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We revisit early suggestions to observe spin-charge separation in cold-atom settings in the time
domain by studying one-dimensional repulsive Fermi gases in a harmonic potential, where pulse
perturbations are initially created at the center of the trap. We analyze the subsequent evolution
using Generalized Hydrodynamics (GHD), which provides an exact description, at large space-time
scales, for arbitrary temperature T , particle density, and interactions. At T = 0 and vanishing
magnetic field, we find that, after a non-trivial transient regime, spin and charge dynamically de-
couple up to perturbatively small corrections which we quantify. In this limit, our results can be
understood based on a simple phase-space hydrodynamic picture. At finite temperature, we solve
numerically the GHD equations, showing that for low T > 0 effects of spin-charge separation survive,
and characterize explicitly the value of T for which the two distinguishable excitations melt.

The presence of peculiar physics in one-dimensional
(1D) quantum systems has been known for several
decades, and is rooted in the dramatic effect of in-
teractions compared to higher dimensions [1–4]. The
latter manifests itself in the collectivization and frac-
tionalization of excitations, with the most prominent
and celebrated example being the spin-charge separation
(SCS) [2]: in a 1D metal a physical charged spinful par-
ticle splits into two different excitations for the spin and
charge, respectively. SCS has been repeatedly probed
since late nineties in solid-state physics settings in the
frequency domain [5–11]. In such experiments it is how-
ever not possible to access the time domain in which SCS
presents more intuitive features. To overcome these lim-
itations, starting from the pioneering works by Recati et
al. [12, 13], many real-time protocols have been proposed
to probe SCS with cold atoms [12–16]. Several experi-
ments implemented these ideas in the last few years [17–
22], but the field is still at an early stage.

The aforementioned proposals [12–16] are all based
on an inhomogeneous Tomonaga-Luttinger-Liquid (TLL)
approach [2, 23–26] for a confined 1D multicomponent
gas evolving after weak perturbations. Then, SCS man-
ifests itself in the real-time evolution of spin and charge
profiles. Unfortunately, the TLL description applies only
to very low temperatures and energies. To understand
the range of applicability of such approximation, direct
simulations of the exact microscopic dynamics have been
performed with tensor networks [27–30] and other numer-
ical approaches [31–33]. Still, tensor-network methods
typically face a bottleneck due to the increasing compu-
tational cost at large times or finite temperatures [34].

In this Letter, we revisit the problem by means
of the recently developed Generalized Hydrodynamics
(GHD) [35, 36], which gives access to the exact dynamics
of integrable systems at hydrodynamic scales, for arbi-
trary interaction strength, temperature T , and particle
density, see Refs. [37–39] for reviews. For ultra-cold Bose

FIG. 1. Pictorial representation of the protocol considered in
this work. A repulsive Fermi gas is confined in a harmonic
trap, with superimposed potential wells (top left). At time t =
0 the wells are removed, and the gas evolves in the harmonic
trap (top right). The bottom plots are sketches of density
and magnetization profiles.

gases subject to trap quenches, GHD proved to be pow-
erful enough to provide quantitative predictions to per-
fectly match actual recent experimental results [40, 41],
superseding conventional hydrodynamics [42]. So far,
GHD for multispecies quantum gases has been studied
only in the idealized bipartitioning protocol [43–47], that
is difficult to implement in real experiments. Hence, we
study point-wise repulsive Fermi gases in a harmonic po-
tential, where finite-density spin and charge imbalances
are initially created at the center of the trap, cf. Fig. 1.
We predict SCS in the evolution of the profiles of charge
and spin at low T , quantify finite-density corrections and
explore the value of T for which it breaks down.

The model.— We consider a 1D gas of N point-wise
interacting Fermions modeled by the Hamiltonian

H =

∫ L/2

−L/2
dx

∑
σ=↑,↓

Ψ̂†σ(x)
[
−∂2x + U(x, σ)

]
Ψ̂σ(x)

+ c

∫ L/2

−L/2
dxΨ̂†↑(x)Ψ̂†↓(x)Ψ̂↓(x)Ψ̂↑(x) , (1)
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where we set ~ = 2m = 1. Here Ψ̂σ(x), Ψ̂†σ(x) are
canonical fields associated with Fermions of spin up (↑)
and down (↓), c > 0 is the interaction strength, while
U(x, σ) = V (x) + σh(x) − µ, where V (x), h(x) and µ
are a longitudinal trap, the magnetic field and chemical
potential, respectively. Note that the Hamiltonian pre-
serves N , and the number M of down spins.

For V (x) ≡ 0, h(x) ≡ h, the Hamiltonian is inte-
grable [48, 49] and can be solved using the nested Bethe
Ansatz: the eigenfunctions can be written down exactly,
and are labeled by two sets of numbers {kj}Nj=1, {λj}Mj=1,
which are the quasimomenta (or rapidities) of two dis-
tinct species of quasiparticles, in some sense related to
the charge and spin degrees of freedom. In the ther-
modynamic limit, they allow for an intuitive descrip-
tion [50], which is reminiscent of that of non-interacting
quantum gases. As a main difference, however, the spins
can form n-quasiparticle bound-states, and macrostates
are then characterized by one charge rapidity distribu-
tion function ρ1(k), and a set of functions for the spin
n-quasiparticle bound states {ρ2,n(λ)}∞n=1, with k, λ ∈ R.

Due to interactions, ρ1(k) and ρ2,n(λ) are not indepen-
dent, but are related through the thermodynamic Bethe
Equations (BE). These also involve the distribution func-
tions ρh1 (k) and ρh2,n(λ) for the holes, namely the vacant
quasimomenta which can be occupied by the quasiparti-
cles. In particular, the BE read [51]

ρ1(k)+ρh1 (k) =
1

2π
+

∞∑
n=1

[φn ∗ ρ2,n](k) , (2a)

ρ2,n(λ)+ρh2,n(λ)=[φn∗ρ1](λ)−
∞∑
m=1

[Φn,m∗ρ2,m](λ) , (2b)

where [f ∗ g](λ) =
∫ +∞
−∞ dνf(λ − ν)g(ν), while φn(k) =

2ncπ−1/[(nc)2 + 4k2], Φn,m(k) = (1 − δn,m)φ|n−m|(k) +
2φ|n−m|+2(k) + · · ·+ 2φn+m−2(k) +φn+m(k). The distri-
bution functions uniquely fix the thermodynamic prop-
erties of the system. For instance, the density % = N/L,
and magnetization m = (N/2−M)/L read

% =

∫ +∞

−∞
dkρ1(k), m =

%

2
−
∞∑
n=1

n

∫ +∞

−∞
dkρ2,n(k). (3)

These expressions have a simple interpretation, stating
that thermodynamic quantities can be obtained as a
weighted sum of single quasiparticle contributions, anal-
ogously to the non-interacting case. It is also custom to
introduce the total distribution ρt1(k) = ρ1(k)+ρh1 (k) and
the Fermi factor n1(k) = ρ1(k)/ρt1(k) (ρt2,n(λ) n2,n(k) are
defined analogously for the second species). We stress
that although all the nomenclature is taken from analo-
gous free models, the interactions non-trivially dress all
these functions in a way that is calculable only through
the solution of the BE.

The GHD equations.— The above quasiparticle pic-
ture provides the foundation for GHD [35, 36]. Within

this framework, the system is described in terms of Euler
fluid cells, which are assumed to be well described by lo-
cal quasistationary states [52], and whose properties are
captured by space-time-dependent rapidity distribution
functions. Importantly, GHD applies also in the presence
of external potentials [53], provided that typical lengths
of variations of the local density are large compared to
the microscopic scales [54]. In particular, in this work we
will consider a harmonic potential coupled to the density,
i.e., U(x, σ) = V (x) = ωx2. The key result of GHD is a
set of continuity equations for the rapidity distribution
functions [35, 36], which in our case read

∂tρ1(k) + ∂x[v1(k)ρ1(k)] = (∂xV ) ∂kρ1(k) , (4a)

∂tρ2,n(λ) + ∂x[v2,n(λ)ρ2,n(λ)] = 0 , (4b)

where we omitted explicit space-time dependence. Here
v1(k) and v2,n(λ) are the quasiparticle dressed veloci-
ties [55]. They are once again determined by the lo-
cal rapidity distribution functions, and can be computed
solving the system

v1(k)ρt1(k) =
k

π
+

∞∑
n=1

[φn ∗ v2,nρ2,n](k) , (5a)

v2,n(k)ρ2,n(λ)=[φn∗v1ρ1](λ)−
∞∑
m=1

[Φn,m∗v2,mρ2,m](λ) .

(5b)

Eqs. (4) are exact in the limit where space-time scales
of observations are sent to infinity, but have been shown
to also provide extremely accurate results for relatively
small times and sizes for appropriately “smooth” initial
conditions [42, 56–58]. They form the basis for the anal-
ysis reported in this work.

Pulse perturbation dynamics.— Before analyzing SCS
in the presence of a longitudinal potential, we consider an
idealized scenario, where an infinite system is prepared
in the ground state of H, with U(x, σ) = −µ0 + V (x) +

σh(x), V (x) = −ae−x2/w and h(x) = h0e
−x2/w, creating

an initial pulse perturbation [59]. At t = 0, the potential
and field are switched off, V ≡ h ≡ 0, letting the system
evolve freely. Here, the main features of SCS can be
deduced analytically, as we now discuss.

First, we use a local-density approximation (LDA) [60]
to obtain the initial conditions of the GHD equations.
Namely, at t = 0, we associate with a fluid cell at position
x the ground-state of the homogeneous Hamiltonian with
µ = µ0−V (x) and h = h(x), whose distribution functions
can be computed by Bethe Ansatz [51]. By construction,
each local state has initially zero entropy and, since the
latter is conserved by the GHD equations [53], fluid cells
remain in zero-entropy states at all times. This is impor-
tant, because for integrable models the latter are known
to be “split Fermi seas” [61–63], leading to a very simple
dynamics [42]. In our case, these are states characterized
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FIG. 2. (a): Fermi contours for the ground-state, in the pres-
ence of Gaussian potentials, cf. the main text. By definition,
the Fermi factors nj(k) are 1 for all points (x, k) inside the
contour, and 0 outside. Far from the origin, h → 0, and the

Fermi rapidities θ
(2)
α diverge. (b)-(d): Snapshots of the Fermi

contours at times t = 1, 4, 30. In (d), dashed lines correspond
to the position xj(t) of the max. (min.) connected Fermi sea
with j = 1 (j = 2), associated with the peaks in the charge
and magnetization profiles. In this figure, c = 1, µ = 1.5,
a = 2.25, h0 = 2 and w = 5.

by no spin bound states, n2,n(k) ≡ 0, and Fermi factors
n1(k) and n2(k) = n2,1(k) of the form

nj(k) =

{
1 if k ∈ [θ

(j)
1 , θ

(j)
2 ] ∪ · · · ∪ [θ

(j)
2q−1, θ

(j)
2q ] ,

0 otherwise.
(6)

Thus, any fluid cell is fully described by the Fermi rapidi-

ties {θ(j)α }, representing the edges of the split Fermi seas,
and all the information on the system is encoded into

a pair of time-dependent Fermi contours Γ
(j)
t , keeping

track of the Fermi rapidities at each point in space [42].
For t = 0, the Fermi contours are obtained from LDA,
taking the form displayed in Fig. 2(a): for each species

there is a single pair (θ
(j)
1 (x), θ

(j)
2 (x)) for all positions x,

with |θ(2)1 (x)| ∝ x2, for large x, while |θ(j)1 (x)| approaches
a constant. The dynamics of the Fermi contours follows
from the zero-temperature limit of Eqs. (4). In the ab-
sence of potentials, it reduces to the wave equation [42]

∂tθ
(j)
α + vj(θ

(j)
α )∂xθ

(j)
α = 0, where v1(θ), v2(θ) = v2,1(θ)

are the dressed velocities [51]. Importantly, they are pos-
itive (negative) in the upper (lower) half of the x − θ(j)
plane. Furthermore, for both species they are increasing
functions of the Fermi points θ(j), with the velocity of the
second species being always smaller than the first one.

Based on these considerations, we can understand
qualitatively the dynamics of the contours, cf. Fig. 2. Fo-
cusing on the upper half of the x− θ(j)plane, the charge
and spin contours move on the right at different veloci-
ties. Although the evolution is initially non-trivial, since
the extremum of the charge (spin) moves with largest
(smallest) speed, we can predict that the bumps initially
located near the origin will eventually overturn. This
means that, in some spatial region, both Fermi seas split

FIG. 3. Snapshots of the magnetization and excess density
δ% = % − %(∞) for t = 0, 1, 4, 30, after release from Gaussian
potentials. In (d), dashed lines are at the same position of
those shown in Fig. 2(d), and correspond to the peaks of the
profiles. The two propagate at different velocities and are
independent, up to small corrections quantified in the main
text.

into disconnected components, going from having two to
four Fermi rapidities, cf. Fig. 2(c). This reflects in the
formation of well-defined peaks in the spin and charge
profiles, which are obtained using (3), cf. Fig. 3. We
claim that, at large times, these peaks propagate inde-
pendently, up to perturbatively small corrections, sig-
nalling a dynamical separation of spin and charge.

In order to show this, we first analyze the local
macrostate at the main peak in the profile of the charge,
x1(t), which is the largest position for which the Fermi
sea of the first species is not split, cf. Fig. 2(d). At

x1(t), we have two Fermi points A±(t) = θ
(1)
1,2(x1(t)) for

the charge, and two for the spins B±(t) = θ
(2)
1,2(x1(t)). In

this case, the rapidity distribution functions are given by

ρ1(k) =
1

2π
+ [φ1 ∗ ρ2]

B+

B−
(k), (7a)

ρ2,1(λ) = [φ1 ∗ ρ1]
A+

A−
(λ)− [φ2 ∗ ρ2,1]

B+

B−
(λ), (7b)

where [f ∗ g]βα(x) =
∫ β
α

dyf(y − x)g(y). For large t,
we have x1(t) ∼ t, and since the velocity of the sec-
ond species is always smaller that the first one, we also
have |B±(x1(t))| ∼ x1(t)2 ∼ t2. Plugging this infor-
mation into (7), it is possible to show analytically that
the magnetization m at x1(t) is exponentially small in t.
This follows from an asymptotic analysis of the solution
of (7) in the limit of large |B±|, and Eq. (3) [51]. As a
consequence, the charge pulse does not generate a varia-
tion in the background magnetization, thus propagating
independently from the latter.

A more careful analysis is needed for the macrostate
at the main peak in the profile of the magnetization,
x2(t). From Fig. 3, the spin propagation is not com-
pletely decoupled from the charge, as we observe a vis-
ible perturbation in the profile of the charge at x2(t).
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This is a manifestation that ρ1(k) and ρ2,1(λ) are coupled
through the BE (7). However, denoting by ∆% and ∆m
the peak values of charge and magnetization at x2(t),
from a careful analysis of the BE (7) it can be shown
that |∆%| ∼ |∆m|2 [51]. Therefore, the charge pulse gen-
erated by the propagating spin wave is perturbatively
small and at the leading order in the spin-wave ampli-
tude we observe the previously announced decoupling of
the spin and charge degrees of freedom. This prediction,
together with its interpretation using the zero-entropy
GHD framework, is the first main result of this work.

We stress that the formalism above is similar to the
phase-space hydrodynamics used to study pulse propa-
gation in free Fermi gases [59, 64–67], non-linear Lut-
tinger liquids [68], (spin-)Calogero [69–72] and Lieb-
Liniger models [73–75]. As a main difference, however,
here the velocities are dressed by the interactions, which
are also responsible for the non-trivial interplay between
spin and charge dominating the dynamics at short times.
We also note that, while the GHD equations are exact,
LDA is not. However, while corrections are expected,
they can be made arbitrarily small by reducing the spa-
tial density variations in the initial conditions [53, 76].

Harmonic confinement and non-zero temperatures.—
We now turn to the case of a confining harmonic potential
and T > 0. The effect of the trap can be easily taken into
account, modifying our previous solution in two ways.
First, the potential changes the initial condition of the
GHD equations: from LDA, we now obtain that the gas
is confined in a finite interval I0 = [−x0, x0]. Second, it
modifies the dynamics, yielding a non-vanishing driving
term in Eq. (4). Based on these considerations, we can
predict that SCS effects survive provided that the trap is
enough shallow. Namely, the dynamics with and without
the trap remains qualitatively similar as long as the posi-
tion of the propagating pulses, |x1,2(t)|, is much smaller
than the spatial extent of the trap, |x1,2(t)| � x0.

A non-vanishing temperature, on the other hand, calls
for a more careful analysis. Let us consider first an in-
finite system, initially prepared at temperature T . For
T = 0, the dynamics of the pulses propagating away from
the origin can be understood in terms of excitations over
a constant background, which is the local equilibrium
macrostate at x = ±∞, with particle density %0 and
Fermi rapidities (for the first species) ±k0. As the den-
sity of excitations become small at large times, one enters
the regime of validity of the TLL theory [77], and the
peaks of spin and charge propagating at different veloc-
ities can be understood in terms of decoupled Luttinger
liquids. Thus SCS effects are expected to survive at least
up to temperature scales for which the standard TLL
description applies. In this case, it is known that the rel-
evant temperature scale is T0 = [k20/γ]−1 with γ = c/%0,
above which the gas enters the incoherent Luttinger-
Liquid regime [78]. Now, for a finite system in a suffi-
ciently long trap, the density and the Fermi rapidities are

FIG. 4. Snapshots of the magnetization and density for t =
0, 1, 4, 15, after release into a harmonic trap, for increasing
temperatures T . Here T0 is defined from the density and
Fermi rapidities of the background at the center of the trap,
where k0 = 1.33, %0 = 0.623. For the harmonic trap we chose
ω = 0.01 while the other parameters are set as in Fig. 2.
These profiles clearly show SCS as discussed in the text.

approximately constant over the spatial region where the
initial dynamics takes place, i.e., ρ(x) ' ρ0, k0(x) ' k0
yielding the temperature scale T0 of the problem.

We stress that these estimates for the temperatures at
which SCS effects survive are difficult to justify rigor-
ously in the present nonequilibrium setting, and should
be corroborated by a quantitative analysis of the pro-
files. This constitutes our second main result. We have
solved the GHD equations (4) in the presence of a long
trap and at different temperatures. An example of our
data is reported in Fig. 4. In general, we find that
SCS effects remain clearly visible for T � T0. Al-
ready for very low-temperatures, however, the profiles
are smeared out compared to T = 0, and the corre-
sponding non-analytic points disappear. Our calcula-
tions confirm that the peaks of the two species remain
visible up to T ' T0. Above this threshold, the spin
pulses melt while the charge ones remain distinguishable,
consistently with what could be expected from the spin-
incoherent Luttinger-Liquid theory [78]. Increasing fur-
ther the temperature, also all signals in the charge pro-
files become eventually invisible. Finally, we found that
the effect of the harmonic trap is weak for the observed
time scales, provided that its length is large compared to
the region where the pulses propagate.

Outlook.— We have studied SCS in confined 1D Fermi
gases where pulse perturbations are initially created at
the center of the trap. Our results are based on GHD,
which allows us to obtain an exact description for ar-
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bitrary temperature, particle density, and interactions.
While we have focused on one particular protocol, more
general settings can be analyzed using the same ap-
proach, including non-zero magnetic fields, trapping po-
tentials or geometric quenches [79]. As a follow up, it
would also important to quantify the effect of quantum
fluctuations on top of the GHD solution, adapting re-
cent approaches for Bose gases and spin-chains [80–84].
Overall, our work shows how GHD is capable of predict-
ing SCS effects in interacting multicomponent quantum
gases in versatile experimentally-relevant situations.
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(2006).
[29] A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi,
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[62] S. Eliëns and J.-S. Caux, J. Phys. A: Math. Theor. 49,

495203 (2016).
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SUPPLEMENTAL MATERIAL

Here we report some additional technical details on our work. In particular, in Sec. 1 we present the Bethe Ansatz
solution of the Yang-Gaudin model. In Sec. 2 we discuss the zero-temperature limit of the Thermodynamic Bethe
Ansatz equations. In Sec. 3 we provide a few additional details on the numerical solution to the GHD equations.
Finally, in Sec. 4 we quantify the perturbative corrections to spin-charge separation discussed in the main text.

1. THE BETHE ANSATZ SOLUTION

In the absence of external potentials and for constant magnetic field, the Hamiltonian (1) is integrable and defines
the Yang-Gaudin model [48, 49]. As a consequence, there exists an infinite number of local conserved operators
{Qn}∞n=1 (usually called charges) commuting with the Hamiltonian, which can be solved via the (nested) Bethe
Ansatz [4, 50]. Here we report the aspects of the solution which are directly relevant for our work, while we refer to
the literature for a more systematic treatment [1, 4, 50].

The eigenfunctions of (1) can be labeled by two sets of rapidities {kj}Nj=1, {λj}Mj=1, associated with the charge
and spin degrees of freedom. Due to periodic boundary conditions, the rapidities are quantized, and must satisfy the
following algebraic equations:

eikjL =

M∏
α=1

kj − λα + ic/2

kj − λα − ic/2
,

N∏
j=1

λα − kj + ic/2

λα − kj − ic/2
=

M∏
β 6=α,
β=1

λα − λβ + ic

λα − λβ − ic
, (8)

which are known as Bethe Equations (BE). The energy of a given eigenstate then simply reads

E[{kj}Nj=1, {λα}Mα=1] = −µN + 2hM +

N∑
j=1

e(kj) , (9)

where e(k) = k2.
For large values of the system size L, the solutions to (8) satisfy the string hypothesis [50], according to which kj

are real, while the rapidities λα form patterns in the complex plane called strings. An n-string consists of n rapidities
distributed symmetrically around the real axis, with the j-th rapidity in the string being

λα,j = λnα + i(n+ 1− 2j)c/2, j = 1, . . . , n . (10)

λnα ∈ R is known as the string center. The string hypothesis is expected to be true up to exponentially small corrections
in the system size. In the thermodynamic limit L→∞, N/L = cst, M/L = cst, the spectrum of the model becomes
densely populated and we can adopt a description in terms of the rapidity distribution functions formally defined by

ρ1(kj) ∼
1

L(kj+1 − kj)
, ρ2,n(λnα) ∼ 1

L(λnα+1 − λnα)
. (11)

Due to interactions, ρ1(k) and ρ2,n(λ) are not independent. Their relation can be found by taking the thermodynamic
limit of the BE (8), yielding

ρ1(k)+ρh1 (k) =
1

2π
+

∞∑
n=1

[φn ∗ ρ2,n](k) , (12a)

ρ2,n(λ)+ρh2,n(λ)=[φn∗ρ1](λ)−
∞∑
m=1

[Φn,m∗ρ2,m](λ) , (12b)

where

[f ∗ g](λ) =

∫ +∞

−∞
dνf(λ− ν)g(ν) , (13)

φn(k) =
1

π

2nc

(nc)2 + 4k2
, (14)

Φn,m(k) = (1− δn,m)φ|n−m|(k) + 2φ|n−m|+2(k) + · · ·+ 2φn+m−2(k) + φn+m(k) . (15)
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FIG. 5. (a) Rapidity distribution functions and (b) effective velocities as function of the quasi-momentum k, obtained as
numerical solution of Eqs. (12) (panel a) and Eqs. (23) (panel b). We have set c = 1, µ = 2, h = 0.5 and T = 1.

Note that the thermodynamic BE (12) also involve the distribution functions ρh1 (k) and ρh2,n(λ) for the holes, i.e.,
the vacancies in the space of rapidities which can be occupied by the quasi-particles. In the non-interacting case,
the distribution functions for the holes and quasi-particles are trivially related. However, this is not the case in the
presence of interactions. For this reason, it is convenient to also introduce the total distributions

ρt1(k) = ρ1(k) + ρh1 (k) , ρt2,n(k) = ρ2,n(k) + ρh2,n(k) , (16)

the Fermi factors

n1(k) =
ρ1(k)

ρt1(k)
, n2,n(k) =

ρ2,n(k)

ρt2,n(k)
, (17)

and the closely related functions

η1(k) =
ρh1 (k)

ρ1(k)
, η2,n(k) =

ρh2,n(k)

ρ2,n(k)
. (18)

The BE (12) do not uniquely specify a single set of rapidity distribution functions, and an additional set of integral
equations is typically needed in order to determine them. An important example is that of thermal states, which are
characterized by a given temperature T . In this case, the additional set of integral equations can be obtained within
the thermodynamic Bethe Ansatz (TBA) formalism [50], and read

ln η1(k) =
k2 − µ− h

T
−
∞∑
n=1

[φn ∗ ln(1 + η−12,n)](k) , (19a)

ln η2,n(k) =
2nh

T
− [φn ∗ ln(1 + η−11 )](k) +

∞∑
m=1

[Φn,m ∗ ln(1 + η−12,n)](k) . (19b)

Eqs. (19) and (12) can be efficiently solved numerically with iterative methods, yielding the desired rapidity dis-
tribution functions, cf. Fig. 5(a) for an example. Once they are known, one can immediately compute several
thermodynamic quantities of the model. For instance, the particle and magnetization densities are given by

% =
N

L
=

∫ ∞
−∞

dk ρ1(k) , (20)

m =
N − 2M

2L
=
%

2
−
∞∑
n=1

n

∫ ∞
−∞

dk ρ2,n(k) . (21)
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More generally, a similar expression exists for the expectation value Q of any conserved charge, i.e.,

q =
Q
L

=

∫ ∞
−∞

dk q1(k)ρ1(k) +

∞∑
n=1

∫ ∞
−∞

dλ q2,n(λ)ρ2,n(λ) , (22)

where q1(k), q2,n(λ) are known functions. These expressions have a simple interpretation, stating that thermodynamic
quantities can be obtained as a weighted sum of single quasiparticle contributions, analogously to the non-interacting
case. Finally, together with the expectation values of the charges, rapidity distribution functions also allow us to
compute the dressed velocities of the quasiparticles in an arbitrary macrostate. In particular, they can be obtained
as the solution to the equations [55]

v1(k)ρt1(k) =
k

π
+

∞∑
n=1

[φn ∗ v2,nρ2,n](k) , (23a)

v2,n(k)ρt2,n(k) = [φn ∗ v1ρ1](k)−
∞∑
m=1

[Φn,m ∗ v2,mρ2,m](k) . (23b)

As an example, we report in Fig. 5(b) their numerical solution for a particular thermal state.

2. ZERO-TEMPERATURE LIMIT

In the zero-temperature limit, the thermodynamic description of the model becomes particularly simple. Here we
sketch the main formulae, referring once again to the literature for more details [50].

As a key simplification, as T → 0, one has η2,n(λ) → ∞ for n ≥ 2, and the contribution of higher strings become
negligible, i.e., n2,n(λ) → 0. Explicitly, setting η1(k) = eε1(k)/T , and η2,1(k) = eε2(k)/T , the limit T → 0 of Eq. (19)
yields

ε1(k) = k2 − µ− h+ [φ1 ∗ ε2]Q2

−Q2
(k) , k ∈ [−Q1, Q1] , (24a)

ε2(k) = 2h+ [φ1 ∗ ε1]Q1

−Q1
(k)− [φ2 ∗ ε2]Q2

−Q2
(k) , k ∈ [−Q2, Q2] . (24b)

Here, we introduced the notation

[g1 ∗ g2]AB(k) =

∫ B

A

dk′ g1(k − k′)g2(k′) , (25)

while Q1, Q2 are cutoffs in the rapidity space known as Fermi points. They are determined self-consistently by the
equation εj(Qj) = 0. Note that the relation between the distribution of rapidities and holes become trivial in this
limit. Namely, setting n2(λ) = n2,1(λ), the Fermi factors acquire a step-like form

nj(q) =

{
1 if q ∈ [−Qj , Qj ] ,
0 otherwise.

(26)

As a consequence, Eqs. (12) and (23) simplify, and in the limit T → 0 we get

ρ1(k) =
1

2π
+ [φ1 ∗ ρ2]Q2

−Q2
(k) , (27a)

ρ2(k) = [φ1 ∗ ρ1]Q1

−Q1
(k)− [φ2 ∗ ρ2]Q2

−Q2
(k) , (27b)

and

v1(k)ρ1(k) =
k

π
+ [φ1 ∗ ρ2v2]Q2

−Q2
(k) , (28a)

v2(k)ρ2(k) = [φ1 ∗ ρ1v1]Q1

−Q1
(k)− [φ2 ∗ ρ2v2]Q2

−Q2
(k) . (28b)

We report an example of the numerical solution to these equations in Fig. 6.
Eqs. (24) give straightforward access to the ground-state phase diagram of the model, cf. Fig. 6. It is characterized

by a critical line of the magnetic field, defined by the equation [85]

hc +
1

π

[
c

2

√
µ+ hc − (µ+ hc +

c2

4
) tan−1

(√
µ+ hc
c/2

)]
= 0 . (29)

More precisely, upon varying the magnetic field h, one finds three distinct phases:
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FIG. 6. Panels (a)-(b). Rapidity distribution functions (a) and effective velocities (b) of the Yang-Gaudin model at zero
temperature. The curves are obtained from the numerical solution of Eqs. (27) (panel a) and Eqs. (28) (panel b). The dashed
vertical axes mark the position of the Fermi points Q1,2. We have set c = 1, µ = 2 and h = 0.5. Panel (c)-top: Phase
diagram of the Yang-Gaudin model at zero-temperature: PP (gray regions), PPP (light-blue regions) and UP (red line). The
phase boundary (black line) has been obtained by numerically solving Eq. (29). Panel (c)-bottom: Fermi velocities of the
Yang-Gaudin model at zero-temperature as function of h/hc. In the figure, we have set µ = 2 and c = 1.

- Polarized phase (PP) for h ≥ hc: ferromagnetic ground state without spin-waves (Q2 = 0). The first species
behaves as a gas of spinless non-interacting particles with Fermi point given by Q1 =

√
µ+ h.

- Partially polarized phase (PPP) for hc < h < 0: The ground state is paramagnetic, both species are present.
The Fermi points Q1,2 are extracted from Eqs. (24), using the self-consistent condition εj(Qj) = 0.

- Unpolarized phase (UP) at h = 0. In this case, both species are present, and the Fermi rapidity of the second
one goes to infinity, Q2 →∞.

It is interesting to consider the behavior of the Fermi velocities vFj = vj(Qj) in the limit h → 0, which we plot

in Fig. 6. We see that, although Q2 → ∞ as h → 0, vF2 remains finite. As we increase the magnetic field, the
velocity of the first (second) species increases (decreases), and for h = hc the spin excitations become infinitely slow.
Importantly, the two velocities are always separated, which is a crucial feature to observe spin-charge separation.

3. THE GHD EQUATIONS AND THE NUMERICAL SOLUTION

As we have discussed in the main text, the Generalized Hydrodynamics is a hydrodynamic theory which is based
on a description of local fluid cells in terms of rapidity distribution functions [35, 36]. One of its main results is the
corresponding set of continuity equations, which in our case read [43]

∂tρ1(k) + ∂x[v1(k)ρ1(k)] = (∂xV ) ∂kρ1(k) , (30a)

∂tρ2,n(λ) + ∂x[v2,n(λ)ρ2,n(λ)] = 0 . (30b)

In order to obtain a numerical solution to these equations, it is more convenient to consider the equivalent formulation
in terms of the Fermi factors (17). Following standard derivations [35, 36] one obtains

(∂t + v1∂x − (∂xV )∂k)n1 = 0 , (31a)

(∂t + v2,n∂x)n2,n = 0 . (31b)

Now Eqs. (31) are formally solved for n = {n1, n2,n} using the method of characteristics, yielding

n(t, x, k) = n(0, x̃(t), k̃(t)) (32)
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with

x̃(t) = x−
∫ t

0

ds v(s, x̃(s), k), (33a)

k̃(t) = k −
∫ t

0

ds a(x̃(s)). (33b)

Here, v = {v1, v2,n} and a = {−∂xV, 0} is the effective acceleration. This is the starting point for an efficient
numerical solution to the GHD equations [86]. In our work, we have implemented this approach to obtain the
numerical data presented in Fig. 4 of the main text. In particular, we have followed the steps outlined in Ref. [87].
Since our implementation is standard, we refer the reader to the latter work for more details.

We note that, for finite temperature, the numerical solution to the GHD equations is more demanding compared to
the case of the Lieb-Liniger model [88]. This is particularly true for h = 0, where one needs to retain a large number
of strings in order to obtain accurate numerical results [43, 50]. In practice, we have always solved the GHD equations
keeping a finite number of them, and checked that, within the desired numerical accuracy, the final result did not
change by increasing the number of strings considered. At h = 0 we found that the magnetization exhibited the
largest numerical inaccuracy compared to other observables. For the profiles shown in this work, we have computed
the magnetization up to an absolute inaccuracy δ ∼ 10−3, while other quantities are always determined to higher
precision. These numerical errors can be made smaller by increasing the number of strings and of discretization
points, although this requires longer computational times.

At zero temperature, the numerical solution of the GHD equations greatly simplifies thanks to the zero-entropy
condition of the fluid cells [53]. Thus, for a complete description of the GHD evolution, it is sufficient to consider the

points (x, θ
(j)
α ) in the rapidity-position plane, whose dynamics is given by [42]

d

dt

(
x

θ
(j)
α

)
=

(
vj(t, x, θ

(j)
α )

−δj,1 ∂xV

)
. (34)

From this equation, we have implemented a zero-entropy GHD algorithm following the strategy of Ref. [42]. The
numerical data in Fig. 2 and Fig. 3 of the main text are obtained using this procedure.

4. PERTURBATIVE CORRECTIONS TO SPIN-CHARGE SEPARATION

In this section we discuss in detail the corrections to the spin-charge separation effects presented in the main text,
in the context of zero-entropy GHD.

We begin by analyzing the zero-entropy BE, in the case where both species display a single Fermi sea, and the
Fermi rapidities of the second one are at infinity, namely

ρ1(k) =
1

2π
+ [φ1 ∗ ρ2]+∞−∞(k), (35a)

ρ2,1(λ) = [φ1 ∗ ρ1]
A+

A−
(λ)− [φ2 ∗ ρ2,1]+∞−∞(λ) , (35b)

where we take A± to be arbitrary. Let us first show that ρ2,1(λ) vanishes exponentially in λ, as λ→∞. To do this,
we expand

[φ1 ∗ ρ1]
A+

A−
(λ) =

1

π

2c

c2 + 4λ2

∫ A+

A−

dkρ1(k) +O(1/λ3) = a1(λ)%+O(1/λ3) . (36)

Plugging this into the rhs of Eq. (35b), and keeping only the leading term, we obtain that ρ2,1(λ) has the same large-λ
behavior of the function ρ̃2,1(λ) which satisfies

ρ̃2,1(λ) = a1(λ)%−
∫ ∞
−∞

dµa2(λ− µ)ρ̃2,1(λ) . (37)
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This equation is readily solved in Fourier space, yielding ρ̃2,1(λ) = (%/4) sech(πλ/c), from which we obtain the leading
behavior

ρ2,1(λ) ∝ e−π|λ|/c . (38)

Now, let us consider the large-time profiles of charge and spin displayed in Fig. 3 of the main text. We first focus
on the main peak of the charge at large x > 0, corresponding to a zero-entropy state characterized by the Fermi
rapidities A±, and B±, with |B−| > |B+|. We wish to show that the effects of the charge pulse propagation on the
magnetization are exponentially small in |B+|, proving SCS as discussed in the main text. In this case, the equations
to solve are

ρ
(B±)
1 (k) =

1

2π
+ [φ1 ∗ ρ(B±)2 ]

B+

B−
(k) , (39a)

ρ
(B±)
2,1 (λ) = [φ1 ∗ ρ(B±)1 ]

A+

A−
(λ)− [φ2 ∗ ρ(B±)2,1 ]

B+

B−
(λ) . (39b)

We need to show that the magnetization is vanishing, up to terms that are exponentially small in |B+|, namely∫ B+

B−

dk ρ
(B±)
2,1 (k)− 1

2

∫ A+

A−

dk ρ
(B±)
1 (k) = O(e−π|B+|/c) . (40)

Defining

δρ1(k) = ρ
(B±)
1 (k)− ρ(±∞)

1 (k) , δρ2,1(k) = ρ
(B±)
2,1 (k)− ρ(±∞)

2,1 (k) , (41)

and subtracting Eqs. (35) from Eqs. (39), we obtain

δρ
(B±)
1 (k) = g1(k) + [φ1 ∗ δρ(B±)2 ]

B+

B−
(k) , (42a)

δρ
(B±)
2,1 (λ) = −g2(λ) + [φ1 ∗ δρ(B±)1 ]

A+

A−
(λ)− [φ2 ∗ δρ(B±)2,1 ]

B+

B−
(λ) , (42b)

where

g1(k) =

∫
R\[B−,B+]

dλφ1(k − λ)ρ
(±∞)
2,1 (λ) ∼ e−π|B+|/c , (43)

g2(k) =

∫
R\[B−,B+]

dλφ2(k − λ)ρ
(±∞)
2,1 (λ) ∼ e−π|B+|/c , (44)

where we used (38). Thus, δρ
(B±)
1 (k) and ρ

(B±)
2,1 (k) satisfy the same integral equations as ρ

(B±)
1 (k) and δρ

(B±)
2,1 (k), but

the driving terms are exponentially vanishing in |B+|. Therefore, δρ1(k), δρ2,1(k) = O(e−π|B+|/c), and∫ A+

A−

dk ρ
(B±)
1 (k) =

∫ A+

A−

dk ρ
(±∞)
1 (k) +O(e−π|B+|/c) , (45)∫ B+

B−

dk ρ
(B±)
2,1 (k) =

∫ B+

B−

dk ρ
(±∞)
2,1 (k) +O(e−π|B+|/c) =

∫ ∞
−∞

dk ρ
(±∞)
2,1 (k) +O(e−π|B+|/c) , (46)

where the last equality in the second line follows from (38). Multiplying now Eq. (45) by 1/2 and subtracting (46)
we get ∫ B+

B−

dk ρ
(B±)
2,1 (k)− 1

2

∫ A+

A−

dk ρ
(B±)
1 (k) =

∫ ∞
−∞

dk ρ
(±∞)
2,1 (k)− 1

2

∫ A+

A−

dk ρ
(±∞)
1 (k) +O(e−π|B+|/c) . (47)

As a last step, integrating both sides of Eq. (35b) over R and using
∫ +∞
−∞ dλ an(λ) = 1, we obtain∫ ∞

−∞
dk ρ

(±∞)
2,1 (k) =

∫ A+

A−

dk ρ
(±∞)
1 (k)−

∫ ∞
−∞

dk ρ
(±∞)
2,1 (k) . (48)

Combining (47) with (48) we finally obtain (40).
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FIG. 7. (a) Log-plot showing |∆ρ| as a function of B/|B−| (circles). The line corresponds to the fitting function y(B) =
exp(−2πB/c + c1) with c1 ' 3.2 extracted from our data. (b) Log-plot showing |∆m| as a function of B/|B−| (circles). The
line corresponds to y(B) = exp(−πB/c+ c2) with c2 ' 0.1. (c) Log-log-plot showing |∆%| as a function of |∆m| (circles). The
line corresponds to y(|∆m|) = c3|∆m|2 with c3 ' 2.9. The figures are obtained with c = 1, µ = 1.5, h = 0 and setting the UV
cutoff B− = −10.

Finally, let us consider the main peak of the magnetization profile at large times and x > 0, cf. Fig. 3 of the main
text. This corresponds to a zero-entropy state where the two species have Fermi rapidities ±k0 and B±, respectively.
Since |B−| � |B+|, neglecting subleading contributions we can assume for simplicity B− = −∞. Setting B+ = B, we
define

∆% =

∫ k0

−k0
dkρ

(B)
1 (k)−

∫ k0

−k0
dkρ

(±∞)
1 (k) , (49)

∆m =

[∫ B

−∞
dλρ

(B)
2,1 (λ)− 1

2

∫ k0

−k0
dkρ

(B)
1 (k)

]
−
[∫ +∞

−∞
dλρ

(±∞)
2,1 (λ)− 1

2

∫ k0

−k0
dkρ

(±∞)
1 (k)

]
, (50)

where we denoted by ρ
(B)
1 (k) and ρ

(B)
2,1 (λ) the solution to Eq. (39) with B− = −∞, B+ = B and A± = ±k0. Clearly,

we have

lim
B→∞

|∆%| = lim
B→∞

|∆m| = 0 . (51)

In principle, it is possible to obtain analytically the exact leading behavior of |∆%| and |∆m| for large B from
Eqs. (42). However, we found that this is non-trivial. One of the reasons is that the two terms in the rhs of Eq. (42a)
have opposite signs, and subtle cancellations happen at the leading orders in B. Because of this, we found it more
convenient to perform a numerical analysis, from which the leading behavior emerges clearly. Indeed, Eqs. (39) can
be solved to very high precision using the Gaussian quadrature method [89], which allow us to obtain very reliable
data even for small values of |∆m|. An example of our finding in given in Fig. 7, from which we clearly see that both
|∆m| and |∆%| decay exponentially in B. From inspection of Eqs. (42), we expect |∆m|, |∆%| = O(e−πB/c). In fact,
we find that the exact behavior is given by

|∆m| ∼ e−πB/c , |∆%| ∼ e−2πB/c . (52)

Namely, for the charge non-trivial cancellations happen, so that the leading behavior is e−2πB/c. We confirmed this
to high precision with a linear fit in logarithmic scales, where the only free parameter is the value of the additive
constant. Finally, as an immediate consequence of (52) we have that for large values of B

|∆%| ∼ |∆m|2 , (53)

as announced in the main text. We have have also tested directly Eq. (53) finding excellent agreement, cf. Fig. 7.
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