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Current noisy intermediate-scale quantum (NISQ) devices constitute powerful platforms for analogue quan-
tum simulation. The exquisite level of control offered by state-of-the-art quantum computers make them espe-
cially promising to implement time-dependent Hamiltonians. We implement quasiperiodic driving of a single
qubit in the IBM Quantum Experience and thus experimentally realize a temporal version of the half-Bernevig-
Hughes-Zhang Chern insulator. Using simple error mitigation, we achieve consistently high fidelities of around
97%. From our data we can infer the presence of a topological transition, thus realizing an earlier proposal of
topological frequency conversion by Martin, Refael, and Halperin. Motivated by these results, we theoretically
study the many-qubit case, and show that one can implement a wide class of Floquet Hamiltonians, or time-
dependent Hamiltonians in general. Our study highlights promises and limitations when studying many-body
systems through multi-frequency driving of quantum computers.

Introduction.—Noisy intermediate-scale quantum (NISQ)
computers may not yet offer fully fault-tolerant quantum com-
puting facilities, but they nevertheless constitute a versatile
experimental platform with the potential for fundamental re-
search, small-scale computation or quantum simulation [1].
The typical model of a quantum computer is that of a quantum
circuit, which is a sequence of gates applied to the qubits [2].
In principle, the time-evolution of any many-body quantum
systems can be simulated by applying a Trotterization, which
turns continuous time evolution into a discrete local quantum
circuit [3]. This results in a digital quantum simulation, which
has been benchmarked for a range of different models on ex-
isting quantum computers [4–7].

In superconducting circuits, the currently leading technol-
ogy, quantum circuits are constructed from a set of available
gates, which correspond to a set of carefully calibrated mi-
crowave pulses applied to its input ports [8]. The abstraction
into quantum circuits hides the complexity of the underlying
many-body system, whose continuous evolution offers excit-
ing directions in analogue quantum simulation [9, 10], which
potentially incurs significantly less overhead. This perspec-
tive has been explored in a series of theoretical and experi-
mental works [11–15]. If the intrinsic many-body nature of
quantum computers is combined with the capacity to apply
essentially arbitrary drives, they may serve also as powerful
analogue quantum simulators for very large classes of time-
dependent Hamiltonians.

The evolution under time-dependent Hamiltonians is in-
credibly rich and exhibits many novel phenomena, even at
the level of individual qubits. A particular example is the
temporal topological transition that occurs in the presence of
quasiperiodic driving, theoretically predicted by Martin, Re-
fael, and Halperin in 2017 [16]. Using a Floquet treatment of
the driven qubit, the dynamics is related to the properties of
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a two-dimensional lattice model, the half-Bernevig-Hughes-
Zhang (BHZ) Chern insulator [17]. As a function of time, the
driven qubit explores the whole Brillouin zone, which causes
the work done by the two drives to be quantized and propor-
tional to the integer Chern number, which is determined by
the parameters in the drives. Recently, temporal topology has
been classified, analogously to the classification of topologi-
cal insulators [18], and extension to larger systems, such as
spin–resonator systems [19], or two-qubit systems with inter-
actions [20] have been proposed. While quasiperiodic driving
typically maps to systems without boundary, one can in princi-
ple also introduce boundaries through quantum feedback [21].

In this work we experimentally demonstrate this temporal
topological behaviour of a single qubit on an existing quan-
tum device, using continuous driving, implemented with the
fine-grained access offered by QISKIT pulse [22]. Choosing
a specific driving with two incommensurate frequencies, we
observe a topological transition in the temporal dynamics of
the qubit, finding good agreement with simulations. Despite
achieving high fidelities of around 97% after error mitigation,
the Chern number inferred from the measured frequency con-
version shows much larger errors. We develop a simple noise
model that explains and reproduces this effect.

Motivated by this experiment, we theoretically derive the
class of Hamiltonians that can readily be implemented on
state-of-the-art quantum computers. As one concrete exam-
ple, this offers an exciting perspective to study strongly inter-
acting Floquet systems [23–27] with an exquisite level of con-
trol. Site-selective control as well as high-fidelity single-site
readout confers quantum computers certain advantage over
other quantum simulators based on light [28] or ultracold
atoms [29], making them ideally suited for the analogue quan-
tum simulation of generic many-body time-dependent Hamil-
tonians.

Theoretical description.—In quantum computers based on
superconducting transmon-like qubits [30, 31], the Hamilto-
nian describing a single qubit can be cast in the form of a
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Duffing oscillator with driving

H(t) = ω0a†a + Ua†a†aa + (a + a†)D(t). (1)

The qubit frequency is denoted ω0 and U quantifies the anhar-
monicity that separates the lowest two levels that define the
qubit from the higher levels of the superconducting circuit.
The ideal drive signal is parameterized as [22]

D(t) =
Ωmax

2
Re

[
ei(ω0+∆c)td(t)

]
, (2)

where Ωmax denotes the maximum Rabi frequency attainable
in the system, and ω0 + ∆c is the carrier frequency. In the
following, we choose the detuning ∆c = 0. Anticipating our
later interpretation as a spin-1/2 particle in a time-dependent
field, we parameterize the dimensionless drive shape d(t) ∈
C, |d(t)| ≤ 1 in terms of the dimensionless magnetic field
h̃+(t) = h̃x(t) + ih̃y(t)

d(t) ≡ h̃+(t) exp iφ(t), φ(t) = −2Ωmax

∫ t

0
h̃z(t′)dt′. (3)

To treat the system as a qubit, the maximum drive strength
needs to be much weaker than the anharmonicity Ωmax � U.
Assuming this is fulfilled, applying a rotating-wave approxi-
mation and passing into a frame rotating with respect to the
time-dependent Hamiltonian Hz(t) = (ω0/2 − hz(t))σz, we
rewrite Eq. (1) as [32]

Hspin(t) = ~h(t) · ~σ. (4)

Note the subtlety in the chosen rotating frame. Instead
of changing the qubit frequency in the lab frame, we re-
parameterize time by passing into a rotating frame with re-
spect to Hz(t). This constitutes a continuous version of virtual
Z gates [33].

Topological frequency conversion.—Given Eq. (4), we can
now realize the proposal by Martin et al. [16]. We apply the
quasi-periodic time-dependent magnetic field

H(t) = η
{

sin(ω1t + φ1)σx + sin(ω2t + φ2)σy

+
[
M − cos(ω1t + φ1) − cos(ω2t + φ2)

]
σz

} (5)

where the ratio ω2/ω1 should be irrational. In the follow-
ing, we set ω2/ω1 = (1 +

√
5)/2. We consider the model

in the strong drive limit, i.e., η � ω1, ω2. In this limit, a Flo-
quet ansatz reveals a direct connection to the two-dimensional
half-BHZ Chern insulator [17] with a constant electric field
applied [16, 32]. In the strong-drive limit, the electric field
is weak and leads to a slow adiabatic evolution of the initial
wavepacket through the Brillouin zone. During this evolution,
which explores the whole Brillouin zone, the system effec-
tively measures the Chern number, which results in a topo-
logically quantized energy pumping rate from one drive to the
other [16]

π
(W1 −W2)
ω1ω2T

= C, (6)

where Wi is the work done by the ith drive, defined below
[Eq. (8)]. As a function of M, the system undergoes a topo-
logical transition in which the Chern number changes.

To determine the pumping rate experimentally, we measure
the work done by each of the drives. If we first split the Hamil-
tonian into the two contributions from each drive,

H(t) = h1(t) + h2(t) + ηMσz, (7)

then the work done by each drive over a period T is given by

Wi(T ) =

∫ T

0
dt 〈Ψ(t)|

dhi(t)
dt
|Ψ(t)〉, (8)

where |Ψ(t)〉 is the state of the qubit at time t evolving
under the time-dependent Schrödinger equation i∂t |Ψ(t)〉 =

H(t)|Ψ(t)〉, where |Ψ(t = 0)〉 is chosen to be an instantaneous
eigenstate of H(t = 0).

Experiment.—Our experimental protocol consists of four
main pulse sequences. First, we initialize the qubit in the in-
stantaneous eigenstate of Hamiltonian Eq. (5) at t = 0. This is
achieved using an IBM calibrated pulse sequence to perform
a general qubit rotation. Second, the main pulse sequence im-
plements the time-dependent Hamiltonian (5), with the drive
parameterized as in Eq. (2). We perform experiments with
different drive lengths of up to 20µs to obtain 800 data points.
Third, we apply an IBM calibrated pulse to change the basis.
For each drive length, we rotate into the X, Y, and Z bases
in order to perform full state tomography. Finally, we per-
form single-shot projective measurements of the qubit using
an IBM pre-calibrated readout pulse sequence. We average
over 8192 shots for each observable corresponding to a statis-
tical error of approximately 1%.

We fix ω2 = ϕω1, where ϕ = (1 +
√

5)/2 is the golden ra-
tio. Ideally, we would be like to set the ratio ω1/η as small
as possible, to get as close as possible to adiabatic evolution.
However, due to the finite coherence time τ & 100µs of the
IBM Q device, we must choose ω−1

1 � τ. In terms of the
maximum Rabi frequency Ωmax, we choose η = 0.9Ωmax, in
order to avoid driving transitions to higher excited states. Us-
ing numerical simulations we found the best compromise was
to choose a total simulation time of 20µs and set ω1 = 0.125η,
which corresponds to ω−1

1 ≈ 240ns. In order to improve the fi-
delity of our results we start the drive with a linear ramp of the
drive frequencies ω1, ω2 over a period of 444ns. This reduces
transient effects and reduces high-frequency Rabi oscillations
seen in the simulation results. The single-qubit IBM device
we used, codenamed armonk, had qubit frequency ω0 ≈ 4.97
GHz and maximum Rabi frequency of Ωmax ≈ 36.9 MHz.

With the above experimental protocol we measure the ob-
servables in the frame rotating with the qubit frequency. Since
the Hamiltonian Eq. (4) is only realized in a given time-
dependent reference frame, we must additionally perform a
virtual-Z rotation, which we achieve by post-processing the
data to apply the rotation

〈σx〉rotating = cos φ(t)〈σx〉 + sin φ(t)〈σy〉,

〈σy〉rotating = − sin φ(t)〈σx〉 + cos φ(t)〈σy〉,
(9)



3

−1

0

1
〈σ
x
〉 ED

real

−1

0

1

〈σ
y
〉

−1

0

1

〈σ
z
〉

0.50

0.75

1.00

P
u

ri
ty

fit

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Drive length [µs]

0.90

0.95

1.00

F
id

el
it

y

FIG. 1. Tomography data for M = 1, ω1 = 0.125. The top three
panels compare experimentally measured Pauli expectation values
(projected back onto the Bloch sphere) against exact numerical sim-
ulation. We also show the purity of the measured state, which we fit
by the function 1/2 + ae−t/λ, where a = 0.387 and λ ≈ 109µs is com-
patible with the device coherence time as measured by IBM. Note
that a < 0.5 as the measurement sequence take a finite time, such
that the qubit has lost purity even when the simulation time is zero.
The bottom panel shows the fidelity F = |〈ψ|φ〉|2 between the mea-
sured state projected onto the Bloch sphere, |ψ〉, and the numerically
simulated state, |φ〉. We fit the fidelity with ae−t/ξ, where a ≈ 0.99
and ξ ≈ 2.71ms, which verifies the effectiveness of error mitigation
by projecting onto the Bloch sphere. A significant portion of the lost
fidelity after error mitigation can therefore be attributed to statistical
error, which is 2% in our case.

where φ(t) is given in Eq. (3). When post-processing the data,
we additionally mitigate some of the errors due to decoher-
ence and measurement error by projecting the measured qubit
density matrix onto the Bloch sphere. We find that this method
of error mitigation improves quantitative agreement with nu-
merical simulations in all cases we considered. This effec-
tively removes the effects of the dominant depolarizing chan-
nel [34]. With this error mitigation strategy, the average fi-
delity across all experiments is 0.971 (excluding M = 1.7, 2.3
due to strong diabatic effects that arise due to the proximity to
the gap closing at M = 2 [32]).

The experimental tomography data is shown in Fig. 1 for
M = 1, which closely matches the exact numerical simulation.
From this data we can also compute the purity of the measured
state Tr(ρ2), also shown in Fig. 1. The measured purity is less
than one due to decoherence over the course of the experiment
along with the significant ∼ 3% measurement error. Fitting
the purity with an exponential decay, we extract a decoherence
time of λ ≈ 109µs (at M = 1), which is consistent with the
T1,T2 & 100µs decoherence times measured by IBM.

Results.—To obtain the work done by each drive [Eq. (8)],
we first compute 〈dhi(t)/dt〉 = d~hi(t)/dt·〈~σ〉 from the data. We
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FIG. 2. Work done by the two incommensurate drives, calculated us-
ing Eq. (8). The experimental data for M = 1, ω1 = 0.125 measured
at 800 points is compared with a numerical simulation of the same
setup. The experimental data is fitted with a line (coloured dashed
lines) using least-squares regression, for which the 95% confidence
interval for the slope is shown as the coloured region. The expected
slope is shown as black dashed lines.

then perform the integration in Eq. (8) numerically. Figure 2
shows the experimental results for the work done, for the case
of M = 1. This corresponds to a phase of the BHZ model with
Chern number C = −1, resulting in an average linear decrease
(increase) of W1 (W2). The experimental results are in good
quantitative agreement with numerical simulations. Further-
more, by fitting a linear curve to this data using least-squares
regression, the slope is in close agreement to that predicted by
Eq. (6).

Figure 3 shows the extracted Chern number for a range of
values of M, compared against numerical simulations of the
same setup as well as the ideal result in the strong-drive limit.
We find reasonable quantitative agreement with the simula-
tions. Furthermore, the transition between different phases
with different Chern number is clearly visible in the experi-
mental data. Beyond the extracted value of the Chern number,
the qualitative difference between the phases with |M| < 2 and
|M| > 2 is clearly seen by considering the portion of the Bloch
sphere covered under time evolution, shown inset Fig. 3. For
|M| < 2 we observe that the state of the qubit explores the
full Bloch sphere under the dynamics of Eq. (5) reflecting that
the surface traced by the time dependent state has non-trivial
winding around the origin and hence non-zero Chern number.
When |M| > 2 the state of the qubit is instead restricted to ei-
ther the north or south hemisphere of Bloch sphere and does
not wind around the origin and the Chern number is zero.

While overall the agreement is good, the error in the mea-
sured Chern number exceeds the error predicted by the fi-
delity considerably. We find that this can be explained by a
simple error model, in which we take the state predicted in
the ideal scenario and randomly perturb its direction on the
Bloch sphere to reproduce the measured distribution of fideli-
ties with average 0.971 [32]. Note that the perturbations at
data points corresponding to different times are independent,
as they correspond to different experimental runs. This pertur-
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FIG. 3. Experimentally extracted Chern number as a function of M.
The Chern number is extracted from the linear least-squares regres-
sion fit to the work done by each drive, and using Eq. (6). The error
bars correspond to the 95% confidence intervals for the fit. The ex-
perimental data is compared against the numerical simulation of the
same setup (blue dots) and with the exact value of the Chern number
for the corresponding phase of the BHZ model (dashed black curve).
The shaded blue region corresponds to a simple heuristic error model
based on the average fidelity 0.971 of the error mitigated experimen-
tal data [32]. This error model confirms that the comparatively large
deviations of the measured Chern number that we observe are pro-
duced already from low loss in fidelity (≈ 3%). Insets show the dis-
tribution of experimental data on the Bloch sphere under dynamics
for M = 1 and M = 3, illustrating qualitative differences of the time
evolution in each of the two phases |M| < 2 and |M| > 2.

bation translates into an error in the measured Chern number,
whose standard deviation we plot as a shaded region in Fig. 3.
This shows that a error rate consistent with experimental data
explains the large errors in the extracted Chern number.

Extension to qubit arrays.—In view of the vast research ef-
fort in Floquet matter, the question is pertinent whether the
presented scheme generalizes to several qubits. To answer
this question we must be aware that the coupling between two
qubits can be engineered in many ways, as one can choose be-
tween direct capacitive or inductive coupling, or indirect cou-
pling via a resonator [35–39]. Indeed, alternative approaches
have been taken by IBM (see, e.g., Ref. [40]) and Google [41],
with each implementation having their own (dis-)advantages.

We consider two cases in particular. The first is when both
qubit frequencies and their coupling is fixed, which is relevant
for the devices developed by IBM. In this case, the coupling
has to be engineered with time-dependent driving of the qubits
in order to implement resonant processes to second order in
the Hamiltonian [42–44]. This technique produces tuneable
XZ,YZ,ZX, and ZY interactions, which are used to engineer
CR gates [43, 45]. Implementing a similar single-qubit driv-
ing as before, and passing into a time-dependent reference
frame, we derive an effective Hamiltonian of the form [32]

H(2)
int =

∑
〈i j〉

gi j(t)σ(i)
z σ

( j)
+ + H.c. (10)

On bipartite lattices, a (virtual) rotation of every second
spin maps this to either an Ising interaction or (in general

anisotropic) XY interactions, making this technique very ver-
satile. A drawback is that the Hamiltonian (10) is obtained
to second order in the original Hamiltonian and by neglecting
quickly rotating terms. It is thus an approximation and care
has to be taken that all the steps in its derivation are valid.
Nevertheless, these conditions can usually be fulfilled through
careful choice of the driving parameters. It may further be
possible to actively counteract unwanted effects from this ap-
proximation, analogous to the DRAG scheme used to improve
the fidelity of digital quantum gates [8].

If tuneable interactions are available and the qubits can be
brought into resonance [41], the driving scheme is simplified
and one readily arrives at the general spin Hamiltonian

Harray(t) =
∑

i

~h(i)(t) ·~σ(i) +
∑
〈i j〉

gi j(t)
(
σ(i)

x σ
( j)
x + σ(i)

y σ
( j)
y

)
(11)

with a magnetic field along z that takes the form

h(i)
z (t) = hz(t) + ωi(t) − ω0, (12)

where ωi are the qubit frequencies and ω0 is some arbitrarily
chosen reference frequency. We note that tuneable qubit fre-
quencies feature in many implementations [46–49], but not
in all [50]. In the latter case—of fixed qubit frequencies
but tuneable interactions—one option might be to drive each
qubit with a far off-resonant drive to induce an drive-strength-
dependent AC Stark shift.

When taking into account the second excited state of each
qubit, the qubit array Hamiltonian (11) maps to a Bose-
Hubbard model with time-dependent hopping and freely tune-
able site-dependent drive and disorder. We note that the in-
terpretation as a (time-independent) Bose-Hubbard model has
enabled the experimental measurement of microscopic fea-
tures of the many-body localized phase [13]. Moving to pe-
riodically varying hoppings could allow one to study many-
body Floquet models and implement quench and ramp exper-
iments from carefully prepared initial states.

Discussion.—While our experiment showcases some of
the promises of analogue quantum simulation with time-
dependent Hamiltonians, it also highlights some of the dif-
ficulties that need to be overcome on the way. Concretely,
the experimental results shown in Fig. 3 would improve with
greater coherence time of the qubit, as this would allow us to
reduce the modulation frequencies ω1 and ω2 in the Hamil-
tonian, which in turn would improve the strong-driving and
adiabatic-modulation approximations. This is particularly im-
portant close to the topological transition at M = 2 where the
gap closes and adiabatic evolution thus requires increasingly
long time scales.

In this specific experiment, we also encountered the prob-
lem that the measured experimental signature is sensitive to
even small amounts of noise. Recently, Boyers et al. [51]
demonstrated experimental measurement of the Chern num-
ber in the same model using a nitrogen vacancy centre. They
determined the Chern number by measuring the Berry cur-
vature directly, whereas here we extract the Chern number
from the topological pumping as originally proposed. As a
result, they did not observe the substantial errors in the ex-
tracted Chern number that we found. Nevertheless, as we have
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demonstrated, the temporal topological nature of the qubit
time evolution can clearly be extracted despite experimental
shortcomings. With the current progress in superconducting-
qubit technology, we expect that our understanding and the
fidelity of available quantum computers to increase rapidly, al-
lowing for more complex experiments, in particular with more
qubits.

Going beyond (quasi)periodic driving, the capability to en-
gineer time-dependent many-body Hamiltonians offers many
exciting perspectives to investigate non-equilibrium physics.
For example, ramping through a quantum phase transition
might allow one to study Kibble-Zurek scaling or in gen-
eral the dynamics of phase transitions such as the superfluid
to Mott insulator transition [52]. Slow variation could also
be used to explore adiabatic algorithms and departures from
them. Many-body non-equilibrium physics is notoriously dif-
ficult to study with classical computers and this is therefore
a prime area of applicability for quantum simulators. Noisy
intermediate-scale quantum computers offer a versatile com-
bination of single-site control and readout, and large enough
system sizes, and thus promise to support and complement
analytical and computational approaches to understand many-
body non-equilibrium physics. As we have demonstrated with
the single-qubit experiment, this is a realistic outlook.
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Appendix A: Qubit array Hamiltonian

1. Details on the single qubit

In order to treat the system as a qubit, the maximum drive
strength needs to be much weaker than the anharmonicity
Ωmax � U. Assuming this is fulfilled, applying a rotating-
wave approximation and passing into a frame rotating with
respect to the time-dependent Hamiltonian Hz(t) = (ω0/2 −
hz(t))σz, we rewrite Eq. (1) as

Hqubit(t) =
1
2
σ−

(
hx(t) + ihy(t)

)
e−2i

∫ t
0 hz(t′)dt′ + H.c., (A1)

where we have now introduced the dimensionful magnetic
field ~h(t) = Ωmax

~̃h(t) and the spin lowering operator σ−. If
we pass (again) into a rotating frame with respect to the time-
dependent Hamiltonian Hz(t) = −hz(t)σz, the Hamiltonian be-
comes that of a spin-1/2 particle in a time-dependent magnetic
field

Hspin(t) = ~h(t) · ~σ. (A2)

Note the subtlety when passing from Eq. (A1) to Eq. (4). In-
stead of changing the qubit frequency in the lab frame, we
re-parameterize time by passing into a rotating frame with re-
spect to Hz(t). This constitutes a continuous version of virtual
Z gates [33].

2. Fixed qubit frequencies and fixed coupling

If neither the qubit frequencies nor the coupling be-
tween them is tuneable, the interaction Hamiltonian is time-
independent. Restricting directly to the qubit subspace and
assuming capacitive coupling for simplicity, we have

H(t) =
∑

i

ωiσ
(i)
z + Di(t)σ(i)

x +
∑
〈i j〉

Ji jσ
(i)
x σ

( j)
x . (A3)

If the coupling Ji j is weak compared to the relative detuning,
the qubits are effectively decoupled. Coupling between the
ith and jth qubit can be turned on by driving either one at the
frequency of the detuning between them [42, 43].

To see this, let us pass to the frame rotating with the qubit
frequencies, and neglect terms rotating at the qubit frequency,
which yields

HRWA(t) =
∑

i

di(t)σ
(i)
+ +

∑
〈i j〉

Ji jσ
(i)
+ σ

( j)
− ei(ωi−ω j)t + H.c., (A4)

where we parameterize the drive in two steps

Di(t) = 2 Re
[
di(t)e−iωit

]
= 2 Re

d(0)
i (t)e−iωit +

∑
j

∆i j

2J∗i j
gi j(t)e−iω jt

 , (A5)

where d(0)
i (t), gi j(t) are slow functions (compared to the cou-

pling rate), we have defined the qubit–qubit detuning ∆i j =

ωi−ω j and the sum over j is taken to run over coupling qubits
for which Ji j , 0.

We can now separate the Hamiltonian into a slow and a
fast part. The slow Hamiltonian corresponds to the single-
qubit Hamiltonian derived in the main text Eq. (A1), except
for many qubits

Hslow =
∑

i

d(0)
i (t)σ(i)

+ + H.c. (A6)

The fast part is off-resonant and has little effect, except when
there are resonant processes. For example, to second order,
the hopping becomes resonant again, leading to an Ising term
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of order |Ji j|
2/∆i j. Since our original assumption is that the

coupling is weak compared to the detuning, Ji j � ∆i j, this
is negligible. However, the other term that appears at second
order, mixing the off-resonant drive gi j with the hopping Ji j,
is not negligible and in fact gives rise to the interaction [8, 42,
43]

H(2)
int =

∑
〈i j〉

gi j(t)σ(i)
z σ

( j)
+ + H.c. (A7)

Combining Eqs. (A6) and (A7) allows one to engineer a wide
range of time-dependent Hamiltonians. Note that due to drive
enabling a resonant interaction between coupled qubits, the
disorder has disappeared. The disorder can be restored by de-
tuning the “coupling drive” gi j(t) = exp

(
i
∫ t

h( j)
z (t′)dt′

)
g̃i j(t)

and performing the same transformation on the single-qubit
drives d(0)

i (t) = exp
(
i
∫ t

h(i)
z (t′)dt′

)
d̃(0)

i (t), which in a rotating

frame with respect to Hz =
∑

i h(i)
z σ

(i)
z reads

H =
∑

i

~hi(t) · ~σi +
∑
〈i j〉

g̃x
i j(t)σ

(i)
z σ

( j)
x + g̃y

i j(t)σ
(i)
z σ

( j)
y (A8)

with

g̃i j(t) =
1
2

[
g̃x

i j(t) − ig̃y
i j(t)

]
, (A9)

The induced coupling is rich, as we have independently
controllable XZ,ZX,YZ, and ZY interactions. A special case
arises if the qubit coupling graph is bipartite, i.e., if it can be
separated into two subgraphs A and B such that nodes from
A are only connected to B and vice versa, as for example in
a square lattice. In this case, we can make a unitary transfor-
mation on every qubit in one of the sublattices (B, say) that
rotates Z into X and X into −Z. This allows us to engineer two
particularly important interactions

(i) Ising: Starting from only XZ or ZX only, the unitary
transformation yields XX or ZZ.

(ii) XY model: Applying both XZ and ZX, the unitary
transformation yields g1XX + g2ZZ, or equivalently
g1XX + g2YY , where the coupling strengths are fully
tuneable.

Finally, we note that the biggest limitation for the control-
lability of this setup an effect similar to frequency crowding,
leading to crosstalk. As this approach requires one to apply
a range of different control tones at different frequencies, un-
wanted resonances can occur, which may affect the final ef-
fective Hamiltonian for the system. This problem particularly
concerns lattices with high connectivity, but can typically be
avoided by careful consideration and design of the applied
tones [43].

3. Tuneable frequencies, but fixed interaction

If the qubit frequencies are tuneable, all the techniques from
the previous section can be employed, but one gains the addi-
tional capacity to preclude frequency crowding.

In addition, one can make use of the direct interaction of
the qubits by bringing them close to resonance. This realizes
an XY interaction with tuneable disorder.

H =
∑

i

h(i)
z σz +

∑
〈i j〉

Ji j(σ
(i)
+ σ

( j)
− + H.c.) (A10)

4. Tuneable interactions

For a set of qubits that interact via a tuneable XY interac-
tion, the full Hamiltonian reads

H(t) =
∑

i

ωia
†

i ai + Uia
†

i a†i aiai + (ai + a†i )Di(t)

+
∑
〈i j〉

gi j(t)(a
†

i a j + a†jai),
(A11)

Parameterizing the drive as before in terms of an effective
magnetic field ~hi(t), passing to a rotating frame with respect
to the Hamiltonian H0 =

∑
i(ω0 − h(i)

z (t))a†i ai and restricting to
the qubit subspace, we find

H(t) =
∑

i

(ωi − ω0 + h(i)
z (t))σ(i)

z +

{
1
2
σ(i)
− h(i)

+ (t)

+
∑
〈i j〉

gi j(t)σ
(i)
+ σ

( j)
− e2i

∫ t
0 [h( j)

z (t′)−h(i)
z (t′)]dt′ + H.c.


(A12)

Choosing h(i)
z (t) = hz(t) for all i removes the phase on the

interaction terms. The resulting Hamiltonian is

H(t) =
∑

i

h(i)
x (t)σ(i)

x + h(i)
y (t)σ(i)

y + [hz(t) + δi]σ(i)
z

+
∑
〈i j〉

gi j(t)
[
σ(i)

x σ
( j)
x + σ(i)

y σ
( j)
y

]
.

(A13)

This is the Hamiltonian quoted in the main text. The disorder
in the energies is inherited from the intrinsic disorder of the
platform.

Appendix B: Brief review of the half-BHZ model

The half-Bernevig-Hughes-Zhang (BHZ) is one of the sim-
plest models for a two-dimensional Chern insulator [54]. It is
a two-band lattice model that is most conveniently described
in momentum space by the Hamiltonian

Ĥ(~k) = sin(kx)σ̂x + sin(ky)σ̂y + B
[
M − cos(kx) − cos(ky)

]
σ̂z.

(B1)
This Hamiltonian has the form Ĥ(~k) = ~h(~k) · ~σ =

∑
a ha(~k)σ̂a,

and spectrum given by λ± = ±|~h|, or more explicitly,

λ± = ±

√
sin2(kx) + sin2(ky) + B2

[
M − cos(kx) − cos(ky)

]2

(B2)
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FIG. 4. Schematic of surface generated by the map ~h(~k) from the
Brillouin zone. A two-dimensional cross-section in corresponding to
constant kx or ky is shown for simplicity. The normal to the surface
is indicated by the blue arrows and the origin is highlighted in red.

which is gapped except at M = −2, 0, 2. Depending on
the value of M this model realizes three different phases
with these gap closings marking the phase transitions be-
tween them. For |M| > 2 we have a trivial insulator. For
−2 < M < 0, we have Chern insulator with Chern number
C = +1, and 0 < M < 2 describes a Chern insulator with
C = −1.

The eigenstates for the upper and lower band have the par-
ticularly simple form

|ψ±〉 =
1√

2h(h ± hz)

(
h ± hz

hx + ihy

)
, (B3)

which correspond to vectors on the Bloch sphere (anti-
)aligned with the field direction ~h. This can easily be seen
by considering the vector of expectation values 〈~σ〉 = ±~h/h.

1. Chern number

To compute the Chern number we require the Berry con-
nection Ai(~k) and/or the Berry curvature Fi j(~k), defined by

Ai(~k) =
∑

ψ∈filled bands

−i〈ψ|
∂

∂ki
|ψ〉,

Fi j(~k) =
∂A j

∂ki
−
∂Ai

∂k j
.

(B4)

The Chern number C ∈ Z is then computed by integrating the
Berry curvature over the Brillouin zone:

C =
1

2π

"
B.Z.

dkxdkyFxy(~k). (B5)

For the two-band model, the Berry curvature has a particularly
intuitive form, namely

Fxy(~k) =
1

2h3 ε
abcha∂kx hb∂ky hc =

1
2h3

~h · (∂kx
~h × ∂ky

~h). (B6)

The vector ~h defines a map from the torus (B.Z.) to a two-
dimensional surface M embedded in three dimensions. The
Berry curvature then corresponds to the dot product of a field

due to a unit charge at the origin and the normal of the surface
S . The Chern number therefore measures the flux through the
surface S , that is

C =
1

4π

"
M

~h
h3 · dŜ , (B7)

which measures the degree of map defined by ~h, or equiva-
lently, the winding of the surface M around the origin.

The surface prescribed by ~h(~k) is closed self-intersecting
surface with two lobes. the upper (along z-axis) lobe has nor-
mal facing outward, while lower has inward facing normal.
The parameter M controls the position of this surface along
the z-axis. The three phases therefore correspond to when the
origin falls outside of the surface, or within one of the two
lobes. This is shown schematically using a two-dimensional
cross section in Fig. 4. Given this interpretation we can see
that when |M| > 2 the Chern number must be zero since hz
does not change sign.

Appendix C: Floquet lattice

The connection to the BHZ Chern insulator is elucidated by
considering the Floquet construction which relates our time-
dependent zero-dimensional system with a two-dimensional
lattice Hamiltonian. This is done by considering the following
the time-dependent states

|Ψ(t)〉 = e−iEt
∑
α,~n

ψα
~n e−i~n·~ωt |α〉, (C1)

where α = 0, 1 label the two basis states for the qubit, and
~n = (n1, n2), with ni ∈ Z and ~ω = (ω1, ω2). The vector ~n is
associated with the sites on an infinite two-dimensional square
lattice. The time-dependent Schrödinger equation i∂t |Ψ(t)〉 =

H(t)|Ψ(t)〉, can then be written as

Eψ~k =
{

sin(kx + φ1)σx + sin(ky + φ2)σy

+
[
M − cos(kx + φ1) − cos(ky + φ2)

]
σz

}
ψ~k

−
∑
~n

e−i~k·~n~n · ~ωψ~n,

(C2)

where ψ~k =
∑
~n e−i~k·~nψ~n, and ~k = (k1, k2) with ki ∈ [0, 2π). The

first three terms correspond to the half-BHZ Chern insulator.
The final term is in mixed form and corresponds to a linear
potential along the direction ~ω, which can be interpreted as an
electric field. In the strong-drive limit, η � ω1, ω2, this in-
duces a time dependence in the momentum ~k → ~k0 + ~ωt [16].
Making the substitution for the time-dependent momentum
we recover Eq. (5). The dynamics corresponds to the adia-
batic evolution of the ground state of Eq. (5) in the Brillouin
zone, so long as the gap controlled by M is sufficiently large
compared with ω1.
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FIG. 5. Expectation values of 〈dhi/dt〉 computed from the projected
tomographic data shown in Fig. 1. The experimental data (circu-
lar markers) are compared with exact numerical simulations (solid
lines).

Appendix D: Measuring the work done by each drive

The computation of the work done by each drive proceeds
by three main steps: i) state tomography, to obtain the spin
expectation values 〈~σ〉 at each time; ii) compute the expecta-
tion value 〈dhi/dt〉; iii) numerically integrate Eq. (8) to get the
work done by each drive.

To perform state tomography we run the experiment three
times (with 8192 shots each) and measure the qubit in the
X, Y and Z basis. We take the computational or natural ba-
sis for the qubit to be the Z basis. Each measurement gives
an outcome of 0 or 1 corresponding to the eigenstates of the
Pauli-Z operator with positive (+1) and negative (−1) eigen-
values, respectively. By averaging over the 8192 shots we
obtain the average expectation value 〈Z〉, with standard error
of the mean 1/

√
8192 ∼ 1%. To measure in the X basis we

apply a Hadamard gate before measuring the qubit, and for
the Y basis we apply an S † gate and a Hadamard gate before
measuring. We then move to the rotating frame using Eq. (9).
Fig. 1 from the main text shows an example of the measured
Pauli expectation values corresponding to the data shown in
Fig. 2 (i.e., M = 1) compared with the exact numerical simu-
lation. The measured expectation values will not in general be
consistent with a pure state due to a range of factors includ-
ing statistical errors, measurement errors, and decoherence.
We therefore normalize the vector of expectation values 〈~σ〉,
which corresponds to projecting onto the Bloch sphere.

From this projected tomography data we can then compute
the expectation values 〈dhi/dt〉 = d~hi/dt · 〈~σ〉, where

d~h1

dt
= ηω1 cos(ω1t + φ1)x̂ + ηω1 sin(ω1t + φ1)ẑ,

d~h2

dt
= ηω2 cos(ω2t + φ2)ŷ + ηω2 sin(ω2t + φ2)ẑ,

(D1)

where, e.g. x̂ · 〈~σ〉 = 〈σx〉. In Fig. 5 we show the expectation
values computed from the Pauli expectation values shown in
Fig. 1, corresponding to Fig. 2 of the main text.
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FIG. 6. Distribution of the state fidelity measured across all ex-
periments, i.e., across all drive lengths and values of M (excluding
M = 1.7, 2.3 due to diabatic effects). The distribution is compared
with an exponential distribution set by the average fidelity, which is
used for our heuristic error model. Inset is the corresponding distri-
bution for a specific value of M = 1.

The final step is to numerically integrate these expectation
values to get the work done by each drive, as given in Eq. (8).
We use a simple trapezoid rule using data sampled at 800
points in time to 20 µs.

In Fig. 9 we show the data from which we extracted the
work done by the drives to produce Fig. 3.

Appendix E: Simulation details

1. Exact numerical simulation

Th IBM device can implement a time-dependent drive of
the form Eq. (2) given in the main text, where the drive shape
d(t) is piece-wise constant with interval dt = 0.22ns. For
comparison with experimental results we simulate the corre-
sponding effective Hamiltonian H(t) = ~h(t) · ~σ with piece-
wise constant ~h(t) using exact numerical simulations. This
numerical simulation consists of discretizing time with inter-
val dt = 0.22ns and performing time-independent unitary evo-
lution during each period using exact diagonalization.

2. Heuristic error model for fidelity

In Fig. 2 of the main text we include a shaded region that
corresponds to a simple error model based on the measured
fidelity of the state of the qubit. Here we give motivation for
and details of this simple error model.

We define the fidelity as

F = |〈ψ(t)|φ(t)〉|2, (E1)

where |φ(t)〉 is the state at time t according to our exact numer-
ical simulation, and |ψ(t)〉 is the measured state of the qubit at
time t after projecting back onto the Bloch sphere. We find
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that the fidelity across the entire length of the drive is approx-
imately distributed according to an exponential distribution,
i.e. p(x) = 1

β
e−x/β, where E[p(x)] = β. In Fig. 6 we show the

distribution of the fidelity across all experiments (neglecting
M = 1.7, 2.3), as well as for a given value of M = 1 (in-
set). For both a given value of M and across all experiments,
the exponential distribution matches well the experimentally
measured distribution of fidelities. Note that the averaged dis-
tribution is slightly less well captured since the average of ex-
ponential distributions with different means is not an expo-
nential distribution. We additionally find that the distribution
of fidelities is approximately independent of drive length over
the time scales we consider, as shown in Fig. 8, suggesting that
measurement and statistical errors are dominant. Note that we
neglect M = 1.7, 2.3 due to strong diabatic effects, see below.

Based on the average measured fidelity of 0.971 we use a
simple heuristic error model. This involves perturbing the ex-
act numerical simulations (sampled at 800 points in the 20µs
interval) such that we produce an exponential distribution of
the fidelity. To achieve the correct distribution we first note
that

|〈ψ|φ〉|2 =
1 + ~ψ · ~φ

2
=

1 + cos θψ,φ
2

, (E2)

where ~ψ = (〈σx〉ψ, 〈σ
y〉ψ, 〈σ

z〉ψ)T , is the corresponding 3D
unit Bloch vector. For the fidelities to be correctly distributed,
we sample θψ,φ according to

θψ,φ = arccos(1 − 2 min(x, 1)), (E3)

where x is randomly sampled from p(x) = 1
β
e−x/β, with β =

0.029. We include the min function in Eq. (E3) to exclude
rare events in the tail of the exponential distribution that would
correspond to F < 0. Given the exact state |φ〉 we generate
|ψ〉 by

|ψ〉 = R~n(θψ,φ)|φ〉, (E4)

where ~n is a random vector uniformly distributed on the cir-
cle orthogonal to ~φ, and R~n(θ) is a single qubit rotation by θ
around ~n.

In practice we work with the 3D Bloch vectors ~ψ. The ro-
tation matrix is then given by

R~n(θ) = 1 + sin θ A + (1 − cos θ) A2, (E5)

where

A =

 0 −nz ny
nz 0 −nx
−ny nx 0

 . (E6)

We generate ~n by sampling each element ni from a normal
distribution with zero mean and unit variance, then normalize
to get a vector uniformly sampled from the unit sphere. We
then orthogonalize this vector to ~φ and normalize again to get
a vector uniformly sampled from the circle orthogonal to φ.

To produce the shaded region in Fig. 2 we use our simple
error model to produce "fake data". We then treat this in the

same way we treat the experimental data to extract the Chern
number. Using 500 random realizations we obtain a distribu-
tion for the extracted values of the Chern number. The shaded
region then corresponds to C̄±σ, where C̄ is the mean andσ is
the sampled standard deviation. Importantly, we find that very
small average error rate 1−F ≈ 3% translates into large stan-
dard deviation of approximately 0.25 for the extracted Chern
number.

3. Underlying error model

The observed heuristic error model for the fidelity can be
accounted for by a simple model of noisy measurements in
the device. This noise could be due to a number of sources
including noise during the driving or measurement process, or
due to the random drift of systematic readout errors between
experiments.

Let us assume that the measurement process is subject to
Gaussian noise such that

〈~σ〉real = 〈~σ〉exact + ~η, (E7)

where η ∼ N(µ = 0, σnoise) follows a normal distribution
with zero mean µ and standard deviation σnoise. Note that
this model can result in impossible values for the expectation
values, but for our analysis we focus on typical states where
〈σi〉exact , 0, 1, and σnoise � 1.

Let us now look at what distribution for the fidelity this
model results in. Let us define ~u = 〈~σ〉exact, which is a 3D
unit vector containing the exact expectation values, and ~v =

〈~σ〉real/|〈~σ〉real|, is the vector measured after our noise model
project back to the Bloch sphere. The fidelity is then given by

F =
1 + ~u · ~v

2
=

1 + cos θ
2

. (E8)

For σnoise � 1, we can approximate θ by the orthogonal
component of the perturbation generated by the noise, that is
θ ≈ |η⊥|. Therefore we have that

1 − F ≈
|η⊥|

2

4
. (E9)

Since η⊥ is sampled from a 2D Gaussian distribution, its norm
squared, |η⊥|2, is distributed according to a chi-squared dis-
tribution for two degrees of freedom, i.e., χ2(k = 2). This
distribution is given by an exponential distribution with PDF
p(x) = 1

λ
e−x/λ, where λ = 1

2σ
2
noise, which reproduces the distri-

bution of fidelity loss measured experimentally. Notably, the
average value of the fidelity corresponds toσnoise ≈ 0.24, indi-
cating a large amount of noise in the device (12% error). Note
that the statistical errors for 8192 shots would correspond to
a standard deviation an order of magnitude smaller than this,
and so we can consider statistical errors negligible.

Appendix F: Experimental data

Here we plot extra data to supplement what is shown in the
main text. Note that all data is hosted at Zenodo and freely
available [32].
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1. Purity

M purity τ fidelity
0.6 0.850 75.5µs 0.963
0.8 0.873 107µs 0.983
1 0.855 109µs 0.986

1.2 0.879 195µs 0.987
1.4 0.872 265µs 0.986
1.7 0.829 29.3µs 0.836
2.3 0.806 24.9µs 0.752
2.6 0.875 97.5µs 0.950
2.8 0.889 977µs 0.973
3 0.873 158µs 0.965

3.2 0.866 89.7µs 0.951
3.4 0.894 272µs 0.970

average 0.863 200µs 0.942 (0.971)

TABLE I. Average purity (see Fig. 7), decoherence time, and fidelity
(see Fig. 8) of our experimental data. The decoherence time is ex-
tracted from an exponential fit to the purity data. While this extracted
time scale is not an accurate reflection of the decoherence time of
the devices due to the large purity fluctuations observed, the aver-
age value of 200µs matches the values T1,T2 & 100µs measured by
IBM. The highlighted rows correspond to the data that differs sig-
nificantly from the numerical simulation (see Fig. 8). The fidelity
in brackets corresponds to the average when disregarding data for
M = 1.7 and 2.3, which appear to be strongly affected by diabatic
effects (see Fig. 8).

To compute the purity of the measured state, we first con-
struct the density matrix from the measured Pauli expectation
values as follows

ρ =
1
2

(1 + 〈σx〉σx + 〈σy〉σy + 〈σz〉σz) . (F1)

However, this density matrix is not necessarily physical, and
can correspond to a Bloch vector with greater than unit length.
To account for this we find the closest physical density matrix
using maximum likelihood [55]. For a single qubit, this is
equivalent to projecting any unphysical state onto the Bloch
sphere. From the physical density matrix we can then com-
pute the purity

tr(ρ2) =
1
2

+
1
2

(
〈̃σx〉

2
+ 〈̃σy〉

2
+ 〈̃σz〉

2
)
, (F2)

where 〈̃σi〉 is the corrected expectation value.
In Fig. 7 we show the measured purity of the qubit for the

different values of M. We fit this data with an exponential
form 1/2 + ae−t/λ. Additionally, we present the average pu-
rities and the time scale λ extracted from the fit in Table I.
Across all experiments we find an average purity of 0.863.
We also find that the extracted decoherence time λ ≈ 200µs,
closely matches the values for the device measured indepen-
dently by IBM, namely, T1,T2 & 100µs. However, we note
that due to the large fluctuations of the measured purity this is
not a reliable measure of the decoherence time of the device.
Furthermore, the decoherence times quoted by IBM change
on a daily basis, and in particular between runs for different
M.
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FIG. 7. Purity Tr(ρ2) of the state constructed from the experimen-
tally measured Pauli expectation values. We fit the purity data with
functional form 1/2 + ae−t/λ, with the fit parameters [a, λ] shown in
the corresponding subfigures, where λ is given in µs.

2. Fidelity

In Fig. 8 we show the fidelity [see Eq. (E1)] of the error
mitigated states at each time and for each value of M.

For the values of M = 1.7, 2.3 we observe large oscillations
in the fidelity not seen for other values of M. This suggests
that for these values there are strong diabatic effects. This be-
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FIG. 8. Fidelity of the measured state after projecting onto the Bloch
sphere compared with the exact numerical simulation. Explicitly, we
project the density matrix ρ(t) extracted from the Pauli expectation
values at time t onto the Bloch sphere to obtain the pure state |ψ(t)〉.
The fidelity is then F = |〈ψ(t)|φ(t)〉|2, where |φ(t)〉 is the exact numer-
ical simulation of the state at time t. We fit the fidelity with functional
form be−t/ξ, with the fit parameters [b, ξ] shown in the corresponding
subfigure, where ξ is given in µs. For M = 1.7, 2.3 we observe a
sudden dramatic drop in the fidelity after 10µs, which is reflected in
the behaviour of the work done shown in Fig. 9.

haviour is also reflected by a sudden change in work done that
is also visible in the numerical simulation, see Fig. 9. This
is consistent with diabatic effects due to the small gap close
to M = 2, and was also seen in the numerical simulations
by Martin et al [16]. Small changes in the initial state along
with inexact driving in the experiment lead to the fidelity os-
cillations observed. For this reason we exclude the these two
values of M when discussing the average fidelity across our
experiments.

For all other values of M we achieve an average fidelity of
0.971. Note that, as explained above, this corresponds to a
12% error in the expectation values. Furthermore, we observe
that the fidelity remains approximately constant over this time
scale, with an extracted decay time approximately an order of
magnitude greater than the T1 and T2 times of the device. This
supports our use of error mitigation by projecting on to the
Bloch sphere. Note, that this slow decay and the effectiveness
of the error mitigation can only be maintained while our total
drive length is significant less than the decoherence time of the
device. It also motivates our use of a time-independent distri-
bution for the fidelity in our heuristic error model described in
the previous section.

3. Work done

In Fig. 9 we include plots for the work done for each of
the values of M. From the work done we extract the Chern
number as plotted in the centre of the figure, which is a re-
production of Fig. 3 from the main text. The Chern number is
extracted using a linear fit for the work done by the two drives,
according to Eq. (6) of the main text.
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FIG. 9. Plots of the work done by the two drives and their linear fits for each of the data points shown in Fig. 3, as discussed in Appendix D
and Appendix F 3
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