided to the Lead Replicating Lab for supple-

mentary analyses of the aggregated dataset.

The Lead Replicating Lab will conduct the meta-analysis.

The Lead Replicating Lab will report the median and distri-

bution of the weighted and unweighted effect sizes, corre-

sponding 95% confidence intervals, and the number of

Replicating Labs successfully replicating the original effect.

Effect sizes found by individual Replicating Labs within a

Replication Team will be visualized in a forest plot. In addi-

tion, the Lead Replicating Lab will delineate the proportion of

studies/samples that rejected the null hypothesis in the ex-

pected and unexpected direction. Any deviation from the

protocol approved at RR Stage 1 will be reported and justified.

The contributors of each project will have the opportunity to

review and edit the replication manuscript before it is sub-

mitted to Cortex. Participating labs will also comment on

possible explanations for successful/unsuccessful

replication.

Replication success is defined operationally as a statisti-

cally significant random-effects meta-analytic estimate (at

p < .02) combining the results from the different laboratories,

in the same direction as in the original study. To quantify the

variation in effect sizes across samples and settings, the Lead

Replicating Lab will further conduct a random-effects meta-

analysis and establish heterogeneity estimates to determine if

the amount of variability across samples exceeded the

amount expected as a result of measurement error.
8. Data output & management

We intend to share all study materials, complying with FAIR

principles, making the material Findable, Accessible, Interoper-

able, and Reusable (Wilkinson et al., 2016). The study materials

will be shared on OSF (https://osf.io/yb3pq/). All Replication

Teams will share their analysis pipelines, preferably in the

form of reproducible scripts that include artifact annotations

(e.g., visually or automatically identified artifacts, rejected

channels, ICA weights, rejected components).

We will inform research participants of the aims of the

project, of the experimental procedures, and will explain that

research data will be shared. The consent of participants,

including to the sharing of their data, is required for their

participation. We will use the Open Brain Consent form

(Bannier et al., 2020) as a template, which will be adapted to

each lab's needs according to their local laws and regulations.

Before sharing, raw data will be curated and organized by the

Replication Teams following the Brain Imaging Data Structure

(BIDS) (Gorgolewski et al., 2016; Pernet et al., 2019), ensuring

the removal of any directly identifiable information such as

name, address, birth date, etc. By default, minimal de-

mographic data will be requested from each lab (i.e., age,

https://osf.io/yb3pq/
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gender, handedness and education including total years and

highest qualification; Pernet et al., 2020) but additional infor-

mation (e.g., IQ, health or psychological characteristics) might

be collected, which will be determined by the Replicating Labs

and contingent upon approval from the respective local ethics

review boards. Datasets will be shared using a suitable re-

pository (e.g., FigShare, Zenodo, Dataverse) and linked to OSF.

We aim to share the data as openly as possible, but depending

on requirements imposed by the Replicating Labs local ethics

review boards and their institutional and national regulations,

the access to shared data may require controlled access, i.e.,

external interested researchers may have to register and

request access. Labs that do not have permission for sharing

data cannot participate in data acquisition, but can still

contribute to the analysis.
9. Summary report

Once the individual replications of the different studies are

completed and published, we will collate and summarise the

findings into a summary report, to be published in Cortex, that

will mark the closing of the direct replication component of

the #EEGManyLabs project. This publication will aim to high-

light specific and general conclusions from the replicated

studies, provide a unified dataset, describe the lessons learned

in running this community-driven initiative and ultimately

derive recommendations for future EEG research.

While the nature of each replication and their theoretical

implications will be dealt with in the individual replication

reports, the summary report will focus on aspects that are

common across our studies. Our central repository (https://

osf.io/yb3pq/) will contain (i) a document summarizing de-

tails of the recording setups and data collection according to

COBIDAS standard (e.g., the amplifiers used; the number,

composition, and layout of sensors; acceptable and observed

impedances; recording reference and ground; sampling rates;

and acquisition filter bandwidths; see Pernet et al., 2020); (ii)

environmental information such as lighting, sound attenua-

tion, and electromagnetic shielding; (iii) pre-registered anal-

ysis codes and procedures, accompanied by test data

collection videos; and finally (iv) links to all data repositories

of the individual replication attempts. Based on this infor-

mation, we will evaluate how similar the procedures of the

replication attempts were to those reported in the original

studies (e.g., with regards to sample size; subject and trial-

level artifact rejection rates).

Replication outcomes will be summarized with a hierar-

chical forest plot to illustrate all replication studies' effect
sizes. We will also illustrate effect sizes across Replicating

Labs for a single study and heterogeneity of effect sizes across

labs (i.e., addressing a common “hidden moderators” argu-

ment; Bavel et al., 2016). These effect sizes will be directly

contrasted with the original papers' effect sizes, and supple-

mented by reports on p value distributions, Bayes factors, and

Standardized Measurement Error (SME) measures.

Given themulti-laboratory andmulti-experiment nature of

this project, we also expect methodological differences across

sites and studies to contribute to a proportion of the variance

in the results. We will accordingly make a concerted effort to
identify the extent to which these factors indeed influence

replicability. The impact of these covariates will be examined

with respect to the (i) original effect size; (ii) original study

design (e.g., within-group vs between-group, trial number per

condition, sample size, amplifiers used); (iii) data collection

parameters (e.g., number of trials, number of channels); (iv)

original analysis pipeline/parameters (e.g., reference channel,

the complexity of the processing pipeline, how the data were

reduced to a univariate inferential test such as averaged

quantification across chosen time window and channels vs

massive univariate testing of all time points and channels

with cluster test); and (v) publication characteristics including

year of the original studies and journal impact factor, to see

whether advances in EEG research practice have improved

replicability over the years and whether the profile of the

original journal has any relationship with the replicability of a

finding. The impact of these factors (and their interactions)

will be crucial in recognizing and recommending best

practices.

The summary report will also include the outcomes of our

prediction markets. The prediction markets will indicate how

well researchers in the field can predict the outcomes of the

replication studies and whether they under- or overestimate

the percentage of studies that replicate. Prediction markets in

psychology generally, and neuroimaging (e.g., fMRI) specif-

ically, have been leveraged to provide an index of researchers’

ability to judge the replicability of findings in individual sub-

fields (Dreber et al., 2015), but this has yet to be applied to EEG

research. By comparing the replicability of EEG studies esti-

mated with prediction markets to actual replicability, we will

provide unique commentary on the ability of EEG experts to

accurately judge currently published findings as well as the

potential of using predictionmarkets as a future tool to assess

the face validity of EEG research.

Finally, we expect to close our summary report with rec-

ommendations for further research (both replication and

original research), based on the above analyses and the

experience gained across the many labs participating in this

large-scale project. We expect to identify the minimum

number of trials and participants needed to detect some of the

most common EEG phenomena (e.g., N2pc, N2 in go/no-go

tasks, ERN, P3b) with the help of a sensitivity analysis, and

more generally, to make suggestions about recommended

parameters in data collection and analysis protocols.
10. Project outcomes

EEG/ERP research on human cognitive processes has been

built upon a vast body of data collected over approximately six

decades. One of the main strengths of this field is that key

effects have been widely replicated (e.g., the P300 respon-

siveness to infrequent trials in the oddball task), enabling re-

searchers to use ERPs as biomarkers of cognitive processes.

However, it is still unclear if many essential findings in this

fieldwill withstand the test of direct independent replications,

and how much effect sizes differ across laboratories and with

larger sample sizes. #EEGManyLabs will help to address these

questions by providing a perspective on past work while

suggesting tools to improve future research.
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This project will provide an initial estimate of the repli-

cability of a set of key findings from studies that were

selected by the EEG research community because of their

impact on the field. By investigating covariates and moder-

ators of replication successes versus failures, this project

can provide knowledge that enhances the replicability of

future EEG studies. Outcomes from the replication studies

that are consistent with those of the original studies will

increase confidence in the original studies’ findings and

their robustness; conversely, outcomes inconsistent with

those of the original studies will decrease confidence in

these outcomes and the related conclusions (Nosek &

Errington, 2020) and launch a search for explanatory fac-

tors contributing to discrepancy between initial and repli-

cation studies.

We must also stress the importance of what will not, or

cannot, be learned from this exercise. Given the nature of the

studies that are to be replicated, it is clear that the conclu-

sions from this project will not apply to all EEG/ERP research.

We selected influential (i.e., highly-cited) studies for this

project and, as such, this project can only provide an esti-

mate of the replicability of a subset of EEG/ERP research-not

the field at large. Indeed, it is possible that the most influ-

ential studies might be more or less replicable than studies

that have been cited less often. For example, one may make

the argument that as highly influential studies often intro-

duce new or exciting findings (i.e., are not incremental), they

may be less likely to replicate than studies that advance the

field more slowly because they are more closely tied to prior

work. Thus, the original Many Labs replications found little

difference in replication as a function of citation rate

(Altmejd et al., 2019). Another factor to consider here is that

our selection process involved a nomination and voting

process-perhaps some study selections were based on

skepticism. We expect that our prediction markets will un-

cover these subjective beliefs amongst the EEG community

for this set of studies, but alternative approaches will be

needed to provide an estimation of the replicability of EEG

research more generally.

10.1. Legacy

Beyond the specific outcomes related to the individual studies,

we expect this project to have a long-lasting legacy on EEG

research across a broad number of domains. We also hope

that this project can provide a canvas for future replication

projects of EEG/ERP studies that were not included in the

current project. We describe some of the expected legacies of

this project next.

As a starting point, we will allow researchers outside the

#EEGManyLabs network to access all our replication data and

materials to perform future re-analyses in an open and

transparent way. We hope that future work will be able to

better understand the optimal characteristics of a replicable

study. To this end, wewill make all the raw and processed EEG

replication data available using Brain Imaging Data Structure

(BIDS) guidelines, as well as analysis scripts, experimental

stimuli, stimuli presentation scripts, lab notes, video re-

cordings, and other research materials.
One longer term benefit of this project will be empirically

well-justified recommendations for sample sizes for EEG

studies of particular phenomena. Effect sizes will be

computed for specific components across a wide range of

tasks. Researchers will thus have a database to use when

considering how those measures may vary across stimulus

characteristics, response demands, trial numbers, and other

task parameters. Such data should help inform sample size

planning for future EEG/ERP studies.

The #EEGManyLabs project will also result in a series of

broader recommendations and practice guidelines on how to

conduct multi-site EEG studies in the domain of EEG. The su-

perficially simple task of merging two EEG signals acquired

from different amplifiers is far from trivial. By providing data

on how variability in the collection of data across sites affect

the result, we hope #EEGManyLabs will help future re-

searchers to plan their multi-lab studies and set the scene for

future collaborative science.

At the time of writing thismanuscript, #EEGManyLabs has

already inspired several ongoing and planned projects. One

subproject (“spin-off”), #EEGManyLabs Asymmetry, will

leverage community engagement to record additional

resting-state EEG data, and a set of personality question-

naires together with the replication attempts. In doing so, it

will shed light on the replicability of asymmetries in EEG

alpha power (Reznik & Allen, 2018) and their relation to

personality traits. Another spin-off (#EEGManyLabs Auto-

mation) will compare the outcomes of analyses conducted by

the #EEGManyLabs Replication Teams with a fully auto-

mated analysis pipeline developed by a group of analysts.

This project aims to evaluate the within-study effect of

manual versus algorithmic artifact removal in the replication

context to investigate the role of subjective biases associated

with manual coding discussed above. The project will also

investigate whether the original studies that implemented

automatic artifact rejection algorithms are more often suc-

cessfully replicated than those that used manual coding

methods. In this way, we will be able to address the question

of whether automation can help to improve replicability. The

datasets generated from this project will also allow us to

study the effects of analytical flexibility on EEG findings'
robustness in another ongoing project-#EEGManyPipelines.

Here, researchers will be invited to analyse the replicated

datasets using their preferred analysis pipelines and will

then analyze variation in analysis pipelines and the resulting

diversity of results.

10.2. Inclusivity and collaboration

Since the start of the project, we have aimed to establish a

wide network of researchers and data collection sites, with

diverse scientific interests and skill sets. The current #EEG-

ManyLabs Network represents 33 countries on 4 continents

(with hopes to further expand membership-particularly in

under-represented countries), and approximately 30% of re-

searchers currently involved are women (identified based on

given names using genderize.io database). However, the

studies selected for replication all come fromWestern Europe

and North America and are overwhelmingly authored bymen.
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While the selected studies reflect a broad issue with lack of

diversity in research, we are hopeful that the current project

will bring much needed diversification to EEG by conducting

transparent research, producing open data andmaterials, and

promoting global collaboration.

This brings us to the final goal of this project. Through

demonstrating the feasibility of large-scale multi-site projects

involving a large, diverse body of EEG researchers, we hope to

facilitate a cultural shift away from small-scale single labo-

ratory experiments towards high-powered, community-

driven collaborations, creating a stronger foundation for the

future of EEG research.
11. Conclusions

In an international effort spanning multiple research in-

stitutions and numerous researchers, the #EEGManyLabs

initiative promises to yield high-fidelity replication attempts

of influential EEG/ERP experiments. Following the Many Labs

model (Klein et al., 2014), each experiment will be replicated

in several labs to collect a large sample of data for each study,

allowing the assessment of replicability through internal

meta-analyses. To ensure a high scientific standard is

maintained across all replications, this concerted effort is

centrally coordinated. Each replication will pass quality

control through being reviewed by members of the advisory

board, will use standardised experimental and analysis

protocols across labs, and involve registered reports that will

be published irrespective of the outcomes. A final meta-

analytical report will synthesize outcomes from across all

replications and will mark the end of this initiative. We

expect this project's legacy will rest in pushing the field to-

wards higher replicability standards and facilitating an open

science culture of high powered, large-scale multi-site

collaborations.
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