Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Femtosecond time-resolved photoemission of electron dynamics in surface Rydberg states

MPG-Autoren
/persons/resource/persons21626

Hertel,  Tobias
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21742

Knoesel,  Ernst
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21645

Hotzel,  Arthur
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21498

Ertl,  Gerhard
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1.580570.pdf
(Verlagsversion), 524KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hertel, T., Knoesel, E., Hotzel, A., Wolf, M., & Ertl, G. (1997). Femtosecond time-resolved photoemission of electron dynamics in surface Rydberg states. Journal of Vacuum Science and Technology. A, 15(3), 1503-1509. doi:10.1116/1.580570.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-B497-2
Zusammenfassung
Femtosecond time-resolved photoelectron spectroscopy provides a unique tool to study the dynamics of optically excited electrons at surfaces directly in the time domain. We present a new model for two-photon photoelectron spectroscopy from surface and image potential (or Rydberg) states which is based on density matrix theory. The formalism accounts for the influence of both energy and phase relaxation on experimental spectra and thus permits the study of the nature of inelastic and elastic scattering processes at surfaces in more detail. The analysis of experimental data employing the proposed model reveals a new mechanism for optical excitation of electrons to normally unoccupied states at surfaces which is feasible due to the influence of electronic dephasing. We discuss the nature of different relaxation channels with respect to our studies of image state dynamics on the bare and Xe or Kr covered Cu(111) surfaces.