
Cognition 214 (2021) 104771

Available online 23 May 2021
0010-0277/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Graphic complexity in writing systems 

Helena Miton a,c,*, Olivier Morin b,c 

a Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA 
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A B S T R A C T   

A writing system is a graphic code, i.e., a system of standardized pairings between symbols and meanings in 
which symbols take the form of images that can endure. The visual character of writing implies that written 
characters have to fit constraints of the human visual system. One aspect of this optimization lays in the graphic 
complexity of the characters used by scripts. Scripts are sets of graphic characters used for the written form of one 
language or more. Using computational methods over a large and diverse dataset (over 47,000 characters, from 
over 133 scripts), we answer three central questions about the visual complexity of written characters and the 
evolution of writing: (1) What determines character complexity? (2) Can we find traces of evolutionary change in 
character complexity? (3) Is complexity distributed in a way that makes character recognition easier? Our study 
suggests that (1) character complexity depends primarily on which linguistic unit the characters encode, and that 
(2) there is little evidence of evolutionary change in character complexity. Additionally (3) for an individual 
character, the half which is encountered first while reading tends to be more complex than that which is 
encountered last.   

1. Introduction 

Writing is a graphic code, i.e., a system of standardized pairings 
between symbols and meanings in which symbols take the form of im
ages that can endure (Morin, Kelly, & Winters, 2020). It is a visual 
communication system which takes “the form of visible marks on the 
surface of a relatively permanent object” (Treiman & Kessler, 2011) and 
encodes a natural language (Morin et al., 2020). 

Writing systems are based on characters organized into sets, here 
called scripts. Characters, in our definition, are the basic symbols used to 
visualize (write or print) a language. A script as we define it is a set of 
graphic characters used for the written form of one or more languages. A 
script is also sometimes one of several that are used for a language's 
writing system. Scripts, writing systems, and spoken languages rarely 
overlap perfectly. For instance, the Latin script is used by a variety of 
writing systems, to write a diversity of languages. Scripts do not deter
mine what writing encodes, but they determine what writing looks like. 
For instance, the character a in the Latin script is defined by a basic 
shape which can be used in different languages to encode different 
sounds, depending on the context (language, word) in which it is used. 
Conversely, a writing system can be written using different scripts, e.g., 

Serbo-Croatian. 
Written languages contrast with spoken languages. Writing is a 

relatively recent innovation: it can be traced back to a few invention 
events that occurred no more than a few thousand years ago. Writing 
requires, to a much larger degree than speaking, an explicit and delib
erate effort in learning and transmitting it. While spoken languages 
extensively recruit auditory perception, written languages rely on the 
visual modality. This implies that written characters have to fit con
straints of the human visual system (Dehaene, 2010; Dehaene & Cohen, 
2007). At least two characteristics of writing systems reveal their 
adaptation to the human visual system. The characters of scripts are 
anisotropic with respect to the orientation of strokes within letters 
(preference for vertical and horizontal strokes over obliques), and of 
mirror symmetries (vertical symmetry being preferred to horizontal 
symmetry), two properties that can be predicted on neuroscientific 
grounds (Morin, 2018). They also tend to mimic natural scene statistics, 
by extensively using basic topological shapes that recur in the natural 
visual environment (Changizi, Zhang, Ye, & Shimojo, 2006; Testolin, 
Stoianov, & Zorzi, 2017), and cardinal orientations, which are over
represented in the natural world (Morin, 2018). Both characteristics 
effectively reduce the cost of their processing by the human visual 
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system. Another aspect of characters that determines their degree of 
adaptation to the human visual system is their visual complexity. 

Visual complexity influences performance in reading and visual 
discrimination tasks (Donderi, 2006). Lower visual complexity corre
lates with easier learning, processing and use (Pelli, Burns, Farell, & 
Moore-Page, 2006). In addition to being easier to perceive, complex 
shapes arguably require more motor effort to produce, since they tend to 
involve a greater number of distinct strokes (distinct hand movements 
typically separated by a lifting of the inscribing instrument — Chang, 
Plaut, & Perfetti, 2016; Kim, Kim, Choi, & Kim, 1999; Rovenchak, 
Mačutek, & Riley, 2009). Simpler letters are easier on the eye and easier 
on the hand. Twin visual and motor pressures tend towards simpler 
letters. 

1.1. Lexicon 

Script: A set of graphic characters used for the written form of one or 
more languages, or the “graphic form of the units of a writing system” 
(Coulmas, 2002, p. 35). A script can be used by one or more writing 
system(s). For instance, the Latin script is used for several writing sys
tems, including the English alphabet, or the Polish alphabet. 

Writing system: A set of conventions linking a script to the sounds 
and words of a language. A writing system is usually based on one script 
only. 

(Writing system) type: A way to categorize scripts based on the 
semiotics of the writing system they are used for, i.e., the linguistic unit 
their characters encode. Well known types include alphabets, sylla
baries, logographies, etc. Here we often write “type” as short-hand for 
“writing system type”. 

Symbol/character: We use the words “symbol” and “character” 
interchangeably. They refer to basic symbols (shapes) used to visualize 
(write or print) a language. 

Font: A set of graphical representations of the shapes in a script. For 
instance, the font for the letters of the Latin script. This paper is not 
concerned with typographic variants, such as italic vs. regular type, or 
serif vs. sans-serif variants of a given script. We focus on the variation 
between scripts, which is considerable, rather than on variation inside 
scripts. 

1.2. What determines the graphic complexity of a script's characters: 
Type, size, phylogeny? 

Two main drivers of character complexity have been hypothesized: 
its graph inventory size, and the type of the writing system it is associ
ated to (Chang et al., 2016; Changizi & Shimojo, 2005). The size of a 
script's inventory is the number of characters included in the script. For 
instance, the graph inventory size of the Latin [Latn]1 script is 52, as it 
includes 52 unique characters (we consider upper- and lower-case letters 
to be distinct characters). Writing system type is a way to categorize 
scripts based on the semiotics of the writing system they are used for, i. 
e., the linguistic unit their characters encode. Well known types include 
alphabets, syllabaries, logographies, etc. In addition to graph inventory 
size and writing system type, we add phylogenetic influence: the char
acter complexity of one script can also be influenced by the script from 
which it descends. In other words, other things being equal, we consider 
the possibility that a script descending from a complex script may have 
more complex characters than a script descending from a simpler script. 

1.2.1. Size hypothesis: Scripts with larger graph inventories have more 
complex symbols 

Studies investigating the relation between complexity and graph 

inventory size have yielded conflicting results. Changizi and Shimojo 
(2005) found that character complexity was of three strokes on average, 
independently of the script considered, while Chang et al. (2016) and 
Chang, Chen, and Perfetti (2018) found that character complexity 
increased with the number of characters included in a script, and was 
influenced by writing system type. Writing system type is, in this case, 
thought to influence the complexity of characters through the number of 
characters required by the mapping between characters and linguistic 
units. According to Chang et al. (2016), “the need for complexity is 
driven by the size of the grapheme inventory, which in turn is driven by 
the size of linguistic units to which they map: phonemes, syllables, 
syllabic morphemes, in increasing order” (p. 67). 

One limitation of both studies is that they treat scripts as indepen
dent datapoints, even though distinct scripts are not independent. 
Scripts are related to other scripts. Many alphabetic writing systems 
originate from the Greek alphabet in more or less direct ways, for 
instance. Not accounting for common ancestry can be particularly 
problematic for cross-cultural data, as some of the characteristics 
observed in a population may be due to their common ancestry (“Gal
ton's problem”): it is necessary to account for the fact that some obser
vations are not independent from one another (Mace et al., 1994). Here, 
we want to test whether graph inventory size impacts the graphic 
complexity of characters, while accounting for possible influences from 
common ancestry. 

1.2.2. Homogeneity hypothesis: Most variance in character complexity is 
captured at the level of the script 

Several arguments suggest that most of the variance in character 
complexity should be captured by knowing which script a character is 
from. First, inclusion in a given script captures many important sources 
of variance in character complexity that do not vary at the level of in
dividual characters. This includes the material that the script is usually 
written on; the shape of the basic strokes making up the script; or gen
eral stylistic influences. Second, something like the principle of uniform 
information density (Jaeger, 2010), which guides spoken language 
production, may also constrain written language. If true, this would 
mean that writers maintain a more or less constant level of complexity 
throughout the various letters that they write. Third, similarity between 
characters increases predictability of features, which some have argued 
makes reading easier (Treiman & Kessler, 2011). Homogeneity between 
characters within a script also facilitates learning (Treiman & Kessler, 
2011). For those three reasons, belonging to a particular script should be 
the most important factor affecting character complexity, when 
compared to the factors that are relevant to the complexity of individual 
characters —e.g., the type of writing system they are used for. 

1.3. The cultural evolution of writing: Do characters become less complex 
over time? 

Graphic complexity increases the cognitive cost of processing signals 
(Pelli et al., 2006). Graphic complexity also impacts the producer's 
effort, as more complex symbols take longer to draw or write, and are 
harder to reproduce faithfully (Tamariz & Kirby, 2015). 

Higher visual complexity makes visual stimuli, and thus characters, 
harder to memorize and to recognize (Pelli et al., 2006; van der Helm, 
2014) – see Section 2.3 for details on visual complexity metrics. More 
complex images (image here means any graphic representation, abstract 
or concrete, figurative or not) take longer to identify, and also occasion 
more mistakes, as they are more frequently confused with other symbols 
or reproduced imperfectly (Byrne, 1993; Donderi & McFadden, 2005; 
Pelli et al., 2006; Zhang, Zhang, Xue, Liu, & Yu, 2007). This effect of 
complexity is robust to participants' familiarity or experience with the 
images (Byrne, 1993), and to levels of noise, overall contrast, or ec
centricity in the visual field (Shu, Chen, Anderson, Wu, & Xuan, 2003). 
Graphic complexity also weighs on the working memory load, making 
visual search harder (Alvarez & Cavanagh, 2004). Finally, the effects of 

1 All scripts included in our dataset are associated to unique 4-letter identi
fiers in the ISO15924 (e.g., [Latn] for the Latin script), which we use here to 
avoid confusion. 
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graphic complexity occur early in the visual processing of words – 
earlier than orthographic or semantic effects (Dufau, Grainger, Midgley, 
& Holcomb, 2015). These results imply that a script can become more 
legible (up to a point) by decreasing its characters' complexity. 

Complex drawings and scribbles are known to simplify in experi
mental settings, because simpler shapes take less effort both to 
remember and to produce. Drawings, in particular, have been among the 
first type of stimuli used in transmission chain experiments (Balfour, 
1893; Bartlett, 1932). Transmission chain experiments function as 
games of “telephone”: one participant is given a stimulus that she has to 
reproduce. Her reproduction is then given to a second participant who 
has to reproduce it in turn, and so on until it reaches the last participant 
in the chain. Scribbles have been showed to decrease in complexity over 
experimental generations, especially when drawn from memory rather 
than directly copied (Tamariz & Kirby, 2015). Studies in experimental 
semiotics also suggest that written communication should show some 
form of compression. These experiments require one participant to guess 
a meaning among a set of possible options, based on drawings or 
scribbles produced by another participant. Whenever the same partici
pants were allowed to play several rounds in a row, the drawings they 
produced became simpler, more abstract and less iconic (Garrod, Fay, 
Lee, Oberlander, & MacLeod, 2007). Scripts, during their lifetimes, are 
submitted to similar constraints: being reproduced from memory, 
transmitted, and used in communicative interactions. We would thus 
expect them to become simpler over time. 

It has been suggested that changes in writing systems over time are 
relatively directed and that relatively iconographic or figurative variants 
(think Egyptian hieroglyphs [Egyp]) give rise to more abstract and 
simpler characters (Gelb, 1963). Iconic or figurative visual symbols tend 
to have more complex shapes than abstract symbols, as suggested by a 
study of hundreds of heraldic symbols (Miton & Morin, 2019). A case 
study focused on the Vai [Vaii] script showed that, at least for this 
recently invented script, characters indeed simplified during the two 
centuries that followed their creation c. 1833 (Kelly, Winters, Miton, & 
Morin, 2020). 

1.3.1. Invention hypothesis: Recently invented scripts are more complex 
than more ancient scripts 

If pressures for simplification drive the evolution of scripts, we can 
expect that idiosyncratic scripts, i.e., scripts invented de novo by illit
erate inventors in the recent past, with no overwhelming influence from 
one single ancestor, would have had less exposure to such pressures. In 
turn, this predicts that the characters of recently created scripts would 
be more complex than those of scripts that were exposed to evolutionary 
pressures for a longer period of time. 

1.3.2. Descendants hypothesis: Parent scripts have more complex 
characters compared to their offspring 

Branching-out events occur whenever a script differentiates from its 
parent script: a large share of scripts were formed by branching out from 
other scripts. They did so either as independent offshoots of continuing 
scripts (Thaana [Thaa] from Arabic [Arab]), or as continuations of 
extinct scripts (Tifinagh [Tfng] or Greek [Grek] from Phoenician 
[Phnx]). Such branching-out events provide the opportunity to increase 
a script's efficiency, by simplifying its characters. If branching-out events 
favored an increase in efficiency, this would predict that the characters 
of the “parent” script would, on average, be more complex than their 
offspring's characters. 

1.4. Order hypothesis: The distribution of complexity inside characters 
follows writing and reading direction 

Studies of the Latin script suggest that visual complexity is not ho
mogeneous within its letters. Latin letters tend to be “right-facing” 
(Fischer, 2011; Treiman & Kessler, 2011): most of their features are 
concentrated on the left hand-side half of the letter, as in capitals R, C, F, 

K, or E (Treiman & Kessler, 2011), so that they seem open to the right. 
Children pick this property of the Latin script early on, and commit 
mirror-writing mistakes more often when writing a left-facing character 
or digit (e.g. they turn “3” into “Ɛ” more often than they turn “K” into 
“ꓘ”) (Fischer, 2011, 2013). In doing so, they transform characters in a 
way that puts their more complex half first (in reading and writing 
order) while retaining all their other characteristics. McIntosh, Ander
son, and Henderson (2018) generalized this effect to pseudo-letters that 
children had no prior exposure to. This bias in letter production can be 
interpreted in several ways. Earlier studies claimed that Latin letters are 
right-facing because their right half contains more information 
compared to their left half, implying that the right-side half of letters 
contains more information than their left-side half (Kolers, 1969; 
Shimron & Navon, 1981). Yet the exact opposite conclusion can also be 
drawn: Latin letters appear right-facing because most of their graphic 
features (or strokes) are concentrated on the left side (as in E, F, P, etc.). 

Recent work argues that the distribution of information inside Latin 
letters is biased towards the left half—the first half in reading and 
writing order. In line with this, Soares, Lages, Oliveira, and Hernández 
(2019) had Portuguese subjects complete a masked priming go/no go 
task, showing that words including mirror symmetrical letters (in this 
study, b or d) are processed more slowly when the letter's stem is ori
ented to the right: d takes more time to be processed than b, even though 
it is a much more frequent letter in Portuguese. The authors interpret 
this result as reflecting a “front-end coding scheme” whereby readers of 
the Latin script (as used in Portuguese writing) prioritize the informa
tion found in the front (i.e., left) part of letters. Concordant evidence 
comes from another script that, like the Latin script, is customarily 
(though not exclusively) written and read from left to right: Chinese 
characters. Using the chimeric stimuli paradigm, Janet Hsiao and her 
team show a left-side bias for Chinese character recognition (Chung, Liu, 
& Hsiao, 2017; Hsiao & Cottrell, 2009; Liu, Yeh, & Hsiao, 2018; Tso, Au, 
& Hsiao, 2014): the left side of characters carries a greater amount of 
distinctive information, compared to their right half. This effect repli
cates the well-known left-side bias obtained with other visual stimuli, 
like faces or dot patterns (Voyer, Voyer, & Tramonte, 2012). 

The contradictory nature of claims and evidence on the distribution 
of visual information among letter halves is partly due to the lack of a 
clear and robust metric for visual information. Graphic complexity, as 
measured here, can (in our view) be used as a proxy for visual infor
mation (Pelli et al., 2006), providing us with a way of adjudicating be
tween various views of the allocation of visual features between letter 
halves. We aimed to test the hypothesis that appears dominant in the 
literature: a concentration of visual information in the letter half that is 
written or read first (Chung et al., 2017; Hsiao & Cottrell, 2009; Tianyin 
Liu et al., 2018; Soares et al., 2019; Tso et al., 2014). 

With rare exceptions (e.g. early Sumerian writing) reading and 
writing directions tend to coincide, and the direction of inscription tends 
to be the same between letters and inside letters: if letters are written 
from left to right, then the strokes inside these letters also tend to be 
written from left to right. There is good evidence that the strokes written 
first are more important in identifying a letter than those written last, at 
least for Chinese characters (Flores d'Arcais, 1994) and Latin letters 
(Parkinson & Khurana, 2007; Schubert, Reilhac, & McCloskey, 2018), 
consistent with the view that letter recognition recruits motor schemas 
supplementing purely visual memory (Perfetti & Harris, 2013). This 
could explain why most studies find evidence for a “front-end coding 
scheme” (Soares et al., 2019) where useful information is located first in 
reading and writing order. 

We expected to find that letters in scripts written and read from left 
to right (like Latin) are “left-heavy”: their left half would be more 
complex than their right half. Conversely, letters in scripts written from 
right to left should be found to be “right-heavy”. When testing this 
prediction, we must control for a possible tendency for visual informa
tion to concentrate on the left or right side of characters, independently 
of reading direction. Visual perception has inbuilt asymmetries between 
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the left and right visual hemifields, at least for some domains such as 
face perception (e.g. Voyer et al., 2012). Whether such an asymmetry 
applies to the perception of written characters independently of reading 
direction is, however, far from clear. Some studies suggest that infor
mation presented in the right-hemifield is given more weight (Hardyck, 
Tzeng, & Wang, 1977), while others find the opposite effect 
(Śmigasiewicz et al., 2010 for Latin characters, Chung et al., 2017 or 
Zhou, Gao, Chang, & Su, 2019 for Chinese characters). We nevertheless 
controlled for laterality, as a precaution. 

We pre-registered two predictions based on the hypothesis that vi
sual information clusters on the side of characters that the reading eye 
encounters first. Visual complexity should be higher in character halves 
that come first in reading order: left for Left-right scripts (i.e. scripts 
customarily written and read from left to right), right for Right-left 
scripts. Our second prediction was that complexity differentials be
tween halves are specifically predicted by order: left halves are not more 
complex than right halves when they come last in reading order, and 
vice-versa. 

2. Methods 

2.1. Pre-registration and data accessibility 

We kept a complete research diary on the Open Science Framework 
website (https://osf.io/9dnj3/) where all analyses carried out were pre- 
registered and described. Pre-registration consists in describing both the 
research design and analysis plan as independently as possible from data 
collection. Data and R scripts used to produce the results and figures can 
be found at https://osf.io/9dnj3/. 

2.2. Inventory constitution 

2.2.1. Script-level inclusion rules 
The inventory of scripts included in our study was compiled from the 

Unicode 10.0, updated according to the Unicode 11.0 (The Unicode 
Standard, Version 11.0, (Mountain View, CA: The Unicode Consortium, The 
Unicode Standard, Version 11.0, 2018. ISBN 978–1–936,213-19-1), and 
enriched with official proposals to encode new scripts not included in 
the standard, but under consideration at data collection time (Novem
ber–December 2018). This study excluded the following scripts. Sec
ondary scripts, defined by Morin (2018) as scripts used by a writing 
system that encodes another system, e.g. Stenographics such as 
Duployan shorthand [Dupl]); non-visual scripts (e.g. Braille [Brai], a 
haptic script); scripts that do not directly encode a spoken language (e. 
g., Blissymbols [Blis]); and undeciphered (or only partially deciphered) 
scripts (e.g., Linear A [Lina]). Further exclusions occurred during data 
collection. Because our study required us to generate pictures of each 
character for each script, scripts for which we could not find a font 
(necessary to generate the pictures) were excluded. Finally, a symbol 
was considered missing if we could not produce a picture for it (i.e., if 
the font for the script did not have it). Scripts with up to 5 missing 
symbols were included. See the InventoryScripts.csv, in Files, at htt 
ps://osf.io/9dnj3/ for an exhaustive list of exclusions and the justifi
cation for each. 

2.2.2. Character-level inclusion 
Drawing on Morin (2018), a character was included if it could be 

used on its own by a writing system to encode one sound or (in the case 
of logographic systems) one word or phrase. We thus exclude the 
following: punctuation marks and ligatures, diacritic marks, number 
symbols, honorific marks, and currency marks. While diacritic marks 
encode sounds, they do not do so on their own and need to be associated 
to another letter, which is why we excluded them. The exclusion of 
ligatures and diacritic marks implied that the size variable (i.e., the 
number of characters included in a script) was to a small extent 
underestimated for abugidas and abjads (and their characters' average 

complexity overestimated, as diacritics and ligatures tend to be very 
simple), compared to syllabaries and alphabets. It is possible to account 
for the complexity of diacritics and their interactions with other char
acters' complexity when using different types of measures of complexity 
- for instance, by using the number of discontinuous elements in graph 
formation, as in the GraphCom dataset (Chang et al., 2018). 

2.2.3. Description of the dataset 
Our dataset was large and diverse: it included 47,880 characters 

from 133 scripts, comprising (see Fig. 1) 5 East Asian scripts, 23 Phoe
nician (European) scripts, 35 Indian scripts, 24 Middle East scripts, 23 
Modern Inventions, 11 South East Asian Insular scripts, and 12 Mainland 
South East scripts. As for type of writing system, 17 abjads, 56 abugidas, 
44 alphabets, 1 featural system,2 4 logosyllabaries (morphosyllabaries), 
and 11 syllabaries were included. 

2.2.4. Dataset restrictions for the distribution of complexity inside 
characters 

The set of scripts included for testing the prediction that characters' 
first halves are more complex than their last halves was the same as for 
the other hypotheses, with one exception. The scripts typically written 
and read in a top-to-bottom or bottom-to-top direction were excluded, 
along with scripts for which the direction of writing is uncertain, vari
able, or in boustrophedon style. The resulting list contains 124 scripts 
(97 scripts usually written from left to right, 27 scripts usually written 
and read from right to left). See https://osf.io/pmr34/ and detailed 
reports in Files at https://osf.io/v8khp/. 

2.3. Measures of visual complexity 

Following previous studies in cultural evolution (Kelly et al., 2020; 
Miton & Morin, 2019; Tamariz & Kirby, 2015), two measures of visual 
complexity were used, here called “perimetric” and “algorithmic”. 
Algorithmic and perimetric complexity measures were highly corre
lated, rs = 0.87, p < 0.001 (as measured on pictures of full characters). 

2.3.1. Perimetric complexity 
Perimetric complexity is defined as the ratio of inked surface to the 

perimeter of this inked surface (Attneave & Arnoult, 1956). It is ob
tained, using Watson's implementation (Watson, 2012), by taking the 
squared length of the inside and outside perimeters of a motif P, divided 
by the foreground area A and by 4π (Pelli et al., 2006; Watson, 2012): 

C =
P2

4πA.

The measure was implemented in Wolfram (Mathematica) (Watson, 
2012). Perimetric complexity so defined correlates with human perfor
mance in learning to recognize and in discriminating letters (Liu, Chen, 
Liu, & Fu, 2012; Pelli et al., 2006). 

2.3.2. Algorithmic complexity 
Algorithmic complexity measures are obtained by compressing the 

image file corresponding to a character (.eps file outputted by the 
Potrace algorithm). Algorithmic complexity is then the size in bytes of 
the compressed file: it offers an estimation of the length of the shortest 
computer program that produces the picture of the character without 
loss of information. This measure correlates well with perimetric 
complexity (Miton & Morin, 2019). 

2 The one featural system included in the present study is Korean Hangul 
[Hang]. In featural systems, the shape of characters correlates with the lan
guage's features. In Hangul, the shape of characters was designed to resemble 
the shape taken by the mouth to produce the corresponding sounds. 
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2.4. Pictures processing 

Our analyses required a standardized collection of pictures, in which 
the amount of variation due to the use of different fonts would be 
minimized, while the variation due to actual character shapes would be 
preserved. Among other things, fonts vary on two properties that can 
affect the measures of character complexity: size and line thickness. 

2.4.1. Generating pictures of characters 
A picture of each character was generated using a range of Unicode 

identifiers (an identifier is a code of four or five alphanumeric characters 
uniquely identifying a character) and a font (a font is a particular 
graphical instantiation of a character). The script generating the pictures 
(written in bash) fixed the size of the picture at 500 by 500 pixels, and an 
initial font size for drawing the symbols at 60. Whenever a script pre
sented characters that would be to too big to fully fit within the 500 by 
500 pixels canvas, it was rerun at a smaller point size. In such cases, we 
decreased point size 5 by 5, until reaching a size at which all characters 
would fit inside the canvas. This was necessary for only four scripts 
([Egyp], [Bali], [Mymr], [Gran], with respective final point sizes of 55, 
45, 55 and 40). 

2.4.2. Resizing 
In order to standardize our pictures for size across scripts, we 

adaptively resized them. We first trimmed all the pictures. We then 
selected, for each script, the character with the largest picture (on either 

dimension, i.e., height or width). From this picture, we derived a ratio 
specifying how much it had to be resized for its largest dimension to fit a 
490 by 490 pixels square (maintaining the aspect ratio and thus avoiding 
distortions). Finally, we used this ratio for resizing all pictures from the 
same script, and placed the resulting pictures back on a 500 by 500 
pixels white canvas—see Fig. 2. This procedure allowed us to minimize 
variation in size between different scripts, even when they used very 
different fonts, while maintaining the variation in size occurring within 
each script. 

2.4.3. Homogenizing line thickness 
In order to obtain a collection of characters with the same constant 

line thickness, we used a combination of functions in Mathematica: first 
thinning, then pruning, and finally, dilation (See Fig. 3.). The Thinning 
function (argument “Method” set on “MedialAxis”) returned the 
approximate medial axis of the picture. Then, we applied a Pruning 
function (argument = 35) in order to eliminate some of the artefacts 
emerging from the process of obtaining the approximate medial axis. 
This effectively removed the small segments that appeared during the 
extraction of the approximate medial axis but were not part of the 
optimal (i.e., representative) skeleton of the character. Pruning branches 
whose length was inferior to 35 pixels yielded satisfactory results. 
Finally, the Dilation function (argument = 2) made the trait thicker and 
more akin to usual characters. This procedure resulted in white char
acters on a black background (on which perimetric complexity measures 
were computed in Mathematica). 

Fig. 1. Composition of the dataset, by family and type of writing systems.  

H. Miton and O. Morin                                                                                                                                                                                                                        



Cognition 214 (2021) 104771

6

Fig. 2. Procedure used to minimize the variation in characters' size between scripts. This example uses characters (from top to bottom) A91A, A91B and A90F from 
the Kayah Li [Kali] script. 

Fig. 3. Procedure used to minimize the variation in line thickness, both within and between scripts. The red circles show examples of small problematic strokes 
appearing during the thinning step. This example shows the character A607 from the Vai [Vaii] script. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 4. (1) We start with pictures as processed for perimetric complexity (i.e., white on black, pnm format, square pictures of 500 by 500 pixels). (2) These pictures 
are split vertically into two halves (of 250 by 500 pixels). (3) They are padded on the side on which the character is cut – i.e., the “inner side” of the initial picture, to 
a final size of 300 by 500 pixels. All other steps required for the pictures to be fitted for algorithmic complexity measurement were then applied (i.e., reversing colors 
so that the character is in black on a white background, applying the potrace algorithm for vectorization). This figure illustrates the process by using character 1E90F 
from the Adlam [Adlm] script. 
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2.4.4. Additional treatment for algorithmic complexity 
Algorithmic complexity metrics were computed on pictures having a 

black foreground (black character) over a white background. Each 
character's picture also went through the Potrace algorithm (Selinger, 
2003), to eliminate any superfluous pixels and to obtain a vectorized 
version before zip compression. 

2.4.5. Pictures of characters' vertical halves 
Each character picture in our dataset was automatically split verti

cally, i.e., it was cut into two halves (right and left) separated by a 
vertical line. 

To do so, we used the pictures exactly as they had been processed as 
described in the preceding steps. We split them in two equal-size halves, 
and re-padded them to an equal, constant size (see Fig. 4). Padding 
avoids having parts of the characters starting at the picture's border, 
which can be problematic for calculating the perimetric complexity 
measures in Mathematica. Padding here means that we add pixels of the 
background's color (black) on the side that directly cuts the character 
(see step 3 of Fig. 4). Vectorized pictures cannot easily be cut in half 
because they do not have a ‘size’ in pixels, so the cutting step was 
applied on pictures processed for perimetric complexity, and then 
transformed again to compute algorithmic complexity measures. 

2.5. Phylogeny, size, type, and other information 

The variables included in our analyses were the graph inventory size 
of each script (the number of characters that it includes), its family (a 
category based on each script's geography and ancestry), its type (e.g., 
alphabet, abugida, syllabary, etc.), and whether or not the script was 
idiosyncratic. We classify scripts created by identifiable creators in the 
last two centuries, with no predominant influence from any single 
existing script, as “idiosyncratic”. For analyses using character-level 
measures, an additional grouping variable script refers to the specific 
script to which they belong. Whenever applicable, ancestor, i.e., which 
other script is considered an ancestor of the script, was also used. 

2.5.1. Sources 
Our starting point was the dataset published in Morin (2018). To 

obtain information on scripts that were included in this study but not in 
Morin (2018), we used the sources listed in that paper. One of the 
sources used in Morin (2018) (“Ethnologue: Languages of the World” n. 
d.), could not be used in our study, due to its shift to a for-pay model. All 
variables were coded by pooling together all available information from 
our sources. A majority rule was applied whenever our sources gave 
contradictory information. 

2.5.2. Graph inventory size 
Graph inventory size was measured as the number of unique char

acters included in our sample for each script. When a character exists in 
several possible versions depending on its position (e.g. capital letters vs. 
minuscules in the modern Latin script), we counted each version as one 
distinct character, following the Unicode Standard. 

2.5.3. Script classification: Families 
Our script family variable mostly followed the classification estab

lished by Morin (2018) (drawing mainly on Daniels & Bright, 1996) on 
phylogenetic and geographic grounds. The seven families were the 
following:  

- Middle Eastern family: direct descendants of the main scripts of the 
Middle East (i.e. Egyptian, Cuneiform, South Arabic, and Aramaic 
scripts).  

- Phoenician family (“European family” in Morin, 2018): all the direct 
and indirect descendants of the Phoenician alphabet, including the 
Greek alphabet's script and its descendants.  

- Indian Brahmic family: all the descendants of the Brahmic script in 
Modern India, Pakistan, Sri Lanka, Mongolia, and Tibet. 

- Mainland South-East Asian Brahmic family: all the direct and indi
rect descendants of the Brahmic script in mainland South-East Asia.  

- Insular South-East Asian Brahmic family: all the direct and indirect 
descendants of the Brahmic script outside of mainland South-East 
Asia, in Indonesia, and the Philippines.  

- Recent inventions family: all the scripts created after 1800.  
- East Asian family: Korean Hangul, Japanese Kanas, and Chinese 

scripts unrelated to the Brahmi script (i.e. Han [Hani], Yi [Yiii], 
Tangut [Tang]). 

This family variable is not strictly phylogenetic: in addition to 
phylogenetic information in the form of ancestry (i.e., parent and 
offspring scripts), family also includes geographic information. This 
classification adheres to and reflects previously established conventions 
in reference documents seminal to the study of writing systems (Daniels 
& Bright, 1996). A strict interpretation of phylogenetic information is 
captured by our ancestor variable. 

As for all other variables, each script's last common ancestor was 
determined by pooling together information from all our sources. When 
sources were consistent with one another but differed in their specificity, 
the most specific source (citing the ancestor that was closest in time to its 
descendant) was chosen. 

2.5.4. Types of writing systems 
Based on definitions from Daniels & Bright (1996, p. 4), we classified 

scripts according to the linguistic unit their graphemes mapped onto, 
and recoded the information from our sources according to the following 
classification (all quotations below from Daniels & Bright, 1996):  

- alphabet: “the characters denote consonants and vowels”.  
- abjad (or consonantary in Daniels & Bright, 1996): “the characters 

denote consonants (only)”. In other words, such scripts let readers 
supply the appropriate vowel.  

- abugida: “each character denotes a consonant accompanied by a 
specific vowel, and the other vowels are denoted by a consistent 
modification of the consonant symbols”. They are also referred to as 
syllabic alphabets, or alphasyllabaries in other sources.  

- syllabary: “the characters denote particular syllables, and there is no 
systematic graphic similarity between the characters for phonetically 
similar syllables”.  

- logosyllabary, or morphosyllabary: “the characters of a script denote 
individual words (or morphemes) as well as particular syllables”. 
Our dataset included four such scripts: Egyptian hieroglyphs [Egyp], 
Chinese characters [Hani], Anatolian hieroglyphs [Hluw] and Tan
gut [Tang].  

- featural: “the shapes of the characters correlate with distinctive 
features of the segments of the language”. The only such script in our 
sample is Hangul [Hang]. 

2.5.5. Idiosyncratic scripts 
Scripts were considered idiosyncratic if they fulfilled the following 

criteria. (1) precise information is known about their inventors (most 
often, their name). (2) There is no scholarly consensus that they derive 
their shape from the influence of one single identified ancestor. Most 
resemble no known script; others fuse many influences together so that 
no single dominant influence is discernible. (3) The script was invented 
after 1800. This definition excludes invented scripts such as Cherokee 
[Cher], which was invented de novo by an identifiable inventor, but 
nonetheless bears the dominant influence of one script (in Cherokee's 
case, the Latin script). 

2.5.6. Direction of writing 
Direction of writing was obtained from four sources — two websites: 

Wikipedia and Omniglot, and two reference books (Daniels & Bright, 
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1996; Rogers, 2005). We decided to use the dominant direction of 
writing in our coding, even for scripts that are occasionally written in the 
opposite direction. For instance, the sinogram-based script used for the 
Chinese languages [Hani] is usually written and read from left to right, 
but occasionally also from right to left: we nonetheless decided to code it 
as written and read from left to right. For all the scripts included in this 
study and mentioned in Morin, 2018 (n = 109) we used Morin's infor
mation after double-checking it against Omniglot. Scripts that were not 
referenced on Omniglot were double-checked with the ScriptSource 
website. For the remaining 24 scripts, a consensus method was applied. 

For six scripts, we found discrepancies between Morin's coding and 
Omniglot (or ScriptSource if the script wasn't referenced on Omniglot). 
In two cases we established that Morin was mistaken (Meroïtic hiero
glyphs [Mero] and Meroïtic cursive [Merc]). In four other cases, dis
agreements between sources were important enough to conclude that 
the script was either not well documented, or extremely variable, with 
regard to direction of writing. These scripts were thus excluded: the 

Batak script (for Karo) [Batk], the Japanese syllabaries [Hrkt], the 
Linear B script [Linb], and the Old North Arabian script [Narb]. 

3. Results 

3.1. Size hypothesis 

Size has an impact on character complexity: the more characters in a 
script, the more complex the characters. However, this effect depended 
on whether large scripts (with graph inventory size >200), including 
logosyllabaries (or morphosyllabaries), were included or not (see Fig. 5). 

The size variable (number of characters in a script) was used as 
predictor in a nested regression analysis. The scripts were grouped by 
family to account for shared cultural influences between distinct scripts. 
These families were used as the grouping variable in linear mixed 
models with random intercept, using the lmer function of the lme4 
package for R (Bates, Maechler, Bolker, & Walker, 2014). A null model 

Fig. 5. Script complexity (the average complexity of characters in a given script, perimetric above, algorithmic below) as a function of graph inventory size. Color 
shows script family. Both complexity measures and the number of characters in scripts were log-transformed. 
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was built first, with a random intercept for family and for type; a second 
model introduced the script's size (i.e., graph inventory size) as a fixed 
effect. 

On the full dataset (total N = 47,880 characters from 133 scripts), the 
best null model for characters' perimetric complexity included both type 
and script (the latter variable nested by family) as random effects. A 
model adding size as a fixed effect shows larger scripts to be more 
complex than smaller ones (β = 0.12, 95%CI[0.073, 0.175], df = 21.222, 
t = 4.78, p < 0.001 for perimetric complexity; β = 0.04, 95%CI[0.0245, 
0.0747], df = 24.79, t = 3.873, p < 0.01 for algorithmic complexity). 
Models were refitted using maximum likelihood for comparison pur
poses, showing that the test model was more informative (informa
tiveness being assessed using Akaike's Information Criterion, AIC) (ΔAIC 
= 12.5 for perimetic complexity, ΔAIC = 46 for algorithmic complexity). 

Using a subset comprising exclusively scripts with less than 200 
characters (N = 5566, on 124 scripts), similar to Changizi and Shimojo 
(2005), there is no longer an effect of graph inventory size. If we remove 
large scripts (scripts including 200 characters or more) from the dataset, 
larger scripts were not more complex than simpler ones, neither for 
perimetric (b = 0.06, 95%CI[− 0.048, 0.168], df = 92.03, t = 1.086, p =
0.28) nor for algorithmic complexity (b = 0.03, 95%CI[− 0.012, 0.076], 
df = 100.58, t = 1.42, p = 0.159). 

Most of the effect of graph inventory size seems to depend on the 
inclusion of a few very large systems (mostly East Asian) which also 
tended to have very complex characters. We thus replicated the results 

from both Changizi and Shimojo's (2005) and Chang et al.'s (2016) re
sults: character complexity does not seem to be influenced by size, as 
long as we restrict our analyses to the scripts in the same range as 
Changizi and Shimojo (2005)’s analyses. However, we show that this 
null result depends on the exclusion of high-size, high-complexity 
scripts. As all such large and highly complex scripts correspond to those 
which are logographic in our dataset, this finding is consistent with 
Chang et al.'s interpretation that type determines the size differentials 
that matter for character complexity. 

3.2. Homogeneity hypothesis 

We predicted that the script to which a character belongs would 
account for over half of the variance in character complexity. Contrary 
to our prediction, the script variable accounted for less than half of the 
variance, and in fact type captured more of the variance in character 
complexity than either script or family. This was true for both perimetric 
and algorithmic complexity, see Fig. 6. 

The intraclass correlation (ICC) was calculated on raw values for 
perimetric complexity measures and on log-transformed values for 
algorithmic complexity (in order to avoid convergence issues), using the 
ICC1.lme function in the “psychometric” R package (Fletcher, 2010). 
38.57% of the variance in perimetric complexity and 38.49% of the 
variance in algorithmic complexity is accounted for by a character's 
inclusion in a particular script. By comparison, family accounts for 

Fig. 6. Complexity by family and type (error bars represent 95% confidence intervals): the top panel represents perimetric complexity, the bottom panel represents 
algorithmic complexity. 
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29.74% (algorithmic complexity) to 45% (perimetric complexity) of the 
variance, whereas type captures 68.26% of the variance in perimetric 
complexity and 55.43% of the variance in algorithmic complexity. Most 
of the variance in letter complexity is thus captured by the type of 
writing system which the letter belongs to (e.g., alphabetic, syllabic, 
etc.). The actual script that a letter belongs to (e.g. Brahmic [Brah], 
Greek [Grek]) does not predict as much variance as its type. This was 
extremely surprising to us, given all the things that letters from the same 
script share: a common history, a set of basic constituent strokes, a 
preferred medium of inscription, a population of users, etc. 

3.3. Invention hypothesis 

Our hypothesis predicted that characters from idiosyncratic scripts 
would be more complex than characters from non-idiosyncratic scripts. 
The null model for this hypothesis thus did not include family as a 
random effect: random effects only included type and script. Contrary to 
our predictions, adding the Idiosyncratic variable did not improve the 
model fit, for both perimetric and algorithmic complexity measures. The 
test model failed to show any effect of idiosyncratic (β = 0.016, 95%CI 
[− 0.128, 0.161], df = 126.08, t = 0.226, p = 0.822 for perimetric 
complexity; β = − 0.003, 95%CI[− 0.062, 0.056], df = 125.05, t =
− 0.108, p = 0.914 for algorithmic complexity), when compared to the 
best null model for characters' complexity (ΔAIC = − 2.0, for both 
perimetric and algorithmic complexity). Additionally, idiosyncratic 
scripts were neither more nor less complex than the other scripts from 
the Recent Inventions family that were not idiosyncratic (β = 0.68, 95% 
CI[− 10.67, 12.79], df = 20.98, t = 0.11, p = 0.913 for perimetric 
complexity, β = 9.72, 95%CI[− 103.45, 121.56], df = 20.28, t = 0.172, 

p = 0.865, for algorithmic complexity, characters nested by script for 
both). 

3.4. Descendants hypothesis 

We hypothesized that, considering branching-out events, a “parent” 
script's characters would be more complex than its “offspring” script's 
characters. For each pair, the ancestor's average complexity (i.e., the 
mean complexity of its characters) was subtracted from the descendant's 
average complexity (as pre-registered). Our dataset included informa
tion on 102 branching-out events, from 29 different ancestor scripts. The 
most frequent parent script was Brahmi [Brah], with 25 offspring scripts. 
A parent script had, on average, 3.55 descendants (SD = 4.98). 

When controlling for ancestry (i.e, including ancestor as a random 
effect), algorithmic complexity did not seem subject to any systematic 
effect: no significant increase or decrease in complexity occurred with 
branching-out events (β = 12.87, 95%CI [− 34.98, 57.71], df = 29.69, t 
= 0.563, p = 0.577). Perimetric complexity tended to increase (not 
decrease) with branching-out events, but this trend failed to reach sig
nificance (β = 3.734, 95%CI [− 0.65, 7.35], df = 21.44, t = 1.823, p =
0.082), see Fig. 7. These results suggest that the null hypothesis may be 
true (no tendency for descendants to diverge from ancestors in a 
particular direction, as far as complexity is concerned). 

A Bayesian one-sample t-test was conducted to see whether the data 
supported the hypothesis that descendants do not, on average, decrease 
or increase in complexity, relative to their ancestor. It found moderate 
support for the null for both perimetric (BF = 4.02) and algorithmic 
complexity (BF = 5.06) – see Fig. 7. Differentials were averaged for each 
ancestor, rather than for each descendant-ancestor pair, to avoid 

Fig. 7. Average difference between means of descendant scripts and ancestor scripts plotted for each documented ancestor script, by alphabetic order (ISO key), for 
perimetric complexity (top) and algorithmic complexity (bottom). Error bars represent 95% confidence intervals. 
Order Hypothesis 
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assigning more weight to ancestors with numerous descendants (such as 
the Brahmi script). 

3.4.1. Prediction 1: First halves are more complex than last halves 
We calculated, for each character and for both measures of 

complexity, the first-half / last-half differential, i.e., the complexity of 
the first half, minus that of the last half. The first half was the half 
coming first in writing order, i.e., left in a script written from left to 

right, right in a script written from right to left. Data points were indi
vidual characters, nested by script and by family. A significantly positive 
intercept, meaning that first halves are, on average, more complex than 
last halves, controlling for family or writing direction, would confirm 
our prediction. This proved true for measures of algorithmic complexity 
(intercept estimate = 16.050, 95% CI [8.971, 23.128]; df = 140.67, t =
4.444, p < 0.001). Adding the script's average character complexity to 
our model did not make it more informative (ΔAIC = 6 in favor of the 

Fig. 8. First row: examples of characters 
from scripts respectively written Left-to- 
Right (in pink) and Right-to-Left (in blue). 
The first two characters are borrowed from 
Psalter Pahlavi [Phlp] (Unicode 10B89 and 
10B83), and from Georgian [Geor] (Unicode 
010EE and 010D9). For the second and third 
rows, each point stands for one script, ar
ranged by directionality (Right-to-Left 
scripts in blue, and Left-to-Right scripts in 
pink) and alphabetically within each cate
gory. Error bars represent 95% confidence 
intervals. Second row: Algorithmic 
complexity First-last half differential (AC) by 
script and writing direction. Third row: 
average perimetric complexity (PC) First-last 
half differential by script and writing direc
tion. (For interpretation of the references to 
color in this figure legend, the reader is 
referred to the web version of this article.)   
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original model), suggesting the effect is evenly spread between high- 
complexity and low-complexity scripts. Visual search for potential out
liers did not suggest the effect to be driven by outlier scripts. Adding 
script directionality to the model improved model informativeness 
(ΔAIC = 4), but the effect of directionality was small and non-significant 
(β = − 0.39, 95% CI [− 18, − 17]; df = 170.11, t = − 0.43, p = 0.96), and 
not indicative of marked differences between Left-right scripts and 
Right-left scripts. First halves are more algorithmically complex than 
last halves, regardless of the script's average complexity and 
directionality. 

For perimetric complexity, the intercept was positive as predicted, 
but this effect was weak and did not reach significance (β = 0.585; 95% 
CI [0.001802, 1.1689]; df = 98.41, t = 1.966, p = 0.0521). However, 
script directionality strongly influenced the first-half / last-half 
complexity differential. Our model was made more informative by the 
inclusion of script directionality (ΔAIC = 5), showing a higher first-half / 
last-half differential for Right-left scripts (effect of directionality: β =
2.82, 95% CI [1.4, 4.2]; df = 126.06, t = 3.8, p = 0.0001). Visual in
spection of the data confirmed this: the first halves of characters are 
perimetrically more complex in Right-left scripts, but not in Left-right 
scripts (Fig. 8). First halves are slightly more perimetrically complex 
than last halves, but this is true above all for scripts written from right to 
left. 

3.4.2. Prediction 2: Complexity differentials between character halves 
depend on order (first vs. last), more than laterality (left vs. right) 

We tested this prediction by comparing two models. Each model used 
character halves as data points, nested according to the character from 
which they were taken, the script of that character, and the family of 
that script. We added each half's position in reading order (first or last) 
as a fixed effect to the first nesting model (order model). In the second 
nesting model (side model), however, we included each half's laterality 
(left or right) as a fixed effect. For algorithmic complexity, the prediction 
was confirmed: the order model was more informative than the side 
model (ΔAIC = 64). The order model included a clear negative effect for 
order (order = last, β = − 46.3, 95% CI [− 48, − 44]; df = 45,818, t =
− 52.7, p < 0.0001), consistent with our previous results on this mea
sure. For perimetric complexity, however, the informativeness advan
tage in favor of order was not large enough to be interpreted (ΔAIC =

1.3). 

3.4.3. Post hoc test, controlling for laterality biases 
The fact that our predictions were verified exactly for algorithmic 

complexity, but only partially so for perimetric complexity, leads us to 
consider possible biases in our measurement tools. Cutting a character 
into two halves artificially creates new contours, absent in the original 
image. Perimetric complexity being, by definition, highly sensitive to 
contour lengths (unlike algorithmic complexity), this should lead it to 
overestimate complexity (compared to our other measure). This is a 
reason to doubt its reliability in the case at hand. 

There is also reason to believe that our measurements disagree spe
cifically in ways that confound our predicted effect. Perimetric 
complexity, compared to our other measure, specifically overestimates 
the complexity of right-side letter halves (independently of whether they 
come first or last in writing order). We showed this by considering how 
the discrepancy between our two measures varies. The discrepancy 
between perimetric complexity and algorithmic complexity was calcu
lated by normalizing each complexity measure (z-score) for each char
acter half, then subtracting normalized algorithmic complexity from 
normalized perimetric complexity. Normalization is necessary to ensure 
that bring our two heterogeneous measures to the same scale so they can 
be compared. The resulting discrepancy score then served as the 
dependent variable in a nested regression model. The data points were 
discrepancy scores for letter halves, nested by letter, script, and writing 
system type. To these nesting variables we added two fixed effects, one 
for side (whether the letter half is the right half or the left half), and one 

for order (whether the letter half is the first half or the last half). The 
model found a clear effect of side on the discrepancy score (side = right, 
β = + 0.11, 95% CI [0.09, 0.12]; df = 0.0004, t = 11, p < 0.0001), 
indicating that perimetric complexity is more likely to be higher than 
algorithmic complexity on right-side letter halves, controlling for order 
(not controlling for order does not change this result). 

Perimetric complexity is biased against our prediction in a way that 
algorithmic complexity is not: it is more likely to see right halves as 
complex. To counterbalance this bias, we needed to test our prediction 
in a way that is not impacted by disagreements in our measurements 
concerning the amount of complexity on the right or left side of char
acters. We did so by testing an alternative prediction: the distribution of 
complexity within letters is impacted by writing directionality. In other 
words, we predict that the complexity differential between the left half 
and the right half is sensitive to writing direction: in scripts written from 
left to right, the left half / right half differential tends to favor the left 
half, and vice-versa. This prediction is indifferent to the absolute size or 
direction of the left half / right half complexity differential, being only 
interested in how this differential is modulated by the direction of 
writing in a script. Thus, it tests our hypothesis without being 
confounded by our measurements' main point of disagreement, i.e., the 
distribution of visual complexity between the left and right halves of 
letters. 

For each character (in each script, and for each complexity measure), 
we calculated the Left-right differential, i.e., the complexity of the Left 
half minus the complexity of the Right half. We then built a null model 
that predicts this Left half / Right half differential using script and family 
as a nesting variable. We then included the script's directionality (Right- 
left as opposed to Left-right) as a fixed variable. Doing so made the 
model more informative for both complexity measures (ΔAIC = 15 for 
algorithmic, 14 for perimetric). Both final models showed a negative and 
significant estimate for the effect of directionality (algorithmic: β =
− 31.8, 95% CI [− 49, − 13]; df = 170.11, t = − 3.4, p = 0.0007; peri
metric: β = − 2.9, 95% CI [− 4.3, − 1.4]; df = 126.0, t = − 4.0, p =
0.0001). The complexity differential in favor of the left half is dimin
ished in scripts written from right to left, i.e., when the right half comes 
first in reading order. This effect is at least as clear for perimetric 
complexity as it is for algorithmic complexity. Controlling for each 
script's overall complexity by adding it as a fixed effect did not change 
this result, nor did it make either model more informative (ΔAIC = 7/6 in 
favor of the original model for perimetric/algorithmic measures 
respectively). 

When we test our prediction in a way that is not affected by our 
measurements' disagreements over the distribution of complexity be
tween the left- and right-side of letters, we find that directionality 
matters to the distribution of complexity inside letters. The left half is 
more likely to be the more complex half when it is the first half. 

4. Discussion 

4.1. Importance of writing system type and inventory graph size for 
character complexity 

We found the predicted relationship between graph inventory size 
and character complexity: characters are more complex in large scripts 
that include numerous characters. We expected this, as characters 
belonging to larger scripts have to be discriminated from many more 
characters in order to be recognized. Complexity makes it easier for 
characters to be distinctive, because it increases the number of ways in 
which a character can be different from other characters. However, we 
also found that this positive relationship between graph inventory size 
and character complexity was only borne out when logographic systems 
were included in our analyses, ultimately underscoring the highly 
influential role of typology. In line with this, we found that most of the 
variance in complexity was accounted for by the type of writing system 
that a script was mainly used for (e.g., alphabetic, syllabic, etc.). 
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Contrary to our predictions, the script that a character belonged to 
did not account for as much variance in character complexity as writing 
system type did. In previous studies, causality was usually assumed to 
flow from type to graph inventory size to character complexity. This 
assumption underpins Chang et al. (2018) evaluation of different mea
sures of character complexity in relation to the different measures' ca
pacity to distinguish between types of scripts. Our results suggest the 
relationship between type and character complexity may not be medi
ated by the graph inventory size, as previously assumed (Chang et al., 
2016). Rather, writing system type determines both graph inventory size 
and character complexity, in part by determining the size of the graph 
inventory. Our result also contradicts Changizi and Shimojo's (2005) 
claim that character complexity is constant across scripts independently 
of graph inventory size, implying that different types of writing systems 
have roughly invariant levels of complexity. Although their results are 
reproducible when the same exclusions of scripts are made, we also 
crucially reverse their results when the full range of writing system types 
and graph inventory sizes is taken into account. 

4.2. No decrease in character complexity 

Overall, there was little evidence of a decrease in complexity over the 
long-term history of scripts. We put forward two hypotheses derived 
from our assumption that scripts should manifest a historical decrease in 
character complexity. Neither were supported. Idiosyncratic scripts 
were not more complex than scripts that were exposed to evolutionary 
pressures for several centuries. Overall, character complexity did not 
decrease when parent scripts branched out into descendant scripts. We 
provide and discuss two possible interpretations of these results: (1) 
differences in the use of scripts may generate statistical noise, or (2) the 
decrease in character complexity occurs early and rapidly in a script's 
history. 

Social and cultural factors varying from context to context could 
have impacted the complexity of scripts' characters. Distinct scripts were 
used for distinct purposes, and by distinct populations. It is unclear how 
variation in function would have impacted complexity directly, but it 
implied different populations of users, ranging from trained scribes to 
nearly everyone in the population. Higher complexity might have been 
maintained more easily when scripts were used only by a specialized 
fraction of the population. Finally, in some cases, writing, and especially 
handwriting, is made to reflect social belonging, through unnecessary 
sophistication (Thornton, 1996). Nevertheless, variation in complexity 
due to function or users can only be expected to have a local influence, i. 
e., to be circumscribed to the specific contexts and environments in 
which there is either a narrow function for writing and/or restrictions on 
who can join the community of users. Any impact that such context- 
dependent and localized factors may have had on our results can be 
assumed to be itself localized and context-bound, thus unlikely to bias 
our results in any systematic way. Still, it may generate enough statis
tical noise to render any effect in the predicted direction undetectable. 

Another possibility would be that compression processes were not 
captured in the data we gathered and analyzed. This could be the case if 
the graphic simplification of characters occurred early and rapidly in the 
history of scripts. This is also in line with the fact that in experimental 
settings (e.g. (Tamariz & Kirby, 2015)), such effects are known to occur 
over very short timespans. We know from a more focused study on the 
Vai script (developed in Liberia during the 19th century), that Vai 
characters simplified to a substantial degree during the first decades of 
that script's existence (Kelly et al., 2020). 

4.3. The distribution of visual complexity inside characters reflects script 
directionality 

For algorithmic complexity, we found, as predicted, that the first 
halves of letters were more complex than their last halves, regardless of 
the direction in which the script is written (left-to-right or right-to-left). 

For perimetric complexity, this first-half advantage was not significant, 
contrary to what we had predicted. However, we had reasons to believe 
perimetric complexity to be biased at the level of character halves. 
Cutting character pictures in half creates new delineations absent from 
the complete picture, and perimetric complexity is by definition highly 
sensitive to contour lengths. Furthermore, we showed that our two 
measures differed in the amount of complexity they measure on the 
right-side and left-side of letters, quite independently of writing direc
tion. This laterality bias confounds the original tests of our hypothesis. 
We avoided this bias by considering the influence of direction of reading 
upon the left-half / right-half complexity differential. We found a clear 
effect consistent with our prediction for both complexity measures. The 
direction of reading and writing modulates the distribution of visual 
complexity within characters, in the predicted direction. The complexity 
differential between left halves and right halves is increased in Left-right 
scripts, and decreased in Right-left scripts, clearly and significantly for 
both complexity measures. 

Previous studies had claimed that visual information was unequally 
distributed within letters, but important divergences exist between au
thors. The “left-heaviness” of Latin letters has often been noticed 
(Treiman & Kessler, 2011), but can be interpreted in several ways. Some 
argue that important information is concentrated on the right-side of 
(Latin) letters (Kolers, 1969; Shimron & Navon, 1981), others, to the 
contrary, argue that it is concentrated on the left (Soares et al., 2019). 
The literature on Chinese characters is more consistent, with several 
studies finding that the left-side of (roughly) symmetrical characters 
provides more identification-relevant information (Hsiao & Cottrell, 
2009; Tianyin Liu et al., 2018; Tso et al., 2014), an effect possibly 
mediated by reading direction (mostly left-to-right in contemporary 
Chinese) (Chung et al., 2017). Beyond these two famous scripts (and 
possibly a few others like Hebrew), the study of information distribution 
within letters remains unstudied for most literate cultures, and the 
heterogeneity of methods and measurements allows contradictory po
sitions to persist. 

Insofar as visual complexity can be interpreted as a proxy for visual 
information, our study confirms, on a large observational dataset, the 
intuition that the majority of experimental studies had gotten from 
studying a few scripts. The direction of reading and writing drives the 
distribution of complexity inside letters: left halves are more likely to be 
more complex when they come first. 

From a cultural evolution point of view, this result supports the 
burgeoning body of work studying the ways in which letter shapes fit 
subtle cognitive and perceptual biases. Interestingly, here, the cognitive 
bias in question is not derived from the structure of natural scenes (as in 
Changizi et al., 2006), and neither is it rooted in fundamental neural 
biases (like the preference for cardinal orientations in Morin, 2018). 
Rather, the shape of letters adapts to a culturally induced cognitive bias, 
which finds its roots in the motor and visual habits created by reading 
and writing directions. 

4.4. Limitations and future directions 

The current study has several limitations. First, the images we used 
to analyze scripts were idealizations (as any representation of a script 
must be). They abstract away a great deal of internal variation due to 
time, space, and differences between writers, etc. There is also a need to 
study writing systems on their own, through their own chronological 
trajectory, which this study was not meant to fulfil (see Kelly et al., 2020 
for an example: the Vai syllabary of Liberia). 

Second, the visual complexity of individual characters is only one of 
many possible ways to consider complexity in scripts. Future research 
could address other types of complexity and their evolution, such as set- 
level complexity (i.e., how compressible is the whole set of characters 
included in a script), or as the inventory of patterns or features are re- 
used by different characters in the same script (Bennett, Gacs, Li, Vita
nyi, & Zurek, 1998; Vitányi, Balbach, Cilibrasi, & Li, 2009). This may 
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allow us to capture constraints related to feature extraction, i.e., visual 
processing which treats some parts of characters as separate units, and to 
discriminability between characters (Mueller & Weidemann, 2012). 

Third, character complexity also depends on the way characters are 
combined and occur in real world settings. The visual complexity of 
scripts in use differs from the complexity measured on their characters 
independently from one another. When used alongside simpler charac
ters, higher complexity characters can benefit from a processing 
advantage, for instance during visual search (Bernard & Chung, 2011; 
Chanceaux, Mathôt, & Grainger, 2014). More complex characters 
would, in that case, have more different features available for use during 
visual search, helping to distinguish them from other characters. 

In this study, we focused on the visual aspect of characters, and how 
they are perceived, i.e., how they are recognized as characters by a 
reader. Nevertheless, characters also have to be produced. For most of 
the history of writing, characters were hand-written. Although more 
complex characters would, overall, be more effortful to produce than 
simpler ones, some shapes may be easier to produce than others. 
Changes related to motor production may also have an impact on the 
graphic complexity of characters (see Parkes, 2008 on cursivization). 
Motor-program based estimates of complexity (Lake, Salakhutdinov, & 
Tenenbaum, 2015) could offer computational options for such future 
research. 

The complexity of written characters is a fundamental aspect of their 
legibility, determining their recognizability and the cognitive effort 
required to process them (Pelli et al., 2006). Understanding it properly 
requires us to grapple with a great diversity of writing systems, a 
daunting task for which research sometimes falls short. An excessive 
concentration on a few important scripts (like Latin, Chinese, or Arabic), 
the use of idiosyncratic metrics tailor-made for some scripts but inap
plicable to others, or the neglect of Galton's problem, are biases that can 
prevent us from noticing important patterns. As a result, the literature's 
conclusions on letter complexity can seem contradictory. For instance, 
complexity is constant across scripts for some studies, while modulated 
by writing system type for others. This study attempted to provide a 
methodologically sound and comprehensive overview of these issues. 
Our results reconcile discrepancies between previous studies and un
cover surprising patterns. Two key findings are the unrivalled impor
tance of typology in driving character complexity, and the fact that the 
distribution of visual information within characters follows reading 
order. These general patterns call for more detailed investigations of the 
cultural evolution of writing systems, based on more focused script- 
specific datasets (e.g. Kelly et al., 2020). 
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