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Abstract

Employing the time-dependent variational prin-
ciple combined with the multiple Davydov Do
Ansatz, we investigate Landau-Zener (LZ) tran-
sitions in a qubit coupled to a photon mode
with various initial photon states at zero tem-
perature. Thanks to the multiple Davydov trial
states, exact photonic dynamics taking place in
the course of the LZ transition is also studied
efficiently. With the qubit driven by a linear
external field and the photon mode initialized
with Schrodinger-cat states, asymptotic behav-
ior of the transition probability beyond the
rotating-wave approximation is uncovered for a
variety of Schrodinger-cat initial states. Using a
sinusoidal external driving field, we also explore
the photon-assisted dynamics of Landau-Zener-
Stiickelberg-Majorana interferometry. Transi-
tion pathways involving multiple energy levels
are unveiled by analyzing the photon dynam-
ics.

1 1introduction

In the course of a Landau-Zener(LZ) transi-
tion, a two-level system undergoes an avoided
crossing in the presence of an external driving
field.22 This celebrated physical phenomenon
was independently studied by Landau, Zener,
Stiickelberg, and Majorana in 1932, and the
standard LZ model is also referred to as the
Landau-Zener-Stiickelberg-Majorana (LZSM)
model,1# which has found applications in a
large variety of fields, including atomic and
molecular physics,® 1Y quantum optics,t! solid
state physics,*2 chemical physics,2314 and
quantum information science.!® Recently, as
the number of physical systems described by
the LZSM model grows, so does renewed atten-
tion it has received. New applications of the
LZSM model have been reported in a nitrogen-
vacancy center in a diamond lattice,!® a one-
electron semiconductor double quantum dot,¢
and an accelerated Bose-Einstein condensate
that is synthetically spin-orbit coupled.

Due to its theoretical importance and wide-
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ranging potential applications in quantum de-
vices, there is sustained interest in the LZSM
model. 1823 Various devices have been invented
to implement a quantum system interacting
with an external electromagnetic field, such as
a charge qubit coupled to a superconducting
transmission line resonator?? and a supercon-
ducting flux qubit coupled to a quantum inter-
ference device,2® which can be seen as two-level
artificial atoms tuned by external fields. Such
devices allow for efficient control of parameters
such as the interaction strength and the bias.2
In recent years, dielectrics and semiconductors
driven by strong electromagnetic field make it
possible to control electron dynamics on the
sub-femtosecond timescale.?? Electromagnetic
fields can be used to detect the qubit states.
The LZSM model is the ideal platform to de-
pict the fundamental physics underlying these
processes.

The LZSM model has also been theoretically
investigated over the decades with various ap-
proaches. For instance, a series of studies
have been conducted using the LZSM model
to unveil environmental effects on mechanisms
of quantum electrodynamics (QED) devices.
With the time-dependent perturbation theory,
final transition probabilities in the fast and
the slow sweeping limits have been studied by
Ao and coworkers.?” Inspired by the realiza-
tion of LZSM physics in QED devices, Hanggi
and coworkers systematically investigated the
final transition probabilities influenced by a
bosonic bath at zero temperature.2822 Nalbach
et al. extensively studied thermal effects in
the dissipative LZSM model using the quasi-
adiabatic propagator path integral method and
the non-equilibrium Bloch equations.23% A
random-variable driving approach, pioneered in
Refs., 2526 has been used by Stockburger3” and
Orth et al.3%32 in the present context. Further-
more, Huang and Zhao adopted the multiple
Davydov trial states to elucidate the dissipa-
tive LZSM dynamics including full details on
the associated boson dynamics.4?

A qubit driven by an external electromagnetic
field can be described by the LZSM model in-
teracting with a single harmonic oscillator with
the frequency w.182640°43 For this model, Saito

et al. have revealed that zero-temperature dy-
namics depends strongly on the oscillator fre-
quency only at intermediate times, if the oscil-
lator is in its ground state at t — —o00.X® Sun
et al. compared the dynamics with and with-
out the rotating-wave approximation (RWA)
assuming the initial state of the oscillator to be
a superposition of coherent states, laying bare
the inaccuracy of RWA. 4144 Setting the har-
monic oscillator in an initial finite-temperature
thermal equilibrium state, Ashhab considered
the final probabilities of the LZSM transition.42
Huang and Zhao found two-stage LZ transitions
induced by the combined effect of tunneling
strength A and the off-diagonal qubit-oscillator
coupling.#? Malla et al. aimed to find to an an-
alytical solution in the presence of a slow and
fast oscillator (w < A and w > A, respectively,
where w is the frequency of the harmonic os-
cillator) assuming there are many quanta ex-
cited initially.#* The same initial condition has
also been studied by Werther et al.#> Though
many efforts have been devoted to understand-
ing the LZSM model, several fundamental is-
sues remain unsettled, such as the influence of
an initially excited environment on the final
LZ transition probability. Moreover, the off-
diagonal qubit-oscillator coupling has not been
adequately treated if the oscillator is initialized
in an non-vacuum state.?1 43 In this work, we
will shed some light on the issues mentioned
by investigating the effects of initial superposi-
tion of coherent states of the oscillator on the
LZSM dynamics of a two-level system coupled
to a single harmonic oscillator using the time-
dependent variational principle combined with
the multiple Do-Ansatz.

The remainder of the paper is structured as
follows. In Sec. 2 we present the Hamilto-
nian and our trial wave function, the multi-
Dy Ansatz. The observables of interest are de-
scribed in Sec. Bl In Sec. B.2] we study the
LZ model with an initial vacuum photon state
and driven by a linear external field to illus-
trate the main physical picture of the transi-
tion. In Sec. B.3] it is demonstrated how to
use the Schrodinger-cat states to initialize the
photon state in the framework of the multi-Dy
Ansatz. We then examine the detailed dynam-



ics of the LZ model in the presence of a linearly
varying field in Sec. 3.4 and in the presence of
a sinusoidal driving field in Sec. B.5l Special
attention has been paid to the photon dynam-
ics in a setup similar to a LZSM interferometer.
Conclusions are drawn in Sec. [l

2 METHODOLOGY

2.1 A qubit coupled to a single
mode

The LZ transitions can be utilized in various
quantum devices. One example that employs
the LZ transition is adiabatic quantum com-
putation. Supposing a Hamiltonian of interest,
H;, is difficult to implement in experiment. One
can then construct a time-dependent Hamilto-
nian

H(t) = ¢i(t)H; + c(t) Hy, (1)

in which H; is the initial Hamiltonian that can
easily be implemented. ¢(t) and ¢¢(t) are func-
tions depending on time t satisfying ¢;(0) =
c(T) = 1 and (T) = ¢(0) = 0, respectively.
The target Hamiltonian H; can be obtained if
one increases the time t adiabatically.#® The
LZ transition can also help manipulate qubits
and fabricate reliable readout devices.4” Typ-
ical quantum devices can be subdivided into
three classes, the flux qubits, the charge qubits
and the phase qubits.#® Fig. [(a) supplies
the time-dependent flux treading the quantum
dots. Fig. [[I(b) displays the schematic diagram
of a superconducting quantum-dot coupled to a
coplanar transmission line resonator.#? LZ tran-
sitions occur frequently in the first two types
of the devices.?® Meanwhile, electromagnetic
waves are used to readout the state of the qubit.
In recent years the implementation of qubits in-
teracting with an alternating electromagnetic
field in strong and ultrastrong regimes became
possible.?? Stronger coupling leads to fast and
reliable control of the qubits.

The total Hamiltonian of a driven two-level
system interacting with a bosonic bath is given
by ) ) ) R

H = Hs + Hg + Hgp, (2)
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Figure 1: Quantum dot and solid-state dopant
qubits. (a) an electrostatically confined quan-
tum dot; the structure shown is several pm
across. (b), a self-assembled quantum dot.

where the system Hamiltonian is the standard
LZSM Hamiltonian for an isolated two-level
system, i.e, HS = HLZSM; with

. e(t)h Ah
Hizsm = %O_z 7

O, (3)
where o, and o, are the Pauli matrices. De-
noted as diabatic states |1) and ||), the eigen-
states of the qubit Hamiltonian [e(t)%/2]o, have
a time-dependent bias £(¢). The tunneling
strength A represents intrinsic interactions be-
tween the diabatic states, and induces transi-
tions between these states.

With an alternating external driving field, the
time-dependent bias is written as

e(t) = eg + Asin(Q + @), (4)

in which &, is the intrinsic bias of the qubit, A
is the driving amplitude, €2 is the frequency and
o is the initial phase of the driving.

To study the LZ transition in the presence of
an environment, we model a bosonic bath of
one quantum harmonic oscillator by the Hamil-
tonian I:[B .

Hg = hwb'b, (5)

and couple the oscillator to the qubit via the
Hamiltonian Hgp?®

Hgp = ? (cos .0, + sinb.0,) (I;T + 5), (6)

where v and 6, are the qubit-oscillator coupling
and the interaction angle, respectively. w indi-
cates the frequency of the bath mode with cre-



ation (annihilation) operator bf(b). The effect
of the bosonic bath is to change the energies
of the qubit via the diagonal coupling (o) and
to induce transitions between the levels of the
qubit via the off-diagonal coupling (o,). The
interaction angle 6. = m/2 is assumed through-
out this work.

In the presence of sinusoidal driving, the
Hamiltonian reads

e(t)h
2

- Ah ~e yh P
H= UZ+70m+ﬁwab+ %am <bT —l—b) )
(7)
If the frequency 2 in Eq. () is rather small,
one can approximate the sinusoidal driving by
a linear one. Then this system can be simply

modeled by the Hamiltonian,

H = U—taz + Maw + hwb'h + lhax @T + I;) )
2 2 2

(8)
in which v = AQ#A is the level-crossing speed.
In this work, the tunneling A is set to zero and
h = 1. In Hamiltonian (), there are then
three parameters: the level-crossing speed v,
the frequency of the photon w and the coupling
strength . One can arbitrarily select one of the
parameters as the characteristic parameter. In
this article, we choose w as the characteristic
parameter and set it to unity throughout the
paper. The unit of the energy, time and speed
are w, w1 and w?, respectively. With the pa-
rameters in Hamiltonian (&), one can construct
a dimensionless parameter v2/v. The meaning
of the dimensionless parameter will be revealed

in Sec. B.2]

2.2 The Multi-D, state

Multiple Davydov trial states with multiplic-
ity M are M copies of the corresponding sin-
gle Davydov Ansatz 455552 The initial impetus
of their development was to investigate the full
quantum dynamics of the polaron model®356
and the spin-boson model3™3® in the frame-
work of the time-dependent variational princi-
ple, putting the system and bath dynamics on
an equal footing. In the two-level system, one of
the multiple Davydov trial states, the multi-Dq
Ansatz with multiplicity M, can be constructed

as

M

D) =3 {ai) 1y exp [0 ~ He0)]

i=1
M

Y {Bit) Wexp [£(F —He[0)},

1=1

where H.c. denotes the Hermitian conjugate,
and |0) is the vacuum state of the bosonic bath.
A; and B; are time-dependent variational pa-
rameter for the amplitudes in states |1) and
|1}, respectively. f;(t) are the bosonic displace-
ments, where ¢ labels the ¢-th superposition
state. If M = 1, the multi-Dy Ansatz is re-
stored to the usual Davydov Dy trial state.
Equations of motion of the variational param-
eters u; =A;, B; and f; are then derived by
adopting the time-dependent variational prin-

ciple,
d (LY _ oL
dt \our) Our

For the multi-Dy Ansatz, the Lagrangian L
reads

(10)

(9)

A
L = (D3(t)|55, — HIDY (1))
= 5 [ DY @) — (DY (1) 5Dy (1)

Details of the Lagrangian and equations of mo-
tion are given in the Supporting Information.
The exact diagonalization (ED) method has
been adopted in Ref.4! to solve similar prob-
lems. However, the ED method is only suitable
for small systems each electronic/spin degree of
freedom weakly coupled to a few boson modes.
For electronic/spin systems strongly coupled to
multiple boson modes, it is difficult for ED cal-
culations to converge. Computationally, ED is
expensive to implement due to the huge Hilbert
space it has to cover, which is a result of large
truncation values needed to describe the Fock
states of the boson modes. Moreover, the ED
method is not suitable for dynamics at finite
temperatures. In current study, we are inter-
ested in LZ transitions with the photon state

(11)



initiated from some superpositions of coherent
states. It is much more straightforward to use
the Davydov Ansatz to estimate the wave func-
tions because of the coherent-state construct
of the boson portion of the Davydov Ansatz.
Meanwhile, the approach applied in this work is
quite powerful to deal with the Schrodinger-cat
states with increasing photon displacements,
which would be difficult for the ED method to
handle due to the increasing Hilbert space di-
mensions. In the future, we plan to study tem-
perature effects on the LZ transitions in sys-
tems with the qubit coupled to multiple pho-
ton modes. It would be impossible for the ED
method to solve these problems. Therefore, we
apply the time-dependent variational method
with the Davydov Ansatz from the very begin-
ning of the project. The ED method has been
only used to provide some benchmarks for some
simple cases.

3 Results and discussion

3.1 Observables

Initially the qubit is in its up state [1). To
investigate the LZ transition quantitatively,
the probability that the qubit in the down
state |}) is usually employed and is denoted
as Ppz(t). With the density matrix p(t) =
| D3 (t)) (D3 (t)|, Puz(t), can be expressed as

Pua(t) = Telp(t) 2] = 3 [1 — {62) (0] (12

Here P, = ||)(}] is the projection opera-
tor of the down state. With the help of the
multi-Dy Ansatz, the expectation of the Pauli
operator o, can be expressed as (7,)(t) =
(DY (1) 6| DY (1),

In order to explore the detailed transfer path-
ways, we also record the population dynam-
ics in coupled qubit-photon states |n, 1) =
1) @|n) and [n, 1) = |4) @ [n) where [n) is
the photon Fock state. Using the projection
operators Por = [1) (1| ® |n) (n] and P, =
1) (] @ |n) (n|, we define the population as

~

Poy = Tr(pPys), (13)

for state |n, 1), and

~

Poy = Tr(pP ). (14)

for state |n, J). These quantities are evaluated
with the multi-Dy Ansatz,

Posy = |(n, T (WIDIY. (15)

3.2 Physical understanding of
Landau-Zener processes

In this subsection, we will discuss the change
of the energy levels with the time in the LZ
system with a linearly driving field. The pa-
rameters that we choose are the level-crossing
speed v/w? = 0.01, and the coupling strength
v/w = 0.12. Diagonalizing the Hamiltonian
Eq. (8) directly, the lowest several energy levels
varying with time are obtained and are illus-
trated in Fig. 2(b). As shown in Fig. 2(b), the
energy of the states |n, 1) rises with increas-
ing time, and the energy of the states |m, |)
decreases with time. Especially, at t = 100,
the avoided crossing between |0, 1) and |1, |)
is zoomed in the subfigure. In the vicinity of
t = 100, the system evolves into the superposi-
tion state a(v) |0, 1Y+ 5(v) |1, |) with velocity-
dependent probability amplitudes. The dynam-
ics of the model is dominated by the energy
levels shown in the diagram, if the coupling
strength is weak and the external field varies
adiabatically.

To illustrate how Piz(t) depends on the
energy levels, simulations are performed for
Hamiltonian (§). With the same parameters
as in Fig. (b)), Pz (t) is plotted in Fig. 2l(a).
The vacuum initial condition of the bath is em-
ployed. As shown in Fig. Rl(a), the probabil-
ity Pz is always close to 0 from ¢t = —300 to
t = 0. But when the time ¢ approaches 100,
the probability suddenly surges to Ppz(t) = 0.9.
With increasing time, the value of the proba-
bility oscillates, and approaches a stable value
gradually. To ensure convergence, several mul-
tiplicities (M = 6, 8, 10) are used, and curves
with different multiplicities are found to coin-
cide perfectly, as shown in Figure[S1lin the Sup-
porting Information.
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Figure 2: (a) Time evolution of the transition
probability calculated by the multi-Dy Ansatz.
(b) The eigenstate diagram of Hamiltonian ().
The inset is a zoomed view of an avoided cross-
ing between the states |0, 1) and |1, |) at ¢ =
100. (c)-(g) Time evolution of the population
P, in the state |n,|) with n = 0, 1, ..., 5.
Level-crossing speed v/w? = 0.01, other param-
eters are A = 0 and v/w = 0.12.

The dynamics of Ppz(t) can be understood
from the energy levels in Fig. 2(b). At ¢t =
100, an avoided crossing occurs, as revealed in
Fig. 2(b). Meanwhile, in Fig. P(a), one can
find that Pz (t) suddenly jumps up at the same
time t = 100, which is indicated by a vertical
dashed line. The entire system is initialized at
the |0, 1) state. In the adiabatic limit, the sys-
tem will end up in the |1, |) state, based on
the adiabatic theorem. The qubit flips in the
vicinity of the avoided crossing. In Hamiltonian
[®), the avoided crossing results from the off-
diagonal coupling term =/ QUI(IA)T +i)), which can
be considered as dynamical tunneling. The pa-
rameters we used here satisfy that v/w = 0.12
and v?/v = 1.44. If v < w and v < 72, the
model is approximately in the weak coupling
regime, and the external field varies adiabati-
cally with time. In this regime, the dynamics
of Pz(t) near the avoided crossing can be pre-
dicted from the energy levels shown in Fig.[2(b).
Based on the adiabatic theorem, for a vanish-
ingly small speed v, the system initially at |1)
will be finally at |]) when ¢ approaches infin-
ity. On the other hand, the coupling strength ~
widens the gap of the avoided crossing. Thus, v
increases the likelihood the LZ transition while
~ suppresses it, and the dimensionless parame-
ter 2 /v combines the two aspects.

To investigate the LZ transition from the
perspective of the bath,% the populations of
the five lowest down states P, (¢) are plot-
ted in Fig. 2c)-(g). Except for P (t), all
other P, |(t) have vanishingly small amplitudes.
Py | (t) suddenly rises at t = 100. From the
aforementioned discussion, the qubit flip is from
the avoided crossing between |0, 1) and |1, ]).
The same information can be extracted from
Fig. 2l(c)-(g) as well. It is also obvious that for
the given vacuum initial photon state in this
subsection, the only relevant final state is the
n = 1 photon Fock state. In Fig. B(d), af-
ter the jump near t = 100, P (¢) fluctuates
around 0.88. The parameters selected to ob-
tain the curves in Fig. 2(a) and (c)-(g) satisfy
vt > v and w > /2. The contribution of the
off-diagonal coupling term is proportional to
7, while the contribution of Hamiltonian (3] is
proportional to the time-dependent bias ¢ = vt.



Thus, away from the LZ transition point, the
coupling between the qubit and the bath is a
perturbation to Hamiltonian (§)). It follows that
the system will remain in |1, |) at long times.

The LZ transition emerges out of multi-
level interactions in the time-dependent qubit-
photon system. As shown in Fig. 2 probing
the origins of the LZ transitions and attribut-
ing them to relevant avoided crossings is an in-
teresting task in the dynamics analysis. Ap-
proaches that are based on the reduced density
matrix of the qubit while tracing out the pho-
ton degree of freedom are unable to reveal the
bath dynamics explicitly. As a wave function-
based method, the multi-Dy Ansatz can read-
ily reveal the detailed bath dynamics, a feature
that is unavailable to approaches based on den-
sity matrices.

3.3 Landau-Zener transition
with an initial superposition
of coherent states

Superpositions of coherent states, such as the
Schrodinger-cat states, have attracted exten-
sive interest as nonclassical states with excep-
tional properties. Such states can be prepared
in various systems, essential in many funda-
mental tests of quantum theory and in myr-
iad quantum-information-processing tasks,% 62
including quantum computation,% precision
measurements, %% and quantum teleporta-
tion.% Here, our aim is to study the effect
of the initial Schrodinger-cat states on the LZ
transition.

A coherent state |«) is usually expanded as an
infinite sum of Fock state |n), and the expansion
coefficients for each Fock state decrease with
the increasing photon number n [cf. Eq. ([I8)].
With an initial photon state composed of co-
herent states, such as the Yurke-Stoler (YS)
state,®” the time-dependent variational princi-
ple with the Davydov Ansdtze is a very handy
wave-function propagation tool for the simu-
lation task. Moreover, in the evolution pro-
cess, the external driving field may change the
energies of the two-level system dramatically.
Through the interaction between the qubit and

the photon, the photon field may be excited to
the state with a large average photon number.
Methods based on the Fock state will be less
efficient than those based on coherent states,
and less accurate as well due to the necessary
truncation of the Hilbert space.

Next, we will focus on the propagation from
a Schrodinger-cat state, [V (¢ = 0,0)),, defined
as

(= 0,6))p, = 7 (lo) + ¢ |=a)),  (16)
0

where |a) is a coherent state with displacement
a, 0 is the phase and Ny = 2(1 + e~ 2% cos 0)
is the normalization constant. For simplicity,
we assume « to be real. If the phase 6 is 0,
7 and 7/2, the state is named the even coher-
ent state, the odd coherent state and the YS
state, %7 respectively.

Coherent states are the quasi-classical states
of a quantum harmonic oscillator. But super-
positions of coherent states are much more com-
plex. The Mandel ) parameter

o= - <7¢<L>A)2> — () _ (%) —(7)* — (n)

) (n) ’
(17)
is usually used to measure the departure of the
occupation number distribution from Poisson
statistics. Here n = bTbAis the boson number
operator, and (n) and (n2?) are the average of
fi and 72, repectively.®® For the Schrodinger-cat
states, the Mandel () parameters depend on the
phase 6. For the even state, the YS state and
the odd state, @ > 0, Q@ = 0 and @ < 0, re-
spectively. Thus, the even state is classical, the
YS state is quasiclassical and the odd state is
non-classical, respectively.

Many-body dynamics resulting from an ini-
tial superposition of photon coherent states can
be more complex than that from an initial vac-
uum state. This can be understood qualita-
tively from Fig. 2(b). A coherent state can be
written as a sum of Fock states®

n

o) =—Z S8

With an initial coherent state, for example, the
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Figure 3: Time (in units of w™!) evolution of the transition probability from the multi-Dy Ansatz
with dimensionless parameter 7?/v and speed v (in units of w?). The vertical black dashed lines

indicate the times of the avoided-level crossings. The photon displacement || = 1. In (a), (d), and
(g), v/w?=1;1in (b), (e), and (h), v/w? = 1072; and in (c), (f), (i), v/w? = 2072

initial population will be distributed to mul-
tiple |n, 1) states with n = 0, 1, 2, ..., and
the entire wave packet will be spread out over
many |n, 1) and |n, |) states. Thus, as the
population in state |0, 1) migrates to other
states in the vicinity of the avoided cross-
ing, the same would happen to higher excited
states |n, 7). Meanwhile, the expansion coef-
ficients e~ 1**/2(a" /v/nl) lends a weightage to
|n, ). For an initial superposition state given
by Eq. (I8), the ensuing dynamics also depends
on the phase #. In the next subsection, we
will investigate the transition probability Ppz(t)
from an initial photon state given by Eq. (16
with various values of a and 6.

The even coherent state can be written as,
PO (0 R ) B

even NO

\
Zm‘zn

and the odd coherent state,

Lo oo n
|Oé> :(|Oé>—|—0é 2+1
odd N, = /2n+1)!

where Ny = 2(14-e72°*) and N, = 2(1—e~2lo)
are the normalization factors for the even and
the odd coherent state, respectively. |a), ., =
[¥(0,0)),, is named “even coherent state” be-
cause it is an even parity state, and the photon
number distribution is nonzero only for even
photon numbers with an average photon num-
ber of 2|a|?(1 —e~2*)/N2. Similarly, |a) 4, =
|W(0,7)),, is named “odd coherent state” be-
cause it is an odd parity state, and the pho-
ton number distribution is nonzero only for an
odd number of photons with an average pho-
ton number of 2|a|?(1 + e~2l°*)/N2. Lastly,
if & = /2, the initial photon state is the YS
coherent state, ie., [a)yg = |V(0,7/2)), =
(o) + i|=a))/Nzs2, with an average photon
number of |a|* and N7, = 2.

Compared with this work, an extra term



wo, /2, where w is the frequency of the photon
bath, is included in the Hamiltonian of Ref. 4!
for which Sun et al. obtained the LZ transition
probability at long times,

(19)
Here, Pyo = exp(—m7y?/2v) is the probability
staying at |1) if the initial state is |0, 1). The
RWA has been employed to derive this result.
Although the probability is dependent on the
detailed Hamiltonian, Eq. (I9) yields a com-
mon physical picture of the system dynamics in
the weak coupling regime. From Eq. (I9)), one
can calculate the possibilities for the even, odd
and YS states. It follows that for even coherent
states, the final RWA transition probability is

PLz(OO) =1

cosh(|a|*Py )

2
cosh |a]?2 (20)

PLZ,ovon(oo) =1~ 1,0

and for odd coherent states,

sinh (|a|?Pr)
sinh |a]?

(21)

PLz,odd(OO) =1~ 1,0

As |a|* vanishes, one has Przoqa(00) — 1 —
P}, because the odd coherent state |a),qq ap-
proaches the Fock state |1). Similarly, for the
YS coherent state, the final RWA transition
probability is

PLz(OO) =1- PT70 exp[—|a|2(1 — PTv())]. (22)

Eq. ([22) reveals the dependence of Ppz(c0) on
the ratio v*/v and the average photon num-
ber |a|?®. Obviously, enhancing |«|? and the ra-
tio v%/v will increase the final LZ probability
PLz(OO).

To simulate the LZ dynamics with an ini-
tial photon state of Eq. (I6]), the multi-Dy trial
state of Eq. (@) is initialized as follows. For
the qubit amplitudes, we set 4; = 1, Ay = €,
and By = By, = 0. To ensure numerical stabil-
ity, the rest of qubit amplitudes, As,,_1, Aoy,
Bsy—1 and By, (m =2,3,4, -+, M/2), are set
to small random numbers between —10~* and
+107*. We set photon displacements f; = o

and fo = —a. fou—1 = fi and fo, = fo

(m=23,4,---, M/2) at t = —o0. It is ob-
vious that the multiplicity of our multi-Ds trial
state should be an even number. In the interest
of numerical stability, additional random num-
bers no greater than £1072, are added to fo,_1
and fo,, (m=2,3,4,---, M/2).

3.4 Linear driving

In order to gain insight into LZ dynamics with
an initial YS state at intermediate times, we
numerically calculated LZ probabilities for sev-
eral values of the speed v (v = cw?, ¢ = 172
1072 and 207?) and the dimensionless param-
eter v2/v (v*/v = 1%, 0.5% and 0.1%). Here,
based on the considerations below, we choose
v?/v rather than the coupling strength ~ as
the control parameter. The probability term
Py = exp(—my?/2v), which is determined by
the ratio v%/v, influences many related proba-
bilities in the LZ transitions, such as Eq. (I9).4
More examples can be found in Ref.2? In the
literature, the LZ model is in the fast driving
regime if v/A% > 1, and in the slow driving
regime if v/A? < 1.707 As the off-diagonal
coupling strength v determines dynamical tun-
neling of the LZ transition, one can use v/
to ascertain whether the driving is fast or slow.
For various values of v and v/?, simulations
are performed to reveal the dynamics of Ppy(t)
in different regimes. Meanwhile, panels in the
same row of Fig. B have the same v%/v. Dis-
played in Figs. B (b), (c), (e), (f), (h) and (i)
are the transition probabilities in the weak cou-
pling regime as v < w is satisfied. There are
two distinct stages of LZ transitions in Figs. Bl
(b), (¢), (e), (f), (h) and (i), which can be ex-
tracted from the eigenstate diagram similar to
Fig. 21 (b).

As shown in Fig. 2 (b) , there are two se-
ries of avoided crossings at t = +w/v, leading
to two successive transitions. As displayed in
Figs. Bl (b), (e), (h) and (c), (f), (i), the height
of the first transition is insensitive to the speed
v but is dependent on 4?/v. This behavior
can be understood with the help of Eq. (22).
At long times, the RWA transition probability
Prz(00) is determined by P; o = exp(—my%/2v),
and therefore by v?/v. This asymptotic behav-



ior obtained with the RWA is valid only in the
weak coupling regime. At a sufficiently long
time from the first transition, the evolution of
Prz(t) obtained with the RWA coincides with
that of Hamiltonian () before the onset of the
second transition. Thus, the height of the first
jump in the transition probability Prz(¢) only
depends on 7?/v in the weak coupling regime.

In Figs. Bl (b), (e) and (h), a second jump in
the probability Prz(t) occurs at about t = 100,
while in Figs. Bl (¢), (f) and (i), it happens at
t = 400. It is found that these times correspond
to the avoided crossings at t = w/v. As shown
clearly in Figs. Bl (b) and (i), the height of the
plateau after the second jump in P z(t) deviates
from that of the first jump. It follows that the
second transition cannot be described by RWA.
The avoided crossing at t = fw/v can be di-
vided into two classes. The first class is formed
between |n, 1) and |n + 1, ]), and the second,
between |n, 1) and |n— 1, ]). As the second
class of the avoided crossings can not be de-
scribed in any way by the RWA, the RWA fails
for the LZ transition at long times, as supported
by our numerical results in Fig. Bl Figs. Bl (a)
and (d) illustrate the LZ transition probabil-
ity in the strong coupling regime, and Fig. B(g)
displays a marginal case sandwiched between
the strong and the weak coupling regime. Only
one LZ transition is found in Figs. B (a), (d),
and (g). The avoided crossings at t = +w/v
still exist, but the speed of v/w? = 1 renders
too small the temporal separation of two LZ
transitions between the two avoided crossings,
therefore merging two transitions into one. In
the simulations shown in Fig. 3] the photon dis-
placement |o| = 1. According to Fig. 2 (b),
the second class of transitions from |n, 1) to
|n — 1, ]) is feasible for n > 3 at the first set
of avoiding crossings, t = —w/v. Thus, if a suf-
ficiently large |a| is used, the RWA will break
down, a conclusion that is supported by addi-
tional numerical simulations performed.

To further investigate how the phase 6 influ-
ences the transition probability Prz(t), simu-
lations are performed for § = 0, 7 and 7/2,
i.e., the even coherent state, the odd coherent
state, and the Y'S state, respectively. As shown
in Fig. @ the three curves for different values
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Figure 4: Time evolution of the transition prob-
ability calculated by the multi-Dy Ansatz for
different initial states. The speed is v/w?
0.01, and the coupling strength is v/w = 0.05.

of the phase 6 exhibit almost the same oscil-
latory behavior, with the first and the second
transitions occurring at about the same times.
The height of the first plateaus rises with the
increasing 6. This trend agrees with the predic-
tion of the RWA transition probabilities given
in Eqs. (20), (22) and 21)). As discussed ear-
lier, the second transition in Ppz(t) cannot be
described by the RWA. Our simulation results
here shed light on how the phase 6 affects the
probability Pz(c0). To compare the heights of
the first and second plateaus, dashed lines are
drawn to display the average positions of the
first plateaus. As shown in Fig. M the second
plateau is found to be slightly lower than the
first for the even coherent state, while for the
YS state and the odd coherent state, the oppo-
site is true. It is clear from our simulations that
to increase the Pz (00), one has to increase the
phase 6 all the way up to .

Fig. Bl displays the transition probabilities of
the aforementioned two consecutive transitions
as functions of the phase @ for |a*> = 1, 0.1,
0.01, v/w? = 0.01, and vy/w = 0.05. The aver-
age height of the first plateau, Pz, as a func-
tion of # is plotted in Fig. Bl(a). The symbols
(circles, squares, and triangles) are extracted
from the simulation with multi-D, trial states.
Piz1 increases (drops) as 6 goes from 0 () to
7 (27). Asides from minute numerical fluctua-
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Figure 5: The average height of transition prob-
abilities of the two consecutive transitions as
functions of phase 0 in Eq. (I6) with |a]? = 1
(black circles), 0.1 (red squares) and 0.01 (blue
triangles). Fitting curves with Eq. ([23) are
plotted with black dashed lines for |af* = 1,
red dashed lines for |a|? = 0.1, and blue dashed
lines for |a|? = 0.01. (a): The average height
of the first plateau, Prz1. (b): The height of
the plateau after the second transition Ppz(oc0).
The speed is v/w? = 0.01, and the coupling
strength is v/w = 0.05.
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tions, the symbols (circles, squares, and trian-
gles) in Fig. Bla) have mirror symmetry about
0 = m, which can be fitted by

2|a|?Fy
1+e cos 96‘042},1

P=F -
0 1 + e2lel? cos

(23)
a relation that resembles Eq. (I9). The fitting
parameters are Fy = 2.68 and F; = 0.88 for
la)*> =1, Fy = 1.1 and Fy, = 0.72 for |a|* = 0.1,
and Fy = 1.01 and F; = 0.69 for |a|*> = 0.01.
The fitting curves are plotted as the colored
dashed lines in Fig Bla). Although Eq. (I9)
was derived from a slightly different Hamilto-
nian by Sun et al. in,* the fitting in Fig. Ela)
seems to be satisfactory.

In Fig. Bl(b), the height of the plateau as the
system re-equilibrates after the second transi-
tion, Prz(oc0), is shown as (circles, squares or
triangles) a function of the phase 6, which also
displays mirror symmetry about § = w. One
can also fit Pz (o0) with Eq. (23] with different
values of the parameters F and Fj. The fitting
parameters are Fy = 2.68 and F; = 0.88 for
la|* =1, Fy = 1.1 and F; = 0.72 for |a|> = 0.1,
and Fy = 1.01 and F; = 0.69 for |a*> = 0.01,
respectively. A comparison of Fig. Bl(a) and
Fig. BI(b) reveals how the displacement |a|? in-
fluences the plateau heights. The height of the
plateau after the first transition increases with
the increasing |a|? for any phase 6. But the
situation is much more complex for the sec-
ond plateaus. As shown in Fig. B(b), Ppz(c0)
decreases with increasing |a|? near § = 0, 7
and 27. But between about 0 = 7/2 (57/4)
and 37 /4 (37/2), Prz(00) increases with the in-
creasing |a?.

3.5 Sinusoidal driving

Beyond linear driving, periodical external fields
are also frequently adopted to drive the qubits,
making such a simple model an ideal plat-
form to investigate various fundamental phys-
ical problems. For instance, Schrodinger-cat
states have been generated via photon-assisted
LZSM interferometry by repeatedly sweeping
the energy splitting of the qubit.” Recently it
has also been found that the states of qubits and



photons in a complex Rabi-dimer system can
be engineered by driving the qubits with sinu-
soidal fields.™™ Detailed dynamics related to
those multiple LZ transitions has not been well
understood, as it is a nontrivial task to analyze
the coupled qubit-photon dynamics at LZ tran-
sitions. In this section, we present an in-depth
analysis of the qubit-photon dynamics at multi-
ple LZ transitions by depicting the population
dynamics in individual coupled qubit-photon
states. Transition pathways are revealed by
combining the energy diagram of the coupled
qubit-photon states and the total energy.

As described in Eq. (), a sinusoidal exter-
nal driving field is imposed to the qubit with
a driving frequency Q/w = 7/200, a coupling
strength v/w = 0.05, a initial phase @q = 7/2,
and g = 0. The superposition state |a)ys
with the displacement |a|? = 1 and the phase
0 = 7 /2 is adopted as the initial photon state.
Three driving amplitudes, i.e., A = 0.7, 1.1,
and 1.3, are used in the simulations.

Driven by a sinusoidal field with an ampli-
tude of A = 0.7, the qubit migrates from the
initial up state 1) to the down state ||) with
a probability Prz. As illustrated by the black
line in Fig. [0 (a), the transition probability Py
oscillates as a function of time with three char-
acteristic frequencies, which can be seen more
clearly in the moving average of Pz (t) over a
time interval At = 200 (the red line in Fig.
(a)). Low frequency oscillations have a pe-
riod of 200, which is half of the driving period,
ie., Ty = 27/Q = 400. Those oscillations in
Ppz(t) arise from tunnelings between the |n, 1)
and [n—1,])) (Jn+1,])) states. These tun-
nelings can be well understood with the help of
the energy diagram of the hybrid qubit-photon
system as shown in Fig. [@ (b), which is ob-
tained by diagonalizing Hamiltonian (g]). For
instance, the |n, 1) — |n—1,]) (for n >1)
tunnelings occur around ¢ —200 and 200,
while the |n, 1) — |n + 1, |) tunnelings, in the
vicinity of ¢ = 0. As the driving amplitude
A = 0.7 is smaller than the photon frequency w,
there is no level crossing between qubit-photon
states with different photon numbers. There-
fore, only a minor portion of population tun-
nels to the qubit down state at the times when
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Figure 6: (a) Time evolution of the transition
probability Ppz(t) calculated by the multi-Dy
Ansatz. The red line is a moving average of
Prz(t) over At = 200. (b) The eigenstate dia-
gram of Hamiltonian (7). (c)-(h) Time evolu-
tion of the population P, (t) in the state |n, |)
with n = 0, 1, ..., 5. The initial condition of
Eq. (I6) is adopted with phase § = /2 and dis-
placement |a|? = 1. Parameters in Eq. () for
sinusoidal driving are ¢g = 0, A = 0.7, Q/w =
/200, o 7w/2. The coupling strength is
v/w = 0.05.



the |n, T) and |n — 1, ]) (|n + 1, |)) states have
small energy gaps. The time-dependent en-
ergy gaps give rise to the oscillations in Ppz(t)
with time-dependent periods. In order to clar-
ify these oscillations, we present the population
dynamics on all qubit-photon states in Figs.
(c)-(h). The population on |0, }) is an excel-
lent example to elaborate the oscillations with
time-dependent periods as shown in Fig. [d (c).
The population on |0, ) is tunneled from |1, 1).
Comparing the energy levels of these two states
in Fig.[6l(b), it is found that the time-dependent
energy gap agrees perfectly with the oscillation
frequency in Fig. [0l (c). For example, the energy
gap arrives at its minima at ¢ = —200 and 200,
leading to the maximum oscillation periods in
Py . At t =0, the two states have a maximum
energy gap, giving rise to the fast oscillations in
the population on |0, |). The third character-
istic oscillation frequency in Prz(t) dependents
on the frequency of the photon mode and is 2w.
Independent of time, this frequency is respon-
sible for the fastest oscillations in Ppz(t).

Analyzing the energy levels in Fig. [@ (b) and
the population dynamics on all qubit-photon
states presented in Fig. [0l (c)-(h), we can reveal
the detailed pathways for the tunnelings taking
place along time. At the initial time, more than
90% of the population is distributed on |0, 1),
|1, 1), and |2, 1). The population on |0, 1) can
only tunnel to |1, ) at ¢ = 0. All the other
In, 1) (n > 1) states can tunnel their popula-
tion to [n+ 1, |) at t =0, and to |n — 1, |) at
t = —200 and 200. Therefore, as recipients, all
the |n, |) states except |0, |) exhibit three lo-
cal maxima in their populations at t = —200,
0, and 200. As discussed above, [0, |) only re-
ceives the tunneling from |1, 1) at ¢ = —200,
and 200, producing two local maxima in Fp | at
t = —200, and 200.

With a larger driving amplitude of A = 1.1,
avoided crossings appear between qubit-photon
states with different photon numbers, as illus-
trated by the energy diagram in Fig. [7 (b).
At these avoided crossings, a series of photon-
induced LZ transitions take place, giving rise
to the prominent |[1) — ||) transition proba-
bility shown in Fig. [0 (a). In the vicinity of
the avoided crossings, the energy gaps between
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the |[1) and |{|) states are quite small, leading
to low-frequency oscillations in the population,
such as the two oscillations of Fy | at ¢ = —200
and 200 in Figs.[T(c). It is clear that the period
of these low-frequency oscillations is compara-
ble to (or even larger than) the interval between
the two avoided crossings surround the oscilla-
tion. Therefore, only three main peaks emerge
in the down-state population (Fig. [T (a)).

Similar to the aforementioned weak driving
case, detailed mechanisms for LZ transitions
can be unveiled by analyzing the population
dynamics on individual coupled qubit-photon
states, as illustrated in Figs.[7 (c)-(j). The over-
all LZ transition probability shown in Fig.[7 (a)
arises from a bunch of LZ transitions between
different qubit-photon states as labelled by the
arrows in Figs. [0 (c)-(j). These transitions can
be classified into two types. One type of these
transitions occur around t = —200 and 200,
and follow the pathway [n+1,1) — |n, |) —
In+ 1, 7). For instance, the purple arrow la-
bels the |2, 1) — |1, |) transition at ¢t = —228
and the back transition from |1, |) to |2, 1) at
t = —172. Similar transitions are also labeled
by the green and gray arrows around ¢ = 200.
The other type of transitions proceed from a
pathway of |n, 1) — [n+1,]) — |n, 1), and
occur around ¢ = 0. Combining with the energy
diagram in Fig.[T (b), we find that both types of
LZ transitions originate in the adiabatic evolu-
tion of the wave function starting from some
In, T) states along the time-dependent eigen-
states, i.e., the energy levels of these eigenstates
are show in red in Fig. [@ (b). For a given
displacement «, the initial population is dis-
tributed over several |n, 1) states with different
amplitudes, leading to different contributions
to the LZ transitions. The dominance of these
contributions is presented by the amplitudes of
the peaks (dips) in P, (t) (P.+(t)), and are
further highlighted by the width of the curved
arrows in Figs. [7 (c¢)-(j). One can find that,
the dominant transition around t = —200 and
200 occurs between |1,1) and |0, |). Nearby
t = 0, the transition between |1, 1) and |2, |)
contributes the most to the overall transition
probability variation.

After each of such |1) — [}) — |1) tran-



sitions, a small portion of population is ac-
cumulated on the down state, which can be
seen from the following plateau of each peak.
The energy gaps at avoided crossings are dif-
ferent for different pairs of adiabatic states
due to off-diagonal qubit-photon coupling, i.e.,
ABp 412, 1y > ABp, qy-n, 4 > ABp, 490, 1)
Hence, as can be seen from the central peaks
in Figs. [ (c)-(j), shorter period oscillations are
found in populations of states with higher pho-
ton numbers at avoided crossings. As shown in
Figure [52/in the Supporting Information, there
is a perfect linear relation between the inverse of
the energy gap AE),11, 1y—pn, ;) at t = —28 and
the oscillation period of P, (n > 0) around
t=0.

As further confirmation of our efficient, wave-
function based approach, we compare the re-
sults from the multi-Dy Ansatz with those from
exact diagonalization. As shown in Fig. [[(a),
Prz(t) from the multi-Dy Ansatz (solid line)
coincides with that from the method of exact
diagonalization (dashed line), demonstrating
that time-dependent variation with the multi-
Dy Ansatz is a reliable approach to the LZSM
dynamics. Additional comparisons between the
multi-Dy Ansatz and exact diagonalization for
different initial photon states and external driv-
ing fields can be found in Figure S1 in the Sup-
porting Information.

Increasing the driving amplitude further to
A = 1.3 produces quite different dynamics com-
pared to aforementioned cases. The large driv-
ing amplitude leads to a large time-spacing be-
tween two adjacent avoided crossings as shown
in Fig. 8 (b). The population can reside on the
down state for a longer time after each |f) —
|[{) transition. Between two adjacent avoided
crossings, large energy gaps between two nearby
adiabatic states lead to short oscillation peri-
ods in populations of the coupled qubit-photon
states. Therefore, plateaus with oscillations ap-
pear between the two avoided crossings as de-
picted in Fig.[§ (a), in contrast to a single peak
between two avoided crossings shown in Fig. [7l
(a) with A = 1.1. Nevertheless, the large energy
gaps hinder the population transfer between the
two adiabatic states, but favor instead the di-
abatic population flow. In the vicinity of the
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avoided crossing, the driving is approximately
linear and the driving speed is v ~ AQh. With
an increasing amplitude A, the speed will in-
crease and the external field sweeps through the
avoided crossing more quickly. The system will
have a high likelihood to evolve along the dia-
batic surfaces with a larger A. As can be seen
from the population dynamics on different cou-
pled qubit-photon states shown in Figs. ] (c)-
(j), both adiabatic and diabatic evolutions of
wave packets are involved in the dynamics of
this scenario.

To probe how the average photon number
|a|* influences the dynamics, YS states |o)yg
with different amplitudes of displacement |«|
are used as the initial photon state. As shown
in Fig. [0 |a| equal to 1.0 (black), 2.0 (red), 3.0
(orange) and 4.0 (blue) are employed. Other
parameters are the same with as in Fig. 8 The
vertical dashed lines label the locations of the
avoided crossings which are also shown in Fig.[§
(b). Two successive avoided crossings form time
intervals labeled with I, II and III. In Inter-
vals I, IT and III, one can find that Pz(t) in-
creases with |a|. A larger average photon num-
ber yields larger Piz(t) in the intervals. This
trend coincides with what is shown in Fig.[H (a)
for the linear driving. For each curve in Fig. [0
the difference of P z(t) in and out the intervals
increases with |«a|. A larger difference of Ppy(t)
implies that the system is more likely staying
at |1) after the second avoided crossing of an
interval if the average photon number is larger.
To understand this behavior, one can consider
Fig. 8 (b), where energy gaps at avoided cross-
ings become larger with the increasing index of
Fock state n. A larger average photon number
means that an avoided crossing between states
In, 1) and |n £+ 1, |) with a larger n is involved,
leading to a larger energy gap that prevents the
transition form |n, 1) to |n £ 1, ]).

4 Conclusion

In this work, extensive simulations have been
performed for a driven qubit interacting with a
cavity photon mode which is initialized with a
Schrodinger-cat state. To arrive at numerically



exact dynamics of the qubit and its photon bath
in a LZ model with off-diagonal coupling, the
multi-Dy Ansatz has been utilized in combina-
tion of the time-dependent variational princi-
ple. Linear and sinusoidal fields are employed
to drive the qubit. For a linearly driven qubit,
the problem is a photon-assisted LZ model,
while for a sinusoidally driven qubit, one has
a LZSM interferometer.

Previous investigations of the LZ transition
often focus on the qubit dynamics while pay-
ing less attention to the evolution of the photon
field. As the LZ transition involves multiple en-
ergy levels in the presence of the photon mode,
it is non-trivial to decipher which energy levels
contribute to the transition if the initial pho-
ton state is not a Fock state. In this work, with
the help of the multi-Dy Ansatz, one can di-
rectly identify the individual contributions of
the energy levels from the computed photon
population in the up state (down state) P, 1().
The effectiveness and validity of our method to
extract individual contributions of the energy
levels is first established in a photon-assisted
LZ system with linear driving and an initial
photon vacuum state. Then our validated ap-
proach is applied to a qubit coupled with a pho-
ton mode and driven by a sinusoidal external
field, and the photon mode is initialized by the
Schrodinger-cat state. It is found that within
our method the LZSM transitions can be read-
ily attributed to individual energy levels that
are responsible.

Taking the Schrodinger-cat state as the ini-
tial photon state, we have explored the photon-
assisted LZ model both in the weak coupling
regime (7 < w) and in the fast driving regime
(v/7? > 1), using the multi-Dy Ansatz. Two
consecutive transitions are uncovered in our nu-
merical results. It has been claimed that for a
LZ model with a constant bias, the first of the
two transition can be described qualitatively by
the RWA, but the second is beyond the reach of
the RWA.4 From our simulations, similar be-
havior is discovered in the absence of the con-
stant bias term. It is found that a constant
bias only influences the detail of the dynamics
but does not change the overall dynamical fea-
tures of the LZ transition. We have also com-
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puted the average height of the two consecutive
transitions, Pz, and Pz(00), as a function of
the phase 6 of the initial Schrodinger-cat state.
From the numerical results, it is found that the
6 dependence of Pz, and Prz(co) can be put
in the same functional form but with different
fitting parameters.

With sinusoidal driving and an initial photon
YS state, the dynamics of the LZSM interfer-
ometer is found to be rather complex. Upon
adjustment of the amplitude of the sinusoidal
driving, the dynamics of Ppz(t) is found to
change dramatically. The dynamical behavior
of Piz(t) can be understood with the help of
an energy-level diagram and detailed popula-
tion dynamics in coupled qubit-photon states.
In addition, we have studied the dependence of
LZSM dynamics on the average photon number
||, and it is revealed that a larger |a|* makes
the qubit more likely stay in the initial up state
|1} after two consecutive avoided crossings are
swept through, because the gap increases with
the increasing photon number n of the Fock
state, and a larger |a|* gets higher Fock states
involved.

The Schrodinger-cat states are important ve-
hicles for implementing quantum computation
and quantum error correction process,”2™ and
there have been proposals on using LZSM inter-
ferometry to generate Schrodinger-cat states.”
The process of generating Schodinger-cat states
necessarily involves a multitude of Fock states,
all of which contribute to the transition proba-
bility Pz(t). If a photon state is initially in a
Fock state |n), then the LZ dynamics can be il-
luminated by the energy diagram or the photon
dynamics. As Schrodinger-cat states are super-
positions of Fock states with different weights,
at any given time, it is not possible to know the
contribution of a specific state from an energy
diagram alone.

Detailed transition pathways revealed in this
work provide insights into quantum state con-
trol and monitoring. For instance, the transi-
tion pathways present a fundamental physical
framework to understand the energy relaxation
channels of photoinduced excitation in molecu-
lar systems. Understanding the dependence of
the qubit states and the transition pathways on



the driving field parameters is also helpful for
the control of quantum states in quantum in-
formation and quantum computing, where pho-
ton statistics is often used to readout the qubit
states and to identify whether the initial pho-
ton field is well prepared. Detailed analysis of
photon dynamics, as demonstrated in this work,
help illuminate the contributions from individ-
ual states and unveil the intricacies of the LZ
transition after the photon state is initiated by
a superposition of Fock states.

Qubits usually work in a low temperature en-
vironment which can be modeled by a phonon
bath with multiple modes. To study the ef-
fect of the phonon bath on the qubit dynam-
ics, approaches such as exact diagonalization
are incapable to obtain accurate results due to
the huge Hilbert space spanned by the multi-
ple phonon modes. The multi-Dy Ansatz com-
bined with time-dependent variation is an ef-
ficient tool to study dephasing and dispersion
caused by a low temperature environment with
wide-ranging applications in QED devices.

Acknowledgement The authors would like
to thank D. M. Jia and Z. Sun for useful dis-
cussion. Support of the Singapore Ministry
of Education Academic Research Fund (Grant
Nos. 2018-T1-002-175 and 2020-T1-002-075) is
gratefully acknowledged. The work is also sup-
ported in part by the Project of Inner Mongolia
University of Science & Technology (2017QDL-
B14) and the Natural Science Foundation of In-
ner Mongolia (2019MS01013).

Supporting Information Avail-

able

e The detailed derivations of the La-
grangian and equations of motion of the
multi-Dy Ansatz are given in the Support-
ing Information.

e The convergence test for different initial
photon states and the comparison be-
tween the multi-Ds Ansatz and the exact
diagonalization are shown in the Support-
ing Information.
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e The relation between the energy gaps in
the vicinity of the avoided crossings and
the shorter periods of P, |(t) (n > 0) are
unveiled in the Supporting Information.

5 Data Availability

The data that support the findings of this study
are available from the corresponding author
upon reasonable request.
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The

variational

time dependent
approach

with Davydov states

Rather than the single mode Hamiltonian in
Eq. (7), we adopt a general Hamiltonian with a
multi-mode photon bath

N
. e(t) A
H = TO'Z + EO'J; + zq:wqbgbq

D>

q

o |2

(cos 0,0, + sin 0,0,) (b + by),
(s1)

where w, is the frequency of the gth mode of

the bath with creation (annihilation) operator

bi(by). 7 and 6, are the qubit-oscillator cou-

pling and the interaction angle, respectively.

The multi-mode Hamiltonian (S1I) reduces to

single-mode Hamiltonian (7) if N is set to 1.
The multi-D, trail state is

Dy (1)) =

NE

i=1

N

+ Bi(t)] 1) exp(D_ fia(t)b — H.c.)|0) | ,

1=1 q

in which A; and B; are time-dependent vari-
ational parameters for the amplitudes of the
up (|1)) and down (|})) states, respectively.
fiq(t) are the bosonic displacements, where ¢
and q label the ith coherent superposition state
and qth effective bath mode, respectively. The
trail state (S2)) reduces to the one mode case in
Eq. (9), if one sets N = 1. If one sets the mul-
tiplicity M = 1, the multi-Dy Ansatz reduces
to the single Dy Ansatz. The single Dy trial
state can be seen as a simple direct product of
an electronic and a nuclear wave function and
can only describe the system state in an Ehren-
fest approximation. If one let the variational
parameters for the nuclear wave function also
depend on the electronic part, we get the D,

Ai()] 1) exp(D | fig(t)b] — H.c.)|0)

(52)



version trail state.

Dy (t))

A1) 1) exp(D_ fig(t)b] — Hee.)|0)

I
WE

=1 L i

+ Bi(t)] 1) exp(D_ giq(t)b], — H.c.)|0)

1=1

in which f;, and g¢;, are the bosonic displace-
ments for the |1) and ||) states. The multi-D4
Ansatz of multiplicity M can be viewed as a
special case of the multi-Dy Ansatz of multi-
plicity 2M. If one sets A; = 0 for even k and
By, = 0 for odd k, the multi-D; Ansatz becomes
the multi-Dy Ansatz (More details can be found
in Ref. 45.).

These multiple Davydov Ansdtze in principle
allow for an exact solution to the Schrodinger
equation in the limit of large multiplicities. The
numerical accuracy and efficiency of the mul-
tiple Davydov Ansdtze have been extensively
verified in a large variety of many-body sys-
tems. Although both the multi-D; and the
multi-Dy Ansdtze are numerically exact with a
sufficiently large multiplicity, a suitable version
for a particular problem has to be carefully cho-
sen depending on the Hamiltonian constructs
and parameter configurations. From our exten-
sive studies, we have found that the multi-D;
Ansatz exhibits excellent performance for prob-
lems with diagonal system-bath coupling only,
while the multi-Dy Ansatz is more suitable for
tasks with off-diagonal system-bath coupling,
despite that the multi-Dy Ansatz may have less
variational parameters than its D; counterpart
for comparable multiplicity. For the Hamilto-
nian (7), the off-diagonal qubit-photon coupling
are employed. Therefore, we adopted the multi-
D, Ansatz to describe the time-dependent state
of the entire system.

In order to apply the time-dependent varia-
tional principle to explore the dynamics from
the Hamiltonian Eq. (S2)), we first need to cal-

Y

(83)
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culate the Lagrangian L in Eq. (2).

L=23" (44— A4+ BBy — B B) S5,

0,
+%Z (AA; + B!B;) Z[M
_M + f;qfiq - f"qf;q]sji
—(Dy" ([ H D3 (1), o

where the Debye-Waller factor is Sj; =
> 2 "
exp 3, {= (1fsal” + [ fial®) /2 + f1fiq }, and the
last term in Eq. can be obtained as
(D' (1) H D3 (1)
vt . .
=5 2 (44— BB) 5

i,
+% > (A4Bi+ BjA;) S
2%
+ Z (A;A,- + B;Bi) Z wq fiqfiaSji
irj q
—i—% Z (A;Ai - B;Bi) ZW cos 0y (fiq + f;q) Sji
irj q
—l—% Z (A;Bi + B;Ai) Z Vg Sin by (fiq + f;q) Sji-
q ($5)

The time-dependent variational principle re-
sults in equations of motion for A; and B;,

—1 Z Ay
o SN [ (Fuafi+ fafia) + 28] S
i q
YA S ofiyfui
i q
—% ZAi Z% cos Oy (fig + fl:q) Shi
i q

1 . *
-5 Z B; nyq sin 0, (fig + frg) Skis (S6)
i q



and

- DY = (Fufis+ fuaf) + 20tua) S

= +%t ; B;Syi — % ; A;iSki
- Z B; Z qu]:qfiqski
g q

1
—I—§ ZBZ- qu cos 0y (fiq + frg) Ski
i q

1 . *
_5 ZAZ Z”yq squ (flq + fkq) Shi-
1 q
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The equations of motion for f;, are
-y [(A;A,- + B;;BZ) Fi
~ (4 Ai + BB) fio| S
Z’ * *
-3 > (AA; + BLBy) fiqSki
X Z <2f1:pfi;l7 - fipfi; - fipf{;)
p
vt . .
=—7 2_ (AAi = BiBi) figShi
A * *
-3 > (A;B; + BiAy) figSki
— Y (434 + BiB)
<Wq + Z Wpf/:pfz’p) JigSki
1
—3 Z (ArA; — B;B;) v, €08 0,5k
1 * *
—5 > (AjAi - BiBy)
fiq Z Yp €os 0, (fip + f;;kp) Shi
p
1
—5 D (ALBi + BiA) 7sin 0,5
1 * *
-5 > (A;B; + BiAy)
Jig Z’Vp sin 6, (fip + f]:p) Shi-
p
(S8)
It should be noted that the main results of this
work are calculated from the above equations of
motion. The equations of motion are solved nu-

merically by means of the fourth-order Runge-
Kutta method.



test of
Landau-Zener dynamics
for a qubit coupled to a
photon mode

Convergence

We perform convergence tests on our algorithm
based on the multiple Davydov D, trial states,
and estimate the approximate multiplicity val-
ues needed for our simulations to converge.

First, convergence tests are performed for a
single oscillator case in Hamiltonian (8), in or-
der to explore the convergent parameters to ob-
tain accurate results of the LZ transition prob-

In Fig. [STi(a), a convergence test is done with
a vacuum initial state for the photon cavity.
The coupling strength v = 0.12 and speed
v = 0.01 are employed. Multiplicities M from
6 to 10 are adopted in the calculations. As
shown in Fig. [SIl, convergence is achieved for
M = 6 for the vacuum initial photon state. The
steady-state LZ transition probability is found
to be 0.883, which agrees with the analytical
prediction 0.896 from

PLz(OO) = 6_7”/2/2”. (Sg)

In Fig. SIi(b), a superposition initial photon
state in Eq. (16) with the phase 6 /2,
i.e., the YS state, is used to test the conver-
gence. The coupling strength v = 0.05 and
speed v = 0.01 are adopted in the computation.
As shown in Fig. [ST(b), multiplicities M from 6
to 10 are used in the calculations. In Fig.[ST(b),
curves of multiplicities M = 6 (pink) visibly de-
viate those of higher multiplicities, while Ppy(t)
calculated with multiplicities from M = 8 to 10
coincide perfectly.

To provide additional confirmation to the ac-
curacy of our multi-Dy results in this work, the
computationally expensive method of exact di-
agonalization (ED) has been employed as check
up, and the results are plotted as blue dashed
lines in Fig. (a) and (b). It is found that
the difference between the ED results and those
from the multi-Dy Ansatz is negligibly small.

Comparing with the vacuum initial case, a
larger multiplicity is needed to achieve conver-
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gence for the case of a superposition initial pho-
ton state. The YS state involves much higher
photon energy levels. The difference in the
convergence multiplicity between the vacuum
and YS state implies that involvement of higher
photon energy levels requires a larger multiplic-
ity to achieve convergence.

C. Shorter period of the

central oscillation in
P, (t) for large n

As can be seen from Hamiltonian (6) with an
interaction angle 6. = /2, due to qubit-photon
coupling, energy spaces at avoided crossings be-
tween two nearby adiabatic states increase with
photon numbers. These energy gaps determine
the oscillation periods of P, (n > 0) in the
vicinity of the avoided crossings. To unveil the
relations between these two quantities, we mea-
sure the energy gaps AE between two nearby
adiabatic states at t = —28 as well as the os-
cillation periods around ¢t = 0 in P, (n > 0).
As shown in Fig. [S2 the inverse of the energy
gaps has a perfect linear relation with the oscil-
lation periods. Therefore, shorter-period oscil-
lations are found in populations of states with
higher photon numbers at avoided crossings, as
depicted in Figs. 7 (e, g, 1).
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Figure 7: (a) Time evolution of the transition
probability Ppz(t) calculated by the multi-Ds
Ansatz. The solid line is Pyz(t) from the multi-
Dy Ansatz, and the dashed line is Pz (t) from
exact diagonalization. (b) The eigenstate dia-
gram of Hamiltonian (7). (c)-(j) Time evolution
of the photon bath. The transitions between
states are labeled by curved arrows. The ini-
tial condition of Eq. ([I6) is adopted with phase
0 = 7/2 and displacement |a|?> = 1. Parame-
ters in Eq. () for sinusoidal driving are gy = 0,
A =11 Q/w = /200, o = 7/2. The cou-
pling strength is /w = 0.05.
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Figure 8: (a) Time evolution of the transition
probability Ppz(t) calculated by the multi-Dy
Ansatz. (b) The eigenstate diagram of Hamil-
tonian (7). (c)-(j) Time evolution of the pho-
ton bath. The initial condition of Eq. (I8]) is
adopted with phase § = 7/2 and displacement
la/? = 1. The parameters in Eq. (@) for the
sinusoidal driving is ¢g = 0, A = 1.3, Q/w =
7/200, ¢o = w/2. The coupling strength is
v/w = 0.05.
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Figure 9: Time evolution of the transition
probability Ppz(t) calculated by the multi-Ds
Ansatz.  The initial condition of Eq. (I6]) is
adopted with phase § = 7/2. Four amplitudes
of the displacement || = 1(black), 2(red), 3(or-
ange) and 4(blue) are employed. The param-
eters in Eq. (@) for the sinusoidal driving is
eo =0, A =13, Qw = /200, g = /2.
The coupling strength is v/w = 0.05.
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Figure S1: Time evolution of transition prob-
ability calculated by the multi-Dy Ansatz and
exact diagonalization. The initial qubit is set to
|1). The multiplicity is set to M = 6, 8 and 10.
Results from the exact diagonalization are plot-
ted with dashed blue curves. (a) Initialize the
photon bath with the vacuum state |0) ;. The
coupling strength v = 0.12, the speed v = 0.01.
(b) Initialize the photon bath with the Y'S state
in Eq. (16). The coupling strength v = 0.05,
the speed v = 0.01.
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Figure S2: Relation between the energy gaps
AFE of two nearby adiabatic states at t = —28
and the periods of the oscillations around ¢ = 0
in P, ;. The red dashed line is a linear fitting
of the data points.



	Abstract
	1 introduction
	2 METHODOLOGY
	2.1 A qubit coupled to a single mode
	2.2 The Multi-D2 state

	3 Results and discussion
	3.1 Observables
	3.2 Physical understanding of Landau-Zener processes
	3.3 Landau-Zener transition with an initial superposition of coherent states
	3.4 Linear driving
	3.5 Sinusoidal driving 

	4 Conclusion
	Supporting Information Available
	5 Data Availability
	References
	A. The time dependent variational approach with Davydov states
	B. Convergence test of Landau-Zener dynamics for a qubit coupled to a photon mode
	C. Shorter period of the central oscillation in Pn, (t) for large n

